]> git.saurik.com Git - apple/javascriptcore.git/blob - jit/ExecutableAllocatorFixedVMPool.cpp
JavaScriptCore-584.tar.gz
[apple/javascriptcore.git] / jit / ExecutableAllocatorFixedVMPool.cpp
1 /*
2 * Copyright (C) 2009 Apple Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
16 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
17 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
18 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
19 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
20 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
21 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */
25
26 #include "config.h"
27
28 #include "ExecutableAllocator.h"
29
30 #include <errno.h>
31
32 #if ENABLE(ASSEMBLER) && OS(DARWIN) && CPU(X86_64)
33
34 #include "TCSpinLock.h"
35 #include <mach/mach_init.h>
36 #include <mach/vm_map.h>
37 #include <sys/mman.h>
38 #include <unistd.h>
39 #include <wtf/AVLTree.h>
40 #include <wtf/VMTags.h>
41
42 using namespace WTF;
43
44 namespace JSC {
45
46 #define TWO_GB (2u * 1024u * 1024u * 1024u)
47 #define SIXTEEN_MB (16u * 1024u * 1024u)
48
49 // FreeListEntry describes a free chunk of memory, stored in the freeList.
50 struct FreeListEntry {
51 FreeListEntry(void* pointer, size_t size)
52 : pointer(pointer)
53 , size(size)
54 , nextEntry(0)
55 , less(0)
56 , greater(0)
57 , balanceFactor(0)
58 {
59 }
60
61 // All entries of the same size share a single entry
62 // in the AVLTree, and are linked together in a linked
63 // list, using nextEntry.
64 void* pointer;
65 size_t size;
66 FreeListEntry* nextEntry;
67
68 // These fields are used by AVLTree.
69 FreeListEntry* less;
70 FreeListEntry* greater;
71 int balanceFactor;
72 };
73
74 // Abstractor class for use in AVLTree.
75 // Nodes in the AVLTree are of type FreeListEntry, keyed on
76 // (and thus sorted by) their size.
77 struct AVLTreeAbstractorForFreeList {
78 typedef FreeListEntry* handle;
79 typedef int32_t size;
80 typedef size_t key;
81
82 handle get_less(handle h) { return h->less; }
83 void set_less(handle h, handle lh) { h->less = lh; }
84 handle get_greater(handle h) { return h->greater; }
85 void set_greater(handle h, handle gh) { h->greater = gh; }
86 int get_balance_factor(handle h) { return h->balanceFactor; }
87 void set_balance_factor(handle h, int bf) { h->balanceFactor = bf; }
88
89 static handle null() { return 0; }
90
91 int compare_key_key(key va, key vb) { return va - vb; }
92 int compare_key_node(key k, handle h) { return compare_key_key(k, h->size); }
93 int compare_node_node(handle h1, handle h2) { return compare_key_key(h1->size, h2->size); }
94 };
95
96 // Used to reverse sort an array of FreeListEntry pointers.
97 static int reverseSortFreeListEntriesByPointer(const void* leftPtr, const void* rightPtr)
98 {
99 FreeListEntry* left = *(FreeListEntry**)leftPtr;
100 FreeListEntry* right = *(FreeListEntry**)rightPtr;
101
102 return (intptr_t)(right->pointer) - (intptr_t)(left->pointer);
103 }
104
105 // Used to reverse sort an array of pointers.
106 static int reverseSortCommonSizedAllocations(const void* leftPtr, const void* rightPtr)
107 {
108 void* left = *(void**)leftPtr;
109 void* right = *(void**)rightPtr;
110
111 return (intptr_t)right - (intptr_t)left;
112 }
113
114 class FixedVMPoolAllocator
115 {
116 // The free list is stored in a sorted tree.
117 typedef AVLTree<AVLTreeAbstractorForFreeList, 40> SizeSortedFreeTree;
118
119 // Use madvise as apropriate to prevent freed pages from being spilled,
120 // and to attempt to ensure that used memory is reported correctly.
121 #if HAVE(MADV_FREE_REUSE)
122 void release(void* position, size_t size)
123 {
124 while (madvise(position, size, MADV_FREE_REUSABLE) == -1 && errno == EAGAIN) { }
125 }
126
127 void reuse(void* position, size_t size)
128 {
129 while (madvise(position, size, MADV_FREE_REUSE) == -1 && errno == EAGAIN) { }
130 }
131 #elif HAVE(MADV_DONTNEED)
132 void release(void* position, size_t size)
133 {
134 while (madvise(position, size, MADV_DONTNEED) == -1 && errno == EAGAIN) { }
135 }
136
137 void reuse(void*, size_t) {}
138 #else
139 void release(void*, size_t) {}
140 void reuse(void*, size_t) {}
141 #endif
142
143 // All addition to the free list should go through this method, rather than
144 // calling insert directly, to avoid multiple entries beging added with the
145 // same key. All nodes being added should be singletons, they should not
146 // already be a part of a chain.
147 void addToFreeList(FreeListEntry* entry)
148 {
149 ASSERT(!entry->nextEntry);
150
151 if (entry->size == m_commonSize) {
152 m_commonSizedAllocations.append(entry->pointer);
153 delete entry;
154 } else if (FreeListEntry* entryInFreeList = m_freeList.search(entry->size, m_freeList.EQUAL)) {
155 // m_freeList already contain an entry for this size - insert this node into the chain.
156 entry->nextEntry = entryInFreeList->nextEntry;
157 entryInFreeList->nextEntry = entry;
158 } else
159 m_freeList.insert(entry);
160 }
161
162 // We do not attempt to coalesce addition, which may lead to fragmentation;
163 // instead we periodically perform a sweep to try to coalesce neigboring
164 // entries in m_freeList. Presently this is triggered at the point 16MB
165 // of memory has been released.
166 void coalesceFreeSpace()
167 {
168 Vector<FreeListEntry*> freeListEntries;
169 SizeSortedFreeTree::Iterator iter;
170 iter.start_iter_least(m_freeList);
171
172 // Empty m_freeList into a Vector.
173 for (FreeListEntry* entry; (entry = *iter); ++iter) {
174 // Each entry in m_freeList might correspond to multiple
175 // free chunks of memory (of the same size). Walk the chain
176 // (this is likely of couse only be one entry long!) adding
177 // each entry to the Vector (at reseting the next in chain
178 // pointer to separate each node out).
179 FreeListEntry* next;
180 do {
181 next = entry->nextEntry;
182 entry->nextEntry = 0;
183 freeListEntries.append(entry);
184 } while ((entry = next));
185 }
186 // All entries are now in the Vector; purge the tree.
187 m_freeList.purge();
188
189 // Reverse-sort the freeListEntries and m_commonSizedAllocations Vectors.
190 // We reverse-sort so that we can logically work forwards through memory,
191 // whilst popping items off the end of the Vectors using last() and removeLast().
192 qsort(freeListEntries.begin(), freeListEntries.size(), sizeof(FreeListEntry*), reverseSortFreeListEntriesByPointer);
193 qsort(m_commonSizedAllocations.begin(), m_commonSizedAllocations.size(), sizeof(void*), reverseSortCommonSizedAllocations);
194
195 // The entries from m_commonSizedAllocations that cannot be
196 // coalesced into larger chunks will be temporarily stored here.
197 Vector<void*> newCommonSizedAllocations;
198
199 // Keep processing so long as entries remain in either of the vectors.
200 while (freeListEntries.size() || m_commonSizedAllocations.size()) {
201 // We're going to try to find a FreeListEntry node that we can coalesce onto.
202 FreeListEntry* coalescionEntry = 0;
203
204 // Is the lowest addressed chunk of free memory of common-size, or is it in the free list?
205 if (m_commonSizedAllocations.size() && (!freeListEntries.size() || (m_commonSizedAllocations.last() < freeListEntries.last()->pointer))) {
206 // Pop an item from the m_commonSizedAllocations vector - this is the lowest
207 // addressed free chunk. Find out the begin and end addresses of the memory chunk.
208 void* begin = m_commonSizedAllocations.last();
209 void* end = (void*)((intptr_t)begin + m_commonSize);
210 m_commonSizedAllocations.removeLast();
211
212 // Try to find another free chunk abutting onto the end of the one we have already found.
213 if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
214 // There is an existing FreeListEntry for the next chunk of memory!
215 // we can reuse this. Pop it off the end of m_freeList.
216 coalescionEntry = freeListEntries.last();
217 freeListEntries.removeLast();
218 // Update the existing node to include the common-sized chunk that we also found.
219 coalescionEntry->pointer = (void*)((intptr_t)coalescionEntry->pointer - m_commonSize);
220 coalescionEntry->size += m_commonSize;
221 } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
222 // There is a second common-sized chunk that can be coalesced.
223 // Allocate a new node.
224 m_commonSizedAllocations.removeLast();
225 coalescionEntry = new FreeListEntry(begin, 2 * m_commonSize);
226 } else {
227 // Nope - this poor little guy is all on his own. :-(
228 // Add him into the newCommonSizedAllocations vector for now, we're
229 // going to end up adding him back into the m_commonSizedAllocations
230 // list when we're done.
231 newCommonSizedAllocations.append(begin);
232 continue;
233 }
234 } else {
235 ASSERT(freeListEntries.size());
236 ASSERT(!m_commonSizedAllocations.size() || (freeListEntries.last()->pointer < m_commonSizedAllocations.last()));
237 // The lowest addressed item is from m_freeList; pop it from the Vector.
238 coalescionEntry = freeListEntries.last();
239 freeListEntries.removeLast();
240 }
241
242 // Right, we have a FreeListEntry, we just need check if there is anything else
243 // to coalesce onto the end.
244 ASSERT(coalescionEntry);
245 while (true) {
246 // Calculate the end address of the chunk we have found so far.
247 void* end = (void*)((intptr_t)coalescionEntry->pointer - coalescionEntry->size);
248
249 // Is there another chunk adjacent to the one we already have?
250 if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
251 // Yes - another FreeListEntry -pop it from the list.
252 FreeListEntry* coalescee = freeListEntries.last();
253 freeListEntries.removeLast();
254 // Add it's size onto our existing node.
255 coalescionEntry->size += coalescee->size;
256 delete coalescee;
257 } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
258 // We can coalesce the next common-sized chunk.
259 m_commonSizedAllocations.removeLast();
260 coalescionEntry->size += m_commonSize;
261 } else
262 break; // Nope, nothing to be added - stop here.
263 }
264
265 // We've coalesced everything we can onto the current chunk.
266 // Add it back into m_freeList.
267 addToFreeList(coalescionEntry);
268 }
269
270 // All chunks of free memory larger than m_commonSize should be
271 // back in m_freeList by now. All that remains to be done is to
272 // copy the contents on the newCommonSizedAllocations back into
273 // the m_commonSizedAllocations Vector.
274 ASSERT(m_commonSizedAllocations.size() == 0);
275 m_commonSizedAllocations.append(newCommonSizedAllocations);
276 }
277
278 public:
279
280 FixedVMPoolAllocator(size_t commonSize, size_t totalHeapSize)
281 : m_commonSize(commonSize)
282 , m_countFreedSinceLastCoalesce(0)
283 , m_totalHeapSize(totalHeapSize)
284 {
285 // Cook up an address to allocate at, using the following recipe:
286 // 17 bits of zero, stay in userspace kids.
287 // 26 bits of randomness for ASLR.
288 // 21 bits of zero, at least stay aligned within one level of the pagetables.
289 //
290 // But! - as a temporary workaround for some plugin problems (rdar://problem/6812854),
291 // for now instead of 2^26 bits of ASLR lets stick with 25 bits of randomization plus
292 // 2^24, which should put up somewhere in the middle of usespace (in the address range
293 // 0x200000000000 .. 0x5fffffffffff).
294 intptr_t randomLocation = arc4random() & ((1 << 25) - 1);
295 randomLocation += (1 << 24);
296 randomLocation <<= 21;
297 m_base = mmap(reinterpret_cast<void*>(randomLocation), m_totalHeapSize, INITIAL_PROTECTION_FLAGS, MAP_PRIVATE | MAP_ANON, VM_TAG_FOR_EXECUTABLEALLOCATOR_MEMORY, 0);
298 if (!m_base)
299 CRASH();
300
301 // For simplicity, we keep all memory in m_freeList in a 'released' state.
302 // This means that we can simply reuse all memory when allocating, without
303 // worrying about it's previous state, and also makes coalescing m_freeList
304 // simpler since we need not worry about the possibility of coalescing released
305 // chunks with non-released ones.
306 release(m_base, m_totalHeapSize);
307 m_freeList.insert(new FreeListEntry(m_base, m_totalHeapSize));
308 }
309
310 void* alloc(size_t size)
311 {
312 void* result;
313
314 // Freed allocations of the common size are not stored back into the main
315 // m_freeList, but are instead stored in a separate vector. If the request
316 // is for a common sized allocation, check this list.
317 if ((size == m_commonSize) && m_commonSizedAllocations.size()) {
318 result = m_commonSizedAllocations.last();
319 m_commonSizedAllocations.removeLast();
320 } else {
321 // Serach m_freeList for a suitable sized chunk to allocate memory from.
322 FreeListEntry* entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);
323
324 // This would be bad news.
325 if (!entry) {
326 // Errk! Lets take a last-ditch desparation attempt at defragmentation...
327 coalesceFreeSpace();
328 // Did that free up a large enough chunk?
329 entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);
330 // No?... *BOOM!*
331 if (!entry)
332 CRASH();
333 }
334 ASSERT(entry->size != m_commonSize);
335
336 // Remove the entry from m_freeList. But! -
337 // Each entry in the tree may represent a chain of multiple chunks of the
338 // same size, and we only want to remove one on them. So, if this entry
339 // does have a chain, just remove the first-but-one item from the chain.
340 if (FreeListEntry* next = entry->nextEntry) {
341 // We're going to leave 'entry' in the tree; remove 'next' from its chain.
342 entry->nextEntry = next->nextEntry;
343 next->nextEntry = 0;
344 entry = next;
345 } else
346 m_freeList.remove(entry->size);
347
348 // Whoo!, we have a result!
349 ASSERT(entry->size >= size);
350 result = entry->pointer;
351
352 // If the allocation exactly fits the chunk we found in the,
353 // m_freeList then the FreeListEntry node is no longer needed.
354 if (entry->size == size)
355 delete entry;
356 else {
357 // There is memory left over, and it is not of the common size.
358 // We can reuse the existing FreeListEntry node to add this back
359 // into m_freeList.
360 entry->pointer = (void*)((intptr_t)entry->pointer + size);
361 entry->size -= size;
362 addToFreeList(entry);
363 }
364 }
365
366 // Call reuse to report to the operating system that this memory is in use.
367 ASSERT(isWithinVMPool(result, size));
368 reuse(result, size);
369 return result;
370 }
371
372 void free(void* pointer, size_t size)
373 {
374 // Call release to report to the operating system that this
375 // memory is no longer in use, and need not be paged out.
376 ASSERT(isWithinVMPool(pointer, size));
377 release(pointer, size);
378
379 // Common-sized allocations are stored in the m_commonSizedAllocations
380 // vector; all other freed chunks are added to m_freeList.
381 if (size == m_commonSize)
382 m_commonSizedAllocations.append(pointer);
383 else
384 addToFreeList(new FreeListEntry(pointer, size));
385
386 // Do some housekeeping. Every time we reach a point that
387 // 16MB of allocations have been freed, sweep m_freeList
388 // coalescing any neighboring fragments.
389 m_countFreedSinceLastCoalesce += size;
390 if (m_countFreedSinceLastCoalesce >= SIXTEEN_MB) {
391 m_countFreedSinceLastCoalesce = 0;
392 coalesceFreeSpace();
393 }
394 }
395
396 private:
397
398 #ifndef NDEBUG
399 bool isWithinVMPool(void* pointer, size_t size)
400 {
401 return pointer >= m_base && (reinterpret_cast<char*>(pointer) + size <= reinterpret_cast<char*>(m_base) + m_totalHeapSize);
402 }
403 #endif
404
405 // Freed space from the most common sized allocations will be held in this list, ...
406 const size_t m_commonSize;
407 Vector<void*> m_commonSizedAllocations;
408
409 // ... and all other freed allocations are held in m_freeList.
410 SizeSortedFreeTree m_freeList;
411
412 // This is used for housekeeping, to trigger defragmentation of the freed lists.
413 size_t m_countFreedSinceLastCoalesce;
414
415 void* m_base;
416 size_t m_totalHeapSize;
417 };
418
419 void ExecutableAllocator::intializePageSize()
420 {
421 ExecutableAllocator::pageSize = getpagesize();
422 }
423
424 static FixedVMPoolAllocator* allocator = 0;
425 static SpinLock spinlock = SPINLOCK_INITIALIZER;
426
427 ExecutablePool::Allocation ExecutablePool::systemAlloc(size_t size)
428 {
429 SpinLockHolder lock_holder(&spinlock);
430
431 if (!allocator)
432 allocator = new FixedVMPoolAllocator(JIT_ALLOCATOR_LARGE_ALLOC_SIZE, TWO_GB);
433 ExecutablePool::Allocation alloc = {reinterpret_cast<char*>(allocator->alloc(size)), size};
434 return alloc;
435 }
436
437 void ExecutablePool::systemRelease(const ExecutablePool::Allocation& allocation)
438 {
439 SpinLockHolder lock_holder(&spinlock);
440
441 ASSERT(allocator);
442 allocator->free(allocation.pages, allocation.size);
443 }
444
445 }
446
447 #endif // HAVE(ASSEMBLER)