]> git.saurik.com Git - apple/javascriptcore.git/blob - kjs/ustring.cpp
JavaScriptCore-466.1.tar.gz
[apple/javascriptcore.git] / kjs / ustring.cpp
1 // -*- c-basic-offset: 2 -*-
2 /*
3 * Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
4 * Copyright (C) 2004, 2005, 2006, 2007 Apple Inc. All rights reserved.
5 * Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca)
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Library General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Library General Public License for more details.
16 *
17 * You should have received a copy of the GNU Library General Public License
18 * along with this library; see the file COPYING.LIB. If not, write to
19 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 * Boston, MA 02110-1301, USA.
21 *
22 */
23
24 #include "config.h"
25 #include "ustring.h"
26
27 #include "JSLock.h"
28 #include "collector.h"
29 #include "dtoa.h"
30 #include "function.h"
31 #include "identifier.h"
32 #include "operations.h"
33 #include <ctype.h>
34 #include <float.h>
35 #include <limits.h>
36 #include <math.h>
37 #include <stdio.h>
38 #include <stdlib.h>
39 #include <wtf/Assertions.h>
40 #include <wtf/ASCIICType.h>
41 #include <wtf/MathExtras.h>
42 #include <wtf/Vector.h>
43 #include <wtf/unicode/UTF8.h>
44
45 #if HAVE(STRING_H)
46 #include <string.h>
47 #endif
48 #if HAVE(STRINGS_H)
49 #include <strings.h>
50 #endif
51
52 using namespace WTF;
53 using namespace WTF::Unicode;
54 using namespace std;
55
56 namespace KJS {
57
58 extern const double NaN;
59 extern const double Inf;
60
61 static inline const size_t overflowIndicator() { return std::numeric_limits<size_t>::max(); }
62 static inline const size_t maxUChars() { return std::numeric_limits<size_t>::max() / sizeof(UChar); }
63
64 static inline UChar* allocChars(size_t length)
65 {
66 ASSERT(length);
67 if (length > maxUChars())
68 return 0;
69 return static_cast<UChar*>(fastMalloc(sizeof(UChar) * length));
70 }
71
72 static inline UChar* reallocChars(UChar* buffer, size_t length)
73 {
74 ASSERT(length);
75 if (length > maxUChars())
76 return 0;
77 return static_cast<UChar*>(fastRealloc(buffer, sizeof(UChar) * length));
78 }
79
80 COMPILE_ASSERT(sizeof(UChar) == 2, uchar_is_2_bytes)
81
82 CString::CString(const char *c)
83 {
84 length = strlen(c);
85 data = new char[length+1];
86 memcpy(data, c, length + 1);
87 }
88
89 CString::CString(const char *c, size_t len)
90 {
91 length = len;
92 data = new char[len+1];
93 memcpy(data, c, len);
94 data[len] = 0;
95 }
96
97 CString::CString(const CString &b)
98 {
99 length = b.length;
100 if (b.data) {
101 data = new char[length+1];
102 memcpy(data, b.data, length + 1);
103 }
104 else
105 data = 0;
106 }
107
108 CString::~CString()
109 {
110 delete [] data;
111 }
112
113 CString &CString::append(const CString &t)
114 {
115 char *n;
116 n = new char[length+t.length+1];
117 if (length)
118 memcpy(n, data, length);
119 if (t.length)
120 memcpy(n+length, t.data, t.length);
121 length += t.length;
122 n[length] = 0;
123
124 delete [] data;
125 data = n;
126
127 return *this;
128 }
129
130 CString &CString::operator=(const char *c)
131 {
132 if (data)
133 delete [] data;
134 length = strlen(c);
135 data = new char[length+1];
136 memcpy(data, c, length + 1);
137
138 return *this;
139 }
140
141 CString &CString::operator=(const CString &str)
142 {
143 if (this == &str)
144 return *this;
145
146 if (data)
147 delete [] data;
148 length = str.length;
149 if (str.data) {
150 data = new char[length + 1];
151 memcpy(data, str.data, length + 1);
152 }
153 else
154 data = 0;
155
156 return *this;
157 }
158
159 bool operator==(const CString& c1, const CString& c2)
160 {
161 size_t len = c1.size();
162 return len == c2.size() && (len == 0 || memcmp(c1.c_str(), c2.c_str(), len) == 0);
163 }
164
165 // Hack here to avoid a global with a constructor; point to an unsigned short instead of a UChar.
166 static unsigned short almostUChar;
167 UString::Rep UString::Rep::null = { 0, 0, 1, 0, 0, &UString::Rep::null, 0, 0, 0, 0, 0, 0 };
168 UString::Rep UString::Rep::empty = { 0, 0, 1, 0, 0, &UString::Rep::empty, 0, reinterpret_cast<UChar*>(&almostUChar), 0, 0, 0, 0 };
169 const int normalStatBufferSize = 4096;
170 static char *statBuffer = 0; // FIXME: This buffer is never deallocated.
171 static int statBufferSize = 0;
172
173 PassRefPtr<UString::Rep> UString::Rep::createCopying(const UChar *d, int l)
174 {
175 ASSERT(JSLock::lockCount() > 0);
176
177 int sizeInBytes = l * sizeof(UChar);
178 UChar *copyD = static_cast<UChar *>(fastMalloc(sizeInBytes));
179 memcpy(copyD, d, sizeInBytes);
180
181 return create(copyD, l);
182 }
183
184 PassRefPtr<UString::Rep> UString::Rep::create(UChar *d, int l)
185 {
186 ASSERT(JSLock::lockCount() > 0);
187
188 Rep* r = new Rep;
189 r->offset = 0;
190 r->len = l;
191 r->rc = 1;
192 r->_hash = 0;
193 r->isIdentifier = 0;
194 r->baseString = r;
195 r->reportedCost = 0;
196 r->buf = d;
197 r->usedCapacity = l;
198 r->capacity = l;
199 r->usedPreCapacity = 0;
200 r->preCapacity = 0;
201
202 // steal the single reference this Rep was created with
203 return adoptRef(r);
204 }
205
206 PassRefPtr<UString::Rep> UString::Rep::create(PassRefPtr<Rep> base, int offset, int length)
207 {
208 ASSERT(JSLock::lockCount() > 0);
209 ASSERT(base);
210
211 int baseOffset = base->offset;
212
213 base = base->baseString;
214
215 ASSERT(-(offset + baseOffset) <= base->usedPreCapacity);
216 ASSERT(offset + baseOffset + length <= base->usedCapacity);
217
218 Rep *r = new Rep;
219 r->offset = baseOffset + offset;
220 r->len = length;
221 r->rc = 1;
222 r->_hash = 0;
223 r->isIdentifier = 0;
224 r->baseString = base.releaseRef();
225 r->reportedCost = 0;
226 r->buf = 0;
227 r->usedCapacity = 0;
228 r->capacity = 0;
229 r->usedPreCapacity = 0;
230 r->preCapacity = 0;
231
232 // steal the single reference this Rep was created with
233 return adoptRef(r);
234 }
235
236 void UString::Rep::destroy()
237 {
238 ASSERT(JSLock::lockCount() > 0);
239
240 if (isIdentifier)
241 Identifier::remove(this);
242 if (baseString != this) {
243 baseString->deref();
244 } else {
245 fastFree(buf);
246 }
247 delete this;
248 }
249
250 // Golden ratio - arbitrary start value to avoid mapping all 0's to all 0's
251 // or anything like that.
252 const unsigned PHI = 0x9e3779b9U;
253
254 // Paul Hsieh's SuperFastHash
255 // http://www.azillionmonkeys.com/qed/hash.html
256 unsigned UString::Rep::computeHash(const UChar *s, int len)
257 {
258 unsigned l = len;
259 uint32_t hash = PHI;
260 uint32_t tmp;
261
262 int rem = l & 1;
263 l >>= 1;
264
265 // Main loop
266 for (; l > 0; l--) {
267 hash += s[0].uc;
268 tmp = (s[1].uc << 11) ^ hash;
269 hash = (hash << 16) ^ tmp;
270 s += 2;
271 hash += hash >> 11;
272 }
273
274 // Handle end case
275 if (rem) {
276 hash += s[0].uc;
277 hash ^= hash << 11;
278 hash += hash >> 17;
279 }
280
281 // Force "avalanching" of final 127 bits
282 hash ^= hash << 3;
283 hash += hash >> 5;
284 hash ^= hash << 2;
285 hash += hash >> 15;
286 hash ^= hash << 10;
287
288 // this avoids ever returning a hash code of 0, since that is used to
289 // signal "hash not computed yet", using a value that is likely to be
290 // effectively the same as 0 when the low bits are masked
291 if (hash == 0)
292 hash = 0x80000000;
293
294 return hash;
295 }
296
297 // Paul Hsieh's SuperFastHash
298 // http://www.azillionmonkeys.com/qed/hash.html
299 unsigned UString::Rep::computeHash(const char *s)
300 {
301 // This hash is designed to work on 16-bit chunks at a time. But since the normal case
302 // (above) is to hash UTF-16 characters, we just treat the 8-bit chars as if they
303 // were 16-bit chunks, which should give matching results
304
305 uint32_t hash = PHI;
306 uint32_t tmp;
307 size_t l = strlen(s);
308
309 size_t rem = l & 1;
310 l >>= 1;
311
312 // Main loop
313 for (; l > 0; l--) {
314 hash += (unsigned char)s[0];
315 tmp = ((unsigned char)s[1] << 11) ^ hash;
316 hash = (hash << 16) ^ tmp;
317 s += 2;
318 hash += hash >> 11;
319 }
320
321 // Handle end case
322 if (rem) {
323 hash += (unsigned char)s[0];
324 hash ^= hash << 11;
325 hash += hash >> 17;
326 }
327
328 // Force "avalanching" of final 127 bits
329 hash ^= hash << 3;
330 hash += hash >> 5;
331 hash ^= hash << 2;
332 hash += hash >> 15;
333 hash ^= hash << 10;
334
335 // this avoids ever returning a hash code of 0, since that is used to
336 // signal "hash not computed yet", using a value that is likely to be
337 // effectively the same as 0 when the low bits are masked
338 if (hash == 0)
339 hash = 0x80000000;
340
341 return hash;
342 }
343
344 // put these early so they can be inlined
345 inline size_t UString::expandedSize(size_t size, size_t otherSize) const
346 {
347 // Do the size calculation in two parts, returning overflowIndicator if
348 // we overflow the maximum value that we can handle.
349
350 if (size > maxUChars())
351 return overflowIndicator();
352
353 size_t expandedSize = ((size + 10) / 10 * 11) + 1;
354 if (maxUChars() - expandedSize < otherSize)
355 return overflowIndicator();
356
357 return expandedSize + otherSize;
358 }
359
360 inline int UString::usedCapacity() const
361 {
362 return m_rep->baseString->usedCapacity;
363 }
364
365 inline int UString::usedPreCapacity() const
366 {
367 return m_rep->baseString->usedPreCapacity;
368 }
369
370 void UString::expandCapacity(int requiredLength)
371 {
372 Rep* r = m_rep->baseString;
373
374 if (requiredLength > r->capacity) {
375 size_t newCapacity = expandedSize(requiredLength, r->preCapacity);
376 UChar* oldBuf = r->buf;
377 r->buf = reallocChars(r->buf, newCapacity);
378 if (!r->buf) {
379 r->buf = oldBuf;
380 m_rep = &Rep::null;
381 return;
382 }
383 r->capacity = newCapacity - r->preCapacity;
384 }
385 if (requiredLength > r->usedCapacity) {
386 r->usedCapacity = requiredLength;
387 }
388 }
389
390 void UString::expandPreCapacity(int requiredPreCap)
391 {
392 Rep* r = m_rep->baseString;
393
394 if (requiredPreCap > r->preCapacity) {
395 size_t newCapacity = expandedSize(requiredPreCap, r->capacity);
396 int delta = newCapacity - r->capacity - r->preCapacity;
397
398 UChar* newBuf = allocChars(newCapacity);
399 if (!newBuf) {
400 m_rep = &Rep::null;
401 return;
402 }
403 memcpy(newBuf + delta, r->buf, (r->capacity + r->preCapacity) * sizeof(UChar));
404 fastFree(r->buf);
405 r->buf = newBuf;
406
407 r->preCapacity = newCapacity - r->capacity;
408 }
409 if (requiredPreCap > r->usedPreCapacity) {
410 r->usedPreCapacity = requiredPreCap;
411 }
412 }
413
414 UString::UString(const char *c)
415 {
416 if (!c) {
417 m_rep = &Rep::null;
418 return;
419 }
420
421 if (!c[0]) {
422 m_rep = &Rep::empty;
423 return;
424 }
425
426 size_t length = strlen(c);
427 UChar *d = allocChars(length);
428 if (!d)
429 m_rep = &Rep::null;
430 else {
431 for (size_t i = 0; i < length; i++)
432 d[i].uc = c[i];
433 m_rep = Rep::create(d, static_cast<int>(length));
434 }
435 }
436
437 UString::UString(const UChar *c, int length)
438 {
439 if (length == 0)
440 m_rep = &Rep::empty;
441 else
442 m_rep = Rep::createCopying(c, length);
443 }
444
445 UString::UString(UChar *c, int length, bool copy)
446 {
447 if (length == 0)
448 m_rep = &Rep::empty;
449 else if (copy)
450 m_rep = Rep::createCopying(c, length);
451 else
452 m_rep = Rep::create(c, length);
453 }
454
455 UString::UString(const Vector<UChar>& buffer)
456 {
457 if (!buffer.size())
458 m_rep = &Rep::empty;
459 else
460 m_rep = Rep::createCopying(buffer.data(), buffer.size());
461 }
462
463
464 UString::UString(const UString &a, const UString &b)
465 {
466 int aSize = a.size();
467 int aOffset = a.m_rep->offset;
468 int bSize = b.size();
469 int bOffset = b.m_rep->offset;
470 int length = aSize + bSize;
471
472 // possible cases:
473
474 if (aSize == 0) {
475 // a is empty
476 m_rep = b.m_rep;
477 } else if (bSize == 0) {
478 // b is empty
479 m_rep = a.m_rep;
480 } else if (aOffset + aSize == a.usedCapacity() && aSize >= minShareSize && 4 * aSize >= bSize &&
481 (-bOffset != b.usedPreCapacity() || aSize >= bSize)) {
482 // - a reaches the end of its buffer so it qualifies for shared append
483 // - also, it's at least a quarter the length of b - appending to a much shorter
484 // string does more harm than good
485 // - however, if b qualifies for prepend and is longer than a, we'd rather prepend
486 UString x(a);
487 x.expandCapacity(aOffset + length);
488 if (a.data() && x.data()) {
489 memcpy(const_cast<UChar *>(a.data() + aSize), b.data(), bSize * sizeof(UChar));
490 m_rep = Rep::create(a.m_rep, 0, length);
491 } else
492 m_rep = &Rep::null;
493 } else if (-bOffset == b.usedPreCapacity() && bSize >= minShareSize && 4 * bSize >= aSize) {
494 // - b reaches the beginning of its buffer so it qualifies for shared prepend
495 // - also, it's at least a quarter the length of a - prepending to a much shorter
496 // string does more harm than good
497 UString y(b);
498 y.expandPreCapacity(-bOffset + aSize);
499 if (b.data() && y.data()) {
500 memcpy(const_cast<UChar *>(b.data() - aSize), a.data(), aSize * sizeof(UChar));
501 m_rep = Rep::create(b.m_rep, -aSize, length);
502 } else
503 m_rep = &Rep::null;
504 } else {
505 // a does not qualify for append, and b does not qualify for prepend, gotta make a whole new string
506 size_t newCapacity = expandedSize(length, 0);
507 UChar* d = allocChars(newCapacity);
508 if (!d)
509 m_rep = &Rep::null;
510 else {
511 memcpy(d, a.data(), aSize * sizeof(UChar));
512 memcpy(d + aSize, b.data(), bSize * sizeof(UChar));
513 m_rep = Rep::create(d, length);
514 m_rep->capacity = newCapacity;
515 }
516 }
517 }
518
519 const UString& UString::null()
520 {
521 static UString* n = new UString;
522 return *n;
523 }
524
525 UString UString::from(int i)
526 {
527 UChar buf[1 + sizeof(i) * 3];
528 UChar *end = buf + sizeof(buf) / sizeof(UChar);
529 UChar *p = end;
530
531 if (i == 0) {
532 *--p = '0';
533 } else if (i == INT_MIN) {
534 char minBuf[1 + sizeof(i) * 3];
535 snprintf(minBuf, 1 + sizeof(i) * 3, "%d", INT_MIN);
536 return UString(minBuf);
537 } else {
538 bool negative = false;
539 if (i < 0) {
540 negative = true;
541 i = -i;
542 }
543 while (i) {
544 *--p = (unsigned short)((i % 10) + '0');
545 i /= 10;
546 }
547 if (negative) {
548 *--p = '-';
549 }
550 }
551
552 return UString(p, static_cast<int>(end - p));
553 }
554
555 UString UString::from(unsigned int u)
556 {
557 UChar buf[sizeof(u) * 3];
558 UChar *end = buf + sizeof(buf) / sizeof(UChar);
559 UChar *p = end;
560
561 if (u == 0) {
562 *--p = '0';
563 } else {
564 while (u) {
565 *--p = (unsigned short)((u % 10) + '0');
566 u /= 10;
567 }
568 }
569
570 return UString(p, static_cast<int>(end - p));
571 }
572
573 UString UString::from(long l)
574 {
575 UChar buf[1 + sizeof(l) * 3];
576 UChar *end = buf + sizeof(buf) / sizeof(UChar);
577 UChar *p = end;
578
579 if (l == 0) {
580 *--p = '0';
581 } else if (l == LONG_MIN) {
582 char minBuf[1 + sizeof(l) * 3];
583 snprintf(minBuf, 1 + sizeof(l) * 3, "%ld", LONG_MIN);
584 return UString(minBuf);
585 } else {
586 bool negative = false;
587 if (l < 0) {
588 negative = true;
589 l = -l;
590 }
591 while (l) {
592 *--p = (unsigned short)((l % 10) + '0');
593 l /= 10;
594 }
595 if (negative) {
596 *--p = '-';
597 }
598 }
599
600 return UString(p, static_cast<int>(end - p));
601 }
602
603 UString UString::from(double d)
604 {
605 // avoid ever printing -NaN, in JS conceptually there is only one NaN value
606 if (isnan(d))
607 return "NaN";
608
609 int buflength= 80;
610 char buf[buflength];
611 int decimalPoint;
612 int sign;
613
614 char *result = kjs_dtoa(d, 0, 0, &decimalPoint, &sign, NULL);
615 int length = static_cast<int>(strlen(result));
616
617 int i = 0;
618 if (sign) {
619 buf[i++] = '-';
620 }
621
622 if (decimalPoint <= 0 && decimalPoint > -6) {
623 buf[i++] = '0';
624 buf[i++] = '.';
625 for (int j = decimalPoint; j < 0; j++) {
626 buf[i++] = '0';
627 }
628 strlcpy(buf + i, result, buflength - i);
629 } else if (decimalPoint <= 21 && decimalPoint > 0) {
630 if (length <= decimalPoint) {
631 strlcpy(buf + i, result, buflength - i);
632 i += length;
633 for (int j = 0; j < decimalPoint - length; j++) {
634 buf[i++] = '0';
635 }
636 buf[i] = '\0';
637 } else {
638 int len = (decimalPoint <= buflength - i ? decimalPoint : buflength - i);
639 strncpy(buf + i, result, len);
640 i += len;
641 buf[i++] = '.';
642 strlcpy(buf + i, result + decimalPoint, buflength - i);
643 }
644 } else if (result[0] < '0' || result[0] > '9') {
645 strlcpy(buf + i, result, buflength - i);
646 } else {
647 buf[i++] = result[0];
648 if (length > 1) {
649 buf[i++] = '.';
650 strlcpy(buf + i, result + 1, buflength - i);
651 i += length - 1;
652 }
653
654 buf[i++] = 'e';
655 buf[i++] = (decimalPoint >= 0) ? '+' : '-';
656 // decimalPoint can't be more than 3 digits decimal given the
657 // nature of float representation
658 int exponential = decimalPoint - 1;
659 if (exponential < 0)
660 exponential = -exponential;
661 if (exponential >= 100)
662 buf[i++] = static_cast<char>('0' + exponential / 100);
663 if (exponential >= 10)
664 buf[i++] = static_cast<char>('0' + (exponential % 100) / 10);
665 buf[i++] = static_cast<char>('0' + exponential % 10);
666 buf[i++] = '\0';
667 assert(i <= buflength);
668 }
669
670 kjs_freedtoa(result);
671
672 return UString(buf);
673 }
674
675 UString UString::spliceSubstringsWithSeparators(const Range* substringRanges, int rangeCount, const UString* separators, int separatorCount) const
676 {
677 if (rangeCount == 1 && separatorCount == 0) {
678 int thisSize = size();
679 int position = substringRanges[0].position;
680 int length = substringRanges[0].length;
681 if (position <= 0 && length >= thisSize)
682 return *this;
683 return UString::Rep::create(m_rep, max(0, position), min(thisSize, length));
684 }
685
686 int totalLength = 0;
687 for (int i = 0; i < rangeCount; i++)
688 totalLength += substringRanges[i].length;
689 for (int i = 0; i < separatorCount; i++)
690 totalLength += separators[i].size();
691
692 if (totalLength == 0)
693 return "";
694
695 UChar* buffer = allocChars(totalLength);
696 if (!buffer)
697 return null();
698
699 int maxCount = max(rangeCount, separatorCount);
700 int bufferPos = 0;
701 for (int i = 0; i < maxCount; i++) {
702 if (i < rangeCount) {
703 memcpy(buffer + bufferPos, data() + substringRanges[i].position, substringRanges[i].length * sizeof(UChar));
704 bufferPos += substringRanges[i].length;
705 }
706 if (i < separatorCount) {
707 memcpy(buffer + bufferPos, separators[i].data(), separators[i].size() * sizeof(UChar));
708 bufferPos += separators[i].size();
709 }
710 }
711
712 return UString::Rep::create(buffer, totalLength);
713 }
714
715 UString &UString::append(const UString &t)
716 {
717 int thisSize = size();
718 int thisOffset = m_rep->offset;
719 int tSize = t.size();
720 int length = thisSize + tSize;
721
722 // possible cases:
723 if (thisSize == 0) {
724 // this is empty
725 *this = t;
726 } else if (tSize == 0) {
727 // t is empty
728 } else if (m_rep->baseIsSelf() && m_rep->rc == 1) {
729 // this is direct and has refcount of 1 (so we can just alter it directly)
730 expandCapacity(thisOffset + length);
731 if (data()) {
732 memcpy(const_cast<UChar*>(data() + thisSize), t.data(), tSize * sizeof(UChar));
733 m_rep->len = length;
734 m_rep->_hash = 0;
735 }
736 } else if (thisOffset + thisSize == usedCapacity() && thisSize >= minShareSize) {
737 // this reaches the end of the buffer - extend it if it's long enough to append to
738 expandCapacity(thisOffset + length);
739 if (data()) {
740 memcpy(const_cast<UChar*>(data() + thisSize), t.data(), tSize * sizeof(UChar));
741 m_rep = Rep::create(m_rep, 0, length);
742 }
743 } else {
744 // this is shared with someone using more capacity, gotta make a whole new string
745 size_t newCapacity = expandedSize(length, 0);
746 UChar* d = allocChars(newCapacity);
747 if (!d)
748 m_rep = &Rep::null;
749 else {
750 memcpy(d, data(), thisSize * sizeof(UChar));
751 memcpy(const_cast<UChar*>(d + thisSize), t.data(), tSize * sizeof(UChar));
752 m_rep = Rep::create(d, length);
753 m_rep->capacity = newCapacity;
754 }
755 }
756
757 return *this;
758 }
759
760 UString &UString::append(const char *t)
761 {
762 int thisSize = size();
763 int thisOffset = m_rep->offset;
764 int tSize = static_cast<int>(strlen(t));
765 int length = thisSize + tSize;
766
767 // possible cases:
768 if (thisSize == 0) {
769 // this is empty
770 *this = t;
771 } else if (tSize == 0) {
772 // t is empty, we'll just return *this below.
773 } else if (m_rep->baseIsSelf() && m_rep->rc == 1) {
774 // this is direct and has refcount of 1 (so we can just alter it directly)
775 expandCapacity(thisOffset + length);
776 UChar *d = const_cast<UChar *>(data());
777 if (d) {
778 for (int i = 0; i < tSize; ++i)
779 d[thisSize + i] = t[i];
780 m_rep->len = length;
781 m_rep->_hash = 0;
782 }
783 } else if (thisOffset + thisSize == usedCapacity() && thisSize >= minShareSize) {
784 // this string reaches the end of the buffer - extend it
785 expandCapacity(thisOffset + length);
786 UChar *d = const_cast<UChar *>(data());
787 if (d) {
788 for (int i = 0; i < tSize; ++i)
789 d[thisSize + i] = t[i];
790 m_rep = Rep::create(m_rep, 0, length);
791 }
792 } else {
793 // this is shared with someone using more capacity, gotta make a whole new string
794 size_t newCapacity = expandedSize(length, 0);
795 UChar* d = allocChars(newCapacity);
796 if (!d)
797 m_rep = &Rep::null;
798 else {
799 memcpy(d, data(), thisSize * sizeof(UChar));
800 for (int i = 0; i < tSize; ++i)
801 d[thisSize + i] = t[i];
802 m_rep = Rep::create(d, length);
803 m_rep->capacity = newCapacity;
804 }
805 }
806
807 return *this;
808 }
809
810 UString &UString::append(unsigned short c)
811 {
812 int thisOffset = m_rep->offset;
813 int length = size();
814
815 // possible cases:
816 if (length == 0) {
817 // this is empty - must make a new m_rep because we don't want to pollute the shared empty one
818 size_t newCapacity = expandedSize(1, 0);
819 UChar* d = allocChars(newCapacity);
820 if (!d)
821 m_rep = &Rep::null;
822 else {
823 d[0] = c;
824 m_rep = Rep::create(d, 1);
825 m_rep->capacity = newCapacity;
826 }
827 } else if (m_rep->baseIsSelf() && m_rep->rc == 1) {
828 // this is direct and has refcount of 1 (so we can just alter it directly)
829 expandCapacity(thisOffset + length + 1);
830 UChar *d = const_cast<UChar *>(data());
831 if (d) {
832 d[length] = c;
833 m_rep->len = length + 1;
834 m_rep->_hash = 0;
835 }
836 } else if (thisOffset + length == usedCapacity() && length >= minShareSize) {
837 // this reaches the end of the string - extend it and share
838 expandCapacity(thisOffset + length + 1);
839 UChar *d = const_cast<UChar *>(data());
840 if (d) {
841 d[length] = c;
842 m_rep = Rep::create(m_rep, 0, length + 1);
843 }
844 } else {
845 // this is shared with someone using more capacity, gotta make a whole new string
846 size_t newCapacity = expandedSize(length + 1, 0);
847 UChar* d = allocChars(newCapacity);
848 if (!d)
849 m_rep = &Rep::null;
850 else {
851 memcpy(d, data(), length * sizeof(UChar));
852 d[length] = c;
853 m_rep = Rep::create(d, length + 1);
854 m_rep->capacity = newCapacity;
855 }
856 }
857
858 return *this;
859 }
860
861 CString UString::cstring() const
862 {
863 return ascii();
864 }
865
866 char *UString::ascii() const
867 {
868 // Never make the buffer smaller than normalStatBufferSize.
869 // Thus we almost never need to reallocate.
870 int length = size();
871 int neededSize = length + 1;
872 if (neededSize < normalStatBufferSize) {
873 neededSize = normalStatBufferSize;
874 }
875 if (neededSize != statBufferSize) {
876 delete [] statBuffer;
877 statBuffer = new char [neededSize];
878 statBufferSize = neededSize;
879 }
880
881 const UChar *p = data();
882 char *q = statBuffer;
883 const UChar *limit = p + length;
884 while (p != limit) {
885 *q = static_cast<char>(p->uc);
886 ++p;
887 ++q;
888 }
889 *q = '\0';
890
891 return statBuffer;
892 }
893
894 UString &UString::operator=(const char *c)
895 {
896 if (!c) {
897 m_rep = &Rep::null;
898 return *this;
899 }
900
901 if (!c[0]) {
902 m_rep = &Rep::empty;
903 return *this;
904 }
905
906 int l = static_cast<int>(strlen(c));
907 UChar *d;
908 if (m_rep->rc == 1 && l <= m_rep->capacity && m_rep->baseIsSelf() && m_rep->offset == 0 && m_rep->preCapacity == 0) {
909 d = m_rep->buf;
910 m_rep->_hash = 0;
911 m_rep->len = l;
912 } else {
913 d = allocChars(l);
914 if (!d) {
915 m_rep = &Rep::null;
916 return *this;
917 }
918 m_rep = Rep::create(d, l);
919 }
920 for (int i = 0; i < l; i++)
921 d[i].uc = c[i];
922
923 return *this;
924 }
925
926 bool UString::is8Bit() const
927 {
928 const UChar *u = data();
929 const UChar *limit = u + size();
930 while (u < limit) {
931 if (u->uc > 0xFF)
932 return false;
933 ++u;
934 }
935
936 return true;
937 }
938
939 const UChar UString::operator[](int pos) const
940 {
941 if (pos >= size())
942 return '\0';
943 return data()[pos];
944 }
945
946 double UString::toDouble(bool tolerateTrailingJunk, bool tolerateEmptyString) const
947 {
948 double d;
949
950 // FIXME: If tolerateTrailingJunk is true, then we want to tolerate non-8-bit junk
951 // after the number, so is8Bit is too strict a check.
952 if (!is8Bit())
953 return NaN;
954
955 const char *c = ascii();
956
957 // skip leading white space
958 while (isASCIISpace(*c))
959 c++;
960
961 // empty string ?
962 if (*c == '\0')
963 return tolerateEmptyString ? 0.0 : NaN;
964
965 // hex number ?
966 if (*c == '0' && (*(c+1) == 'x' || *(c+1) == 'X')) {
967 const char* firstDigitPosition = c + 2;
968 c++;
969 d = 0.0;
970 while (*(++c)) {
971 if (*c >= '0' && *c <= '9')
972 d = d * 16.0 + *c - '0';
973 else if ((*c >= 'A' && *c <= 'F') || (*c >= 'a' && *c <= 'f'))
974 d = d * 16.0 + (*c & 0xdf) - 'A' + 10.0;
975 else
976 break;
977 }
978
979 if (d >= mantissaOverflowLowerBound)
980 d = parseIntOverflow(firstDigitPosition, c - firstDigitPosition, 16);
981 } else {
982 // regular number ?
983 char *end;
984 d = kjs_strtod(c, &end);
985 if ((d != 0.0 || end != c) && d != Inf && d != -Inf) {
986 c = end;
987 } else {
988 double sign = 1.0;
989
990 if (*c == '+')
991 c++;
992 else if (*c == '-') {
993 sign = -1.0;
994 c++;
995 }
996
997 // We used strtod() to do the conversion. However, strtod() handles
998 // infinite values slightly differently than JavaScript in that it
999 // converts the string "inf" with any capitalization to infinity,
1000 // whereas the ECMA spec requires that it be converted to NaN.
1001
1002 if (c[0] == 'I' && c[1] == 'n' && c[2] == 'f' && c[3] == 'i' && c[4] == 'n' && c[5] == 'i' && c[6] == 't' && c[7] == 'y') {
1003 d = sign * Inf;
1004 c += 8;
1005 } else if ((d == Inf || d == -Inf) && *c != 'I' && *c != 'i')
1006 c = end;
1007 else
1008 return NaN;
1009 }
1010 }
1011
1012 // allow trailing white space
1013 while (isASCIISpace(*c))
1014 c++;
1015 // don't allow anything after - unless tolerant=true
1016 if (!tolerateTrailingJunk && *c != '\0')
1017 d = NaN;
1018
1019 return d;
1020 }
1021
1022 double UString::toDouble(bool tolerateTrailingJunk) const
1023 {
1024 return toDouble(tolerateTrailingJunk, true);
1025 }
1026
1027 double UString::toDouble() const
1028 {
1029 return toDouble(false, true);
1030 }
1031
1032 uint32_t UString::toUInt32(bool *ok) const
1033 {
1034 double d = toDouble();
1035 bool b = true;
1036
1037 if (d != static_cast<uint32_t>(d)) {
1038 b = false;
1039 d = 0;
1040 }
1041
1042 if (ok)
1043 *ok = b;
1044
1045 return static_cast<uint32_t>(d);
1046 }
1047
1048 uint32_t UString::toUInt32(bool *ok, bool tolerateEmptyString) const
1049 {
1050 double d = toDouble(false, tolerateEmptyString);
1051 bool b = true;
1052
1053 if (d != static_cast<uint32_t>(d)) {
1054 b = false;
1055 d = 0;
1056 }
1057
1058 if (ok)
1059 *ok = b;
1060
1061 return static_cast<uint32_t>(d);
1062 }
1063
1064 uint32_t UString::toStrictUInt32(bool *ok) const
1065 {
1066 if (ok)
1067 *ok = false;
1068
1069 // Empty string is not OK.
1070 int len = m_rep->len;
1071 if (len == 0)
1072 return 0;
1073 const UChar *p = m_rep->data();
1074 unsigned short c = p->unicode();
1075
1076 // If the first digit is 0, only 0 itself is OK.
1077 if (c == '0') {
1078 if (len == 1 && ok)
1079 *ok = true;
1080 return 0;
1081 }
1082
1083 // Convert to UInt32, checking for overflow.
1084 uint32_t i = 0;
1085 while (1) {
1086 // Process character, turning it into a digit.
1087 if (c < '0' || c > '9')
1088 return 0;
1089 const unsigned d = c - '0';
1090
1091 // Multiply by 10, checking for overflow out of 32 bits.
1092 if (i > 0xFFFFFFFFU / 10)
1093 return 0;
1094 i *= 10;
1095
1096 // Add in the digit, checking for overflow out of 32 bits.
1097 const unsigned max = 0xFFFFFFFFU - d;
1098 if (i > max)
1099 return 0;
1100 i += d;
1101
1102 // Handle end of string.
1103 if (--len == 0) {
1104 if (ok)
1105 *ok = true;
1106 return i;
1107 }
1108
1109 // Get next character.
1110 c = (++p)->unicode();
1111 }
1112 }
1113
1114 int UString::find(const UString &f, int pos) const
1115 {
1116 int sz = size();
1117 int fsz = f.size();
1118 if (sz < fsz)
1119 return -1;
1120 if (pos < 0)
1121 pos = 0;
1122 if (fsz == 0)
1123 return pos;
1124 const UChar *end = data() + sz - fsz;
1125 int fsizeminusone = (fsz - 1) * sizeof(UChar);
1126 const UChar *fdata = f.data();
1127 unsigned short fchar = fdata->uc;
1128 ++fdata;
1129 for (const UChar *c = data() + pos; c <= end; c++)
1130 if (c->uc == fchar && !memcmp(c + 1, fdata, fsizeminusone))
1131 return static_cast<int>(c - data());
1132
1133 return -1;
1134 }
1135
1136 int UString::find(UChar ch, int pos) const
1137 {
1138 if (pos < 0)
1139 pos = 0;
1140 const UChar *end = data() + size();
1141 for (const UChar *c = data() + pos; c < end; c++)
1142 if (*c == ch)
1143 return static_cast<int>(c - data());
1144
1145 return -1;
1146 }
1147
1148 int UString::rfind(const UString &f, int pos) const
1149 {
1150 int sz = size();
1151 int fsz = f.size();
1152 if (sz < fsz)
1153 return -1;
1154 if (pos < 0)
1155 pos = 0;
1156 if (pos > sz - fsz)
1157 pos = sz - fsz;
1158 if (fsz == 0)
1159 return pos;
1160 int fsizeminusone = (fsz - 1) * sizeof(UChar);
1161 const UChar *fdata = f.data();
1162 for (const UChar *c = data() + pos; c >= data(); c--) {
1163 if (*c == *fdata && !memcmp(c + 1, fdata + 1, fsizeminusone))
1164 return static_cast<int>(c - data());
1165 }
1166
1167 return -1;
1168 }
1169
1170 int UString::rfind(UChar ch, int pos) const
1171 {
1172 if (isEmpty())
1173 return -1;
1174 if (pos + 1 >= size())
1175 pos = size() - 1;
1176 for (const UChar *c = data() + pos; c >= data(); c--) {
1177 if (*c == ch)
1178 return static_cast<int>(c-data());
1179 }
1180
1181 return -1;
1182 }
1183
1184 UString UString::substr(int pos, int len) const
1185 {
1186 int s = size();
1187
1188 if (pos < 0)
1189 pos = 0;
1190 else if (pos >= s)
1191 pos = s;
1192 if (len < 0)
1193 len = s;
1194 if (pos + len >= s)
1195 len = s - pos;
1196
1197 if (pos == 0 && len == s)
1198 return *this;
1199
1200 return UString(Rep::create(m_rep, pos, len));
1201 }
1202
1203 bool operator==(const UString& s1, const UString& s2)
1204 {
1205 if (s1.m_rep->len != s2.m_rep->len)
1206 return false;
1207
1208 return (memcmp(s1.m_rep->data(), s2.m_rep->data(),
1209 s1.m_rep->len * sizeof(UChar)) == 0);
1210 }
1211
1212 bool operator==(const UString& s1, const char *s2)
1213 {
1214 if (s2 == 0) {
1215 return s1.isEmpty();
1216 }
1217
1218 const UChar *u = s1.data();
1219 const UChar *uend = u + s1.size();
1220 while (u != uend && *s2) {
1221 if (u->uc != (unsigned char)*s2)
1222 return false;
1223 s2++;
1224 u++;
1225 }
1226
1227 return u == uend && *s2 == 0;
1228 }
1229
1230 bool operator<(const UString& s1, const UString& s2)
1231 {
1232 const int l1 = s1.size();
1233 const int l2 = s2.size();
1234 const int lmin = l1 < l2 ? l1 : l2;
1235 const UChar *c1 = s1.data();
1236 const UChar *c2 = s2.data();
1237 int l = 0;
1238 while (l < lmin && *c1 == *c2) {
1239 c1++;
1240 c2++;
1241 l++;
1242 }
1243 if (l < lmin)
1244 return (c1->uc < c2->uc);
1245
1246 return (l1 < l2);
1247 }
1248
1249 int compare(const UString& s1, const UString& s2)
1250 {
1251 const int l1 = s1.size();
1252 const int l2 = s2.size();
1253 const int lmin = l1 < l2 ? l1 : l2;
1254 const UChar *c1 = s1.data();
1255 const UChar *c2 = s2.data();
1256 int l = 0;
1257 while (l < lmin && *c1 == *c2) {
1258 c1++;
1259 c2++;
1260 l++;
1261 }
1262
1263 if (l < lmin)
1264 return (c1->uc > c2->uc) ? 1 : -1;
1265
1266 if (l1 == l2)
1267 return 0;
1268
1269 return (l1 > l2) ? 1 : -1;
1270 }
1271
1272 CString UString::UTF8String(bool strict) const
1273 {
1274 // Allocate a buffer big enough to hold all the characters.
1275 const int length = size();
1276 Vector<char, 1024> buffer(length * 3);
1277
1278 // Convert to runs of 8-bit characters.
1279 char* p = buffer.data();
1280 const ::UChar* d = reinterpret_cast<const ::UChar*>(&data()->uc);
1281 ConversionResult result = convertUTF16ToUTF8(&d, d + length, &p, p + buffer.size(), strict);
1282 if (result != conversionOK)
1283 return CString();
1284
1285 return CString(buffer.data(), p - buffer.data());
1286 }
1287
1288 } // namespace KJS