]> git.saurik.com Git - apple/javascriptcore.git/blob - wtf/FastMalloc.cpp
JavaScriptCore-466.1.tar.gz
[apple/javascriptcore.git] / wtf / FastMalloc.cpp
1 // Copyright (c) 2005, 2007, Google Inc.
2 // All rights reserved.
3 // Copyright (C) 2005, 2006, 2007, 2008 Apple Inc. All rights reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // ---
32 // Author: Sanjay Ghemawat <opensource@google.com>
33 //
34 // A malloc that uses a per-thread cache to satisfy small malloc requests.
35 // (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
36 //
37 // See doc/tcmalloc.html for a high-level
38 // description of how this malloc works.
39 //
40 // SYNCHRONIZATION
41 // 1. The thread-specific lists are accessed without acquiring any locks.
42 // This is safe because each such list is only accessed by one thread.
43 // 2. We have a lock per central free-list, and hold it while manipulating
44 // the central free list for a particular size.
45 // 3. The central page allocator is protected by "pageheap_lock".
46 // 4. The pagemap (which maps from page-number to descriptor),
47 // can be read without holding any locks, and written while holding
48 // the "pageheap_lock".
49 // 5. To improve performance, a subset of the information one can get
50 // from the pagemap is cached in a data structure, pagemap_cache_,
51 // that atomically reads and writes its entries. This cache can be
52 // read and written without locking.
53 //
54 // This multi-threaded access to the pagemap is safe for fairly
55 // subtle reasons. We basically assume that when an object X is
56 // allocated by thread A and deallocated by thread B, there must
57 // have been appropriate synchronization in the handoff of object
58 // X from thread A to thread B. The same logic applies to pagemap_cache_.
59 //
60 // THE PAGEID-TO-SIZECLASS CACHE
61 // Hot PageID-to-sizeclass mappings are held by pagemap_cache_. If this cache
62 // returns 0 for a particular PageID then that means "no information," not that
63 // the sizeclass is 0. The cache may have stale information for pages that do
64 // not hold the beginning of any free()'able object. Staleness is eliminated
65 // in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
66 // do_memalign() for all other relevant pages.
67 //
68 // TODO: Bias reclamation to larger addresses
69 // TODO: implement mallinfo/mallopt
70 // TODO: Better testing
71 //
72 // 9/28/2003 (new page-level allocator replaces ptmalloc2):
73 // * malloc/free of small objects goes from ~300 ns to ~50 ns.
74 // * allocation of a reasonably complicated struct
75 // goes from about 1100 ns to about 300 ns.
76
77 #include "config.h"
78 #include "FastMalloc.h"
79
80 #include "Assertions.h"
81 #if USE(MULTIPLE_THREADS)
82 #include <pthread.h>
83 #endif
84
85 #ifndef NO_TCMALLOC_SAMPLES
86 #ifdef WTF_CHANGES
87 #define NO_TCMALLOC_SAMPLES
88 #endif
89 #endif
90
91 #if !defined(USE_SYSTEM_MALLOC) && defined(NDEBUG)
92 #define FORCE_SYSTEM_MALLOC 0
93 #else
94 #define FORCE_SYSTEM_MALLOC 1
95 #endif
96
97 #ifndef NDEBUG
98 namespace WTF {
99
100 #if USE(MULTIPLE_THREADS)
101 static pthread_key_t isForbiddenKey;
102 static pthread_once_t isForbiddenKeyOnce = PTHREAD_ONCE_INIT;
103 static void initializeIsForbiddenKey()
104 {
105 pthread_key_create(&isForbiddenKey, 0);
106 }
107
108 static bool isForbidden()
109 {
110 pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
111 return !!pthread_getspecific(isForbiddenKey);
112 }
113
114 void fastMallocForbid()
115 {
116 pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
117 pthread_setspecific(isForbiddenKey, &isForbiddenKey);
118 }
119
120 void fastMallocAllow()
121 {
122 pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
123 pthread_setspecific(isForbiddenKey, 0);
124 }
125
126 #else
127
128 static bool staticIsForbidden;
129 static bool isForbidden()
130 {
131 return staticIsForbidden;
132 }
133
134 void fastMallocForbid()
135 {
136 staticIsForbidden = true;
137 }
138
139 void fastMallocAllow()
140 {
141 staticIsForbidden = false;
142 }
143 #endif // USE(MULTIPLE_THREADS)
144
145 } // namespace WTF
146 #endif // NDEBUG
147
148 #include <string.h>
149
150 namespace WTF {
151 void *fastZeroedMalloc(size_t n)
152 {
153 void *result = fastMalloc(n);
154 if (!result)
155 return 0;
156 memset(result, 0, n);
157 #ifndef WTF_CHANGES
158 MallocHook::InvokeNewHook(result, n);
159 #endif
160 return result;
161 }
162
163 }
164
165 #if FORCE_SYSTEM_MALLOC
166
167 #include <stdlib.h>
168 #if !PLATFORM(WIN_OS)
169 #include <pthread.h>
170 #endif
171
172 namespace WTF {
173
174 void *fastMalloc(size_t n)
175 {
176 ASSERT(!isForbidden());
177 return malloc(n);
178 }
179
180 void *fastCalloc(size_t n_elements, size_t element_size)
181 {
182 ASSERT(!isForbidden());
183 return calloc(n_elements, element_size);
184 }
185
186 void fastFree(void* p)
187 {
188 ASSERT(!isForbidden());
189 free(p);
190 }
191
192 void *fastRealloc(void* p, size_t n)
193 {
194 ASSERT(!isForbidden());
195 return realloc(p, n);
196 }
197
198 void releaseFastMallocFreeMemory() { }
199
200 } // namespace WTF
201
202 #if PLATFORM(DARWIN)
203 // This symbol is present in the JavaScriptCore exports file even when FastMalloc is disabled.
204 // It will never be used in this case, so it's type and value are less interesting than its presence.
205 extern "C" const int jscore_fastmalloc_introspection = 0;
206 #endif
207
208 #else // FORCE_SYSTEM_MALLOC
209
210 #if HAVE(STDINT_H)
211 #include <stdint.h>
212 #elif HAVE(INTTYPES_H)
213 #include <inttypes.h>
214 #else
215 #include <sys/types.h>
216 #endif
217
218 #include "AlwaysInline.h"
219 #include "Assertions.h"
220 #include "TCPackedCache.h"
221 #include "TCPageMap.h"
222 #include "TCSpinLock.h"
223 #include "TCSystemAlloc.h"
224 #include <algorithm>
225 #include <errno.h>
226 #include <new>
227 #include <pthread.h>
228 #include <stdarg.h>
229 #include <stddef.h>
230 #include <stdio.h>
231 #if COMPILER(MSVC)
232 #ifndef WIN32_LEAN_AND_MEAN
233 #define WIN32_LEAN_AND_MEAN
234 #endif
235 #include <windows.h>
236 #endif
237
238 #if WTF_CHANGES
239
240 #if PLATFORM(DARWIN)
241 #include "MallocZoneSupport.h"
242 #endif
243
244 #ifndef PRIuS
245 #define PRIuS "zu"
246 #endif
247
248 // Calling pthread_getspecific through a global function pointer is faster than a normal
249 // call to the function on Mac OS X, and it's used in performance-critical code. So we
250 // use a function pointer. But that's not necessarily faster on other platforms, and we had
251 // problems with this technique on Windows, so we'll do this only on Mac OS X.
252 #if PLATFORM(DARWIN)
253 static void* (*pthread_getspecific_function_pointer)(pthread_key_t) = pthread_getspecific;
254 #define pthread_getspecific(key) pthread_getspecific_function_pointer(key)
255 #endif
256
257 #define DEFINE_VARIABLE(type, name, value, meaning) \
258 namespace FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead { \
259 type FLAGS_##name(value); \
260 char FLAGS_no##name; \
261 } \
262 using FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead::FLAGS_##name
263
264 #define DEFINE_int64(name, value, meaning) \
265 DEFINE_VARIABLE(int64_t, name, value, meaning)
266
267 #define DEFINE_double(name, value, meaning) \
268 DEFINE_VARIABLE(double, name, value, meaning)
269
270 namespace WTF {
271
272 #define malloc fastMalloc
273 #define calloc fastCalloc
274 #define free fastFree
275 #define realloc fastRealloc
276
277 #define MESSAGE LOG_ERROR
278 #define CHECK_CONDITION ASSERT
279
280 #if PLATFORM(DARWIN)
281 class TCMalloc_PageHeap;
282 class TCMalloc_ThreadCache;
283 class TCMalloc_Central_FreeListPadded;
284
285 class FastMallocZone {
286 public:
287 static void init();
288
289 static kern_return_t enumerate(task_t, void*, unsigned typeMmask, vm_address_t zoneAddress, memory_reader_t, vm_range_recorder_t);
290 static size_t goodSize(malloc_zone_t*, size_t size) { return size; }
291 static boolean_t check(malloc_zone_t*) { return true; }
292 static void print(malloc_zone_t*, boolean_t) { }
293 static void log(malloc_zone_t*, void*) { }
294 static void forceLock(malloc_zone_t*) { }
295 static void forceUnlock(malloc_zone_t*) { }
296 static void statistics(malloc_zone_t*, malloc_statistics_t*) { }
297
298 private:
299 FastMallocZone(TCMalloc_PageHeap*, TCMalloc_ThreadCache**, TCMalloc_Central_FreeListPadded*);
300 static size_t size(malloc_zone_t*, const void*);
301 static void* zoneMalloc(malloc_zone_t*, size_t);
302 static void* zoneCalloc(malloc_zone_t*, size_t numItems, size_t size);
303 static void zoneFree(malloc_zone_t*, void*);
304 static void* zoneRealloc(malloc_zone_t*, void*, size_t);
305 static void* zoneValloc(malloc_zone_t*, size_t) { LOG_ERROR("valloc is not supported"); return 0; }
306 static void zoneDestroy(malloc_zone_t*) { }
307
308 malloc_zone_t m_zone;
309 TCMalloc_PageHeap* m_pageHeap;
310 TCMalloc_ThreadCache** m_threadHeaps;
311 TCMalloc_Central_FreeListPadded* m_centralCaches;
312 };
313
314 #endif
315
316 #endif
317
318 #ifndef WTF_CHANGES
319 // This #ifdef should almost never be set. Set NO_TCMALLOC_SAMPLES if
320 // you're porting to a system where you really can't get a stacktrace.
321 #ifdef NO_TCMALLOC_SAMPLES
322 // We use #define so code compiles even if you #include stacktrace.h somehow.
323 # define GetStackTrace(stack, depth, skip) (0)
324 #else
325 # include <google/stacktrace.h>
326 #endif
327 #endif
328
329 // Even if we have support for thread-local storage in the compiler
330 // and linker, the OS may not support it. We need to check that at
331 // runtime. Right now, we have to keep a manual set of "bad" OSes.
332 #if defined(HAVE_TLS)
333 static bool kernel_supports_tls = false; // be conservative
334 static inline bool KernelSupportsTLS() {
335 return kernel_supports_tls;
336 }
337 # if !HAVE_DECL_UNAME // if too old for uname, probably too old for TLS
338 static void CheckIfKernelSupportsTLS() {
339 kernel_supports_tls = false;
340 }
341 # else
342 # include <sys/utsname.h> // DECL_UNAME checked for <sys/utsname.h> too
343 static void CheckIfKernelSupportsTLS() {
344 struct utsname buf;
345 if (uname(&buf) != 0) { // should be impossible
346 MESSAGE("uname failed assuming no TLS support (errno=%d)\n", errno);
347 kernel_supports_tls = false;
348 } else if (strcasecmp(buf.sysname, "linux") == 0) {
349 // The linux case: the first kernel to support TLS was 2.6.0
350 if (buf.release[0] < '2' && buf.release[1] == '.') // 0.x or 1.x
351 kernel_supports_tls = false;
352 else if (buf.release[0] == '2' && buf.release[1] == '.' &&
353 buf.release[2] >= '0' && buf.release[2] < '6' &&
354 buf.release[3] == '.') // 2.0 - 2.5
355 kernel_supports_tls = false;
356 else
357 kernel_supports_tls = true;
358 } else { // some other kernel, we'll be optimisitic
359 kernel_supports_tls = true;
360 }
361 // TODO(csilvers): VLOG(1) the tls status once we support RAW_VLOG
362 }
363 # endif // HAVE_DECL_UNAME
364 #endif // HAVE_TLS
365
366 // __THROW is defined in glibc systems. It means, counter-intuitively,
367 // "This function will never throw an exception." It's an optional
368 // optimization tool, but we may need to use it to match glibc prototypes.
369 #ifndef __THROW // I guess we're not on a glibc system
370 # define __THROW // __THROW is just an optimization, so ok to make it ""
371 #endif
372
373 //-------------------------------------------------------------------
374 // Configuration
375 //-------------------------------------------------------------------
376
377 // Not all possible combinations of the following parameters make
378 // sense. In particular, if kMaxSize increases, you may have to
379 // increase kNumClasses as well.
380 static const size_t kPageShift = 12;
381 static const size_t kPageSize = 1 << kPageShift;
382 static const size_t kMaxSize = 8u * kPageSize;
383 static const size_t kAlignShift = 3;
384 static const size_t kAlignment = 1 << kAlignShift;
385 static const size_t kNumClasses = 68;
386
387 // Allocates a big block of memory for the pagemap once we reach more than
388 // 128MB
389 static const size_t kPageMapBigAllocationThreshold = 128 << 20;
390
391 // Minimum number of pages to fetch from system at a time. Must be
392 // significantly bigger than kBlockSize to amortize system-call
393 // overhead, and also to reduce external fragementation. Also, we
394 // should keep this value big because various incarnations of Linux
395 // have small limits on the number of mmap() regions per
396 // address-space.
397 static const size_t kMinSystemAlloc = 1 << (20 - kPageShift);
398
399 // Number of objects to move between a per-thread list and a central
400 // list in one shot. We want this to be not too small so we can
401 // amortize the lock overhead for accessing the central list. Making
402 // it too big may temporarily cause unnecessary memory wastage in the
403 // per-thread free list until the scavenger cleans up the list.
404 static int num_objects_to_move[kNumClasses];
405
406 // Maximum length we allow a per-thread free-list to have before we
407 // move objects from it into the corresponding central free-list. We
408 // want this big to avoid locking the central free-list too often. It
409 // should not hurt to make this list somewhat big because the
410 // scavenging code will shrink it down when its contents are not in use.
411 static const int kMaxFreeListLength = 256;
412
413 // Lower and upper bounds on the per-thread cache sizes
414 static const size_t kMinThreadCacheSize = kMaxSize * 2;
415 static const size_t kMaxThreadCacheSize = 2 << 20;
416
417 // Default bound on the total amount of thread caches
418 static const size_t kDefaultOverallThreadCacheSize = 16 << 20;
419
420 // For all span-lengths < kMaxPages we keep an exact-size list.
421 // REQUIRED: kMaxPages >= kMinSystemAlloc;
422 static const size_t kMaxPages = kMinSystemAlloc;
423
424 /* The smallest prime > 2^n */
425 static int primes_list[] = {
426 // Small values might cause high rates of sampling
427 // and hence commented out.
428 // 2, 5, 11, 17, 37, 67, 131, 257,
429 // 521, 1031, 2053, 4099, 8209, 16411,
430 32771, 65537, 131101, 262147, 524309, 1048583,
431 2097169, 4194319, 8388617, 16777259, 33554467 };
432
433 // Twice the approximate gap between sampling actions.
434 // I.e., we take one sample approximately once every
435 // tcmalloc_sample_parameter/2
436 // bytes of allocation, i.e., ~ once every 128KB.
437 // Must be a prime number.
438 #ifdef NO_TCMALLOC_SAMPLES
439 DEFINE_int64(tcmalloc_sample_parameter, 0,
440 "Unused: code is compiled with NO_TCMALLOC_SAMPLES");
441 static size_t sample_period = 0;
442 #else
443 DEFINE_int64(tcmalloc_sample_parameter, 262147,
444 "Twice the approximate gap between sampling actions."
445 " Must be a prime number. Otherwise will be rounded up to a "
446 " larger prime number");
447 static size_t sample_period = 262147;
448 #endif
449
450 // Protects sample_period above
451 static SpinLock sample_period_lock = SPINLOCK_INITIALIZER;
452
453 // Parameters for controlling how fast memory is returned to the OS.
454
455 DEFINE_double(tcmalloc_release_rate, 1,
456 "Rate at which we release unused memory to the system. "
457 "Zero means we never release memory back to the system. "
458 "Increase this flag to return memory faster; decrease it "
459 "to return memory slower. Reasonable rates are in the "
460 "range [0,10]");
461
462 //-------------------------------------------------------------------
463 // Mapping from size to size_class and vice versa
464 //-------------------------------------------------------------------
465
466 // Sizes <= 1024 have an alignment >= 8. So for such sizes we have an
467 // array indexed by ceil(size/8). Sizes > 1024 have an alignment >= 128.
468 // So for these larger sizes we have an array indexed by ceil(size/128).
469 //
470 // We flatten both logical arrays into one physical array and use
471 // arithmetic to compute an appropriate index. The constants used by
472 // ClassIndex() were selected to make the flattening work.
473 //
474 // Examples:
475 // Size Expression Index
476 // -------------------------------------------------------
477 // 0 (0 + 7) / 8 0
478 // 1 (1 + 7) / 8 1
479 // ...
480 // 1024 (1024 + 7) / 8 128
481 // 1025 (1025 + 127 + (120<<7)) / 128 129
482 // ...
483 // 32768 (32768 + 127 + (120<<7)) / 128 376
484 static const size_t kMaxSmallSize = 1024;
485 static const int shift_amount[2] = { 3, 7 }; // For divides by 8 or 128
486 static const int add_amount[2] = { 7, 127 + (120 << 7) };
487 static unsigned char class_array[377];
488
489 // Compute index of the class_array[] entry for a given size
490 static inline int ClassIndex(size_t s) {
491 const int i = (s > kMaxSmallSize);
492 return static_cast<int>((s + add_amount[i]) >> shift_amount[i]);
493 }
494
495 // Mapping from size class to max size storable in that class
496 static size_t class_to_size[kNumClasses];
497
498 // Mapping from size class to number of pages to allocate at a time
499 static size_t class_to_pages[kNumClasses];
500
501 // TransferCache is used to cache transfers of num_objects_to_move[size_class]
502 // back and forth between thread caches and the central cache for a given size
503 // class.
504 struct TCEntry {
505 void *head; // Head of chain of objects.
506 void *tail; // Tail of chain of objects.
507 };
508 // A central cache freelist can have anywhere from 0 to kNumTransferEntries
509 // slots to put link list chains into. To keep memory usage bounded the total
510 // number of TCEntries across size classes is fixed. Currently each size
511 // class is initially given one TCEntry which also means that the maximum any
512 // one class can have is kNumClasses.
513 static const int kNumTransferEntries = kNumClasses;
514
515 // Note: the following only works for "n"s that fit in 32-bits, but
516 // that is fine since we only use it for small sizes.
517 static inline int LgFloor(size_t n) {
518 int log = 0;
519 for (int i = 4; i >= 0; --i) {
520 int shift = (1 << i);
521 size_t x = n >> shift;
522 if (x != 0) {
523 n = x;
524 log += shift;
525 }
526 }
527 ASSERT(n == 1);
528 return log;
529 }
530
531 // Some very basic linked list functions for dealing with using void * as
532 // storage.
533
534 static inline void *SLL_Next(void *t) {
535 return *(reinterpret_cast<void**>(t));
536 }
537
538 static inline void SLL_SetNext(void *t, void *n) {
539 *(reinterpret_cast<void**>(t)) = n;
540 }
541
542 static inline void SLL_Push(void **list, void *element) {
543 SLL_SetNext(element, *list);
544 *list = element;
545 }
546
547 static inline void *SLL_Pop(void **list) {
548 void *result = *list;
549 *list = SLL_Next(*list);
550 return result;
551 }
552
553
554 // Remove N elements from a linked list to which head points. head will be
555 // modified to point to the new head. start and end will point to the first
556 // and last nodes of the range. Note that end will point to NULL after this
557 // function is called.
558 static inline void SLL_PopRange(void **head, int N, void **start, void **end) {
559 if (N == 0) {
560 *start = NULL;
561 *end = NULL;
562 return;
563 }
564
565 void *tmp = *head;
566 for (int i = 1; i < N; ++i) {
567 tmp = SLL_Next(tmp);
568 }
569
570 *start = *head;
571 *end = tmp;
572 *head = SLL_Next(tmp);
573 // Unlink range from list.
574 SLL_SetNext(tmp, NULL);
575 }
576
577 static inline void SLL_PushRange(void **head, void *start, void *end) {
578 if (!start) return;
579 SLL_SetNext(end, *head);
580 *head = start;
581 }
582
583 static inline size_t SLL_Size(void *head) {
584 int count = 0;
585 while (head) {
586 count++;
587 head = SLL_Next(head);
588 }
589 return count;
590 }
591
592 // Setup helper functions.
593
594 static ALWAYS_INLINE size_t SizeClass(size_t size) {
595 return class_array[ClassIndex(size)];
596 }
597
598 // Get the byte-size for a specified class
599 static ALWAYS_INLINE size_t ByteSizeForClass(size_t cl) {
600 return class_to_size[cl];
601 }
602 static int NumMoveSize(size_t size) {
603 if (size == 0) return 0;
604 // Use approx 64k transfers between thread and central caches.
605 int num = static_cast<int>(64.0 * 1024.0 / size);
606 if (num < 2) num = 2;
607 // Clamp well below kMaxFreeListLength to avoid ping pong between central
608 // and thread caches.
609 if (num > static_cast<int>(0.8 * kMaxFreeListLength))
610 num = static_cast<int>(0.8 * kMaxFreeListLength);
611
612 // Also, avoid bringing in too many objects into small object free
613 // lists. There are lots of such lists, and if we allow each one to
614 // fetch too many at a time, we end up having to scavenge too often
615 // (especially when there are lots of threads and each thread gets a
616 // small allowance for its thread cache).
617 //
618 // TODO: Make thread cache free list sizes dynamic so that we do not
619 // have to equally divide a fixed resource amongst lots of threads.
620 if (num > 32) num = 32;
621
622 return num;
623 }
624
625 // Initialize the mapping arrays
626 static void InitSizeClasses() {
627 // Do some sanity checking on add_amount[]/shift_amount[]/class_array[]
628 if (ClassIndex(0) < 0) {
629 MESSAGE("Invalid class index %d for size 0\n", ClassIndex(0));
630 abort();
631 }
632 if (static_cast<size_t>(ClassIndex(kMaxSize)) >= sizeof(class_array)) {
633 MESSAGE("Invalid class index %d for kMaxSize\n", ClassIndex(kMaxSize));
634 abort();
635 }
636
637 // Compute the size classes we want to use
638 size_t sc = 1; // Next size class to assign
639 unsigned char alignshift = kAlignShift;
640 int last_lg = -1;
641 for (size_t size = kAlignment; size <= kMaxSize; size += (1 << alignshift)) {
642 int lg = LgFloor(size);
643 if (lg > last_lg) {
644 // Increase alignment every so often.
645 //
646 // Since we double the alignment every time size doubles and
647 // size >= 128, this means that space wasted due to alignment is
648 // at most 16/128 i.e., 12.5%. Plus we cap the alignment at 256
649 // bytes, so the space wasted as a percentage starts falling for
650 // sizes > 2K.
651 if ((lg >= 7) && (alignshift < 8)) {
652 alignshift++;
653 }
654 last_lg = lg;
655 }
656
657 // Allocate enough pages so leftover is less than 1/8 of total.
658 // This bounds wasted space to at most 12.5%.
659 size_t psize = kPageSize;
660 while ((psize % size) > (psize >> 3)) {
661 psize += kPageSize;
662 }
663 const size_t my_pages = psize >> kPageShift;
664
665 if (sc > 1 && my_pages == class_to_pages[sc-1]) {
666 // See if we can merge this into the previous class without
667 // increasing the fragmentation of the previous class.
668 const size_t my_objects = (my_pages << kPageShift) / size;
669 const size_t prev_objects = (class_to_pages[sc-1] << kPageShift)
670 / class_to_size[sc-1];
671 if (my_objects == prev_objects) {
672 // Adjust last class to include this size
673 class_to_size[sc-1] = size;
674 continue;
675 }
676 }
677
678 // Add new class
679 class_to_pages[sc] = my_pages;
680 class_to_size[sc] = size;
681 sc++;
682 }
683 if (sc != kNumClasses) {
684 MESSAGE("wrong number of size classes: found %" PRIuS " instead of %d\n",
685 sc, int(kNumClasses));
686 abort();
687 }
688
689 // Initialize the mapping arrays
690 int next_size = 0;
691 for (unsigned char c = 1; c < kNumClasses; c++) {
692 const size_t max_size_in_class = class_to_size[c];
693 for (size_t s = next_size; s <= max_size_in_class; s += kAlignment) {
694 class_array[ClassIndex(s)] = c;
695 }
696 next_size = static_cast<int>(max_size_in_class + kAlignment);
697 }
698
699 // Double-check sizes just to be safe
700 for (size_t size = 0; size <= kMaxSize; size++) {
701 const size_t sc = SizeClass(size);
702 if (sc == 0) {
703 MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
704 abort();
705 }
706 if (sc > 1 && size <= class_to_size[sc-1]) {
707 MESSAGE("Allocating unnecessarily large class %" PRIuS " for %" PRIuS
708 "\n", sc, size);
709 abort();
710 }
711 if (sc >= kNumClasses) {
712 MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
713 abort();
714 }
715 const size_t s = class_to_size[sc];
716 if (size > s) {
717 MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
718 abort();
719 }
720 if (s == 0) {
721 MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
722 abort();
723 }
724 }
725
726 // Initialize the num_objects_to_move array.
727 for (size_t cl = 1; cl < kNumClasses; ++cl) {
728 num_objects_to_move[cl] = NumMoveSize(ByteSizeForClass(cl));
729 }
730
731 #ifndef WTF_CHANGES
732 if (false) {
733 // Dump class sizes and maximum external wastage per size class
734 for (size_t cl = 1; cl < kNumClasses; ++cl) {
735 const int alloc_size = class_to_pages[cl] << kPageShift;
736 const int alloc_objs = alloc_size / class_to_size[cl];
737 const int min_used = (class_to_size[cl-1] + 1) * alloc_objs;
738 const int max_waste = alloc_size - min_used;
739 MESSAGE("SC %3d [ %8d .. %8d ] from %8d ; %2.0f%% maxwaste\n",
740 int(cl),
741 int(class_to_size[cl-1] + 1),
742 int(class_to_size[cl]),
743 int(class_to_pages[cl] << kPageShift),
744 max_waste * 100.0 / alloc_size
745 );
746 }
747 }
748 #endif
749 }
750
751 // -------------------------------------------------------------------------
752 // Simple allocator for objects of a specified type. External locking
753 // is required before accessing one of these objects.
754 // -------------------------------------------------------------------------
755
756 // Metadata allocator -- keeps stats about how many bytes allocated
757 static uint64_t metadata_system_bytes = 0;
758 static void* MetaDataAlloc(size_t bytes) {
759 void* result = TCMalloc_SystemAlloc(bytes, 0);
760 if (result != NULL) {
761 metadata_system_bytes += bytes;
762 }
763 return result;
764 }
765
766 template <class T>
767 class PageHeapAllocator {
768 private:
769 // How much to allocate from system at a time
770 static const size_t kAllocIncrement = 32 << 10;
771
772 // Aligned size of T
773 static const size_t kAlignedSize
774 = (((sizeof(T) + kAlignment - 1) / kAlignment) * kAlignment);
775
776 // Free area from which to carve new objects
777 char* free_area_;
778 size_t free_avail_;
779
780 // Free list of already carved objects
781 void* free_list_;
782
783 // Number of allocated but unfreed objects
784 int inuse_;
785
786 public:
787 void Init() {
788 ASSERT(kAlignedSize <= kAllocIncrement);
789 inuse_ = 0;
790 free_area_ = NULL;
791 free_avail_ = 0;
792 free_list_ = NULL;
793 }
794
795 T* New() {
796 // Consult free list
797 void* result;
798 if (free_list_ != NULL) {
799 result = free_list_;
800 free_list_ = *(reinterpret_cast<void**>(result));
801 } else {
802 if (free_avail_ < kAlignedSize) {
803 // Need more room
804 free_area_ = reinterpret_cast<char*>(MetaDataAlloc(kAllocIncrement));
805 if (free_area_ == NULL) abort();
806 free_avail_ = kAllocIncrement;
807 }
808 result = free_area_;
809 free_area_ += kAlignedSize;
810 free_avail_ -= kAlignedSize;
811 }
812 inuse_++;
813 return reinterpret_cast<T*>(result);
814 }
815
816 void Delete(T* p) {
817 *(reinterpret_cast<void**>(p)) = free_list_;
818 free_list_ = p;
819 inuse_--;
820 }
821
822 int inuse() const { return inuse_; }
823 };
824
825 // -------------------------------------------------------------------------
826 // Span - a contiguous run of pages
827 // -------------------------------------------------------------------------
828
829 // Type that can hold a page number
830 typedef uintptr_t PageID;
831
832 // Type that can hold the length of a run of pages
833 typedef uintptr_t Length;
834
835 static const Length kMaxValidPages = (~static_cast<Length>(0)) >> kPageShift;
836
837 // Convert byte size into pages. This won't overflow, but may return
838 // an unreasonably large value if bytes is huge enough.
839 static inline Length pages(size_t bytes) {
840 return (bytes >> kPageShift) +
841 ((bytes & (kPageSize - 1)) > 0 ? 1 : 0);
842 }
843
844 // Convert a user size into the number of bytes that will actually be
845 // allocated
846 static size_t AllocationSize(size_t bytes) {
847 if (bytes > kMaxSize) {
848 // Large object: we allocate an integral number of pages
849 ASSERT(bytes <= (kMaxValidPages << kPageShift));
850 return pages(bytes) << kPageShift;
851 } else {
852 // Small object: find the size class to which it belongs
853 return ByteSizeForClass(SizeClass(bytes));
854 }
855 }
856
857 // Information kept for a span (a contiguous run of pages).
858 struct Span {
859 PageID start; // Starting page number
860 Length length; // Number of pages in span
861 Span* next; // Used when in link list
862 Span* prev; // Used when in link list
863 void* objects; // Linked list of free objects
864 unsigned int free : 1; // Is the span free
865 unsigned int sample : 1; // Sampled object?
866 unsigned int sizeclass : 8; // Size-class for small objects (or 0)
867 unsigned int refcount : 11; // Number of non-free objects
868
869 #undef SPAN_HISTORY
870 #ifdef SPAN_HISTORY
871 // For debugging, we can keep a log events per span
872 int nexthistory;
873 char history[64];
874 int value[64];
875 #endif
876 };
877
878 #ifdef SPAN_HISTORY
879 void Event(Span* span, char op, int v = 0) {
880 span->history[span->nexthistory] = op;
881 span->value[span->nexthistory] = v;
882 span->nexthistory++;
883 if (span->nexthistory == sizeof(span->history)) span->nexthistory = 0;
884 }
885 #else
886 #define Event(s,o,v) ((void) 0)
887 #endif
888
889 // Allocator/deallocator for spans
890 static PageHeapAllocator<Span> span_allocator;
891 static Span* NewSpan(PageID p, Length len) {
892 Span* result = span_allocator.New();
893 memset(result, 0, sizeof(*result));
894 result->start = p;
895 result->length = len;
896 #ifdef SPAN_HISTORY
897 result->nexthistory = 0;
898 #endif
899 return result;
900 }
901
902 static inline void DeleteSpan(Span* span) {
903 #ifndef NDEBUG
904 // In debug mode, trash the contents of deleted Spans
905 memset(span, 0x3f, sizeof(*span));
906 #endif
907 span_allocator.Delete(span);
908 }
909
910 // -------------------------------------------------------------------------
911 // Doubly linked list of spans.
912 // -------------------------------------------------------------------------
913
914 static inline void DLL_Init(Span* list) {
915 list->next = list;
916 list->prev = list;
917 }
918
919 static inline void DLL_Remove(Span* span) {
920 span->prev->next = span->next;
921 span->next->prev = span->prev;
922 span->prev = NULL;
923 span->next = NULL;
924 }
925
926 static ALWAYS_INLINE bool DLL_IsEmpty(const Span* list) {
927 return list->next == list;
928 }
929
930 #ifndef WTF_CHANGES
931 static int DLL_Length(const Span* list) {
932 int result = 0;
933 for (Span* s = list->next; s != list; s = s->next) {
934 result++;
935 }
936 return result;
937 }
938 #endif
939
940 #if 0 /* Not needed at the moment -- causes compiler warnings if not used */
941 static void DLL_Print(const char* label, const Span* list) {
942 MESSAGE("%-10s %p:", label, list);
943 for (const Span* s = list->next; s != list; s = s->next) {
944 MESSAGE(" <%p,%u,%u>", s, s->start, s->length);
945 }
946 MESSAGE("\n");
947 }
948 #endif
949
950 static inline void DLL_Prepend(Span* list, Span* span) {
951 ASSERT(span->next == NULL);
952 ASSERT(span->prev == NULL);
953 span->next = list->next;
954 span->prev = list;
955 list->next->prev = span;
956 list->next = span;
957 }
958
959 // -------------------------------------------------------------------------
960 // Stack traces kept for sampled allocations
961 // The following state is protected by pageheap_lock_.
962 // -------------------------------------------------------------------------
963
964 // size/depth are made the same size as a pointer so that some generic
965 // code below can conveniently cast them back and forth to void*.
966 static const int kMaxStackDepth = 31;
967 struct StackTrace {
968 uintptr_t size; // Size of object
969 uintptr_t depth; // Number of PC values stored in array below
970 void* stack[kMaxStackDepth];
971 };
972 static PageHeapAllocator<StackTrace> stacktrace_allocator;
973 static Span sampled_objects;
974
975 // -------------------------------------------------------------------------
976 // Map from page-id to per-page data
977 // -------------------------------------------------------------------------
978
979 // We use PageMap2<> for 32-bit and PageMap3<> for 64-bit machines.
980 // We also use a simple one-level cache for hot PageID-to-sizeclass mappings,
981 // because sometimes the sizeclass is all the information we need.
982
983 // Selector class -- general selector uses 3-level map
984 template <int BITS> class MapSelector {
985 public:
986 typedef TCMalloc_PageMap3<BITS-kPageShift> Type;
987 typedef PackedCache<BITS, uint64_t> CacheType;
988 };
989
990 // A two-level map for 32-bit machines
991 template <> class MapSelector<32> {
992 public:
993 typedef TCMalloc_PageMap2<32-kPageShift> Type;
994 typedef PackedCache<32-kPageShift, uint16_t> CacheType;
995 };
996
997 // -------------------------------------------------------------------------
998 // Page-level allocator
999 // * Eager coalescing
1000 //
1001 // Heap for page-level allocation. We allow allocating and freeing a
1002 // contiguous runs of pages (called a "span").
1003 // -------------------------------------------------------------------------
1004
1005 class TCMalloc_PageHeap {
1006 public:
1007 void init();
1008
1009 // Allocate a run of "n" pages. Returns zero if out of memory.
1010 Span* New(Length n);
1011
1012 // Delete the span "[p, p+n-1]".
1013 // REQUIRES: span was returned by earlier call to New() and
1014 // has not yet been deleted.
1015 void Delete(Span* span);
1016
1017 // Mark an allocated span as being used for small objects of the
1018 // specified size-class.
1019 // REQUIRES: span was returned by an earlier call to New()
1020 // and has not yet been deleted.
1021 void RegisterSizeClass(Span* span, size_t sc);
1022
1023 // Split an allocated span into two spans: one of length "n" pages
1024 // followed by another span of length "span->length - n" pages.
1025 // Modifies "*span" to point to the first span of length "n" pages.
1026 // Returns a pointer to the second span.
1027 //
1028 // REQUIRES: "0 < n < span->length"
1029 // REQUIRES: !span->free
1030 // REQUIRES: span->sizeclass == 0
1031 Span* Split(Span* span, Length n);
1032
1033 // Return the descriptor for the specified page.
1034 inline Span* GetDescriptor(PageID p) const {
1035 return reinterpret_cast<Span*>(pagemap_.get(p));
1036 }
1037
1038 #ifdef WTF_CHANGES
1039 inline Span* GetDescriptorEnsureSafe(PageID p)
1040 {
1041 pagemap_.Ensure(p, 1);
1042 return GetDescriptor(p);
1043 }
1044 #endif
1045
1046 // Dump state to stderr
1047 #ifndef WTF_CHANGES
1048 void Dump(TCMalloc_Printer* out);
1049 #endif
1050
1051 // Return number of bytes allocated from system
1052 inline uint64_t SystemBytes() const { return system_bytes_; }
1053
1054 // Return number of free bytes in heap
1055 uint64_t FreeBytes() const {
1056 return (static_cast<uint64_t>(free_pages_) << kPageShift);
1057 }
1058
1059 bool Check();
1060 bool CheckList(Span* list, Length min_pages, Length max_pages);
1061
1062 // Release all pages on the free list for reuse by the OS:
1063 void ReleaseFreePages();
1064
1065 // Return 0 if we have no information, or else the correct sizeclass for p.
1066 // Reads and writes to pagemap_cache_ do not require locking.
1067 // The entries are 64 bits on 64-bit hardware and 16 bits on
1068 // 32-bit hardware, and we don't mind raciness as long as each read of
1069 // an entry yields a valid entry, not a partially updated entry.
1070 size_t GetSizeClassIfCached(PageID p) const {
1071 return pagemap_cache_.GetOrDefault(p, 0);
1072 }
1073 void CacheSizeClass(PageID p, size_t cl) const { pagemap_cache_.Put(p, cl); }
1074
1075 private:
1076 // Pick the appropriate map and cache types based on pointer size
1077 typedef MapSelector<8*sizeof(uintptr_t)>::Type PageMap;
1078 typedef MapSelector<8*sizeof(uintptr_t)>::CacheType PageMapCache;
1079 PageMap pagemap_;
1080 mutable PageMapCache pagemap_cache_;
1081
1082 // We segregate spans of a given size into two circular linked
1083 // lists: one for normal spans, and one for spans whose memory
1084 // has been returned to the system.
1085 struct SpanList {
1086 Span normal;
1087 Span returned;
1088 };
1089
1090 // List of free spans of length >= kMaxPages
1091 SpanList large_;
1092
1093 // Array mapping from span length to a doubly linked list of free spans
1094 SpanList free_[kMaxPages];
1095
1096 // Number of pages kept in free lists
1097 uintptr_t free_pages_;
1098
1099 // Bytes allocated from system
1100 uint64_t system_bytes_;
1101
1102 bool GrowHeap(Length n);
1103
1104 // REQUIRES span->length >= n
1105 // Remove span from its free list, and move any leftover part of
1106 // span into appropriate free lists. Also update "span" to have
1107 // length exactly "n" and mark it as non-free so it can be returned
1108 // to the client.
1109 //
1110 // "released" is true iff "span" was found on a "returned" list.
1111 void Carve(Span* span, Length n, bool released);
1112
1113 void RecordSpan(Span* span) {
1114 pagemap_.set(span->start, span);
1115 if (span->length > 1) {
1116 pagemap_.set(span->start + span->length - 1, span);
1117 }
1118 }
1119
1120 // Allocate a large span of length == n. If successful, returns a
1121 // span of exactly the specified length. Else, returns NULL.
1122 Span* AllocLarge(Length n);
1123
1124 // Incrementally release some memory to the system.
1125 // IncrementalScavenge(n) is called whenever n pages are freed.
1126 void IncrementalScavenge(Length n);
1127
1128 // Number of pages to deallocate before doing more scavenging
1129 int64_t scavenge_counter_;
1130
1131 // Index of last free list we scavenged
1132 size_t scavenge_index_;
1133
1134 #if defined(WTF_CHANGES) && PLATFORM(DARWIN)
1135 friend class FastMallocZone;
1136 #endif
1137 };
1138
1139 void TCMalloc_PageHeap::init()
1140 {
1141 pagemap_.init(MetaDataAlloc);
1142 pagemap_cache_ = PageMapCache(0);
1143 free_pages_ = 0;
1144 system_bytes_ = 0;
1145 scavenge_counter_ = 0;
1146 // Start scavenging at kMaxPages list
1147 scavenge_index_ = kMaxPages-1;
1148 COMPILE_ASSERT(kNumClasses <= (1 << PageMapCache::kValuebits), valuebits);
1149 DLL_Init(&large_.normal);
1150 DLL_Init(&large_.returned);
1151 for (size_t i = 0; i < kMaxPages; i++) {
1152 DLL_Init(&free_[i].normal);
1153 DLL_Init(&free_[i].returned);
1154 }
1155 }
1156
1157 inline Span* TCMalloc_PageHeap::New(Length n) {
1158 ASSERT(Check());
1159 ASSERT(n > 0);
1160
1161 // Find first size >= n that has a non-empty list
1162 for (Length s = n; s < kMaxPages; s++) {
1163 Span* ll = NULL;
1164 bool released = false;
1165 if (!DLL_IsEmpty(&free_[s].normal)) {
1166 // Found normal span
1167 ll = &free_[s].normal;
1168 } else if (!DLL_IsEmpty(&free_[s].returned)) {
1169 // Found returned span; reallocate it
1170 ll = &free_[s].returned;
1171 released = true;
1172 } else {
1173 // Keep looking in larger classes
1174 continue;
1175 }
1176
1177 Span* result = ll->next;
1178 Carve(result, n, released);
1179 ASSERT(Check());
1180 free_pages_ -= n;
1181 return result;
1182 }
1183
1184 Span* result = AllocLarge(n);
1185 if (result != NULL) return result;
1186
1187 // Grow the heap and try again
1188 if (!GrowHeap(n)) {
1189 ASSERT(Check());
1190 return NULL;
1191 }
1192
1193 return AllocLarge(n);
1194 }
1195
1196 Span* TCMalloc_PageHeap::AllocLarge(Length n) {
1197 // find the best span (closest to n in size).
1198 // The following loops implements address-ordered best-fit.
1199 bool from_released = false;
1200 Span *best = NULL;
1201
1202 // Search through normal list
1203 for (Span* span = large_.normal.next;
1204 span != &large_.normal;
1205 span = span->next) {
1206 if (span->length >= n) {
1207 if ((best == NULL)
1208 || (span->length < best->length)
1209 || ((span->length == best->length) && (span->start < best->start))) {
1210 best = span;
1211 from_released = false;
1212 }
1213 }
1214 }
1215
1216 // Search through released list in case it has a better fit
1217 for (Span* span = large_.returned.next;
1218 span != &large_.returned;
1219 span = span->next) {
1220 if (span->length >= n) {
1221 if ((best == NULL)
1222 || (span->length < best->length)
1223 || ((span->length == best->length) && (span->start < best->start))) {
1224 best = span;
1225 from_released = true;
1226 }
1227 }
1228 }
1229
1230 if (best != NULL) {
1231 Carve(best, n, from_released);
1232 ASSERT(Check());
1233 free_pages_ -= n;
1234 return best;
1235 }
1236 return NULL;
1237 }
1238
1239 Span* TCMalloc_PageHeap::Split(Span* span, Length n) {
1240 ASSERT(0 < n);
1241 ASSERT(n < span->length);
1242 ASSERT(!span->free);
1243 ASSERT(span->sizeclass == 0);
1244 Event(span, 'T', n);
1245
1246 const Length extra = span->length - n;
1247 Span* leftover = NewSpan(span->start + n, extra);
1248 Event(leftover, 'U', extra);
1249 RecordSpan(leftover);
1250 pagemap_.set(span->start + n - 1, span); // Update map from pageid to span
1251 span->length = n;
1252
1253 return leftover;
1254 }
1255
1256 inline void TCMalloc_PageHeap::Carve(Span* span, Length n, bool released) {
1257 ASSERT(n > 0);
1258 DLL_Remove(span);
1259 span->free = 0;
1260 Event(span, 'A', n);
1261
1262 const int extra = static_cast<int>(span->length - n);
1263 ASSERT(extra >= 0);
1264 if (extra > 0) {
1265 Span* leftover = NewSpan(span->start + n, extra);
1266 leftover->free = 1;
1267 Event(leftover, 'S', extra);
1268 RecordSpan(leftover);
1269
1270 // Place leftover span on appropriate free list
1271 SpanList* listpair = (static_cast<size_t>(extra) < kMaxPages) ? &free_[extra] : &large_;
1272 Span* dst = released ? &listpair->returned : &listpair->normal;
1273 DLL_Prepend(dst, leftover);
1274
1275 span->length = n;
1276 pagemap_.set(span->start + n - 1, span);
1277 }
1278 }
1279
1280 inline void TCMalloc_PageHeap::Delete(Span* span) {
1281 ASSERT(Check());
1282 ASSERT(!span->free);
1283 ASSERT(span->length > 0);
1284 ASSERT(GetDescriptor(span->start) == span);
1285 ASSERT(GetDescriptor(span->start + span->length - 1) == span);
1286 span->sizeclass = 0;
1287 span->sample = 0;
1288
1289 // Coalesce -- we guarantee that "p" != 0, so no bounds checking
1290 // necessary. We do not bother resetting the stale pagemap
1291 // entries for the pieces we are merging together because we only
1292 // care about the pagemap entries for the boundaries.
1293 //
1294 // Note that the spans we merge into "span" may come out of
1295 // a "returned" list. For simplicity, we move these into the
1296 // "normal" list of the appropriate size class.
1297 const PageID p = span->start;
1298 const Length n = span->length;
1299 Span* prev = GetDescriptor(p-1);
1300 if (prev != NULL && prev->free) {
1301 // Merge preceding span into this span
1302 ASSERT(prev->start + prev->length == p);
1303 const Length len = prev->length;
1304 DLL_Remove(prev);
1305 DeleteSpan(prev);
1306 span->start -= len;
1307 span->length += len;
1308 pagemap_.set(span->start, span);
1309 Event(span, 'L', len);
1310 }
1311 Span* next = GetDescriptor(p+n);
1312 if (next != NULL && next->free) {
1313 // Merge next span into this span
1314 ASSERT(next->start == p+n);
1315 const Length len = next->length;
1316 DLL_Remove(next);
1317 DeleteSpan(next);
1318 span->length += len;
1319 pagemap_.set(span->start + span->length - 1, span);
1320 Event(span, 'R', len);
1321 }
1322
1323 Event(span, 'D', span->length);
1324 span->free = 1;
1325 if (span->length < kMaxPages) {
1326 DLL_Prepend(&free_[span->length].normal, span);
1327 } else {
1328 DLL_Prepend(&large_.normal, span);
1329 }
1330 free_pages_ += n;
1331
1332 IncrementalScavenge(n);
1333 ASSERT(Check());
1334 }
1335
1336 void TCMalloc_PageHeap::IncrementalScavenge(Length n) {
1337 // Fast path; not yet time to release memory
1338 scavenge_counter_ -= n;
1339 if (scavenge_counter_ >= 0) return; // Not yet time to scavenge
1340
1341 // If there is nothing to release, wait for so many pages before
1342 // scavenging again. With 4K pages, this comes to 16MB of memory.
1343 static const size_t kDefaultReleaseDelay = 1 << 8;
1344
1345 // Find index of free list to scavenge
1346 size_t index = scavenge_index_ + 1;
1347 for (size_t i = 0; i < kMaxPages+1; i++) {
1348 if (index > kMaxPages) index = 0;
1349 SpanList* slist = (index == kMaxPages) ? &large_ : &free_[index];
1350 if (!DLL_IsEmpty(&slist->normal)) {
1351 // Release the last span on the normal portion of this list
1352 Span* s = slist->normal.prev;
1353 DLL_Remove(s);
1354 TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
1355 static_cast<size_t>(s->length << kPageShift));
1356 DLL_Prepend(&slist->returned, s);
1357
1358 scavenge_counter_ = std::max<size_t>(64UL, std::min<size_t>(kDefaultReleaseDelay, kDefaultReleaseDelay - (free_pages_ / kDefaultReleaseDelay)));
1359
1360 if (index == kMaxPages && !DLL_IsEmpty(&slist->normal))
1361 scavenge_index_ = index - 1;
1362 else
1363 scavenge_index_ = index;
1364 return;
1365 }
1366 index++;
1367 }
1368
1369 // Nothing to scavenge, delay for a while
1370 scavenge_counter_ = kDefaultReleaseDelay;
1371 }
1372
1373 void TCMalloc_PageHeap::RegisterSizeClass(Span* span, size_t sc) {
1374 // Associate span object with all interior pages as well
1375 ASSERT(!span->free);
1376 ASSERT(GetDescriptor(span->start) == span);
1377 ASSERT(GetDescriptor(span->start+span->length-1) == span);
1378 Event(span, 'C', sc);
1379 span->sizeclass = static_cast<unsigned int>(sc);
1380 for (Length i = 1; i < span->length-1; i++) {
1381 pagemap_.set(span->start+i, span);
1382 }
1383 }
1384
1385 #ifndef WTF_CHANGES
1386 static double PagesToMB(uint64_t pages) {
1387 return (pages << kPageShift) / 1048576.0;
1388 }
1389
1390 void TCMalloc_PageHeap::Dump(TCMalloc_Printer* out) {
1391 int nonempty_sizes = 0;
1392 for (int s = 0; s < kMaxPages; s++) {
1393 if (!DLL_IsEmpty(&free_[s].normal) || !DLL_IsEmpty(&free_[s].returned)) {
1394 nonempty_sizes++;
1395 }
1396 }
1397 out->printf("------------------------------------------------\n");
1398 out->printf("PageHeap: %d sizes; %6.1f MB free\n",
1399 nonempty_sizes, PagesToMB(free_pages_));
1400 out->printf("------------------------------------------------\n");
1401 uint64_t total_normal = 0;
1402 uint64_t total_returned = 0;
1403 for (int s = 0; s < kMaxPages; s++) {
1404 const int n_length = DLL_Length(&free_[s].normal);
1405 const int r_length = DLL_Length(&free_[s].returned);
1406 if (n_length + r_length > 0) {
1407 uint64_t n_pages = s * n_length;
1408 uint64_t r_pages = s * r_length;
1409 total_normal += n_pages;
1410 total_returned += r_pages;
1411 out->printf("%6u pages * %6u spans ~ %6.1f MB; %6.1f MB cum"
1412 "; unmapped: %6.1f MB; %6.1f MB cum\n",
1413 s,
1414 (n_length + r_length),
1415 PagesToMB(n_pages + r_pages),
1416 PagesToMB(total_normal + total_returned),
1417 PagesToMB(r_pages),
1418 PagesToMB(total_returned));
1419 }
1420 }
1421
1422 uint64_t n_pages = 0;
1423 uint64_t r_pages = 0;
1424 int n_spans = 0;
1425 int r_spans = 0;
1426 out->printf("Normal large spans:\n");
1427 for (Span* s = large_.normal.next; s != &large_.normal; s = s->next) {
1428 out->printf(" [ %6" PRIuS " pages ] %6.1f MB\n",
1429 s->length, PagesToMB(s->length));
1430 n_pages += s->length;
1431 n_spans++;
1432 }
1433 out->printf("Unmapped large spans:\n");
1434 for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) {
1435 out->printf(" [ %6" PRIuS " pages ] %6.1f MB\n",
1436 s->length, PagesToMB(s->length));
1437 r_pages += s->length;
1438 r_spans++;
1439 }
1440 total_normal += n_pages;
1441 total_returned += r_pages;
1442 out->printf(">255 large * %6u spans ~ %6.1f MB; %6.1f MB cum"
1443 "; unmapped: %6.1f MB; %6.1f MB cum\n",
1444 (n_spans + r_spans),
1445 PagesToMB(n_pages + r_pages),
1446 PagesToMB(total_normal + total_returned),
1447 PagesToMB(r_pages),
1448 PagesToMB(total_returned));
1449 }
1450 #endif
1451
1452 bool TCMalloc_PageHeap::GrowHeap(Length n) {
1453 ASSERT(kMaxPages >= kMinSystemAlloc);
1454 if (n > kMaxValidPages) return false;
1455 Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc);
1456 size_t actual_size;
1457 void* ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
1458 if (ptr == NULL) {
1459 if (n < ask) {
1460 // Try growing just "n" pages
1461 ask = n;
1462 ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);;
1463 }
1464 if (ptr == NULL) return false;
1465 }
1466 ask = actual_size >> kPageShift;
1467
1468 uint64_t old_system_bytes = system_bytes_;
1469 system_bytes_ += (ask << kPageShift);
1470 const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
1471 ASSERT(p > 0);
1472
1473 // If we have already a lot of pages allocated, just pre allocate a bunch of
1474 // memory for the page map. This prevents fragmentation by pagemap metadata
1475 // when a program keeps allocating and freeing large blocks.
1476
1477 if (old_system_bytes < kPageMapBigAllocationThreshold
1478 && system_bytes_ >= kPageMapBigAllocationThreshold) {
1479 pagemap_.PreallocateMoreMemory();
1480 }
1481
1482 // Make sure pagemap_ has entries for all of the new pages.
1483 // Plus ensure one before and one after so coalescing code
1484 // does not need bounds-checking.
1485 if (pagemap_.Ensure(p-1, ask+2)) {
1486 // Pretend the new area is allocated and then Delete() it to
1487 // cause any necessary coalescing to occur.
1488 //
1489 // We do not adjust free_pages_ here since Delete() will do it for us.
1490 Span* span = NewSpan(p, ask);
1491 RecordSpan(span);
1492 Delete(span);
1493 ASSERT(Check());
1494 return true;
1495 } else {
1496 // We could not allocate memory within "pagemap_"
1497 // TODO: Once we can return memory to the system, return the new span
1498 return false;
1499 }
1500 }
1501
1502 bool TCMalloc_PageHeap::Check() {
1503 ASSERT(free_[0].normal.next == &free_[0].normal);
1504 ASSERT(free_[0].returned.next == &free_[0].returned);
1505 CheckList(&large_.normal, kMaxPages, 1000000000);
1506 CheckList(&large_.returned, kMaxPages, 1000000000);
1507 for (Length s = 1; s < kMaxPages; s++) {
1508 CheckList(&free_[s].normal, s, s);
1509 CheckList(&free_[s].returned, s, s);
1510 }
1511 return true;
1512 }
1513
1514 #if ASSERT_DISABLED
1515 bool TCMalloc_PageHeap::CheckList(Span*, Length, Length) {
1516 return true;
1517 }
1518 #else
1519 bool TCMalloc_PageHeap::CheckList(Span* list, Length min_pages, Length max_pages) {
1520 for (Span* s = list->next; s != list; s = s->next) {
1521 CHECK_CONDITION(s->free);
1522 CHECK_CONDITION(s->length >= min_pages);
1523 CHECK_CONDITION(s->length <= max_pages);
1524 CHECK_CONDITION(GetDescriptor(s->start) == s);
1525 CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
1526 }
1527 return true;
1528 }
1529 #endif
1530
1531 static void ReleaseFreeList(Span* list, Span* returned) {
1532 // Walk backwards through list so that when we push these
1533 // spans on the "returned" list, we preserve the order.
1534 while (!DLL_IsEmpty(list)) {
1535 Span* s = list->prev;
1536 DLL_Remove(s);
1537 DLL_Prepend(returned, s);
1538 TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
1539 static_cast<size_t>(s->length << kPageShift));
1540 }
1541 }
1542
1543 void TCMalloc_PageHeap::ReleaseFreePages() {
1544 for (Length s = 0; s < kMaxPages; s++) {
1545 ReleaseFreeList(&free_[s].normal, &free_[s].returned);
1546 }
1547 ReleaseFreeList(&large_.normal, &large_.returned);
1548 ASSERT(Check());
1549 }
1550
1551 //-------------------------------------------------------------------
1552 // Free list
1553 //-------------------------------------------------------------------
1554
1555 class TCMalloc_ThreadCache_FreeList {
1556 private:
1557 void* list_; // Linked list of nodes
1558 uint16_t length_; // Current length
1559 uint16_t lowater_; // Low water mark for list length
1560
1561 public:
1562 void Init() {
1563 list_ = NULL;
1564 length_ = 0;
1565 lowater_ = 0;
1566 }
1567
1568 // Return current length of list
1569 int length() const {
1570 return length_;
1571 }
1572
1573 // Is list empty?
1574 bool empty() const {
1575 return list_ == NULL;
1576 }
1577
1578 // Low-water mark management
1579 int lowwatermark() const { return lowater_; }
1580 void clear_lowwatermark() { lowater_ = length_; }
1581
1582 ALWAYS_INLINE void Push(void* ptr) {
1583 SLL_Push(&list_, ptr);
1584 length_++;
1585 }
1586
1587 void PushRange(int N, void *start, void *end) {
1588 SLL_PushRange(&list_, start, end);
1589 length_ = length_ + static_cast<uint16_t>(N);
1590 }
1591
1592 void PopRange(int N, void **start, void **end) {
1593 SLL_PopRange(&list_, N, start, end);
1594 ASSERT(length_ >= N);
1595 length_ = length_ - static_cast<uint16_t>(N);
1596 if (length_ < lowater_) lowater_ = length_;
1597 }
1598
1599 ALWAYS_INLINE void* Pop() {
1600 ASSERT(list_ != NULL);
1601 length_--;
1602 if (length_ < lowater_) lowater_ = length_;
1603 return SLL_Pop(&list_);
1604 }
1605
1606 #ifdef WTF_CHANGES
1607 template <class Finder, class Reader>
1608 void enumerateFreeObjects(Finder& finder, const Reader& reader)
1609 {
1610 for (void* nextObject = list_; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject)))
1611 finder.visit(nextObject);
1612 }
1613 #endif
1614 };
1615
1616 //-------------------------------------------------------------------
1617 // Data kept per thread
1618 //-------------------------------------------------------------------
1619
1620 class TCMalloc_ThreadCache {
1621 private:
1622 typedef TCMalloc_ThreadCache_FreeList FreeList;
1623 #if COMPILER(MSVC)
1624 typedef DWORD ThreadIdentifier;
1625 #else
1626 typedef pthread_t ThreadIdentifier;
1627 #endif
1628
1629 size_t size_; // Combined size of data
1630 ThreadIdentifier tid_; // Which thread owns it
1631 bool in_setspecific_; // Called pthread_setspecific?
1632 FreeList list_[kNumClasses]; // Array indexed by size-class
1633
1634 // We sample allocations, biased by the size of the allocation
1635 uint32_t rnd_; // Cheap random number generator
1636 size_t bytes_until_sample_; // Bytes until we sample next
1637
1638 // Allocate a new heap. REQUIRES: pageheap_lock is held.
1639 static inline TCMalloc_ThreadCache* NewHeap(ThreadIdentifier tid);
1640
1641 // Use only as pthread thread-specific destructor function.
1642 static void DestroyThreadCache(void* ptr);
1643 public:
1644 // All ThreadCache objects are kept in a linked list (for stats collection)
1645 TCMalloc_ThreadCache* next_;
1646 TCMalloc_ThreadCache* prev_;
1647
1648 void Init(ThreadIdentifier tid);
1649 void Cleanup();
1650
1651 // Accessors (mostly just for printing stats)
1652 int freelist_length(size_t cl) const { return list_[cl].length(); }
1653
1654 // Total byte size in cache
1655 size_t Size() const { return size_; }
1656
1657 void* Allocate(size_t size);
1658 void Deallocate(void* ptr, size_t size_class);
1659
1660 void FetchFromCentralCache(size_t cl, size_t allocationSize);
1661 void ReleaseToCentralCache(size_t cl, int N);
1662 void Scavenge();
1663 void Print() const;
1664
1665 // Record allocation of "k" bytes. Return true iff allocation
1666 // should be sampled
1667 bool SampleAllocation(size_t k);
1668
1669 // Pick next sampling point
1670 void PickNextSample(size_t k);
1671
1672 static void InitModule();
1673 static void InitTSD();
1674 static TCMalloc_ThreadCache* GetThreadHeap();
1675 static TCMalloc_ThreadCache* GetCache();
1676 static TCMalloc_ThreadCache* GetCacheIfPresent();
1677 static TCMalloc_ThreadCache* CreateCacheIfNecessary();
1678 static void DeleteCache(TCMalloc_ThreadCache* heap);
1679 static void BecomeIdle();
1680 static void RecomputeThreadCacheSize();
1681
1682 #ifdef WTF_CHANGES
1683 template <class Finder, class Reader>
1684 void enumerateFreeObjects(Finder& finder, const Reader& reader)
1685 {
1686 for (unsigned sizeClass = 0; sizeClass < kNumClasses; sizeClass++)
1687 list_[sizeClass].enumerateFreeObjects(finder, reader);
1688 }
1689 #endif
1690 };
1691
1692 //-------------------------------------------------------------------
1693 // Data kept per size-class in central cache
1694 //-------------------------------------------------------------------
1695
1696 class TCMalloc_Central_FreeList {
1697 public:
1698 void Init(size_t cl);
1699
1700 // These methods all do internal locking.
1701
1702 // Insert the specified range into the central freelist. N is the number of
1703 // elements in the range.
1704 void InsertRange(void *start, void *end, int N);
1705
1706 // Returns the actual number of fetched elements into N.
1707 void RemoveRange(void **start, void **end, int *N);
1708
1709 // Returns the number of free objects in cache.
1710 size_t length() {
1711 SpinLockHolder h(&lock_);
1712 return counter_;
1713 }
1714
1715 // Returns the number of free objects in the transfer cache.
1716 int tc_length() {
1717 SpinLockHolder h(&lock_);
1718 return used_slots_ * num_objects_to_move[size_class_];
1719 }
1720
1721 #ifdef WTF_CHANGES
1722 template <class Finder, class Reader>
1723 void enumerateFreeObjects(Finder& finder, const Reader& reader)
1724 {
1725 for (Span* span = &empty_; span && span != &empty_; span = (span->next ? reader(span->next) : 0))
1726 ASSERT(!span->objects);
1727
1728 ASSERT(!nonempty_.objects);
1729 for (Span* span = reader(nonempty_.next); span && span != &nonempty_; span = (span->next ? reader(span->next) : 0)) {
1730 for (void* nextObject = span->objects; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject)))
1731 finder.visit(nextObject);
1732 }
1733 }
1734 #endif
1735
1736 private:
1737 // REQUIRES: lock_ is held
1738 // Remove object from cache and return.
1739 // Return NULL if no free entries in cache.
1740 void* FetchFromSpans();
1741
1742 // REQUIRES: lock_ is held
1743 // Remove object from cache and return. Fetches
1744 // from pageheap if cache is empty. Only returns
1745 // NULL on allocation failure.
1746 void* FetchFromSpansSafe();
1747
1748 // REQUIRES: lock_ is held
1749 // Release a linked list of objects to spans.
1750 // May temporarily release lock_.
1751 void ReleaseListToSpans(void *start);
1752
1753 // REQUIRES: lock_ is held
1754 // Release an object to spans.
1755 // May temporarily release lock_.
1756 void ReleaseToSpans(void* object);
1757
1758 // REQUIRES: lock_ is held
1759 // Populate cache by fetching from the page heap.
1760 // May temporarily release lock_.
1761 void Populate();
1762
1763 // REQUIRES: lock is held.
1764 // Tries to make room for a TCEntry. If the cache is full it will try to
1765 // expand it at the cost of some other cache size. Return false if there is
1766 // no space.
1767 bool MakeCacheSpace();
1768
1769 // REQUIRES: lock_ for locked_size_class is held.
1770 // Picks a "random" size class to steal TCEntry slot from. In reality it
1771 // just iterates over the sizeclasses but does so without taking a lock.
1772 // Returns true on success.
1773 // May temporarily lock a "random" size class.
1774 static bool EvictRandomSizeClass(size_t locked_size_class, bool force);
1775
1776 // REQUIRES: lock_ is *not* held.
1777 // Tries to shrink the Cache. If force is true it will relase objects to
1778 // spans if it allows it to shrink the cache. Return false if it failed to
1779 // shrink the cache. Decrements cache_size_ on succeess.
1780 // May temporarily take lock_. If it takes lock_, the locked_size_class
1781 // lock is released to the thread from holding two size class locks
1782 // concurrently which could lead to a deadlock.
1783 bool ShrinkCache(int locked_size_class, bool force);
1784
1785 // This lock protects all the data members. cached_entries and cache_size_
1786 // may be looked at without holding the lock.
1787 SpinLock lock_;
1788
1789 // We keep linked lists of empty and non-empty spans.
1790 size_t size_class_; // My size class
1791 Span empty_; // Dummy header for list of empty spans
1792 Span nonempty_; // Dummy header for list of non-empty spans
1793 size_t counter_; // Number of free objects in cache entry
1794
1795 // Here we reserve space for TCEntry cache slots. Since one size class can
1796 // end up getting all the TCEntries quota in the system we just preallocate
1797 // sufficient number of entries here.
1798 TCEntry tc_slots_[kNumTransferEntries];
1799
1800 // Number of currently used cached entries in tc_slots_. This variable is
1801 // updated under a lock but can be read without one.
1802 int32_t used_slots_;
1803 // The current number of slots for this size class. This is an
1804 // adaptive value that is increased if there is lots of traffic
1805 // on a given size class.
1806 int32_t cache_size_;
1807 };
1808
1809 // Pad each CentralCache object to multiple of 64 bytes
1810 class TCMalloc_Central_FreeListPadded : public TCMalloc_Central_FreeList {
1811 private:
1812 char pad_[(64 - (sizeof(TCMalloc_Central_FreeList) % 64)) % 64];
1813 };
1814
1815 //-------------------------------------------------------------------
1816 // Global variables
1817 //-------------------------------------------------------------------
1818
1819 // Central cache -- a collection of free-lists, one per size-class.
1820 // We have a separate lock per free-list to reduce contention.
1821 static TCMalloc_Central_FreeListPadded central_cache[kNumClasses];
1822
1823 // Page-level allocator
1824 static SpinLock pageheap_lock = SPINLOCK_INITIALIZER;
1825
1826 #if PLATFORM(ARM)
1827 static void* pageheap_memory[(sizeof(TCMalloc_PageHeap) + sizeof(void*) - 1) / sizeof(void*)] __attribute__((aligned));
1828 #else
1829 static void* pageheap_memory[(sizeof(TCMalloc_PageHeap) + sizeof(void*) - 1) / sizeof(void*)];
1830 #endif
1831 static bool phinited = false;
1832
1833 // Avoid extra level of indirection by making "pageheap" be just an alias
1834 // of pageheap_memory.
1835 typedef union {
1836 void* m_memory;
1837 TCMalloc_PageHeap* m_pageHeap;
1838 } PageHeapUnion;
1839
1840 static inline TCMalloc_PageHeap* getPageHeap()
1841 {
1842 PageHeapUnion u = { &pageheap_memory[0] };
1843 return u.m_pageHeap;
1844 }
1845
1846 #define pageheap getPageHeap()
1847
1848 // If TLS is available, we also store a copy
1849 // of the per-thread object in a __thread variable
1850 // since __thread variables are faster to read
1851 // than pthread_getspecific(). We still need
1852 // pthread_setspecific() because __thread
1853 // variables provide no way to run cleanup
1854 // code when a thread is destroyed.
1855 #ifdef HAVE_TLS
1856 static __thread TCMalloc_ThreadCache *threadlocal_heap;
1857 #endif
1858 // Thread-specific key. Initialization here is somewhat tricky
1859 // because some Linux startup code invokes malloc() before it
1860 // is in a good enough state to handle pthread_keycreate().
1861 // Therefore, we use TSD keys only after tsd_inited is set to true.
1862 // Until then, we use a slow path to get the heap object.
1863 static bool tsd_inited = false;
1864 static pthread_key_t heap_key;
1865 #if COMPILER(MSVC)
1866 DWORD tlsIndex = TLS_OUT_OF_INDEXES;
1867 #endif
1868
1869 static ALWAYS_INLINE void setThreadHeap(TCMalloc_ThreadCache* heap)
1870 {
1871 // still do pthread_setspecific when using MSVC fast TLS to
1872 // benefit from the delete callback.
1873 pthread_setspecific(heap_key, heap);
1874 #if COMPILER(MSVC)
1875 TlsSetValue(tlsIndex, heap);
1876 #endif
1877 }
1878
1879 // Allocator for thread heaps
1880 static PageHeapAllocator<TCMalloc_ThreadCache> threadheap_allocator;
1881
1882 // Linked list of heap objects. Protected by pageheap_lock.
1883 static TCMalloc_ThreadCache* thread_heaps = NULL;
1884 static int thread_heap_count = 0;
1885
1886 // Overall thread cache size. Protected by pageheap_lock.
1887 static size_t overall_thread_cache_size = kDefaultOverallThreadCacheSize;
1888
1889 // Global per-thread cache size. Writes are protected by
1890 // pageheap_lock. Reads are done without any locking, which should be
1891 // fine as long as size_t can be written atomically and we don't place
1892 // invariants between this variable and other pieces of state.
1893 static volatile size_t per_thread_cache_size = kMaxThreadCacheSize;
1894
1895 //-------------------------------------------------------------------
1896 // Central cache implementation
1897 //-------------------------------------------------------------------
1898
1899 void TCMalloc_Central_FreeList::Init(size_t cl) {
1900 lock_.Init();
1901 size_class_ = cl;
1902 DLL_Init(&empty_);
1903 DLL_Init(&nonempty_);
1904 counter_ = 0;
1905
1906 cache_size_ = 1;
1907 used_slots_ = 0;
1908 ASSERT(cache_size_ <= kNumTransferEntries);
1909 }
1910
1911 void TCMalloc_Central_FreeList::ReleaseListToSpans(void* start) {
1912 while (start) {
1913 void *next = SLL_Next(start);
1914 ReleaseToSpans(start);
1915 start = next;
1916 }
1917 }
1918
1919 ALWAYS_INLINE void TCMalloc_Central_FreeList::ReleaseToSpans(void* object) {
1920 const PageID p = reinterpret_cast<uintptr_t>(object) >> kPageShift;
1921 Span* span = pageheap->GetDescriptor(p);
1922 ASSERT(span != NULL);
1923 ASSERT(span->refcount > 0);
1924
1925 // If span is empty, move it to non-empty list
1926 if (span->objects == NULL) {
1927 DLL_Remove(span);
1928 DLL_Prepend(&nonempty_, span);
1929 Event(span, 'N', 0);
1930 }
1931
1932 // The following check is expensive, so it is disabled by default
1933 if (false) {
1934 // Check that object does not occur in list
1935 int got = 0;
1936 for (void* p = span->objects; p != NULL; p = *((void**) p)) {
1937 ASSERT(p != object);
1938 got++;
1939 }
1940 ASSERT(got + span->refcount ==
1941 (span->length<<kPageShift)/ByteSizeForClass(span->sizeclass));
1942 }
1943
1944 counter_++;
1945 span->refcount--;
1946 if (span->refcount == 0) {
1947 Event(span, '#', 0);
1948 counter_ -= (span->length<<kPageShift) / ByteSizeForClass(span->sizeclass);
1949 DLL_Remove(span);
1950
1951 // Release central list lock while operating on pageheap
1952 lock_.Unlock();
1953 {
1954 SpinLockHolder h(&pageheap_lock);
1955 pageheap->Delete(span);
1956 }
1957 lock_.Lock();
1958 } else {
1959 *(reinterpret_cast<void**>(object)) = span->objects;
1960 span->objects = object;
1961 }
1962 }
1963
1964 ALWAYS_INLINE bool TCMalloc_Central_FreeList::EvictRandomSizeClass(
1965 size_t locked_size_class, bool force) {
1966 static int race_counter = 0;
1967 int t = race_counter++; // Updated without a lock, but who cares.
1968 if (t >= static_cast<int>(kNumClasses)) {
1969 while (t >= static_cast<int>(kNumClasses)) {
1970 t -= kNumClasses;
1971 }
1972 race_counter = t;
1973 }
1974 ASSERT(t >= 0);
1975 ASSERT(t < static_cast<int>(kNumClasses));
1976 if (t == static_cast<int>(locked_size_class)) return false;
1977 return central_cache[t].ShrinkCache(static_cast<int>(locked_size_class), force);
1978 }
1979
1980 bool TCMalloc_Central_FreeList::MakeCacheSpace() {
1981 // Is there room in the cache?
1982 if (used_slots_ < cache_size_) return true;
1983 // Check if we can expand this cache?
1984 if (cache_size_ == kNumTransferEntries) return false;
1985 // Ok, we'll try to grab an entry from some other size class.
1986 if (EvictRandomSizeClass(size_class_, false) ||
1987 EvictRandomSizeClass(size_class_, true)) {
1988 // Succeeded in evicting, we're going to make our cache larger.
1989 cache_size_++;
1990 return true;
1991 }
1992 return false;
1993 }
1994
1995
1996 namespace {
1997 class LockInverter {
1998 private:
1999 SpinLock *held_, *temp_;
2000 public:
2001 inline explicit LockInverter(SpinLock* held, SpinLock *temp)
2002 : held_(held), temp_(temp) { held_->Unlock(); temp_->Lock(); }
2003 inline ~LockInverter() { temp_->Unlock(); held_->Lock(); }
2004 };
2005 }
2006
2007 bool TCMalloc_Central_FreeList::ShrinkCache(int locked_size_class, bool force) {
2008 // Start with a quick check without taking a lock.
2009 if (cache_size_ == 0) return false;
2010 // We don't evict from a full cache unless we are 'forcing'.
2011 if (force == false && used_slots_ == cache_size_) return false;
2012
2013 // Grab lock, but first release the other lock held by this thread. We use
2014 // the lock inverter to ensure that we never hold two size class locks
2015 // concurrently. That can create a deadlock because there is no well
2016 // defined nesting order.
2017 LockInverter li(&central_cache[locked_size_class].lock_, &lock_);
2018 ASSERT(used_slots_ <= cache_size_);
2019 ASSERT(0 <= cache_size_);
2020 if (cache_size_ == 0) return false;
2021 if (used_slots_ == cache_size_) {
2022 if (force == false) return false;
2023 // ReleaseListToSpans releases the lock, so we have to make all the
2024 // updates to the central list before calling it.
2025 cache_size_--;
2026 used_slots_--;
2027 ReleaseListToSpans(tc_slots_[used_slots_].head);
2028 return true;
2029 }
2030 cache_size_--;
2031 return true;
2032 }
2033
2034 void TCMalloc_Central_FreeList::InsertRange(void *start, void *end, int N) {
2035 SpinLockHolder h(&lock_);
2036 if (N == num_objects_to_move[size_class_] &&
2037 MakeCacheSpace()) {
2038 int slot = used_slots_++;
2039 ASSERT(slot >=0);
2040 ASSERT(slot < kNumTransferEntries);
2041 TCEntry *entry = &tc_slots_[slot];
2042 entry->head = start;
2043 entry->tail = end;
2044 return;
2045 }
2046 ReleaseListToSpans(start);
2047 }
2048
2049 void TCMalloc_Central_FreeList::RemoveRange(void **start, void **end, int *N) {
2050 int num = *N;
2051 ASSERT(num > 0);
2052
2053 SpinLockHolder h(&lock_);
2054 if (num == num_objects_to_move[size_class_] && used_slots_ > 0) {
2055 int slot = --used_slots_;
2056 ASSERT(slot >= 0);
2057 TCEntry *entry = &tc_slots_[slot];
2058 *start = entry->head;
2059 *end = entry->tail;
2060 return;
2061 }
2062
2063 // TODO: Prefetch multiple TCEntries?
2064 void *tail = FetchFromSpansSafe();
2065 if (!tail) {
2066 // We are completely out of memory.
2067 *start = *end = NULL;
2068 *N = 0;
2069 return;
2070 }
2071
2072 SLL_SetNext(tail, NULL);
2073 void *head = tail;
2074 int count = 1;
2075 while (count < num) {
2076 void *t = FetchFromSpans();
2077 if (!t) break;
2078 SLL_Push(&head, t);
2079 count++;
2080 }
2081 *start = head;
2082 *end = tail;
2083 *N = count;
2084 }
2085
2086
2087 void* TCMalloc_Central_FreeList::FetchFromSpansSafe() {
2088 void *t = FetchFromSpans();
2089 if (!t) {
2090 Populate();
2091 t = FetchFromSpans();
2092 }
2093 return t;
2094 }
2095
2096 void* TCMalloc_Central_FreeList::FetchFromSpans() {
2097 if (DLL_IsEmpty(&nonempty_)) return NULL;
2098 Span* span = nonempty_.next;
2099
2100 ASSERT(span->objects != NULL);
2101 span->refcount++;
2102 void* result = span->objects;
2103 span->objects = *(reinterpret_cast<void**>(result));
2104 if (span->objects == NULL) {
2105 // Move to empty list
2106 DLL_Remove(span);
2107 DLL_Prepend(&empty_, span);
2108 Event(span, 'E', 0);
2109 }
2110 counter_--;
2111 return result;
2112 }
2113
2114 // Fetch memory from the system and add to the central cache freelist.
2115 ALWAYS_INLINE void TCMalloc_Central_FreeList::Populate() {
2116 // Release central list lock while operating on pageheap
2117 lock_.Unlock();
2118 const size_t npages = class_to_pages[size_class_];
2119
2120 Span* span;
2121 {
2122 SpinLockHolder h(&pageheap_lock);
2123 span = pageheap->New(npages);
2124 if (span) pageheap->RegisterSizeClass(span, size_class_);
2125 }
2126 if (span == NULL) {
2127 MESSAGE("allocation failed: %d\n", errno);
2128 lock_.Lock();
2129 return;
2130 }
2131 ASSERT(span->length == npages);
2132 // Cache sizeclass info eagerly. Locking is not necessary.
2133 // (Instead of being eager, we could just replace any stale info
2134 // about this span, but that seems to be no better in practice.)
2135 for (size_t i = 0; i < npages; i++) {
2136 pageheap->CacheSizeClass(span->start + i, size_class_);
2137 }
2138
2139 // Split the block into pieces and add to the free-list
2140 // TODO: coloring of objects to avoid cache conflicts?
2141 void** tail = &span->objects;
2142 char* ptr = reinterpret_cast<char*>(span->start << kPageShift);
2143 char* limit = ptr + (npages << kPageShift);
2144 const size_t size = ByteSizeForClass(size_class_);
2145 int num = 0;
2146 char* nptr;
2147 while ((nptr = ptr + size) <= limit) {
2148 *tail = ptr;
2149 tail = reinterpret_cast<void**>(ptr);
2150 ptr = nptr;
2151 num++;
2152 }
2153 ASSERT(ptr <= limit);
2154 *tail = NULL;
2155 span->refcount = 0; // No sub-object in use yet
2156
2157 // Add span to list of non-empty spans
2158 lock_.Lock();
2159 DLL_Prepend(&nonempty_, span);
2160 counter_ += num;
2161 }
2162
2163 //-------------------------------------------------------------------
2164 // TCMalloc_ThreadCache implementation
2165 //-------------------------------------------------------------------
2166
2167 inline bool TCMalloc_ThreadCache::SampleAllocation(size_t k) {
2168 if (bytes_until_sample_ < k) {
2169 PickNextSample(k);
2170 return true;
2171 } else {
2172 bytes_until_sample_ -= k;
2173 return false;
2174 }
2175 }
2176
2177 void TCMalloc_ThreadCache::Init(ThreadIdentifier tid) {
2178 size_ = 0;
2179 next_ = NULL;
2180 prev_ = NULL;
2181 tid_ = tid;
2182 in_setspecific_ = false;
2183 for (size_t cl = 0; cl < kNumClasses; ++cl) {
2184 list_[cl].Init();
2185 }
2186
2187 // Initialize RNG -- run it for a bit to get to good values
2188 bytes_until_sample_ = 0;
2189 rnd_ = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(this));
2190 for (int i = 0; i < 100; i++) {
2191 PickNextSample(static_cast<size_t>(FLAGS_tcmalloc_sample_parameter * 2));
2192 }
2193 }
2194
2195 void TCMalloc_ThreadCache::Cleanup() {
2196 // Put unused memory back into central cache
2197 for (size_t cl = 0; cl < kNumClasses; ++cl) {
2198 if (list_[cl].length() > 0) {
2199 ReleaseToCentralCache(cl, list_[cl].length());
2200 }
2201 }
2202 }
2203
2204 ALWAYS_INLINE void* TCMalloc_ThreadCache::Allocate(size_t size) {
2205 ASSERT(size <= kMaxSize);
2206 const size_t cl = SizeClass(size);
2207 FreeList* list = &list_[cl];
2208 size_t allocationSize = ByteSizeForClass(cl);
2209 if (list->empty()) {
2210 FetchFromCentralCache(cl, allocationSize);
2211 if (list->empty()) return NULL;
2212 }
2213 size_ -= allocationSize;
2214 return list->Pop();
2215 }
2216
2217 inline void TCMalloc_ThreadCache::Deallocate(void* ptr, size_t cl) {
2218 size_ += ByteSizeForClass(cl);
2219 FreeList* list = &list_[cl];
2220 list->Push(ptr);
2221 // If enough data is free, put back into central cache
2222 if (list->length() > kMaxFreeListLength) {
2223 ReleaseToCentralCache(cl, num_objects_to_move[cl]);
2224 }
2225 if (size_ >= per_thread_cache_size) Scavenge();
2226 }
2227
2228 // Remove some objects of class "cl" from central cache and add to thread heap
2229 ALWAYS_INLINE void TCMalloc_ThreadCache::FetchFromCentralCache(size_t cl, size_t allocationSize) {
2230 int fetch_count = num_objects_to_move[cl];
2231 void *start, *end;
2232 central_cache[cl].RemoveRange(&start, &end, &fetch_count);
2233 list_[cl].PushRange(fetch_count, start, end);
2234 size_ += allocationSize * fetch_count;
2235 }
2236
2237 // Remove some objects of class "cl" from thread heap and add to central cache
2238 inline void TCMalloc_ThreadCache::ReleaseToCentralCache(size_t cl, int N) {
2239 ASSERT(N > 0);
2240 FreeList* src = &list_[cl];
2241 if (N > src->length()) N = src->length();
2242 size_ -= N*ByteSizeForClass(cl);
2243
2244 // We return prepackaged chains of the correct size to the central cache.
2245 // TODO: Use the same format internally in the thread caches?
2246 int batch_size = num_objects_to_move[cl];
2247 while (N > batch_size) {
2248 void *tail, *head;
2249 src->PopRange(batch_size, &head, &tail);
2250 central_cache[cl].InsertRange(head, tail, batch_size);
2251 N -= batch_size;
2252 }
2253 void *tail, *head;
2254 src->PopRange(N, &head, &tail);
2255 central_cache[cl].InsertRange(head, tail, N);
2256 }
2257
2258 // Release idle memory to the central cache
2259 inline void TCMalloc_ThreadCache::Scavenge() {
2260 // If the low-water mark for the free list is L, it means we would
2261 // not have had to allocate anything from the central cache even if
2262 // we had reduced the free list size by L. We aim to get closer to
2263 // that situation by dropping L/2 nodes from the free list. This
2264 // may not release much memory, but if so we will call scavenge again
2265 // pretty soon and the low-water marks will be high on that call.
2266 //int64 start = CycleClock::Now();
2267
2268 for (size_t cl = 0; cl < kNumClasses; cl++) {
2269 FreeList* list = &list_[cl];
2270 const int lowmark = list->lowwatermark();
2271 if (lowmark > 0) {
2272 const int drop = (lowmark > 1) ? lowmark/2 : 1;
2273 ReleaseToCentralCache(cl, drop);
2274 }
2275 list->clear_lowwatermark();
2276 }
2277
2278 //int64 finish = CycleClock::Now();
2279 //CycleTimer ct;
2280 //MESSAGE("GC: %.0f ns\n", ct.CyclesToUsec(finish-start)*1000.0);
2281 }
2282
2283 void TCMalloc_ThreadCache::PickNextSample(size_t k) {
2284 // Make next "random" number
2285 // x^32+x^22+x^2+x^1+1 is a primitive polynomial for random numbers
2286 static const uint32_t kPoly = (1 << 22) | (1 << 2) | (1 << 1) | (1 << 0);
2287 uint32_t r = rnd_;
2288 rnd_ = (r << 1) ^ ((static_cast<int32_t>(r) >> 31) & kPoly);
2289
2290 // Next point is "rnd_ % (sample_period)". I.e., average
2291 // increment is "sample_period/2".
2292 const int flag_value = static_cast<int>(FLAGS_tcmalloc_sample_parameter);
2293 static int last_flag_value = -1;
2294
2295 if (flag_value != last_flag_value) {
2296 SpinLockHolder h(&sample_period_lock);
2297 int i;
2298 for (i = 0; i < (static_cast<int>(sizeof(primes_list)/sizeof(primes_list[0])) - 1); i++) {
2299 if (primes_list[i] >= flag_value) {
2300 break;
2301 }
2302 }
2303 sample_period = primes_list[i];
2304 last_flag_value = flag_value;
2305 }
2306
2307 bytes_until_sample_ += rnd_ % sample_period;
2308
2309 if (k > (static_cast<size_t>(-1) >> 2)) {
2310 // If the user has asked for a huge allocation then it is possible
2311 // for the code below to loop infinitely. Just return (note that
2312 // this throws off the sampling accuracy somewhat, but a user who
2313 // is allocating more than 1G of memory at a time can live with a
2314 // minor inaccuracy in profiling of small allocations, and also
2315 // would rather not wait for the loop below to terminate).
2316 return;
2317 }
2318
2319 while (bytes_until_sample_ < k) {
2320 // Increase bytes_until_sample_ by enough average sampling periods
2321 // (sample_period >> 1) to allow us to sample past the current
2322 // allocation.
2323 bytes_until_sample_ += (sample_period >> 1);
2324 }
2325
2326 bytes_until_sample_ -= k;
2327 }
2328
2329 void TCMalloc_ThreadCache::InitModule() {
2330 // There is a slight potential race here because of double-checked
2331 // locking idiom. However, as long as the program does a small
2332 // allocation before switching to multi-threaded mode, we will be
2333 // fine. We increase the chances of doing such a small allocation
2334 // by doing one in the constructor of the module_enter_exit_hook
2335 // object declared below.
2336 SpinLockHolder h(&pageheap_lock);
2337 if (!phinited) {
2338 #ifdef WTF_CHANGES
2339 InitTSD();
2340 #endif
2341 InitSizeClasses();
2342 threadheap_allocator.Init();
2343 span_allocator.Init();
2344 span_allocator.New(); // Reduce cache conflicts
2345 span_allocator.New(); // Reduce cache conflicts
2346 stacktrace_allocator.Init();
2347 DLL_Init(&sampled_objects);
2348 for (size_t i = 0; i < kNumClasses; ++i) {
2349 central_cache[i].Init(i);
2350 }
2351 pageheap->init();
2352 phinited = 1;
2353 #if defined(WTF_CHANGES) && PLATFORM(DARWIN)
2354 FastMallocZone::init();
2355 #endif
2356 }
2357 }
2358
2359 inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::NewHeap(ThreadIdentifier tid) {
2360 // Create the heap and add it to the linked list
2361 TCMalloc_ThreadCache *heap = threadheap_allocator.New();
2362 heap->Init(tid);
2363 heap->next_ = thread_heaps;
2364 heap->prev_ = NULL;
2365 if (thread_heaps != NULL) thread_heaps->prev_ = heap;
2366 thread_heaps = heap;
2367 thread_heap_count++;
2368 RecomputeThreadCacheSize();
2369 return heap;
2370 }
2371
2372 inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetThreadHeap() {
2373 #ifdef HAVE_TLS
2374 // __thread is faster, but only when the kernel supports it
2375 if (KernelSupportsTLS())
2376 return threadlocal_heap;
2377 #elif COMPILER(MSVC)
2378 return static_cast<TCMalloc_ThreadCache*>(TlsGetValue(tlsIndex));
2379 #else
2380 return static_cast<TCMalloc_ThreadCache*>(pthread_getspecific(heap_key));
2381 #endif
2382 }
2383
2384 inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCache() {
2385 TCMalloc_ThreadCache* ptr = NULL;
2386 if (!tsd_inited) {
2387 InitModule();
2388 } else {
2389 ptr = GetThreadHeap();
2390 }
2391 if (ptr == NULL) ptr = CreateCacheIfNecessary();
2392 return ptr;
2393 }
2394
2395 // In deletion paths, we do not try to create a thread-cache. This is
2396 // because we may be in the thread destruction code and may have
2397 // already cleaned up the cache for this thread.
2398 inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCacheIfPresent() {
2399 if (!tsd_inited) return NULL;
2400 void* const p = GetThreadHeap();
2401 return reinterpret_cast<TCMalloc_ThreadCache*>(p);
2402 }
2403
2404 void TCMalloc_ThreadCache::InitTSD() {
2405 ASSERT(!tsd_inited);
2406 pthread_key_create(&heap_key, DestroyThreadCache);
2407 #if COMPILER(MSVC)
2408 tlsIndex = TlsAlloc();
2409 #endif
2410 tsd_inited = true;
2411
2412 #if !COMPILER(MSVC)
2413 // We may have used a fake pthread_t for the main thread. Fix it.
2414 pthread_t zero;
2415 memset(&zero, 0, sizeof(zero));
2416 #endif
2417 #ifndef WTF_CHANGES
2418 SpinLockHolder h(&pageheap_lock);
2419 #else
2420 ASSERT(pageheap_lock.IsHeld());
2421 #endif
2422 for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
2423 #if COMPILER(MSVC)
2424 if (h->tid_ == 0) {
2425 h->tid_ = GetCurrentThreadId();
2426 }
2427 #else
2428 if (pthread_equal(h->tid_, zero)) {
2429 h->tid_ = pthread_self();
2430 }
2431 #endif
2432 }
2433 }
2434
2435 TCMalloc_ThreadCache* TCMalloc_ThreadCache::CreateCacheIfNecessary() {
2436 // Initialize per-thread data if necessary
2437 TCMalloc_ThreadCache* heap = NULL;
2438 {
2439 SpinLockHolder h(&pageheap_lock);
2440
2441 #if COMPILER(MSVC)
2442 DWORD me;
2443 if (!tsd_inited) {
2444 me = 0;
2445 } else {
2446 me = GetCurrentThreadId();
2447 }
2448 #else
2449 // Early on in glibc's life, we cannot even call pthread_self()
2450 pthread_t me;
2451 if (!tsd_inited) {
2452 memset(&me, 0, sizeof(me));
2453 } else {
2454 me = pthread_self();
2455 }
2456 #endif
2457
2458 // This may be a recursive malloc call from pthread_setspecific()
2459 // In that case, the heap for this thread has already been created
2460 // and added to the linked list. So we search for that first.
2461 for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
2462 #if COMPILER(MSVC)
2463 if (h->tid_ == me) {
2464 #else
2465 if (pthread_equal(h->tid_, me)) {
2466 #endif
2467 heap = h;
2468 break;
2469 }
2470 }
2471
2472 if (heap == NULL) heap = NewHeap(me);
2473 }
2474
2475 // We call pthread_setspecific() outside the lock because it may
2476 // call malloc() recursively. The recursive call will never get
2477 // here again because it will find the already allocated heap in the
2478 // linked list of heaps.
2479 if (!heap->in_setspecific_ && tsd_inited) {
2480 heap->in_setspecific_ = true;
2481 setThreadHeap(heap);
2482 }
2483 return heap;
2484 }
2485
2486 void TCMalloc_ThreadCache::BecomeIdle() {
2487 if (!tsd_inited) return; // No caches yet
2488 TCMalloc_ThreadCache* heap = GetThreadHeap();
2489 if (heap == NULL) return; // No thread cache to remove
2490 if (heap->in_setspecific_) return; // Do not disturb the active caller
2491
2492 heap->in_setspecific_ = true;
2493 pthread_setspecific(heap_key, NULL);
2494 #ifdef HAVE_TLS
2495 // Also update the copy in __thread
2496 threadlocal_heap = NULL;
2497 #endif
2498 heap->in_setspecific_ = false;
2499 if (GetThreadHeap() == heap) {
2500 // Somehow heap got reinstated by a recursive call to malloc
2501 // from pthread_setspecific. We give up in this case.
2502 return;
2503 }
2504
2505 // We can now get rid of the heap
2506 DeleteCache(heap);
2507 }
2508
2509 void TCMalloc_ThreadCache::DestroyThreadCache(void* ptr) {
2510 // Note that "ptr" cannot be NULL since pthread promises not
2511 // to invoke the destructor on NULL values, but for safety,
2512 // we check anyway.
2513 if (ptr == NULL) return;
2514 #ifdef HAVE_TLS
2515 // Prevent fast path of GetThreadHeap() from returning heap.
2516 threadlocal_heap = NULL;
2517 #endif
2518 DeleteCache(reinterpret_cast<TCMalloc_ThreadCache*>(ptr));
2519 }
2520
2521 void TCMalloc_ThreadCache::DeleteCache(TCMalloc_ThreadCache* heap) {
2522 // Remove all memory from heap
2523 heap->Cleanup();
2524
2525 // Remove from linked list
2526 SpinLockHolder h(&pageheap_lock);
2527 if (heap->next_ != NULL) heap->next_->prev_ = heap->prev_;
2528 if (heap->prev_ != NULL) heap->prev_->next_ = heap->next_;
2529 if (thread_heaps == heap) thread_heaps = heap->next_;
2530 thread_heap_count--;
2531 RecomputeThreadCacheSize();
2532
2533 threadheap_allocator.Delete(heap);
2534 }
2535
2536 void TCMalloc_ThreadCache::RecomputeThreadCacheSize() {
2537 // Divide available space across threads
2538 int n = thread_heap_count > 0 ? thread_heap_count : 1;
2539 size_t space = overall_thread_cache_size / n;
2540
2541 // Limit to allowed range
2542 if (space < kMinThreadCacheSize) space = kMinThreadCacheSize;
2543 if (space > kMaxThreadCacheSize) space = kMaxThreadCacheSize;
2544
2545 per_thread_cache_size = space;
2546 }
2547
2548 void TCMalloc_ThreadCache::Print() const {
2549 for (size_t cl = 0; cl < kNumClasses; ++cl) {
2550 MESSAGE(" %5" PRIuS " : %4d len; %4d lo\n",
2551 ByteSizeForClass(cl),
2552 list_[cl].length(),
2553 list_[cl].lowwatermark());
2554 }
2555 }
2556
2557 // Extract interesting stats
2558 struct TCMallocStats {
2559 uint64_t system_bytes; // Bytes alloced from system
2560 uint64_t thread_bytes; // Bytes in thread caches
2561 uint64_t central_bytes; // Bytes in central cache
2562 uint64_t transfer_bytes; // Bytes in central transfer cache
2563 uint64_t pageheap_bytes; // Bytes in page heap
2564 uint64_t metadata_bytes; // Bytes alloced for metadata
2565 };
2566
2567 #ifndef WTF_CHANGES
2568 // Get stats into "r". Also get per-size-class counts if class_count != NULL
2569 static void ExtractStats(TCMallocStats* r, uint64_t* class_count) {
2570 r->central_bytes = 0;
2571 r->transfer_bytes = 0;
2572 for (int cl = 0; cl < kNumClasses; ++cl) {
2573 const int length = central_cache[cl].length();
2574 const int tc_length = central_cache[cl].tc_length();
2575 r->central_bytes += static_cast<uint64_t>(ByteSizeForClass(cl)) * length;
2576 r->transfer_bytes +=
2577 static_cast<uint64_t>(ByteSizeForClass(cl)) * tc_length;
2578 if (class_count) class_count[cl] = length + tc_length;
2579 }
2580
2581 // Add stats from per-thread heaps
2582 r->thread_bytes = 0;
2583 { // scope
2584 SpinLockHolder h(&pageheap_lock);
2585 for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
2586 r->thread_bytes += h->Size();
2587 if (class_count) {
2588 for (size_t cl = 0; cl < kNumClasses; ++cl) {
2589 class_count[cl] += h->freelist_length(cl);
2590 }
2591 }
2592 }
2593 }
2594
2595 { //scope
2596 SpinLockHolder h(&pageheap_lock);
2597 r->system_bytes = pageheap->SystemBytes();
2598 r->metadata_bytes = metadata_system_bytes;
2599 r->pageheap_bytes = pageheap->FreeBytes();
2600 }
2601 }
2602 #endif
2603
2604 #ifndef WTF_CHANGES
2605 // WRITE stats to "out"
2606 static void DumpStats(TCMalloc_Printer* out, int level) {
2607 TCMallocStats stats;
2608 uint64_t class_count[kNumClasses];
2609 ExtractStats(&stats, (level >= 2 ? class_count : NULL));
2610
2611 if (level >= 2) {
2612 out->printf("------------------------------------------------\n");
2613 uint64_t cumulative = 0;
2614 for (int cl = 0; cl < kNumClasses; ++cl) {
2615 if (class_count[cl] > 0) {
2616 uint64_t class_bytes = class_count[cl] * ByteSizeForClass(cl);
2617 cumulative += class_bytes;
2618 out->printf("class %3d [ %8" PRIuS " bytes ] : "
2619 "%8" PRIu64 " objs; %5.1f MB; %5.1f cum MB\n",
2620 cl, ByteSizeForClass(cl),
2621 class_count[cl],
2622 class_bytes / 1048576.0,
2623 cumulative / 1048576.0);
2624 }
2625 }
2626
2627 SpinLockHolder h(&pageheap_lock);
2628 pageheap->Dump(out);
2629 }
2630
2631 const uint64_t bytes_in_use = stats.system_bytes
2632 - stats.pageheap_bytes
2633 - stats.central_bytes
2634 - stats.transfer_bytes
2635 - stats.thread_bytes;
2636
2637 out->printf("------------------------------------------------\n"
2638 "MALLOC: %12" PRIu64 " Heap size\n"
2639 "MALLOC: %12" PRIu64 " Bytes in use by application\n"
2640 "MALLOC: %12" PRIu64 " Bytes free in page heap\n"
2641 "MALLOC: %12" PRIu64 " Bytes free in central cache\n"
2642 "MALLOC: %12" PRIu64 " Bytes free in transfer cache\n"
2643 "MALLOC: %12" PRIu64 " Bytes free in thread caches\n"
2644 "MALLOC: %12" PRIu64 " Spans in use\n"
2645 "MALLOC: %12" PRIu64 " Thread heaps in use\n"
2646 "MALLOC: %12" PRIu64 " Metadata allocated\n"
2647 "------------------------------------------------\n",
2648 stats.system_bytes,
2649 bytes_in_use,
2650 stats.pageheap_bytes,
2651 stats.central_bytes,
2652 stats.transfer_bytes,
2653 stats.thread_bytes,
2654 uint64_t(span_allocator.inuse()),
2655 uint64_t(threadheap_allocator.inuse()),
2656 stats.metadata_bytes);
2657 }
2658
2659 static void PrintStats(int level) {
2660 const int kBufferSize = 16 << 10;
2661 char* buffer = new char[kBufferSize];
2662 TCMalloc_Printer printer(buffer, kBufferSize);
2663 DumpStats(&printer, level);
2664 write(STDERR_FILENO, buffer, strlen(buffer));
2665 delete[] buffer;
2666 }
2667
2668 static void** DumpStackTraces() {
2669 // Count how much space we need
2670 int needed_slots = 0;
2671 {
2672 SpinLockHolder h(&pageheap_lock);
2673 for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
2674 StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
2675 needed_slots += 3 + stack->depth;
2676 }
2677 needed_slots += 100; // Slop in case sample grows
2678 needed_slots += needed_slots/8; // An extra 12.5% slop
2679 }
2680
2681 void** result = new void*[needed_slots];
2682 if (result == NULL) {
2683 MESSAGE("tcmalloc: could not allocate %d slots for stack traces\n",
2684 needed_slots);
2685 return NULL;
2686 }
2687
2688 SpinLockHolder h(&pageheap_lock);
2689 int used_slots = 0;
2690 for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
2691 ASSERT(used_slots < needed_slots); // Need to leave room for terminator
2692 StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
2693 if (used_slots + 3 + stack->depth >= needed_slots) {
2694 // No more room
2695 break;
2696 }
2697
2698 result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
2699 result[used_slots+1] = reinterpret_cast<void*>(stack->size);
2700 result[used_slots+2] = reinterpret_cast<void*>(stack->depth);
2701 for (int d = 0; d < stack->depth; d++) {
2702 result[used_slots+3+d] = stack->stack[d];
2703 }
2704 used_slots += 3 + stack->depth;
2705 }
2706 result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
2707 return result;
2708 }
2709 #endif
2710
2711 #ifndef WTF_CHANGES
2712
2713 // TCMalloc's support for extra malloc interfaces
2714 class TCMallocImplementation : public MallocExtension {
2715 public:
2716 virtual void GetStats(char* buffer, int buffer_length) {
2717 ASSERT(buffer_length > 0);
2718 TCMalloc_Printer printer(buffer, buffer_length);
2719
2720 // Print level one stats unless lots of space is available
2721 if (buffer_length < 10000) {
2722 DumpStats(&printer, 1);
2723 } else {
2724 DumpStats(&printer, 2);
2725 }
2726 }
2727
2728 virtual void** ReadStackTraces() {
2729 return DumpStackTraces();
2730 }
2731
2732 virtual bool GetNumericProperty(const char* name, size_t* value) {
2733 ASSERT(name != NULL);
2734
2735 if (strcmp(name, "generic.current_allocated_bytes") == 0) {
2736 TCMallocStats stats;
2737 ExtractStats(&stats, NULL);
2738 *value = stats.system_bytes
2739 - stats.thread_bytes
2740 - stats.central_bytes
2741 - stats.pageheap_bytes;
2742 return true;
2743 }
2744
2745 if (strcmp(name, "generic.heap_size") == 0) {
2746 TCMallocStats stats;
2747 ExtractStats(&stats, NULL);
2748 *value = stats.system_bytes;
2749 return true;
2750 }
2751
2752 if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
2753 // We assume that bytes in the page heap are not fragmented too
2754 // badly, and are therefore available for allocation.
2755 SpinLockHolder l(&pageheap_lock);
2756 *value = pageheap->FreeBytes();
2757 return true;
2758 }
2759
2760 if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
2761 SpinLockHolder l(&pageheap_lock);
2762 *value = overall_thread_cache_size;
2763 return true;
2764 }
2765
2766 if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
2767 TCMallocStats stats;
2768 ExtractStats(&stats, NULL);
2769 *value = stats.thread_bytes;
2770 return true;
2771 }
2772
2773 return false;
2774 }
2775
2776 virtual bool SetNumericProperty(const char* name, size_t value) {
2777 ASSERT(name != NULL);
2778
2779 if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
2780 // Clip the value to a reasonable range
2781 if (value < kMinThreadCacheSize) value = kMinThreadCacheSize;
2782 if (value > (1<<30)) value = (1<<30); // Limit to 1GB
2783
2784 SpinLockHolder l(&pageheap_lock);
2785 overall_thread_cache_size = static_cast<size_t>(value);
2786 TCMalloc_ThreadCache::RecomputeThreadCacheSize();
2787 return true;
2788 }
2789
2790 return false;
2791 }
2792
2793 virtual void MarkThreadIdle() {
2794 TCMalloc_ThreadCache::BecomeIdle();
2795 }
2796
2797 virtual void ReleaseFreeMemory() {
2798 SpinLockHolder h(&pageheap_lock);
2799 pageheap->ReleaseFreePages();
2800 }
2801 };
2802 #endif
2803
2804 // The constructor allocates an object to ensure that initialization
2805 // runs before main(), and therefore we do not have a chance to become
2806 // multi-threaded before initialization. We also create the TSD key
2807 // here. Presumably by the time this constructor runs, glibc is in
2808 // good enough shape to handle pthread_key_create().
2809 //
2810 // The constructor also takes the opportunity to tell STL to use
2811 // tcmalloc. We want to do this early, before construct time, so
2812 // all user STL allocations go through tcmalloc (which works really
2813 // well for STL).
2814 //
2815 // The destructor prints stats when the program exits.
2816 class TCMallocGuard {
2817 public:
2818
2819 TCMallocGuard() {
2820 #ifdef HAVE_TLS // this is true if the cc/ld/libc combo support TLS
2821 // Check whether the kernel also supports TLS (needs to happen at runtime)
2822 CheckIfKernelSupportsTLS();
2823 #endif
2824 #ifndef WTF_CHANGES
2825 #ifdef WIN32 // patch the windows VirtualAlloc, etc.
2826 PatchWindowsFunctions(); // defined in windows/patch_functions.cc
2827 #endif
2828 #endif
2829 free(malloc(1));
2830 TCMalloc_ThreadCache::InitTSD();
2831 free(malloc(1));
2832 #ifndef WTF_CHANGES
2833 MallocExtension::Register(new TCMallocImplementation);
2834 #endif
2835 }
2836
2837 #ifndef WTF_CHANGES
2838 ~TCMallocGuard() {
2839 const char* env = getenv("MALLOCSTATS");
2840 if (env != NULL) {
2841 int level = atoi(env);
2842 if (level < 1) level = 1;
2843 PrintStats(level);
2844 }
2845 #ifdef WIN32
2846 UnpatchWindowsFunctions();
2847 #endif
2848 }
2849 #endif
2850 };
2851
2852 #ifndef WTF_CHANGES
2853 static TCMallocGuard module_enter_exit_hook;
2854 #endif
2855
2856
2857 //-------------------------------------------------------------------
2858 // Helpers for the exported routines below
2859 //-------------------------------------------------------------------
2860
2861 #ifndef WTF_CHANGES
2862
2863 static Span* DoSampledAllocation(size_t size) {
2864
2865 // Grab the stack trace outside the heap lock
2866 StackTrace tmp;
2867 tmp.depth = GetStackTrace(tmp.stack, kMaxStackDepth, 1);
2868 tmp.size = size;
2869
2870 SpinLockHolder h(&pageheap_lock);
2871 // Allocate span
2872 Span *span = pageheap->New(pages(size == 0 ? 1 : size));
2873 if (span == NULL) {
2874 return NULL;
2875 }
2876
2877 // Allocate stack trace
2878 StackTrace *stack = stacktrace_allocator.New();
2879 if (stack == NULL) {
2880 // Sampling failed because of lack of memory
2881 return span;
2882 }
2883
2884 *stack = tmp;
2885 span->sample = 1;
2886 span->objects = stack;
2887 DLL_Prepend(&sampled_objects, span);
2888
2889 return span;
2890 }
2891 #endif
2892
2893 static inline bool CheckCachedSizeClass(void *ptr) {
2894 PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
2895 size_t cached_value = pageheap->GetSizeClassIfCached(p);
2896 return cached_value == 0 ||
2897 cached_value == pageheap->GetDescriptor(p)->sizeclass;
2898 }
2899
2900 static inline void* CheckedMallocResult(void *result)
2901 {
2902 ASSERT(result == 0 || CheckCachedSizeClass(result));
2903 return result;
2904 }
2905
2906 static inline void* SpanToMallocResult(Span *span) {
2907 pageheap->CacheSizeClass(span->start, 0);
2908 return
2909 CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift));
2910 }
2911
2912 static ALWAYS_INLINE void* do_malloc(size_t size) {
2913 void* ret = NULL;
2914
2915 #ifdef WTF_CHANGES
2916 ASSERT(!isForbidden());
2917 #endif
2918
2919 // The following call forces module initialization
2920 TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
2921 #ifndef WTF_CHANGES
2922 if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
2923 Span* span = DoSampledAllocation(size);
2924 if (span != NULL) {
2925 ret = SpanToMallocResult(span);
2926 }
2927 } else
2928 #endif
2929 if (size > kMaxSize) {
2930 // Use page-level allocator
2931 SpinLockHolder h(&pageheap_lock);
2932 Span* span = pageheap->New(pages(size));
2933 if (span != NULL) {
2934 ret = SpanToMallocResult(span);
2935 }
2936 } else {
2937 // The common case, and also the simplest. This just pops the
2938 // size-appropriate freelist, afer replenishing it if it's empty.
2939 ret = CheckedMallocResult(heap->Allocate(size));
2940 }
2941 if (ret == NULL) errno = ENOMEM;
2942 return ret;
2943 }
2944
2945 static ALWAYS_INLINE void do_free(void* ptr) {
2946 if (ptr == NULL) return;
2947 ASSERT(pageheap != NULL); // Should not call free() before malloc()
2948 const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
2949 Span* span = NULL;
2950 size_t cl = pageheap->GetSizeClassIfCached(p);
2951
2952 if (cl == 0) {
2953 span = pageheap->GetDescriptor(p);
2954 cl = span->sizeclass;
2955 pageheap->CacheSizeClass(p, cl);
2956 }
2957 if (cl != 0) {
2958 ASSERT(!pageheap->GetDescriptor(p)->sample);
2959 TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCacheIfPresent();
2960 if (heap != NULL) {
2961 heap->Deallocate(ptr, cl);
2962 } else {
2963 // Delete directly into central cache
2964 SLL_SetNext(ptr, NULL);
2965 central_cache[cl].InsertRange(ptr, ptr, 1);
2966 }
2967 } else {
2968 SpinLockHolder h(&pageheap_lock);
2969 ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
2970 ASSERT(span != NULL && span->start == p);
2971 if (span->sample) {
2972 DLL_Remove(span);
2973 stacktrace_allocator.Delete(reinterpret_cast<StackTrace*>(span->objects));
2974 span->objects = NULL;
2975 }
2976 pageheap->Delete(span);
2977 }
2978 }
2979
2980 #ifndef WTF_CHANGES
2981 // For use by exported routines below that want specific alignments
2982 //
2983 // Note: this code can be slow, and can significantly fragment memory.
2984 // The expectation is that memalign/posix_memalign/valloc/pvalloc will
2985 // not be invoked very often. This requirement simplifies our
2986 // implementation and allows us to tune for expected allocation
2987 // patterns.
2988 static void* do_memalign(size_t align, size_t size) {
2989 ASSERT((align & (align - 1)) == 0);
2990 ASSERT(align > 0);
2991 if (pageheap == NULL) TCMalloc_ThreadCache::InitModule();
2992
2993 // Allocate at least one byte to avoid boundary conditions below
2994 if (size == 0) size = 1;
2995
2996 if (size <= kMaxSize && align < kPageSize) {
2997 // Search through acceptable size classes looking for one with
2998 // enough alignment. This depends on the fact that
2999 // InitSizeClasses() currently produces several size classes that
3000 // are aligned at powers of two. We will waste time and space if
3001 // we miss in the size class array, but that is deemed acceptable
3002 // since memalign() should be used rarely.
3003 size_t cl = SizeClass(size);
3004 while (cl < kNumClasses && ((class_to_size[cl] & (align - 1)) != 0)) {
3005 cl++;
3006 }
3007 if (cl < kNumClasses) {
3008 TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
3009 return CheckedMallocResult(heap->Allocate(class_to_size[cl]));
3010 }
3011 }
3012
3013 // We will allocate directly from the page heap
3014 SpinLockHolder h(&pageheap_lock);
3015
3016 if (align <= kPageSize) {
3017 // Any page-level allocation will be fine
3018 // TODO: We could put the rest of this page in the appropriate
3019 // TODO: cache but it does not seem worth it.
3020 Span* span = pageheap->New(pages(size));
3021 return span == NULL ? NULL : SpanToMallocResult(span);
3022 }
3023
3024 // Allocate extra pages and carve off an aligned portion
3025 const Length alloc = pages(size + align);
3026 Span* span = pageheap->New(alloc);
3027 if (span == NULL) return NULL;
3028
3029 // Skip starting portion so that we end up aligned
3030 Length skip = 0;
3031 while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
3032 skip++;
3033 }
3034 ASSERT(skip < alloc);
3035 if (skip > 0) {
3036 Span* rest = pageheap->Split(span, skip);
3037 pageheap->Delete(span);
3038 span = rest;
3039 }
3040
3041 // Skip trailing portion that we do not need to return
3042 const Length needed = pages(size);
3043 ASSERT(span->length >= needed);
3044 if (span->length > needed) {
3045 Span* trailer = pageheap->Split(span, needed);
3046 pageheap->Delete(trailer);
3047 }
3048 return SpanToMallocResult(span);
3049 }
3050 #endif
3051
3052 // Helpers for use by exported routines below:
3053
3054 #ifndef WTF_CHANGES
3055 static inline void do_malloc_stats() {
3056 PrintStats(1);
3057 }
3058 #endif
3059
3060 static inline int do_mallopt(int, int) {
3061 return 1; // Indicates error
3062 }
3063
3064 #ifdef HAVE_STRUCT_MALLINFO // mallinfo isn't defined on freebsd, for instance
3065 static inline struct mallinfo do_mallinfo() {
3066 TCMallocStats stats;
3067 ExtractStats(&stats, NULL);
3068
3069 // Just some of the fields are filled in.
3070 struct mallinfo info;
3071 memset(&info, 0, sizeof(info));
3072
3073 // Unfortunately, the struct contains "int" field, so some of the
3074 // size values will be truncated.
3075 info.arena = static_cast<int>(stats.system_bytes);
3076 info.fsmblks = static_cast<int>(stats.thread_bytes
3077 + stats.central_bytes
3078 + stats.transfer_bytes);
3079 info.fordblks = static_cast<int>(stats.pageheap_bytes);
3080 info.uordblks = static_cast<int>(stats.system_bytes
3081 - stats.thread_bytes
3082 - stats.central_bytes
3083 - stats.transfer_bytes
3084 - stats.pageheap_bytes);
3085
3086 return info;
3087 }
3088 #endif
3089
3090 //-------------------------------------------------------------------
3091 // Exported routines
3092 //-------------------------------------------------------------------
3093
3094 // CAVEAT: The code structure below ensures that MallocHook methods are always
3095 // called from the stack frame of the invoked allocation function.
3096 // heap-checker.cc depends on this to start a stack trace from
3097 // the call to the (de)allocation function.
3098
3099 #ifndef WTF_CHANGES
3100 extern "C"
3101 #endif
3102 void* malloc(size_t size) {
3103 void* result = do_malloc(size);
3104 #ifndef WTF_CHANGES
3105 MallocHook::InvokeNewHook(result, size);
3106 #endif
3107 return result;
3108 }
3109
3110 #ifndef WTF_CHANGES
3111 extern "C"
3112 #endif
3113 void free(void* ptr) {
3114 #ifndef WTF_CHANGES
3115 MallocHook::InvokeDeleteHook(ptr);
3116 #endif
3117 do_free(ptr);
3118 }
3119
3120 #ifndef WTF_CHANGES
3121 extern "C"
3122 #endif
3123 void* calloc(size_t n, size_t elem_size) {
3124 const size_t totalBytes = n * elem_size;
3125
3126 // Protect against overflow
3127 if (n > 1 && elem_size && (totalBytes / elem_size) != n)
3128 return 0;
3129
3130 void* result = do_malloc(totalBytes);
3131 if (result != NULL) {
3132 memset(result, 0, totalBytes);
3133 }
3134 #ifndef WTF_CHANGES
3135 MallocHook::InvokeNewHook(result, totalBytes);
3136 #endif
3137 return result;
3138 }
3139
3140 #ifndef WTF_CHANGES
3141 extern "C"
3142 #endif
3143 void cfree(void* ptr) {
3144 #ifndef WTF_CHANGES
3145 MallocHook::InvokeDeleteHook(ptr);
3146 #endif
3147 do_free(ptr);
3148 }
3149
3150 #ifndef WTF_CHANGES
3151 extern "C"
3152 #endif
3153 void* realloc(void* old_ptr, size_t new_size) {
3154 if (old_ptr == NULL) {
3155 void* result = do_malloc(new_size);
3156 #ifndef WTF_CHANGES
3157 MallocHook::InvokeNewHook(result, new_size);
3158 #endif
3159 return result;
3160 }
3161 if (new_size == 0) {
3162 #ifndef WTF_CHANGES
3163 MallocHook::InvokeDeleteHook(old_ptr);
3164 #endif
3165 free(old_ptr);
3166 return NULL;
3167 }
3168
3169 // Get the size of the old entry
3170 const PageID p = reinterpret_cast<uintptr_t>(old_ptr) >> kPageShift;
3171 size_t cl = pageheap->GetSizeClassIfCached(p);
3172 Span *span = NULL;
3173 size_t old_size;
3174 if (cl == 0) {
3175 span = pageheap->GetDescriptor(p);
3176 cl = span->sizeclass;
3177 pageheap->CacheSizeClass(p, cl);
3178 }
3179 if (cl != 0) {
3180 old_size = ByteSizeForClass(cl);
3181 } else {
3182 ASSERT(span != NULL);
3183 old_size = span->length << kPageShift;
3184 }
3185
3186 // Reallocate if the new size is larger than the old size,
3187 // or if the new size is significantly smaller than the old size.
3188 if ((new_size > old_size) || (AllocationSize(new_size) < old_size)) {
3189 // Need to reallocate
3190 void* new_ptr = do_malloc(new_size);
3191 if (new_ptr == NULL) {
3192 return NULL;
3193 }
3194 #ifndef WTF_CHANGES
3195 MallocHook::InvokeNewHook(new_ptr, new_size);
3196 #endif
3197 memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
3198 #ifndef WTF_CHANGES
3199 MallocHook::InvokeDeleteHook(old_ptr);
3200 #endif
3201 // We could use a variant of do_free() that leverages the fact
3202 // that we already know the sizeclass of old_ptr. The benefit
3203 // would be small, so don't bother.
3204 do_free(old_ptr);
3205 return new_ptr;
3206 } else {
3207 return old_ptr;
3208 }
3209 }
3210
3211 #ifndef WTF_CHANGES
3212
3213 static SpinLock set_new_handler_lock = SPINLOCK_INITIALIZER;
3214
3215 static inline void* cpp_alloc(size_t size, bool nothrow) {
3216 for (;;) {
3217 void* p = do_malloc(size);
3218 #ifdef PREANSINEW
3219 return p;
3220 #else
3221 if (p == NULL) { // allocation failed
3222 // Get the current new handler. NB: this function is not
3223 // thread-safe. We make a feeble stab at making it so here, but
3224 // this lock only protects against tcmalloc interfering with
3225 // itself, not with other libraries calling set_new_handler.
3226 std::new_handler nh;
3227 {
3228 SpinLockHolder h(&set_new_handler_lock);
3229 nh = std::set_new_handler(0);
3230 (void) std::set_new_handler(nh);
3231 }
3232 // If no new_handler is established, the allocation failed.
3233 if (!nh) {
3234 if (nothrow) return 0;
3235 throw std::bad_alloc();
3236 }
3237 // Otherwise, try the new_handler. If it returns, retry the
3238 // allocation. If it throws std::bad_alloc, fail the allocation.
3239 // if it throws something else, don't interfere.
3240 try {
3241 (*nh)();
3242 } catch (const std::bad_alloc&) {
3243 if (!nothrow) throw;
3244 return p;
3245 }
3246 } else { // allocation success
3247 return p;
3248 }
3249 #endif
3250 }
3251 }
3252
3253 void* operator new(size_t size) {
3254 void* p = cpp_alloc(size, false);
3255 // We keep this next instruction out of cpp_alloc for a reason: when
3256 // it's in, and new just calls cpp_alloc, the optimizer may fold the
3257 // new call into cpp_alloc, which messes up our whole section-based
3258 // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
3259 // isn't the last thing this fn calls, and prevents the folding.
3260 MallocHook::InvokeNewHook(p, size);
3261 return p;
3262 }
3263
3264 void* operator new(size_t size, const std::nothrow_t&) __THROW {
3265 void* p = cpp_alloc(size, true);
3266 MallocHook::InvokeNewHook(p, size);
3267 return p;
3268 }
3269
3270 void operator delete(void* p) __THROW {
3271 MallocHook::InvokeDeleteHook(p);
3272 do_free(p);
3273 }
3274
3275 void operator delete(void* p, const std::nothrow_t&) __THROW {
3276 MallocHook::InvokeDeleteHook(p);
3277 do_free(p);
3278 }
3279
3280 void* operator new[](size_t size) {
3281 void* p = cpp_alloc(size, false);
3282 // We keep this next instruction out of cpp_alloc for a reason: when
3283 // it's in, and new just calls cpp_alloc, the optimizer may fold the
3284 // new call into cpp_alloc, which messes up our whole section-based
3285 // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
3286 // isn't the last thing this fn calls, and prevents the folding.
3287 MallocHook::InvokeNewHook(p, size);
3288 return p;
3289 }
3290
3291 void* operator new[](size_t size, const std::nothrow_t&) __THROW {
3292 void* p = cpp_alloc(size, true);
3293 MallocHook::InvokeNewHook(p, size);
3294 return p;
3295 }
3296
3297 void operator delete[](void* p) __THROW {
3298 MallocHook::InvokeDeleteHook(p);
3299 do_free(p);
3300 }
3301
3302 void operator delete[](void* p, const std::nothrow_t&) __THROW {
3303 MallocHook::InvokeDeleteHook(p);
3304 do_free(p);
3305 }
3306
3307 extern "C" void* memalign(size_t align, size_t size) __THROW {
3308 void* result = do_memalign(align, size);
3309 MallocHook::InvokeNewHook(result, size);
3310 return result;
3311 }
3312
3313 extern "C" int posix_memalign(void** result_ptr, size_t align, size_t size)
3314 __THROW {
3315 if (((align % sizeof(void*)) != 0) ||
3316 ((align & (align - 1)) != 0) ||
3317 (align == 0)) {
3318 return EINVAL;
3319 }
3320
3321 void* result = do_memalign(align, size);
3322 MallocHook::InvokeNewHook(result, size);
3323 if (result == NULL) {
3324 return ENOMEM;
3325 } else {
3326 *result_ptr = result;
3327 return 0;
3328 }
3329 }
3330
3331 static size_t pagesize = 0;
3332
3333 extern "C" void* valloc(size_t size) __THROW {
3334 // Allocate page-aligned object of length >= size bytes
3335 if (pagesize == 0) pagesize = getpagesize();
3336 void* result = do_memalign(pagesize, size);
3337 MallocHook::InvokeNewHook(result, size);
3338 return result;
3339 }
3340
3341 extern "C" void* pvalloc(size_t size) __THROW {
3342 // Round up size to a multiple of pagesize
3343 if (pagesize == 0) pagesize = getpagesize();
3344 size = (size + pagesize - 1) & ~(pagesize - 1);
3345 void* result = do_memalign(pagesize, size);
3346 MallocHook::InvokeNewHook(result, size);
3347 return result;
3348 }
3349
3350 extern "C" void malloc_stats(void) {
3351 do_malloc_stats();
3352 }
3353
3354 extern "C" int mallopt(int cmd, int value) {
3355 return do_mallopt(cmd, value);
3356 }
3357
3358 #ifdef HAVE_STRUCT_MALLINFO
3359 extern "C" struct mallinfo mallinfo(void) {
3360 return do_mallinfo();
3361 }
3362 #endif
3363
3364 //-------------------------------------------------------------------
3365 // Some library routines on RedHat 9 allocate memory using malloc()
3366 // and free it using __libc_free() (or vice-versa). Since we provide
3367 // our own implementations of malloc/free, we need to make sure that
3368 // the __libc_XXX variants (defined as part of glibc) also point to
3369 // the same implementations.
3370 //-------------------------------------------------------------------
3371
3372 #if defined(__GLIBC__)
3373 extern "C" {
3374 # if defined(__GNUC__) && !defined(__MACH__) && defined(HAVE___ATTRIBUTE__)
3375 // Potentially faster variants that use the gcc alias extension.
3376 // Mach-O (Darwin) does not support weak aliases, hence the __MACH__ check.
3377 # define ALIAS(x) __attribute__ ((weak, alias (x)))
3378 void* __libc_malloc(size_t size) ALIAS("malloc");
3379 void __libc_free(void* ptr) ALIAS("free");
3380 void* __libc_realloc(void* ptr, size_t size) ALIAS("realloc");
3381 void* __libc_calloc(size_t n, size_t size) ALIAS("calloc");
3382 void __libc_cfree(void* ptr) ALIAS("cfree");
3383 void* __libc_memalign(size_t align, size_t s) ALIAS("memalign");
3384 void* __libc_valloc(size_t size) ALIAS("valloc");
3385 void* __libc_pvalloc(size_t size) ALIAS("pvalloc");
3386 int __posix_memalign(void** r, size_t a, size_t s) ALIAS("posix_memalign");
3387 # undef ALIAS
3388 # else /* not __GNUC__ */
3389 // Portable wrappers
3390 void* __libc_malloc(size_t size) { return malloc(size); }
3391 void __libc_free(void* ptr) { free(ptr); }
3392 void* __libc_realloc(void* ptr, size_t size) { return realloc(ptr, size); }
3393 void* __libc_calloc(size_t n, size_t size) { return calloc(n, size); }
3394 void __libc_cfree(void* ptr) { cfree(ptr); }
3395 void* __libc_memalign(size_t align, size_t s) { return memalign(align, s); }
3396 void* __libc_valloc(size_t size) { return valloc(size); }
3397 void* __libc_pvalloc(size_t size) { return pvalloc(size); }
3398 int __posix_memalign(void** r, size_t a, size_t s) {
3399 return posix_memalign(r, a, s);
3400 }
3401 # endif /* __GNUC__ */
3402 }
3403 #endif /* __GLIBC__ */
3404
3405 // Override __libc_memalign in libc on linux boxes specially.
3406 // They have a bug in libc that causes them to (very rarely) allocate
3407 // with __libc_memalign() yet deallocate with free() and the
3408 // definitions above don't catch it.
3409 // This function is an exception to the rule of calling MallocHook method
3410 // from the stack frame of the allocation function;
3411 // heap-checker handles this special case explicitly.
3412 static void *MemalignOverride(size_t align, size_t size, const void *caller)
3413 __THROW {
3414 void* result = do_memalign(align, size);
3415 MallocHook::InvokeNewHook(result, size);
3416 return result;
3417 }
3418 void *(*__memalign_hook)(size_t, size_t, const void *) = MemalignOverride;
3419
3420 #endif
3421
3422 #if defined(WTF_CHANGES) && PLATFORM(DARWIN)
3423 #include <wtf/HashSet.h>
3424
3425 class FreeObjectFinder {
3426 const RemoteMemoryReader& m_reader;
3427 HashSet<void*> m_freeObjects;
3428
3429 public:
3430 FreeObjectFinder(const RemoteMemoryReader& reader) : m_reader(reader) { }
3431
3432 void visit(void* ptr) { m_freeObjects.add(ptr); }
3433 bool isFreeObject(void* ptr) const { return m_freeObjects.contains(ptr); }
3434 size_t freeObjectCount() const { return m_freeObjects.size(); }
3435
3436 void findFreeObjects(TCMalloc_ThreadCache* threadCache)
3437 {
3438 for (; threadCache; threadCache = (threadCache->next_ ? m_reader(threadCache->next_) : 0))
3439 threadCache->enumerateFreeObjects(*this, m_reader);
3440 }
3441
3442 void findFreeObjects(TCMalloc_Central_FreeListPadded* centralFreeList, size_t numSizes)
3443 {
3444 for (unsigned i = 0; i < numSizes; i++)
3445 centralFreeList[i].enumerateFreeObjects(*this, m_reader);
3446 }
3447 };
3448
3449 class PageMapFreeObjectFinder {
3450 const RemoteMemoryReader& m_reader;
3451 FreeObjectFinder& m_freeObjectFinder;
3452
3453 public:
3454 PageMapFreeObjectFinder(const RemoteMemoryReader& reader, FreeObjectFinder& freeObjectFinder)
3455 : m_reader(reader)
3456 , m_freeObjectFinder(freeObjectFinder)
3457 { }
3458
3459 int visit(void* ptr) const
3460 {
3461 if (!ptr)
3462 return 1;
3463
3464 Span* span = m_reader(reinterpret_cast<Span*>(ptr));
3465 if (span->free) {
3466 void* ptr = reinterpret_cast<void*>(span->start << kPageShift);
3467 m_freeObjectFinder.visit(ptr);
3468 } else if (span->sizeclass) {
3469 // Walk the free list of the small-object span, keeping track of each object seen
3470 for (void* nextObject = span->objects; nextObject; nextObject = *m_reader(reinterpret_cast<void**>(nextObject)))
3471 m_freeObjectFinder.visit(nextObject);
3472 }
3473 return span->length;
3474 }
3475 };
3476
3477 class PageMapMemoryUsageRecorder {
3478 task_t m_task;
3479 void* m_context;
3480 unsigned m_typeMask;
3481 vm_range_recorder_t* m_recorder;
3482 const RemoteMemoryReader& m_reader;
3483 const FreeObjectFinder& m_freeObjectFinder;
3484 mutable HashSet<void*> m_seenPointers;
3485
3486 public:
3487 PageMapMemoryUsageRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader, const FreeObjectFinder& freeObjectFinder)
3488 : m_task(task)
3489 , m_context(context)
3490 , m_typeMask(typeMask)
3491 , m_recorder(recorder)
3492 , m_reader(reader)
3493 , m_freeObjectFinder(freeObjectFinder)
3494 { }
3495
3496 int visit(void* ptr) const
3497 {
3498 if (!ptr)
3499 return 1;
3500
3501 Span* span = m_reader(reinterpret_cast<Span*>(ptr));
3502 if (m_seenPointers.contains(ptr))
3503 return span->length;
3504 m_seenPointers.add(ptr);
3505
3506 // Mark the memory used for the Span itself as an administrative region
3507 vm_range_t ptrRange = { reinterpret_cast<vm_address_t>(ptr), sizeof(Span) };
3508 if (m_typeMask & (MALLOC_PTR_REGION_RANGE_TYPE | MALLOC_ADMIN_REGION_RANGE_TYPE))
3509 (*m_recorder)(m_task, m_context, MALLOC_ADMIN_REGION_RANGE_TYPE, &ptrRange, 1);
3510
3511 ptrRange.address = span->start << kPageShift;
3512 ptrRange.size = span->length * kPageSize;
3513
3514 // Mark the memory region the span represents as candidates for containing pointers
3515 if (m_typeMask & (MALLOC_PTR_REGION_RANGE_TYPE | MALLOC_ADMIN_REGION_RANGE_TYPE))
3516 (*m_recorder)(m_task, m_context, MALLOC_PTR_REGION_RANGE_TYPE, &ptrRange, 1);
3517
3518 if (!span->free && (m_typeMask & MALLOC_PTR_IN_USE_RANGE_TYPE)) {
3519 // If it's an allocated large object span, mark it as in use
3520 if (span->sizeclass == 0 && !m_freeObjectFinder.isFreeObject(reinterpret_cast<void*>(ptrRange.address)))
3521 (*m_recorder)(m_task, m_context, MALLOC_PTR_IN_USE_RANGE_TYPE, &ptrRange, 1);
3522 else if (span->sizeclass) {
3523 const size_t byteSize = ByteSizeForClass(span->sizeclass);
3524 unsigned totalObjects = (span->length << kPageShift) / byteSize;
3525 ASSERT(span->refcount <= totalObjects);
3526 char* ptr = reinterpret_cast<char*>(span->start << kPageShift);
3527
3528 // Mark each allocated small object within the span as in use
3529 for (unsigned i = 0; i < totalObjects; i++) {
3530 char* thisObject = ptr + (i * byteSize);
3531 if (m_freeObjectFinder.isFreeObject(thisObject))
3532 continue;
3533
3534 vm_range_t objectRange = { reinterpret_cast<vm_address_t>(thisObject), byteSize };
3535 (*m_recorder)(m_task, m_context, MALLOC_PTR_IN_USE_RANGE_TYPE, &objectRange, 1);
3536 }
3537 }
3538 }
3539
3540 return span->length;
3541 }
3542 };
3543
3544 kern_return_t FastMallocZone::enumerate(task_t task, void* context, unsigned typeMask, vm_address_t zoneAddress, memory_reader_t reader, vm_range_recorder_t recorder)
3545 {
3546 RemoteMemoryReader memoryReader(task, reader);
3547
3548 InitSizeClasses();
3549
3550 FastMallocZone* mzone = memoryReader(reinterpret_cast<FastMallocZone*>(zoneAddress));
3551 TCMalloc_PageHeap* pageHeap = memoryReader(mzone->m_pageHeap);
3552 TCMalloc_ThreadCache** threadHeapsPointer = memoryReader(mzone->m_threadHeaps);
3553 TCMalloc_ThreadCache* threadHeaps = memoryReader(*threadHeapsPointer);
3554
3555 TCMalloc_Central_FreeListPadded* centralCaches = memoryReader(mzone->m_centralCaches, sizeof(TCMalloc_Central_FreeListPadded) * kNumClasses);
3556
3557 FreeObjectFinder finder(memoryReader);
3558 finder.findFreeObjects(threadHeaps);
3559 finder.findFreeObjects(centralCaches, kNumClasses);
3560
3561 TCMalloc_PageHeap::PageMap* pageMap = &pageHeap->pagemap_;
3562 PageMapFreeObjectFinder pageMapFinder(memoryReader, finder);
3563 pageMap->visit(pageMapFinder, memoryReader);
3564
3565 PageMapMemoryUsageRecorder usageRecorder(task, context, typeMask, recorder, memoryReader, finder);
3566 pageMap->visit(usageRecorder, memoryReader);
3567
3568 return 0;
3569 }
3570
3571 size_t FastMallocZone::size(malloc_zone_t*, const void*)
3572 {
3573 return 0;
3574 }
3575
3576 void* FastMallocZone::zoneMalloc(malloc_zone_t*, size_t)
3577 {
3578 return 0;
3579 }
3580
3581 void* FastMallocZone::zoneCalloc(malloc_zone_t*, size_t, size_t)
3582 {
3583 return 0;
3584 }
3585
3586 void FastMallocZone::zoneFree(malloc_zone_t*, void* ptr)
3587 {
3588 // Due to <rdar://problem/5671357> zoneFree may be called by the system free even if the pointer
3589 // is not in this zone. When this happens, the pointer being freed was not allocated by any
3590 // zone so we need to print a useful error for the application developer.
3591 malloc_printf("*** error for object %p: pointer being freed was not allocated\n", ptr);
3592 }
3593
3594 void* FastMallocZone::zoneRealloc(malloc_zone_t*, void*, size_t)
3595 {
3596 return 0;
3597 }
3598
3599
3600 #undef malloc
3601 #undef free
3602 #undef realloc
3603 #undef calloc
3604
3605 extern "C" {
3606 malloc_introspection_t jscore_fastmalloc_introspection = { &FastMallocZone::enumerate, &FastMallocZone::goodSize, &FastMallocZone::check, &FastMallocZone::print,
3607 &FastMallocZone::log, &FastMallocZone::forceLock, &FastMallocZone::forceUnlock, &FastMallocZone::statistics };
3608 }
3609
3610 FastMallocZone::FastMallocZone(TCMalloc_PageHeap* pageHeap, TCMalloc_ThreadCache** threadHeaps, TCMalloc_Central_FreeListPadded* centralCaches)
3611 : m_pageHeap(pageHeap)
3612 , m_threadHeaps(threadHeaps)
3613 , m_centralCaches(centralCaches)
3614 {
3615 memset(&m_zone, 0, sizeof(m_zone));
3616 m_zone.zone_name = "JavaScriptCore FastMalloc";
3617 m_zone.size = &FastMallocZone::size;
3618 m_zone.malloc = &FastMallocZone::zoneMalloc;
3619 m_zone.calloc = &FastMallocZone::zoneCalloc;
3620 m_zone.realloc = &FastMallocZone::zoneRealloc;
3621 m_zone.free = &FastMallocZone::zoneFree;
3622 m_zone.valloc = &FastMallocZone::zoneValloc;
3623 m_zone.destroy = &FastMallocZone::zoneDestroy;
3624 m_zone.introspect = &jscore_fastmalloc_introspection;
3625 malloc_zone_register(&m_zone);
3626 }
3627
3628
3629 void FastMallocZone::init()
3630 {
3631 static FastMallocZone zone(pageheap, &thread_heaps, static_cast<TCMalloc_Central_FreeListPadded*>(central_cache));
3632 }
3633
3634 #endif
3635
3636 void releaseFastMallocFreeMemory()
3637 {
3638 SpinLockHolder h(&pageheap_lock);
3639 pageheap->ReleaseFreePages();
3640 }
3641
3642 #if WTF_CHANGES
3643 } // namespace WTF
3644 #endif
3645
3646 #endif // FORCE_SYSTEM_MALLOC