]> git.saurik.com Git - apple/javascriptcore.git/blob - yarr/YarrPattern.cpp
JavaScriptCore-7601.1.46.3.tar.gz
[apple/javascriptcore.git] / yarr / YarrPattern.cpp
1 /*
2 * Copyright (C) 2009, 2013 Apple Inc. All rights reserved.
3 * Copyright (C) 2010 Peter Varga (pvarga@inf.u-szeged.hu), University of Szeged
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
15 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
18 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
22 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #include "config.h"
28 #include "YarrPattern.h"
29
30 #include "Yarr.h"
31 #include "YarrCanonicalizeUCS2.h"
32 #include "YarrParser.h"
33 #include <wtf/Vector.h>
34
35 using namespace WTF;
36
37 namespace JSC { namespace Yarr {
38
39 #include "RegExpJitTables.h"
40
41 class CharacterClassConstructor {
42 public:
43 CharacterClassConstructor(bool isCaseInsensitive = false)
44 : m_isCaseInsensitive(isCaseInsensitive)
45 {
46 }
47
48 void reset()
49 {
50 m_matches.clear();
51 m_ranges.clear();
52 m_matchesUnicode.clear();
53 m_rangesUnicode.clear();
54 }
55
56 void append(const CharacterClass* other)
57 {
58 for (size_t i = 0; i < other->m_matches.size(); ++i)
59 addSorted(m_matches, other->m_matches[i]);
60 for (size_t i = 0; i < other->m_ranges.size(); ++i)
61 addSortedRange(m_ranges, other->m_ranges[i].begin, other->m_ranges[i].end);
62 for (size_t i = 0; i < other->m_matchesUnicode.size(); ++i)
63 addSorted(m_matchesUnicode, other->m_matchesUnicode[i]);
64 for (size_t i = 0; i < other->m_rangesUnicode.size(); ++i)
65 addSortedRange(m_rangesUnicode, other->m_rangesUnicode[i].begin, other->m_rangesUnicode[i].end);
66 }
67
68 void putChar(UChar ch)
69 {
70 // Handle ascii cases.
71 if (ch <= 0x7f) {
72 if (m_isCaseInsensitive && isASCIIAlpha(ch)) {
73 addSorted(m_matches, toASCIIUpper(ch));
74 addSorted(m_matches, toASCIILower(ch));
75 } else
76 addSorted(m_matches, ch);
77 return;
78 }
79
80 // Simple case, not a case-insensitive match.
81 if (!m_isCaseInsensitive) {
82 addSorted(m_matchesUnicode, ch);
83 return;
84 }
85
86 // Add multiple matches, if necessary.
87 const UCS2CanonicalizationRange* info = rangeInfoFor(ch);
88 if (info->type == CanonicalizeUnique)
89 addSorted(m_matchesUnicode, ch);
90 else
91 putUnicodeIgnoreCase(ch, info);
92 }
93
94 void putUnicodeIgnoreCase(UChar ch, const UCS2CanonicalizationRange* info)
95 {
96 ASSERT(m_isCaseInsensitive);
97 ASSERT(ch > 0x7f);
98 ASSERT(ch >= info->begin && ch <= info->end);
99 ASSERT(info->type != CanonicalizeUnique);
100 if (info->type == CanonicalizeSet) {
101 for (const uint16_t* set = characterSetInfo[info->value]; (ch = *set); ++set)
102 addSorted(m_matchesUnicode, ch);
103 } else {
104 addSorted(m_matchesUnicode, ch);
105 addSorted(m_matchesUnicode, getCanonicalPair(info, ch));
106 }
107 }
108
109 void putRange(UChar lo, UChar hi)
110 {
111 if (lo <= 0x7f) {
112 char asciiLo = lo;
113 char asciiHi = std::min(hi, (UChar)0x7f);
114 addSortedRange(m_ranges, lo, asciiHi);
115
116 if (m_isCaseInsensitive) {
117 if ((asciiLo <= 'Z') && (asciiHi >= 'A'))
118 addSortedRange(m_ranges, std::max(asciiLo, 'A')+('a'-'A'), std::min(asciiHi, 'Z')+('a'-'A'));
119 if ((asciiLo <= 'z') && (asciiHi >= 'a'))
120 addSortedRange(m_ranges, std::max(asciiLo, 'a')+('A'-'a'), std::min(asciiHi, 'z')+('A'-'a'));
121 }
122 }
123 if (hi <= 0x7f)
124 return;
125
126 lo = std::max(lo, (UChar)0x80);
127 addSortedRange(m_rangesUnicode, lo, hi);
128
129 if (!m_isCaseInsensitive)
130 return;
131
132 const UCS2CanonicalizationRange* info = rangeInfoFor(lo);
133 while (true) {
134 // Handle the range [lo .. end]
135 UChar end = std::min<UChar>(info->end, hi);
136
137 switch (info->type) {
138 case CanonicalizeUnique:
139 // Nothing to do - no canonical equivalents.
140 break;
141 case CanonicalizeSet: {
142 UChar ch;
143 for (const uint16_t* set = characterSetInfo[info->value]; (ch = *set); ++set)
144 addSorted(m_matchesUnicode, ch);
145 break;
146 }
147 case CanonicalizeRangeLo:
148 addSortedRange(m_rangesUnicode, lo + info->value, end + info->value);
149 break;
150 case CanonicalizeRangeHi:
151 addSortedRange(m_rangesUnicode, lo - info->value, end - info->value);
152 break;
153 case CanonicalizeAlternatingAligned:
154 // Use addSortedRange since there is likely an abutting range to combine with.
155 if (lo & 1)
156 addSortedRange(m_rangesUnicode, lo - 1, lo - 1);
157 if (!(end & 1))
158 addSortedRange(m_rangesUnicode, end + 1, end + 1);
159 break;
160 case CanonicalizeAlternatingUnaligned:
161 // Use addSortedRange since there is likely an abutting range to combine with.
162 if (!(lo & 1))
163 addSortedRange(m_rangesUnicode, lo - 1, lo - 1);
164 if (end & 1)
165 addSortedRange(m_rangesUnicode, end + 1, end + 1);
166 break;
167 }
168
169 if (hi == end)
170 return;
171
172 ++info;
173 lo = info->begin;
174 };
175
176 }
177
178 std::unique_ptr<CharacterClass> charClass()
179 {
180 auto characterClass = std::make_unique<CharacterClass>();
181
182 characterClass->m_matches.swap(m_matches);
183 characterClass->m_ranges.swap(m_ranges);
184 characterClass->m_matchesUnicode.swap(m_matchesUnicode);
185 characterClass->m_rangesUnicode.swap(m_rangesUnicode);
186
187 return characterClass;
188 }
189
190 private:
191 void addSorted(Vector<UChar>& matches, UChar ch)
192 {
193 unsigned pos = 0;
194 unsigned range = matches.size();
195
196 // binary chop, find position to insert char.
197 while (range) {
198 unsigned index = range >> 1;
199
200 int val = matches[pos+index] - ch;
201 if (!val)
202 return;
203 else if (val > 0)
204 range = index;
205 else {
206 pos += (index+1);
207 range -= (index+1);
208 }
209 }
210
211 if (pos == matches.size())
212 matches.append(ch);
213 else
214 matches.insert(pos, ch);
215 }
216
217 void addSortedRange(Vector<CharacterRange>& ranges, UChar lo, UChar hi)
218 {
219 unsigned end = ranges.size();
220
221 // Simple linear scan - I doubt there are that many ranges anyway...
222 // feel free to fix this with something faster (eg binary chop).
223 for (unsigned i = 0; i < end; ++i) {
224 // does the new range fall before the current position in the array
225 if (hi < ranges[i].begin) {
226 // optional optimization: concatenate appending ranges? - may not be worthwhile.
227 if (hi == (ranges[i].begin - 1)) {
228 ranges[i].begin = lo;
229 return;
230 }
231 ranges.insert(i, CharacterRange(lo, hi));
232 return;
233 }
234 // Okay, since we didn't hit the last case, the end of the new range is definitely at or after the begining
235 // If the new range start at or before the end of the last range, then the overlap (if it starts one after the
236 // end of the last range they concatenate, which is just as good.
237 if (lo <= (ranges[i].end + 1)) {
238 // found an intersect! we'll replace this entry in the array.
239 ranges[i].begin = std::min(ranges[i].begin, lo);
240 ranges[i].end = std::max(ranges[i].end, hi);
241
242 // now check if the new range can subsume any subsequent ranges.
243 unsigned next = i+1;
244 // each iteration of the loop we will either remove something from the list, or break the loop.
245 while (next < ranges.size()) {
246 if (ranges[next].begin <= (ranges[i].end + 1)) {
247 // the next entry now overlaps / concatenates this one.
248 ranges[i].end = std::max(ranges[i].end, ranges[next].end);
249 ranges.remove(next);
250 } else
251 break;
252 }
253
254 return;
255 }
256 }
257
258 // CharacterRange comes after all existing ranges.
259 ranges.append(CharacterRange(lo, hi));
260 }
261
262 bool m_isCaseInsensitive;
263
264 Vector<UChar> m_matches;
265 Vector<CharacterRange> m_ranges;
266 Vector<UChar> m_matchesUnicode;
267 Vector<CharacterRange> m_rangesUnicode;
268 };
269
270 class YarrPatternConstructor {
271 public:
272 YarrPatternConstructor(YarrPattern& pattern)
273 : m_pattern(pattern)
274 , m_characterClassConstructor(pattern.m_ignoreCase)
275 , m_invertParentheticalAssertion(false)
276 {
277 auto body = std::make_unique<PatternDisjunction>();
278 m_pattern.m_body = body.get();
279 m_alternative = body->addNewAlternative();
280 m_pattern.m_disjunctions.append(WTF::move(body));
281 }
282
283 ~YarrPatternConstructor()
284 {
285 }
286
287 void reset()
288 {
289 m_pattern.reset();
290 m_characterClassConstructor.reset();
291
292 auto body = std::make_unique<PatternDisjunction>();
293 m_pattern.m_body = body.get();
294 m_alternative = body->addNewAlternative();
295 m_pattern.m_disjunctions.append(WTF::move(body));
296 }
297
298 void assertionBOL()
299 {
300 if (!m_alternative->m_terms.size() && !m_invertParentheticalAssertion) {
301 m_alternative->m_startsWithBOL = true;
302 m_alternative->m_containsBOL = true;
303 m_pattern.m_containsBOL = true;
304 }
305 m_alternative->m_terms.append(PatternTerm::BOL());
306 }
307 void assertionEOL()
308 {
309 m_alternative->m_terms.append(PatternTerm::EOL());
310 }
311 void assertionWordBoundary(bool invert)
312 {
313 m_alternative->m_terms.append(PatternTerm::WordBoundary(invert));
314 }
315
316 void atomPatternCharacter(UChar ch)
317 {
318 // We handle case-insensitive checking of unicode characters which do have both
319 // cases by handling them as if they were defined using a CharacterClass.
320 if (!m_pattern.m_ignoreCase || isASCII(ch)) {
321 m_alternative->m_terms.append(PatternTerm(ch));
322 return;
323 }
324
325 const UCS2CanonicalizationRange* info = rangeInfoFor(ch);
326 if (info->type == CanonicalizeUnique) {
327 m_alternative->m_terms.append(PatternTerm(ch));
328 return;
329 }
330
331 m_characterClassConstructor.putUnicodeIgnoreCase(ch, info);
332 auto newCharacterClass = m_characterClassConstructor.charClass();
333 m_alternative->m_terms.append(PatternTerm(newCharacterClass.get(), false));
334 m_pattern.m_userCharacterClasses.append(WTF::move(newCharacterClass));
335 }
336
337 void atomBuiltInCharacterClass(BuiltInCharacterClassID classID, bool invert)
338 {
339 switch (classID) {
340 case DigitClassID:
341 m_alternative->m_terms.append(PatternTerm(m_pattern.digitsCharacterClass(), invert));
342 break;
343 case SpaceClassID:
344 m_alternative->m_terms.append(PatternTerm(m_pattern.spacesCharacterClass(), invert));
345 break;
346 case WordClassID:
347 m_alternative->m_terms.append(PatternTerm(m_pattern.wordcharCharacterClass(), invert));
348 break;
349 case NewlineClassID:
350 m_alternative->m_terms.append(PatternTerm(m_pattern.newlineCharacterClass(), invert));
351 break;
352 }
353 }
354
355 void atomCharacterClassBegin(bool invert = false)
356 {
357 m_invertCharacterClass = invert;
358 }
359
360 void atomCharacterClassAtom(UChar ch)
361 {
362 m_characterClassConstructor.putChar(ch);
363 }
364
365 void atomCharacterClassRange(UChar begin, UChar end)
366 {
367 m_characterClassConstructor.putRange(begin, end);
368 }
369
370 void atomCharacterClassBuiltIn(BuiltInCharacterClassID classID, bool invert)
371 {
372 ASSERT(classID != NewlineClassID);
373
374 switch (classID) {
375 case DigitClassID:
376 m_characterClassConstructor.append(invert ? m_pattern.nondigitsCharacterClass() : m_pattern.digitsCharacterClass());
377 break;
378
379 case SpaceClassID:
380 m_characterClassConstructor.append(invert ? m_pattern.nonspacesCharacterClass() : m_pattern.spacesCharacterClass());
381 break;
382
383 case WordClassID:
384 m_characterClassConstructor.append(invert ? m_pattern.nonwordcharCharacterClass() : m_pattern.wordcharCharacterClass());
385 break;
386
387 default:
388 RELEASE_ASSERT_NOT_REACHED();
389 }
390 }
391
392 void atomCharacterClassEnd()
393 {
394 auto newCharacterClass = m_characterClassConstructor.charClass();
395 m_alternative->m_terms.append(PatternTerm(newCharacterClass.get(), m_invertCharacterClass));
396 m_pattern.m_userCharacterClasses.append(WTF::move(newCharacterClass));
397 }
398
399 void atomParenthesesSubpatternBegin(bool capture = true)
400 {
401 unsigned subpatternId = m_pattern.m_numSubpatterns + 1;
402 if (capture)
403 m_pattern.m_numSubpatterns++;
404
405 auto parenthesesDisjunction = std::make_unique<PatternDisjunction>(m_alternative);
406 m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParenthesesSubpattern, subpatternId, parenthesesDisjunction.get(), capture, false));
407 m_alternative = parenthesesDisjunction->addNewAlternative();
408 m_pattern.m_disjunctions.append(WTF::move(parenthesesDisjunction));
409 }
410
411 void atomParentheticalAssertionBegin(bool invert = false)
412 {
413 auto parenthesesDisjunction = std::make_unique<PatternDisjunction>(m_alternative);
414 m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParentheticalAssertion, m_pattern.m_numSubpatterns + 1, parenthesesDisjunction.get(), false, invert));
415 m_alternative = parenthesesDisjunction->addNewAlternative();
416 m_invertParentheticalAssertion = invert;
417 m_pattern.m_disjunctions.append(WTF::move(parenthesesDisjunction));
418 }
419
420 void atomParenthesesEnd()
421 {
422 ASSERT(m_alternative->m_parent);
423 ASSERT(m_alternative->m_parent->m_parent);
424
425 PatternDisjunction* parenthesesDisjunction = m_alternative->m_parent;
426 m_alternative = m_alternative->m_parent->m_parent;
427
428 PatternTerm& lastTerm = m_alternative->lastTerm();
429
430 unsigned numParenAlternatives = parenthesesDisjunction->m_alternatives.size();
431 unsigned numBOLAnchoredAlts = 0;
432
433 for (unsigned i = 0; i < numParenAlternatives; i++) {
434 // Bubble up BOL flags
435 if (parenthesesDisjunction->m_alternatives[i]->m_startsWithBOL)
436 numBOLAnchoredAlts++;
437 }
438
439 if (numBOLAnchoredAlts) {
440 m_alternative->m_containsBOL = true;
441 // If all the alternatives in parens start with BOL, then so does this one
442 if (numBOLAnchoredAlts == numParenAlternatives)
443 m_alternative->m_startsWithBOL = true;
444 }
445
446 lastTerm.parentheses.lastSubpatternId = m_pattern.m_numSubpatterns;
447 m_invertParentheticalAssertion = false;
448 }
449
450 void atomBackReference(unsigned subpatternId)
451 {
452 ASSERT(subpatternId);
453 m_pattern.m_containsBackreferences = true;
454 m_pattern.m_maxBackReference = std::max(m_pattern.m_maxBackReference, subpatternId);
455
456 if (subpatternId > m_pattern.m_numSubpatterns) {
457 m_alternative->m_terms.append(PatternTerm::ForwardReference());
458 return;
459 }
460
461 PatternAlternative* currentAlternative = m_alternative;
462 ASSERT(currentAlternative);
463
464 // Note to self: if we waited until the AST was baked, we could also remove forwards refs
465 while ((currentAlternative = currentAlternative->m_parent->m_parent)) {
466 PatternTerm& term = currentAlternative->lastTerm();
467 ASSERT((term.type == PatternTerm::TypeParenthesesSubpattern) || (term.type == PatternTerm::TypeParentheticalAssertion));
468
469 if ((term.type == PatternTerm::TypeParenthesesSubpattern) && term.capture() && (subpatternId == term.parentheses.subpatternId)) {
470 m_alternative->m_terms.append(PatternTerm::ForwardReference());
471 return;
472 }
473 }
474
475 m_alternative->m_terms.append(PatternTerm(subpatternId));
476 }
477
478 // deep copy the argument disjunction. If filterStartsWithBOL is true,
479 // skip alternatives with m_startsWithBOL set true.
480 PatternDisjunction* copyDisjunction(PatternDisjunction* disjunction, bool filterStartsWithBOL = false)
481 {
482 std::unique_ptr<PatternDisjunction> newDisjunction;
483 for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
484 PatternAlternative* alternative = disjunction->m_alternatives[alt].get();
485 if (!filterStartsWithBOL || !alternative->m_startsWithBOL) {
486 if (!newDisjunction) {
487 newDisjunction = std::make_unique<PatternDisjunction>();
488 newDisjunction->m_parent = disjunction->m_parent;
489 }
490 PatternAlternative* newAlternative = newDisjunction->addNewAlternative();
491 newAlternative->m_terms.reserveInitialCapacity(alternative->m_terms.size());
492 for (unsigned i = 0; i < alternative->m_terms.size(); ++i)
493 newAlternative->m_terms.append(copyTerm(alternative->m_terms[i], filterStartsWithBOL));
494 }
495 }
496
497 if (!newDisjunction)
498 return 0;
499
500 PatternDisjunction* copiedDisjunction = newDisjunction.get();
501 m_pattern.m_disjunctions.append(WTF::move(newDisjunction));
502 return copiedDisjunction;
503 }
504
505 PatternTerm copyTerm(PatternTerm& term, bool filterStartsWithBOL = false)
506 {
507 if ((term.type != PatternTerm::TypeParenthesesSubpattern) && (term.type != PatternTerm::TypeParentheticalAssertion))
508 return PatternTerm(term);
509
510 PatternTerm termCopy = term;
511 termCopy.parentheses.disjunction = copyDisjunction(termCopy.parentheses.disjunction, filterStartsWithBOL);
512 return termCopy;
513 }
514
515 void quantifyAtom(unsigned min, unsigned max, bool greedy)
516 {
517 ASSERT(min <= max);
518 ASSERT(m_alternative->m_terms.size());
519
520 if (!max) {
521 m_alternative->removeLastTerm();
522 return;
523 }
524
525 PatternTerm& term = m_alternative->lastTerm();
526 ASSERT(term.type > PatternTerm::TypeAssertionWordBoundary);
527 ASSERT((term.quantityCount == 1) && (term.quantityType == QuantifierFixedCount));
528
529 if (term.type == PatternTerm::TypeParentheticalAssertion) {
530 // If an assertion is quantified with a minimum count of zero, it can simply be removed.
531 // This arises from the RepeatMatcher behaviour in the spec. Matching an assertion never
532 // results in any input being consumed, however the continuation passed to the assertion
533 // (called in steps, 8c and 9 of the RepeatMatcher definition, ES5.1 15.10.2.5) will
534 // reject all zero length matches (see step 2.1). A match from the continuation of the
535 // expression will still be accepted regardless (via steps 8a and 11) - the upshot of all
536 // this is that matches from the assertion are not required, and won't be accepted anyway,
537 // so no need to ever run it.
538 if (!min)
539 m_alternative->removeLastTerm();
540 // We never need to run an assertion more than once. Subsequent interations will be run
541 // with the same start index (since assertions are non-capturing) and the same captures
542 // (per step 4 of RepeatMatcher in ES5.1 15.10.2.5), and as such will always produce the
543 // same result and captures. If the first match succeeds then the subsequent (min - 1)
544 // matches will too. Any additional optional matches will fail (on the same basis as the
545 // minimum zero quantified assertions, above), but this will still result in a match.
546 return;
547 }
548
549 if (min == 0)
550 term.quantify(max, greedy ? QuantifierGreedy : QuantifierNonGreedy);
551 else if (min == max)
552 term.quantify(min, QuantifierFixedCount);
553 else {
554 term.quantify(min, QuantifierFixedCount);
555 m_alternative->m_terms.append(copyTerm(term));
556 // NOTE: this term is interesting from an analysis perspective, in that it can be ignored.....
557 m_alternative->lastTerm().quantify((max == quantifyInfinite) ? max : max - min, greedy ? QuantifierGreedy : QuantifierNonGreedy);
558 if (m_alternative->lastTerm().type == PatternTerm::TypeParenthesesSubpattern)
559 m_alternative->lastTerm().parentheses.isCopy = true;
560 }
561 }
562
563 void disjunction()
564 {
565 m_alternative = m_alternative->m_parent->addNewAlternative();
566 }
567
568 unsigned setupAlternativeOffsets(PatternAlternative* alternative, unsigned currentCallFrameSize, unsigned initialInputPosition)
569 {
570 alternative->m_hasFixedSize = true;
571 Checked<unsigned> currentInputPosition = initialInputPosition;
572
573 for (unsigned i = 0; i < alternative->m_terms.size(); ++i) {
574 PatternTerm& term = alternative->m_terms[i];
575
576 switch (term.type) {
577 case PatternTerm::TypeAssertionBOL:
578 case PatternTerm::TypeAssertionEOL:
579 case PatternTerm::TypeAssertionWordBoundary:
580 term.inputPosition = currentInputPosition.unsafeGet();
581 break;
582
583 case PatternTerm::TypeBackReference:
584 term.inputPosition = currentInputPosition.unsafeGet();
585 term.frameLocation = currentCallFrameSize;
586 currentCallFrameSize += YarrStackSpaceForBackTrackInfoBackReference;
587 alternative->m_hasFixedSize = false;
588 break;
589
590 case PatternTerm::TypeForwardReference:
591 break;
592
593 case PatternTerm::TypePatternCharacter:
594 term.inputPosition = currentInputPosition.unsafeGet();
595 if (term.quantityType != QuantifierFixedCount) {
596 term.frameLocation = currentCallFrameSize;
597 currentCallFrameSize += YarrStackSpaceForBackTrackInfoPatternCharacter;
598 alternative->m_hasFixedSize = false;
599 } else
600 currentInputPosition += term.quantityCount;
601 break;
602
603 case PatternTerm::TypeCharacterClass:
604 term.inputPosition = currentInputPosition.unsafeGet();
605 if (term.quantityType != QuantifierFixedCount) {
606 term.frameLocation = currentCallFrameSize;
607 currentCallFrameSize += YarrStackSpaceForBackTrackInfoCharacterClass;
608 alternative->m_hasFixedSize = false;
609 } else
610 currentInputPosition += term.quantityCount;
611 break;
612
613 case PatternTerm::TypeParenthesesSubpattern:
614 // Note: for fixed once parentheses we will ensure at least the minimum is available; others are on their own.
615 term.frameLocation = currentCallFrameSize;
616 if (term.quantityCount == 1 && !term.parentheses.isCopy) {
617 if (term.quantityType != QuantifierFixedCount)
618 currentCallFrameSize += YarrStackSpaceForBackTrackInfoParenthesesOnce;
619 currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition.unsafeGet());
620 // If quantity is fixed, then pre-check its minimum size.
621 if (term.quantityType == QuantifierFixedCount)
622 currentInputPosition += term.parentheses.disjunction->m_minimumSize;
623 term.inputPosition = currentInputPosition.unsafeGet();
624 } else if (term.parentheses.isTerminal) {
625 currentCallFrameSize += YarrStackSpaceForBackTrackInfoParenthesesTerminal;
626 currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition.unsafeGet());
627 term.inputPosition = currentInputPosition.unsafeGet();
628 } else {
629 term.inputPosition = currentInputPosition.unsafeGet();
630 setupDisjunctionOffsets(term.parentheses.disjunction, 0, currentInputPosition.unsafeGet());
631 currentCallFrameSize += YarrStackSpaceForBackTrackInfoParentheses;
632 }
633 // Fixed count of 1 could be accepted, if they have a fixed size *AND* if all alternatives are of the same length.
634 alternative->m_hasFixedSize = false;
635 break;
636
637 case PatternTerm::TypeParentheticalAssertion:
638 term.inputPosition = currentInputPosition.unsafeGet();
639 term.frameLocation = currentCallFrameSize;
640 currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize + YarrStackSpaceForBackTrackInfoParentheticalAssertion, currentInputPosition.unsafeGet());
641 break;
642
643 case PatternTerm::TypeDotStarEnclosure:
644 alternative->m_hasFixedSize = false;
645 term.inputPosition = initialInputPosition;
646 break;
647 }
648 }
649
650 alternative->m_minimumSize = (currentInputPosition - initialInputPosition).unsafeGet();
651 return currentCallFrameSize;
652 }
653
654 unsigned setupDisjunctionOffsets(PatternDisjunction* disjunction, unsigned initialCallFrameSize, unsigned initialInputPosition)
655 {
656 if ((disjunction != m_pattern.m_body) && (disjunction->m_alternatives.size() > 1))
657 initialCallFrameSize += YarrStackSpaceForBackTrackInfoAlternative;
658
659 unsigned minimumInputSize = UINT_MAX;
660 unsigned maximumCallFrameSize = 0;
661 bool hasFixedSize = true;
662
663 for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
664 PatternAlternative* alternative = disjunction->m_alternatives[alt].get();
665 unsigned currentAlternativeCallFrameSize = setupAlternativeOffsets(alternative, initialCallFrameSize, initialInputPosition);
666 minimumInputSize = std::min(minimumInputSize, alternative->m_minimumSize);
667 maximumCallFrameSize = std::max(maximumCallFrameSize, currentAlternativeCallFrameSize);
668 hasFixedSize &= alternative->m_hasFixedSize;
669 if (alternative->m_minimumSize > INT_MAX)
670 m_pattern.m_containsUnsignedLengthPattern = true;
671 }
672
673 ASSERT(minimumInputSize != UINT_MAX);
674 ASSERT(maximumCallFrameSize >= initialCallFrameSize);
675
676 disjunction->m_hasFixedSize = hasFixedSize;
677 disjunction->m_minimumSize = minimumInputSize;
678 disjunction->m_callFrameSize = maximumCallFrameSize;
679 return maximumCallFrameSize;
680 }
681
682 void setupOffsets()
683 {
684 setupDisjunctionOffsets(m_pattern.m_body, 0, 0);
685 }
686
687 // This optimization identifies sets of parentheses that we will never need to backtrack.
688 // In these cases we do not need to store state from prior iterations.
689 // We can presently avoid backtracking for:
690 // * where the parens are at the end of the regular expression (last term in any of the
691 // alternatives of the main body disjunction).
692 // * where the parens are non-capturing, and quantified unbounded greedy (*).
693 // * where the parens do not contain any capturing subpatterns.
694 void checkForTerminalParentheses()
695 {
696 // This check is much too crude; should be just checking whether the candidate
697 // node contains nested capturing subpatterns, not the whole expression!
698 if (m_pattern.m_numSubpatterns)
699 return;
700
701 Vector<std::unique_ptr<PatternAlternative>>& alternatives = m_pattern.m_body->m_alternatives;
702 for (size_t i = 0; i < alternatives.size(); ++i) {
703 Vector<PatternTerm>& terms = alternatives[i]->m_terms;
704 if (terms.size()) {
705 PatternTerm& term = terms.last();
706 if (term.type == PatternTerm::TypeParenthesesSubpattern
707 && term.quantityType == QuantifierGreedy
708 && term.quantityCount == quantifyInfinite
709 && !term.capture())
710 term.parentheses.isTerminal = true;
711 }
712 }
713 }
714
715 void optimizeBOL()
716 {
717 // Look for expressions containing beginning of line (^) anchoring and unroll them.
718 // e.g. /^a|^b|c/ becomes /^a|^b|c/ which is executed once followed by /c/ which loops
719 // This code relies on the parsing code tagging alternatives with m_containsBOL and
720 // m_startsWithBOL and rolling those up to containing alternatives.
721 // At this point, this is only valid for non-multiline expressions.
722 PatternDisjunction* disjunction = m_pattern.m_body;
723
724 if (!m_pattern.m_containsBOL || m_pattern.m_multiline)
725 return;
726
727 PatternDisjunction* loopDisjunction = copyDisjunction(disjunction, true);
728
729 // Set alternatives in disjunction to "onceThrough"
730 for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt)
731 disjunction->m_alternatives[alt]->setOnceThrough();
732
733 if (loopDisjunction) {
734 // Move alternatives from loopDisjunction to disjunction
735 for (unsigned alt = 0; alt < loopDisjunction->m_alternatives.size(); ++alt)
736 disjunction->m_alternatives.append(loopDisjunction->m_alternatives[alt].release());
737
738 loopDisjunction->m_alternatives.clear();
739 }
740 }
741
742 bool containsCapturingTerms(PatternAlternative* alternative, size_t firstTermIndex, size_t lastTermIndex)
743 {
744 Vector<PatternTerm>& terms = alternative->m_terms;
745
746 for (size_t termIndex = firstTermIndex; termIndex <= lastTermIndex; ++termIndex) {
747 PatternTerm& term = terms[termIndex];
748
749 if (term.m_capture)
750 return true;
751
752 if (term.type == PatternTerm::TypeParenthesesSubpattern) {
753 PatternDisjunction* nestedDisjunction = term.parentheses.disjunction;
754 for (unsigned alt = 0; alt < nestedDisjunction->m_alternatives.size(); ++alt) {
755 if (containsCapturingTerms(nestedDisjunction->m_alternatives[alt].get(), 0, nestedDisjunction->m_alternatives[alt]->m_terms.size() - 1))
756 return true;
757 }
758 }
759 }
760
761 return false;
762 }
763
764 // This optimization identifies alternatives in the form of
765 // [^].*[?]<expression>.*[$] for expressions that don't have any
766 // capturing terms. The alternative is changed to <expression>
767 // followed by processing of the dot stars to find and adjust the
768 // beginning and the end of the match.
769 void optimizeDotStarWrappedExpressions()
770 {
771 Vector<std::unique_ptr<PatternAlternative>>& alternatives = m_pattern.m_body->m_alternatives;
772 if (alternatives.size() != 1)
773 return;
774
775 PatternAlternative* alternative = alternatives[0].get();
776 Vector<PatternTerm>& terms = alternative->m_terms;
777 if (terms.size() >= 3) {
778 bool startsWithBOL = false;
779 bool endsWithEOL = false;
780 size_t termIndex, firstExpressionTerm, lastExpressionTerm;
781
782 termIndex = 0;
783 if (terms[termIndex].type == PatternTerm::TypeAssertionBOL) {
784 startsWithBOL = true;
785 ++termIndex;
786 }
787
788 PatternTerm& firstNonAnchorTerm = terms[termIndex];
789 if ((firstNonAnchorTerm.type != PatternTerm::TypeCharacterClass) || (firstNonAnchorTerm.characterClass != m_pattern.newlineCharacterClass()) || !((firstNonAnchorTerm.quantityType == QuantifierGreedy) || (firstNonAnchorTerm.quantityType == QuantifierNonGreedy)))
790 return;
791
792 firstExpressionTerm = termIndex + 1;
793
794 termIndex = terms.size() - 1;
795 if (terms[termIndex].type == PatternTerm::TypeAssertionEOL) {
796 endsWithEOL = true;
797 --termIndex;
798 }
799
800 PatternTerm& lastNonAnchorTerm = terms[termIndex];
801 if ((lastNonAnchorTerm.type != PatternTerm::TypeCharacterClass) || (lastNonAnchorTerm.characterClass != m_pattern.newlineCharacterClass()) || (lastNonAnchorTerm.quantityType != QuantifierGreedy))
802 return;
803
804 lastExpressionTerm = termIndex - 1;
805
806 if (firstExpressionTerm > lastExpressionTerm)
807 return;
808
809 if (!containsCapturingTerms(alternative, firstExpressionTerm, lastExpressionTerm)) {
810 for (termIndex = terms.size() - 1; termIndex > lastExpressionTerm; --termIndex)
811 terms.remove(termIndex);
812
813 for (termIndex = firstExpressionTerm; termIndex > 0; --termIndex)
814 terms.remove(termIndex - 1);
815
816 terms.append(PatternTerm(startsWithBOL, endsWithEOL));
817
818 m_pattern.m_containsBOL = false;
819 }
820 }
821 }
822
823 private:
824 YarrPattern& m_pattern;
825 PatternAlternative* m_alternative;
826 CharacterClassConstructor m_characterClassConstructor;
827 bool m_invertCharacterClass;
828 bool m_invertParentheticalAssertion;
829 };
830
831 const char* YarrPattern::compile(const String& patternString)
832 {
833 YarrPatternConstructor constructor(*this);
834
835 if (const char* error = parse(constructor, patternString))
836 return error;
837
838 // If the pattern contains illegal backreferences reset & reparse.
839 // Quoting Netscape's "What's new in JavaScript 1.2",
840 // "Note: if the number of left parentheses is less than the number specified
841 // in \#, the \# is taken as an octal escape as described in the next row."
842 if (containsIllegalBackReference()) {
843 unsigned numSubpatterns = m_numSubpatterns;
844
845 constructor.reset();
846 #if !ASSERT_DISABLED
847 const char* error =
848 #endif
849 parse(constructor, patternString, numSubpatterns);
850
851 ASSERT(!error);
852 ASSERT(numSubpatterns == m_numSubpatterns);
853 }
854
855 constructor.checkForTerminalParentheses();
856 constructor.optimizeDotStarWrappedExpressions();
857 constructor.optimizeBOL();
858
859 constructor.setupOffsets();
860
861 return 0;
862 }
863
864 YarrPattern::YarrPattern(const String& pattern, bool ignoreCase, bool multiline, const char** error)
865 : m_ignoreCase(ignoreCase)
866 , m_multiline(multiline)
867 , m_containsBackreferences(false)
868 , m_containsBOL(false)
869 , m_containsUnsignedLengthPattern(false)
870 , m_numSubpatterns(0)
871 , m_maxBackReference(0)
872 , newlineCached(0)
873 , digitsCached(0)
874 , spacesCached(0)
875 , wordcharCached(0)
876 , nondigitsCached(0)
877 , nonspacesCached(0)
878 , nonwordcharCached(0)
879 {
880 *error = compile(pattern);
881 }
882
883 } }