]> git.saurik.com Git - apple/javascriptcore.git/blob - assembler/ARMAssembler.h
JavaScriptCore-7600.1.4.11.8.tar.gz
[apple/javascriptcore.git] / assembler / ARMAssembler.h
1 /*
2 * Copyright (C) 2009, 2010 University of Szeged
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY UNIVERSITY OF SZEGED ``AS IS'' AND ANY
15 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UNIVERSITY OF SZEGED OR
18 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
22 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #ifndef ARMAssembler_h
28 #define ARMAssembler_h
29
30 #if ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)
31
32 #include "AssemblerBufferWithConstantPool.h"
33 #include "JITCompilationEffort.h"
34 #include <wtf/Assertions.h>
35 namespace JSC {
36
37 typedef uint32_t ARMWord;
38
39 namespace ARMRegisters {
40 typedef enum {
41 r0 = 0,
42 r1,
43 r2,
44 r3,
45 r4,
46 r5,
47 r6, S0 = r6,
48 r7,
49 r8,
50 r9,
51 r10,
52 r11, fp = r11, // frame pointer
53 r12, ip = r12, S1 = r12,
54 r13, sp = r13,
55 r14, lr = r14,
56 r15, pc = r15
57 } RegisterID;
58
59 typedef enum {
60 d0,
61 d1,
62 d2,
63 d3,
64 d4,
65 d5,
66 d6,
67 d7, SD0 = d7, /* Same as thumb assembler. */
68 d8,
69 d9,
70 d10,
71 d11,
72 d12,
73 d13,
74 d14,
75 d15,
76 d16,
77 d17,
78 d18,
79 d19,
80 d20,
81 d21,
82 d22,
83 d23,
84 d24,
85 d25,
86 d26,
87 d27,
88 d28,
89 d29,
90 d30,
91 d31
92 } FPRegisterID;
93
94 #if USE(MASM_PROBE)
95 #define FOR_EACH_CPU_REGISTER(V) \
96 FOR_EACH_CPU_GPREGISTER(V) \
97 FOR_EACH_CPU_SPECIAL_REGISTER(V) \
98 FOR_EACH_CPU_FPREGISTER(V)
99
100 #define FOR_EACH_CPU_GPREGISTER(V) \
101 V(void*, r0) \
102 V(void*, r1) \
103 V(void*, r2) \
104 V(void*, r3) \
105 V(void*, r4) \
106 V(void*, r5) \
107 V(void*, r6) \
108 V(void*, r7) \
109 V(void*, r8) \
110 V(void*, r9) \
111 V(void*, r10) \
112 V(void*, r11) \
113 V(void*, ip) \
114 V(void*, sp) \
115 V(void*, lr) \
116 V(void*, pc)
117
118 #define FOR_EACH_CPU_SPECIAL_REGISTER(V) \
119 V(void*, apsr) \
120 V(void*, fpscr) \
121
122 #define FOR_EACH_CPU_FPREGISTER(V) \
123 V(double, d0) \
124 V(double, d1) \
125 V(double, d2) \
126 V(double, d3) \
127 V(double, d4) \
128 V(double, d5) \
129 V(double, d6) \
130 V(double, d7) \
131 V(double, d8) \
132 V(double, d9) \
133 V(double, d10) \
134 V(double, d11) \
135 V(double, d12) \
136 V(double, d13) \
137 V(double, d14) \
138 V(double, d15)
139 #endif // USE(MASM_PROBE)
140 } // namespace ARMRegisters
141
142 class ARMAssembler {
143 public:
144 typedef ARMRegisters::RegisterID RegisterID;
145 typedef ARMRegisters::FPRegisterID FPRegisterID;
146 typedef AssemblerBufferWithConstantPool<2048, 4, 4, ARMAssembler> ARMBuffer;
147 typedef SegmentedVector<AssemblerLabel, 64> Jumps;
148
149 ARMAssembler()
150 : m_indexOfTailOfLastWatchpoint(1)
151 {
152 }
153
154 ARMBuffer& buffer() { return m_buffer; }
155
156 static RegisterID firstRegister() { return ARMRegisters::r0; }
157 static RegisterID lastRegister() { return ARMRegisters::r15; }
158
159 static FPRegisterID firstFPRegister() { return ARMRegisters::d0; }
160 static FPRegisterID lastFPRegister() { return ARMRegisters::d31; }
161
162 // ARM conditional constants
163 typedef enum {
164 EQ = 0x00000000, // Zero / Equal.
165 NE = 0x10000000, // Non-zero / Not equal.
166 CS = 0x20000000, // Unsigned higher or same.
167 CC = 0x30000000, // Unsigned lower.
168 MI = 0x40000000, // Negative.
169 PL = 0x50000000, // Positive or zero.
170 VS = 0x60000000, // Overflowed.
171 VC = 0x70000000, // Not overflowed.
172 HI = 0x80000000, // Unsigned higher.
173 LS = 0x90000000, // Unsigned lower or same.
174 GE = 0xa0000000, // Signed greater than or equal.
175 LT = 0xb0000000, // Signed less than.
176 GT = 0xc0000000, // Signed greater than.
177 LE = 0xd0000000, // Signed less than or equal.
178 AL = 0xe0000000 // Unconditional / Always execute.
179 } Condition;
180
181 // ARM instruction constants
182 enum {
183 AND = (0x0 << 21),
184 EOR = (0x1 << 21),
185 SUB = (0x2 << 21),
186 RSB = (0x3 << 21),
187 ADD = (0x4 << 21),
188 ADC = (0x5 << 21),
189 SBC = (0x6 << 21),
190 RSC = (0x7 << 21),
191 TST = (0x8 << 21),
192 TEQ = (0x9 << 21),
193 CMP = (0xa << 21),
194 CMN = (0xb << 21),
195 ORR = (0xc << 21),
196 MOV = (0xd << 21),
197 BIC = (0xe << 21),
198 MVN = (0xf << 21),
199 MUL = 0x00000090,
200 MULL = 0x00c00090,
201 VMOV_F64 = 0x0eb00b40,
202 VADD_F64 = 0x0e300b00,
203 VDIV_F64 = 0x0e800b00,
204 VSUB_F64 = 0x0e300b40,
205 VMUL_F64 = 0x0e200b00,
206 VCMP_F64 = 0x0eb40b40,
207 VSQRT_F64 = 0x0eb10bc0,
208 VABS_F64 = 0x0eb00bc0,
209 VNEG_F64 = 0x0eb10b40,
210 STMDB = 0x09200000,
211 LDMIA = 0x08b00000,
212 B = 0x0a000000,
213 BL = 0x0b000000,
214 BX = 0x012fff10,
215 VMOV_VFP64 = 0x0c400a10,
216 VMOV_ARM64 = 0x0c500a10,
217 VMOV_VFP32 = 0x0e000a10,
218 VMOV_ARM32 = 0x0e100a10,
219 VCVT_F64_S32 = 0x0eb80bc0,
220 VCVT_S32_F64 = 0x0ebd0bc0,
221 VCVT_U32_F64 = 0x0ebc0bc0,
222 VCVT_F32_F64 = 0x0eb70bc0,
223 VCVT_F64_F32 = 0x0eb70ac0,
224 VMRS_APSR = 0x0ef1fa10,
225 CLZ = 0x016f0f10,
226 BKPT = 0xe1200070,
227 BLX = 0x012fff30,
228 #if WTF_ARM_ARCH_AT_LEAST(7)
229 MOVW = 0x03000000,
230 MOVT = 0x03400000,
231 #endif
232 NOP = 0xe1a00000,
233 DMB_SY = 0xf57ff05f,
234 };
235
236 enum {
237 Op2Immediate = (1 << 25),
238 ImmediateForHalfWordTransfer = (1 << 22),
239 Op2InvertedImmediate = (1 << 26),
240 SetConditionalCodes = (1 << 20),
241 Op2IsRegisterArgument = (1 << 25),
242 // Data transfer flags.
243 DataTransferUp = (1 << 23),
244 DataTransferWriteBack = (1 << 21),
245 DataTransferPostUpdate = (1 << 24),
246 DataTransferLoad = (1 << 20),
247 ByteDataTransfer = (1 << 22),
248 };
249
250 enum DataTransferTypeA {
251 LoadUint32 = 0x05000000 | DataTransferLoad,
252 LoadUint8 = 0x05400000 | DataTransferLoad,
253 StoreUint32 = 0x05000000,
254 StoreUint8 = 0x05400000,
255 };
256
257 enum DataTransferTypeB {
258 LoadUint16 = 0x010000b0 | DataTransferLoad,
259 LoadInt16 = 0x010000f0 | DataTransferLoad,
260 LoadInt8 = 0x010000d0 | DataTransferLoad,
261 StoreUint16 = 0x010000b0,
262 };
263
264 enum DataTransferTypeFloat {
265 LoadFloat = 0x0d000a00 | DataTransferLoad,
266 LoadDouble = 0x0d000b00 | DataTransferLoad,
267 StoreFloat = 0x0d000a00,
268 StoreDouble = 0x0d000b00,
269 };
270
271 // Masks of ARM instructions
272 enum {
273 BranchOffsetMask = 0x00ffffff,
274 ConditionalFieldMask = 0xf0000000,
275 DataTransferOffsetMask = 0xfff,
276 };
277
278 enum {
279 MinimumBranchOffsetDistance = -0x00800000,
280 MaximumBranchOffsetDistance = 0x007fffff,
281 };
282
283 enum {
284 padForAlign8 = 0x00,
285 padForAlign16 = 0x0000,
286 padForAlign32 = 0xe12fff7f // 'bkpt 0xffff' instruction.
287 };
288
289 static const ARMWord InvalidImmediate = 0xf0000000;
290 static const ARMWord InvalidBranchTarget = 0xffffffff;
291 static const int DefaultPrefetchOffset = 2;
292
293 static const ARMWord BlxInstructionMask = 0x012fff30;
294 static const ARMWord LdrOrAddInstructionMask = 0x0ff00000;
295 static const ARMWord LdrPcImmediateInstructionMask = 0x0f7f0000;
296
297 static const ARMWord AddImmediateInstruction = 0x02800000;
298 static const ARMWord BlxInstruction = 0x012fff30;
299 static const ARMWord LdrImmediateInstruction = 0x05900000;
300 static const ARMWord LdrPcImmediateInstruction = 0x051f0000;
301
302 // Instruction formating
303
304 void emitInstruction(ARMWord op, int rd, int rn, ARMWord op2)
305 {
306 ASSERT(((op2 & ~Op2Immediate) <= 0xfff) || (((op2 & ~ImmediateForHalfWordTransfer) <= 0xfff)));
307 m_buffer.putInt(op | RN(rn) | RD(rd) | op2);
308 }
309
310 void emitDoublePrecisionInstruction(ARMWord op, int dd, int dn, int dm)
311 {
312 ASSERT((dd >= 0 && dd <= 31) && (dn >= 0 && dn <= 31) && (dm >= 0 && dm <= 31));
313 m_buffer.putInt(op | ((dd & 0xf) << 12) | ((dd & 0x10) << (22 - 4))
314 | ((dn & 0xf) << 16) | ((dn & 0x10) << (7 - 4))
315 | (dm & 0xf) | ((dm & 0x10) << (5 - 4)));
316 }
317
318 void emitSinglePrecisionInstruction(ARMWord op, int sd, int sn, int sm)
319 {
320 ASSERT((sd >= 0 && sd <= 31) && (sn >= 0 && sn <= 31) && (sm >= 0 && sm <= 31));
321 m_buffer.putInt(op | ((sd >> 1) << 12) | ((sd & 0x1) << 22)
322 | ((sn >> 1) << 16) | ((sn & 0x1) << 7)
323 | (sm >> 1) | ((sm & 0x1) << 5));
324 }
325
326 void bitAnd(int rd, int rn, ARMWord op2, Condition cc = AL)
327 {
328 emitInstruction(toARMWord(cc) | AND, rd, rn, op2);
329 }
330
331 void bitAnds(int rd, int rn, ARMWord op2, Condition cc = AL)
332 {
333 emitInstruction(toARMWord(cc) | AND | SetConditionalCodes, rd, rn, op2);
334 }
335
336 void eor(int rd, int rn, ARMWord op2, Condition cc = AL)
337 {
338 emitInstruction(toARMWord(cc) | EOR, rd, rn, op2);
339 }
340
341 void eors(int rd, int rn, ARMWord op2, Condition cc = AL)
342 {
343 emitInstruction(toARMWord(cc) | EOR | SetConditionalCodes, rd, rn, op2);
344 }
345
346 void sub(int rd, int rn, ARMWord op2, Condition cc = AL)
347 {
348 emitInstruction(toARMWord(cc) | SUB, rd, rn, op2);
349 }
350
351 void subs(int rd, int rn, ARMWord op2, Condition cc = AL)
352 {
353 emitInstruction(toARMWord(cc) | SUB | SetConditionalCodes, rd, rn, op2);
354 }
355
356 void rsb(int rd, int rn, ARMWord op2, Condition cc = AL)
357 {
358 emitInstruction(toARMWord(cc) | RSB, rd, rn, op2);
359 }
360
361 void rsbs(int rd, int rn, ARMWord op2, Condition cc = AL)
362 {
363 emitInstruction(toARMWord(cc) | RSB | SetConditionalCodes, rd, rn, op2);
364 }
365
366 void add(int rd, int rn, ARMWord op2, Condition cc = AL)
367 {
368 emitInstruction(toARMWord(cc) | ADD, rd, rn, op2);
369 }
370
371 void adds(int rd, int rn, ARMWord op2, Condition cc = AL)
372 {
373 emitInstruction(toARMWord(cc) | ADD | SetConditionalCodes, rd, rn, op2);
374 }
375
376 void adc(int rd, int rn, ARMWord op2, Condition cc = AL)
377 {
378 emitInstruction(toARMWord(cc) | ADC, rd, rn, op2);
379 }
380
381 void adcs(int rd, int rn, ARMWord op2, Condition cc = AL)
382 {
383 emitInstruction(toARMWord(cc) | ADC | SetConditionalCodes, rd, rn, op2);
384 }
385
386 void sbc(int rd, int rn, ARMWord op2, Condition cc = AL)
387 {
388 emitInstruction(toARMWord(cc) | SBC, rd, rn, op2);
389 }
390
391 void sbcs(int rd, int rn, ARMWord op2, Condition cc = AL)
392 {
393 emitInstruction(toARMWord(cc) | SBC | SetConditionalCodes, rd, rn, op2);
394 }
395
396 void rsc(int rd, int rn, ARMWord op2, Condition cc = AL)
397 {
398 emitInstruction(toARMWord(cc) | RSC, rd, rn, op2);
399 }
400
401 void rscs(int rd, int rn, ARMWord op2, Condition cc = AL)
402 {
403 emitInstruction(toARMWord(cc) | RSC | SetConditionalCodes, rd, rn, op2);
404 }
405
406 void tst(int rn, ARMWord op2, Condition cc = AL)
407 {
408 emitInstruction(toARMWord(cc) | TST | SetConditionalCodes, 0, rn, op2);
409 }
410
411 void teq(int rn, ARMWord op2, Condition cc = AL)
412 {
413 emitInstruction(toARMWord(cc) | TEQ | SetConditionalCodes, 0, rn, op2);
414 }
415
416 void cmp(int rn, ARMWord op2, Condition cc = AL)
417 {
418 emitInstruction(toARMWord(cc) | CMP | SetConditionalCodes, 0, rn, op2);
419 }
420
421 void cmn(int rn, ARMWord op2, Condition cc = AL)
422 {
423 emitInstruction(toARMWord(cc) | CMN | SetConditionalCodes, 0, rn, op2);
424 }
425
426 void orr(int rd, int rn, ARMWord op2, Condition cc = AL)
427 {
428 emitInstruction(toARMWord(cc) | ORR, rd, rn, op2);
429 }
430
431 void orrs(int rd, int rn, ARMWord op2, Condition cc = AL)
432 {
433 emitInstruction(toARMWord(cc) | ORR | SetConditionalCodes, rd, rn, op2);
434 }
435
436 void mov(int rd, ARMWord op2, Condition cc = AL)
437 {
438 emitInstruction(toARMWord(cc) | MOV, rd, ARMRegisters::r0, op2);
439 }
440
441 #if WTF_ARM_ARCH_AT_LEAST(7)
442 void movw(int rd, ARMWord op2, Condition cc = AL)
443 {
444 ASSERT((op2 | 0xf0fff) == 0xf0fff);
445 m_buffer.putInt(toARMWord(cc) | MOVW | RD(rd) | op2);
446 }
447
448 void movt(int rd, ARMWord op2, Condition cc = AL)
449 {
450 ASSERT((op2 | 0xf0fff) == 0xf0fff);
451 m_buffer.putInt(toARMWord(cc) | MOVT | RD(rd) | op2);
452 }
453 #endif
454
455 void movs(int rd, ARMWord op2, Condition cc = AL)
456 {
457 emitInstruction(toARMWord(cc) | MOV | SetConditionalCodes, rd, ARMRegisters::r0, op2);
458 }
459
460 void bic(int rd, int rn, ARMWord op2, Condition cc = AL)
461 {
462 emitInstruction(toARMWord(cc) | BIC, rd, rn, op2);
463 }
464
465 void bics(int rd, int rn, ARMWord op2, Condition cc = AL)
466 {
467 emitInstruction(toARMWord(cc) | BIC | SetConditionalCodes, rd, rn, op2);
468 }
469
470 void mvn(int rd, ARMWord op2, Condition cc = AL)
471 {
472 emitInstruction(toARMWord(cc) | MVN, rd, ARMRegisters::r0, op2);
473 }
474
475 void mvns(int rd, ARMWord op2, Condition cc = AL)
476 {
477 emitInstruction(toARMWord(cc) | MVN | SetConditionalCodes, rd, ARMRegisters::r0, op2);
478 }
479
480 void mul(int rd, int rn, int rm, Condition cc = AL)
481 {
482 m_buffer.putInt(toARMWord(cc) | MUL | RN(rd) | RS(rn) | RM(rm));
483 }
484
485 void muls(int rd, int rn, int rm, Condition cc = AL)
486 {
487 m_buffer.putInt(toARMWord(cc) | MUL | SetConditionalCodes | RN(rd) | RS(rn) | RM(rm));
488 }
489
490 void mull(int rdhi, int rdlo, int rn, int rm, Condition cc = AL)
491 {
492 m_buffer.putInt(toARMWord(cc) | MULL | RN(rdhi) | RD(rdlo) | RS(rn) | RM(rm));
493 }
494
495 void vmov_f64(int dd, int dm, Condition cc = AL)
496 {
497 emitDoublePrecisionInstruction(toARMWord(cc) | VMOV_F64, dd, 0, dm);
498 }
499
500 void vadd_f64(int dd, int dn, int dm, Condition cc = AL)
501 {
502 emitDoublePrecisionInstruction(toARMWord(cc) | VADD_F64, dd, dn, dm);
503 }
504
505 void vdiv_f64(int dd, int dn, int dm, Condition cc = AL)
506 {
507 emitDoublePrecisionInstruction(toARMWord(cc) | VDIV_F64, dd, dn, dm);
508 }
509
510 void vsub_f64(int dd, int dn, int dm, Condition cc = AL)
511 {
512 emitDoublePrecisionInstruction(toARMWord(cc) | VSUB_F64, dd, dn, dm);
513 }
514
515 void vmul_f64(int dd, int dn, int dm, Condition cc = AL)
516 {
517 emitDoublePrecisionInstruction(toARMWord(cc) | VMUL_F64, dd, dn, dm);
518 }
519
520 void vcmp_f64(int dd, int dm, Condition cc = AL)
521 {
522 emitDoublePrecisionInstruction(toARMWord(cc) | VCMP_F64, dd, 0, dm);
523 }
524
525 void vsqrt_f64(int dd, int dm, Condition cc = AL)
526 {
527 emitDoublePrecisionInstruction(toARMWord(cc) | VSQRT_F64, dd, 0, dm);
528 }
529
530 void vabs_f64(int dd, int dm, Condition cc = AL)
531 {
532 emitDoublePrecisionInstruction(toARMWord(cc) | VABS_F64, dd, 0, dm);
533 }
534
535 void vneg_f64(int dd, int dm, Condition cc = AL)
536 {
537 emitDoublePrecisionInstruction(toARMWord(cc) | VNEG_F64, dd, 0, dm);
538 }
539
540 void ldrImmediate(int rd, ARMWord imm, Condition cc = AL)
541 {
542 m_buffer.putIntWithConstantInt(toARMWord(cc) | LoadUint32 | DataTransferUp | RN(ARMRegisters::pc) | RD(rd), imm, true);
543 }
544
545 void ldrUniqueImmediate(int rd, ARMWord imm, Condition cc = AL)
546 {
547 m_buffer.putIntWithConstantInt(toARMWord(cc) | LoadUint32 | DataTransferUp | RN(ARMRegisters::pc) | RD(rd), imm);
548 }
549
550 void dtrUp(DataTransferTypeA transferType, int rd, int rb, ARMWord op2, Condition cc = AL)
551 {
552 emitInstruction(toARMWord(cc) | transferType | DataTransferUp, rd, rb, op2);
553 }
554
555 void dtrUpRegister(DataTransferTypeA transferType, int rd, int rb, int rm, Condition cc = AL)
556 {
557 emitInstruction(toARMWord(cc) | transferType | DataTransferUp | Op2IsRegisterArgument, rd, rb, rm);
558 }
559
560 void dtrDown(DataTransferTypeA transferType, int rd, int rb, ARMWord op2, Condition cc = AL)
561 {
562 emitInstruction(toARMWord(cc) | transferType, rd, rb, op2);
563 }
564
565 void dtrDownRegister(DataTransferTypeA transferType, int rd, int rb, int rm, Condition cc = AL)
566 {
567 emitInstruction(toARMWord(cc) | transferType | Op2IsRegisterArgument, rd, rb, rm);
568 }
569
570 void halfDtrUp(DataTransferTypeB transferType, int rd, int rb, ARMWord op2, Condition cc = AL)
571 {
572 emitInstruction(toARMWord(cc) | transferType | DataTransferUp, rd, rb, op2);
573 }
574
575 void halfDtrUpRegister(DataTransferTypeB transferType, int rd, int rn, int rm, Condition cc = AL)
576 {
577 emitInstruction(toARMWord(cc) | transferType | DataTransferUp, rd, rn, rm);
578 }
579
580 void halfDtrDown(DataTransferTypeB transferType, int rd, int rb, ARMWord op2, Condition cc = AL)
581 {
582 emitInstruction(toARMWord(cc) | transferType, rd, rb, op2);
583 }
584
585 void halfDtrDownRegister(DataTransferTypeB transferType, int rd, int rn, int rm, Condition cc = AL)
586 {
587 emitInstruction(toARMWord(cc) | transferType, rd, rn, rm);
588 }
589
590 void doubleDtrUp(DataTransferTypeFloat type, int rd, int rb, ARMWord op2, Condition cc = AL)
591 {
592 ASSERT(op2 <= 0xff && rd <= 15);
593 /* Only d0-d15 and s0, s2, s4 ... s30 are supported. */
594 m_buffer.putInt(toARMWord(cc) | DataTransferUp | type | (rd << 12) | RN(rb) | op2);
595 }
596
597 void doubleDtrDown(DataTransferTypeFloat type, int rd, int rb, ARMWord op2, Condition cc = AL)
598 {
599 ASSERT(op2 <= 0xff && rd <= 15);
600 /* Only d0-d15 and s0, s2, s4 ... s30 are supported. */
601 m_buffer.putInt(toARMWord(cc) | type | (rd << 12) | RN(rb) | op2);
602 }
603
604 void push(int reg, Condition cc = AL)
605 {
606 ASSERT(ARMWord(reg) <= 0xf);
607 m_buffer.putInt(toARMWord(cc) | StoreUint32 | DataTransferWriteBack | RN(ARMRegisters::sp) | RD(reg) | 0x4);
608 }
609
610 void pop(int reg, Condition cc = AL)
611 {
612 ASSERT(ARMWord(reg) <= 0xf);
613 m_buffer.putInt(toARMWord(cc) | (LoadUint32 ^ DataTransferPostUpdate) | DataTransferUp | RN(ARMRegisters::sp) | RD(reg) | 0x4);
614 }
615
616 inline void poke(int reg, Condition cc = AL)
617 {
618 dtrDown(StoreUint32, ARMRegisters::sp, 0, reg, cc);
619 }
620
621 inline void peek(int reg, Condition cc = AL)
622 {
623 dtrUp(LoadUint32, reg, ARMRegisters::sp, 0, cc);
624 }
625
626 void vmov_vfp64(int sm, int rt, int rt2, Condition cc = AL)
627 {
628 ASSERT(rt != rt2);
629 m_buffer.putInt(toARMWord(cc) | VMOV_VFP64 | RN(rt2) | RD(rt) | (sm & 0xf) | ((sm & 0x10) << (5 - 4)));
630 }
631
632 void vmov_arm64(int rt, int rt2, int sm, Condition cc = AL)
633 {
634 ASSERT(rt != rt2);
635 m_buffer.putInt(toARMWord(cc) | VMOV_ARM64 | RN(rt2) | RD(rt) | (sm & 0xf) | ((sm & 0x10) << (5 - 4)));
636 }
637
638 void vmov_vfp32(int sn, int rt, Condition cc = AL)
639 {
640 ASSERT(rt <= 15);
641 emitSinglePrecisionInstruction(toARMWord(cc) | VMOV_VFP32, rt << 1, sn, 0);
642 }
643
644 void vmov_arm32(int rt, int sn, Condition cc = AL)
645 {
646 ASSERT(rt <= 15);
647 emitSinglePrecisionInstruction(toARMWord(cc) | VMOV_ARM32, rt << 1, sn, 0);
648 }
649
650 void vcvt_f64_s32(int dd, int sm, Condition cc = AL)
651 {
652 ASSERT(!(sm & 0x1)); // sm must be divisible by 2
653 emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_F64_S32, dd, 0, (sm >> 1));
654 }
655
656 void vcvt_s32_f64(int sd, int dm, Condition cc = AL)
657 {
658 ASSERT(!(sd & 0x1)); // sd must be divisible by 2
659 emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_S32_F64, (sd >> 1), 0, dm);
660 }
661
662 void vcvt_u32_f64(int sd, int dm, Condition cc = AL)
663 {
664 ASSERT(!(sd & 0x1)); // sd must be divisible by 2
665 emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_U32_F64, (sd >> 1), 0, dm);
666 }
667
668 void vcvt_f64_f32(int dd, int sm, Condition cc = AL)
669 {
670 ASSERT(dd <= 15 && sm <= 15);
671 emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_F64_F32, dd, 0, sm);
672 }
673
674 void vcvt_f32_f64(int dd, int sm, Condition cc = AL)
675 {
676 ASSERT(dd <= 15 && sm <= 15);
677 emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_F32_F64, dd, 0, sm);
678 }
679
680 void vmrs_apsr(Condition cc = AL)
681 {
682 m_buffer.putInt(toARMWord(cc) | VMRS_APSR);
683 }
684
685 void clz(int rd, int rm, Condition cc = AL)
686 {
687 m_buffer.putInt(toARMWord(cc) | CLZ | RD(rd) | RM(rm));
688 }
689
690 void bkpt(ARMWord value)
691 {
692 m_buffer.putInt(BKPT | ((value & 0xff0) << 4) | (value & 0xf));
693 }
694
695 void nop()
696 {
697 m_buffer.putInt(NOP);
698 }
699
700 void dmbSY()
701 {
702 m_buffer.putInt(DMB_SY);
703 }
704
705 void bx(int rm, Condition cc = AL)
706 {
707 emitInstruction(toARMWord(cc) | BX, 0, 0, RM(rm));
708 }
709
710 AssemblerLabel blx(int rm, Condition cc = AL)
711 {
712 emitInstruction(toARMWord(cc) | BLX, 0, 0, RM(rm));
713 return m_buffer.label();
714 }
715
716 static ARMWord lsl(int reg, ARMWord value)
717 {
718 ASSERT(reg <= ARMRegisters::pc);
719 ASSERT(value <= 0x1f);
720 return reg | (value << 7) | 0x00;
721 }
722
723 static ARMWord lsr(int reg, ARMWord value)
724 {
725 ASSERT(reg <= ARMRegisters::pc);
726 ASSERT(value <= 0x1f);
727 return reg | (value << 7) | 0x20;
728 }
729
730 static ARMWord asr(int reg, ARMWord value)
731 {
732 ASSERT(reg <= ARMRegisters::pc);
733 ASSERT(value <= 0x1f);
734 return reg | (value << 7) | 0x40;
735 }
736
737 static ARMWord lslRegister(int reg, int shiftReg)
738 {
739 ASSERT(reg <= ARMRegisters::pc);
740 ASSERT(shiftReg <= ARMRegisters::pc);
741 return reg | (shiftReg << 8) | 0x10;
742 }
743
744 static ARMWord lsrRegister(int reg, int shiftReg)
745 {
746 ASSERT(reg <= ARMRegisters::pc);
747 ASSERT(shiftReg <= ARMRegisters::pc);
748 return reg | (shiftReg << 8) | 0x30;
749 }
750
751 static ARMWord asrRegister(int reg, int shiftReg)
752 {
753 ASSERT(reg <= ARMRegisters::pc);
754 ASSERT(shiftReg <= ARMRegisters::pc);
755 return reg | (shiftReg << 8) | 0x50;
756 }
757
758 // General helpers
759
760 size_t codeSize() const
761 {
762 return m_buffer.codeSize();
763 }
764
765 void ensureSpace(int insnSpace, int constSpace)
766 {
767 m_buffer.ensureSpace(insnSpace, constSpace);
768 }
769
770 int sizeOfConstantPool()
771 {
772 return m_buffer.sizeOfConstantPool();
773 }
774
775 AssemblerLabel labelIgnoringWatchpoints()
776 {
777 m_buffer.ensureSpaceForAnyInstruction();
778 return m_buffer.label();
779 }
780
781 AssemblerLabel labelForWatchpoint()
782 {
783 m_buffer.ensureSpaceForAnyInstruction(maxJumpReplacementSize() / sizeof(ARMWord));
784 AssemblerLabel result = m_buffer.label();
785 if (result.m_offset != (m_indexOfTailOfLastWatchpoint - maxJumpReplacementSize()))
786 result = label();
787 m_indexOfTailOfLastWatchpoint = result.m_offset + maxJumpReplacementSize();
788 return label();
789 }
790
791 AssemblerLabel label()
792 {
793 AssemblerLabel result = labelIgnoringWatchpoints();
794 while (result.m_offset + 1 < m_indexOfTailOfLastWatchpoint) {
795 nop();
796 // The available number of instructions are ensured by labelForWatchpoint.
797 result = m_buffer.label();
798 }
799 return result;
800 }
801
802 AssemblerLabel align(int alignment)
803 {
804 while (!m_buffer.isAligned(alignment))
805 mov(ARMRegisters::r0, ARMRegisters::r0);
806
807 return label();
808 }
809
810 AssemblerLabel loadBranchTarget(int rd, Condition cc = AL, int useConstantPool = 0)
811 {
812 ensureSpace(sizeof(ARMWord), sizeof(ARMWord));
813 m_jumps.append(m_buffer.codeSize() | (useConstantPool & 0x1));
814 ldrUniqueImmediate(rd, InvalidBranchTarget, cc);
815 return m_buffer.label();
816 }
817
818 AssemblerLabel jmp(Condition cc = AL, int useConstantPool = 0)
819 {
820 return loadBranchTarget(ARMRegisters::pc, cc, useConstantPool);
821 }
822
823 void prepareExecutableCopy(void* to);
824
825 unsigned debugOffset() { return m_buffer.debugOffset(); }
826
827 // DFG assembly helpers for moving data between fp and registers.
828 void vmov(RegisterID rd1, RegisterID rd2, FPRegisterID rn)
829 {
830 vmov_arm64(rd1, rd2, rn);
831 }
832
833 void vmov(FPRegisterID rd, RegisterID rn1, RegisterID rn2)
834 {
835 vmov_vfp64(rd, rn1, rn2);
836 }
837
838 // Patching helpers
839
840 static ARMWord* getLdrImmAddress(ARMWord* insn)
841 {
842 // Check for call
843 if ((*insn & LdrPcImmediateInstructionMask) != LdrPcImmediateInstruction) {
844 // Must be BLX
845 ASSERT((*insn & BlxInstructionMask) == BlxInstruction);
846 insn--;
847 }
848
849 // Must be an ldr ..., [pc +/- imm]
850 ASSERT((*insn & LdrPcImmediateInstructionMask) == LdrPcImmediateInstruction);
851
852 ARMWord addr = reinterpret_cast<ARMWord>(insn) + DefaultPrefetchOffset * sizeof(ARMWord);
853 if (*insn & DataTransferUp)
854 return reinterpret_cast<ARMWord*>(addr + (*insn & DataTransferOffsetMask));
855 return reinterpret_cast<ARMWord*>(addr - (*insn & DataTransferOffsetMask));
856 }
857
858 static ARMWord* getLdrImmAddressOnPool(ARMWord* insn, uint32_t* constPool)
859 {
860 // Must be an ldr ..., [pc +/- imm]
861 ASSERT((*insn & LdrPcImmediateInstructionMask) == LdrPcImmediateInstruction);
862
863 if (*insn & 0x1)
864 return reinterpret_cast<ARMWord*>(constPool + ((*insn & DataTransferOffsetMask) >> 1));
865 return getLdrImmAddress(insn);
866 }
867
868 static void patchPointerInternal(intptr_t from, void* to)
869 {
870 ARMWord* insn = reinterpret_cast<ARMWord*>(from);
871 ARMWord* addr = getLdrImmAddress(insn);
872 *addr = reinterpret_cast<ARMWord>(to);
873 }
874
875 static ARMWord patchConstantPoolLoad(ARMWord load, ARMWord value)
876 {
877 value = (value << 1) + 1;
878 ASSERT(!(value & ~DataTransferOffsetMask));
879 return (load & ~DataTransferOffsetMask) | value;
880 }
881
882 static void patchConstantPoolLoad(void* loadAddr, void* constPoolAddr);
883
884 // Read pointers
885 static void* readPointer(void* from)
886 {
887 ARMWord* instruction = reinterpret_cast<ARMWord*>(from);
888 ARMWord* address = getLdrImmAddress(instruction);
889 return *reinterpret_cast<void**>(address);
890 }
891
892 // Patch pointers
893
894 static void linkPointer(void* code, AssemblerLabel from, void* to)
895 {
896 patchPointerInternal(reinterpret_cast<intptr_t>(code) + from.m_offset, to);
897 }
898
899 static void repatchInt32(void* where, int32_t to)
900 {
901 patchPointerInternal(reinterpret_cast<intptr_t>(where), reinterpret_cast<void*>(to));
902 }
903
904 static void repatchCompact(void* where, int32_t value)
905 {
906 ARMWord* instruction = reinterpret_cast<ARMWord*>(where);
907 ASSERT((*instruction & 0x0f700000) == LoadUint32);
908 if (value >= 0)
909 *instruction = (*instruction & 0xff7ff000) | DataTransferUp | value;
910 else
911 *instruction = (*instruction & 0xff7ff000) | -value;
912 cacheFlush(instruction, sizeof(ARMWord));
913 }
914
915 static void repatchPointer(void* from, void* to)
916 {
917 patchPointerInternal(reinterpret_cast<intptr_t>(from), to);
918 }
919
920 // Linkers
921 static intptr_t getAbsoluteJumpAddress(void* base, int offset = 0)
922 {
923 return reinterpret_cast<intptr_t>(base) + offset - sizeof(ARMWord);
924 }
925
926 void linkJump(AssemblerLabel from, AssemblerLabel to)
927 {
928 ARMWord* insn = reinterpret_cast<ARMWord*>(getAbsoluteJumpAddress(m_buffer.data(), from.m_offset));
929 ARMWord* addr = getLdrImmAddressOnPool(insn, m_buffer.poolAddress());
930 *addr = toARMWord(to.m_offset);
931 }
932
933 static void linkJump(void* code, AssemblerLabel from, void* to)
934 {
935 patchPointerInternal(getAbsoluteJumpAddress(code, from.m_offset), to);
936 }
937
938 static void relinkJump(void* from, void* to)
939 {
940 patchPointerInternal(getAbsoluteJumpAddress(from), to);
941 }
942
943 static void linkCall(void* code, AssemblerLabel from, void* to)
944 {
945 patchPointerInternal(getAbsoluteJumpAddress(code, from.m_offset), to);
946 }
947
948 static void relinkCall(void* from, void* to)
949 {
950 patchPointerInternal(getAbsoluteJumpAddress(from), to);
951 }
952
953 static void* readCallTarget(void* from)
954 {
955 return reinterpret_cast<void*>(readPointer(reinterpret_cast<void*>(getAbsoluteJumpAddress(from))));
956 }
957
958 static void replaceWithJump(void* instructionStart, void* to)
959 {
960 ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart);
961 intptr_t difference = reinterpret_cast<intptr_t>(to) - (reinterpret_cast<intptr_t>(instruction) + DefaultPrefetchOffset * sizeof(ARMWord));
962
963 if (!(difference & 1)) {
964 difference >>= 2;
965 if ((difference <= MaximumBranchOffsetDistance && difference >= MinimumBranchOffsetDistance)) {
966 // Direct branch.
967 instruction[0] = B | AL | (difference & BranchOffsetMask);
968 cacheFlush(instruction, sizeof(ARMWord));
969 return;
970 }
971 }
972
973 // Load target.
974 instruction[0] = LoadUint32 | AL | RN(ARMRegisters::pc) | RD(ARMRegisters::pc) | 4;
975 instruction[1] = reinterpret_cast<ARMWord>(to);
976 cacheFlush(instruction, sizeof(ARMWord) * 2);
977 }
978
979 static ptrdiff_t maxJumpReplacementSize()
980 {
981 return sizeof(ARMWord) * 2;
982 }
983
984 static void replaceWithLoad(void* instructionStart)
985 {
986 ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart);
987 cacheFlush(instruction, sizeof(ARMWord));
988
989 ASSERT((*instruction & LdrOrAddInstructionMask) == AddImmediateInstruction || (*instruction & LdrOrAddInstructionMask) == LdrImmediateInstruction);
990 if ((*instruction & LdrOrAddInstructionMask) == AddImmediateInstruction) {
991 *instruction = (*instruction & ~LdrOrAddInstructionMask) | LdrImmediateInstruction;
992 cacheFlush(instruction, sizeof(ARMWord));
993 }
994 }
995
996 static void replaceWithAddressComputation(void* instructionStart)
997 {
998 ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart);
999 cacheFlush(instruction, sizeof(ARMWord));
1000
1001 ASSERT((*instruction & LdrOrAddInstructionMask) == AddImmediateInstruction || (*instruction & LdrOrAddInstructionMask) == LdrImmediateInstruction);
1002 if ((*instruction & LdrOrAddInstructionMask) == LdrImmediateInstruction) {
1003 *instruction = (*instruction & ~LdrOrAddInstructionMask) | AddImmediateInstruction;
1004 cacheFlush(instruction, sizeof(ARMWord));
1005 }
1006 }
1007
1008 static void revertBranchPtrWithPatch(void* instructionStart, RegisterID rn, ARMWord imm)
1009 {
1010 ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart);
1011
1012 ASSERT((instruction[2] & LdrPcImmediateInstructionMask) == LdrPcImmediateInstruction);
1013 instruction[0] = toARMWord(AL) | ((instruction[2] & 0x0fff0fff) + sizeof(ARMWord)) | RD(ARMRegisters::S1);
1014 *getLdrImmAddress(instruction) = imm;
1015 instruction[1] = toARMWord(AL) | CMP | SetConditionalCodes | RN(rn) | RM(ARMRegisters::S1);
1016 cacheFlush(instruction, 2 * sizeof(ARMWord));
1017 }
1018
1019 // Address operations
1020
1021 static void* getRelocatedAddress(void* code, AssemblerLabel label)
1022 {
1023 return reinterpret_cast<void*>(reinterpret_cast<char*>(code) + label.m_offset);
1024 }
1025
1026 // Address differences
1027
1028 static int getDifferenceBetweenLabels(AssemblerLabel a, AssemblerLabel b)
1029 {
1030 return b.m_offset - a.m_offset;
1031 }
1032
1033 static unsigned getCallReturnOffset(AssemblerLabel call)
1034 {
1035 return call.m_offset;
1036 }
1037
1038 // Handle immediates
1039
1040 static ARMWord getOp2(ARMWord imm);
1041
1042 // Fast case if imm is known to be between 0 and 0xff
1043 static ARMWord getOp2Byte(ARMWord imm)
1044 {
1045 ASSERT(imm <= 0xff);
1046 return Op2Immediate | imm;
1047 }
1048
1049 static ARMWord getOp2Half(ARMWord imm)
1050 {
1051 ASSERT(imm <= 0xff);
1052 return ImmediateForHalfWordTransfer | (imm & 0x0f) | ((imm & 0xf0) << 4);
1053 }
1054
1055 #if WTF_ARM_ARCH_AT_LEAST(7)
1056 static ARMWord getImm16Op2(ARMWord imm)
1057 {
1058 if (imm <= 0xffff)
1059 return (imm & 0xf000) << 4 | (imm & 0xfff);
1060 return InvalidImmediate;
1061 }
1062 #endif
1063 ARMWord getImm(ARMWord imm, int tmpReg, bool invert = false);
1064 void moveImm(ARMWord imm, int dest);
1065 ARMWord encodeComplexImm(ARMWord imm, int dest);
1066
1067 // Memory load/store helpers
1068
1069 void dataTransfer32(DataTransferTypeA, RegisterID srcDst, RegisterID base, int32_t offset);
1070 void baseIndexTransfer32(DataTransferTypeA, RegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset);
1071 void dataTransfer16(DataTransferTypeB, RegisterID srcDst, RegisterID base, int32_t offset);
1072 void baseIndexTransfer16(DataTransferTypeB, RegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset);
1073 void dataTransferFloat(DataTransferTypeFloat, FPRegisterID srcDst, RegisterID base, int32_t offset);
1074 void baseIndexTransferFloat(DataTransferTypeFloat, FPRegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset);
1075
1076 // Constant pool hnadlers
1077
1078 static ARMWord placeConstantPoolBarrier(int offset)
1079 {
1080 offset = (offset - sizeof(ARMWord)) >> 2;
1081 ASSERT((offset <= MaximumBranchOffsetDistance && offset >= MinimumBranchOffsetDistance));
1082 return AL | B | (offset & BranchOffsetMask);
1083 }
1084
1085 #if OS(LINUX) && COMPILER(GCC)
1086 static inline void linuxPageFlush(uintptr_t begin, uintptr_t end)
1087 {
1088 asm volatile(
1089 "push {r7}\n"
1090 "mov r0, %0\n"
1091 "mov r1, %1\n"
1092 "mov r7, #0xf0000\n"
1093 "add r7, r7, #0x2\n"
1094 "mov r2, #0x0\n"
1095 "svc 0x0\n"
1096 "pop {r7}\n"
1097 :
1098 : "r" (begin), "r" (end)
1099 : "r0", "r1", "r2");
1100 }
1101 #endif
1102
1103 static void cacheFlush(void* code, size_t size)
1104 {
1105 #if OS(LINUX) && COMPILER(GCC)
1106 size_t page = pageSize();
1107 uintptr_t current = reinterpret_cast<uintptr_t>(code);
1108 uintptr_t end = current + size;
1109 uintptr_t firstPageEnd = (current & ~(page - 1)) + page;
1110
1111 if (end <= firstPageEnd) {
1112 linuxPageFlush(current, end);
1113 return;
1114 }
1115
1116 linuxPageFlush(current, firstPageEnd);
1117
1118 for (current = firstPageEnd; current + page < end; current += page)
1119 linuxPageFlush(current, current + page);
1120
1121 linuxPageFlush(current, end);
1122 #elif OS(WINCE)
1123 CacheRangeFlush(code, size, CACHE_SYNC_ALL);
1124 #else
1125 #error "The cacheFlush support is missing on this platform."
1126 #endif
1127 }
1128
1129 private:
1130 static ARMWord RM(int reg)
1131 {
1132 ASSERT(reg <= ARMRegisters::pc);
1133 return reg;
1134 }
1135
1136 static ARMWord RS(int reg)
1137 {
1138 ASSERT(reg <= ARMRegisters::pc);
1139 return reg << 8;
1140 }
1141
1142 static ARMWord RD(int reg)
1143 {
1144 ASSERT(reg <= ARMRegisters::pc);
1145 return reg << 12;
1146 }
1147
1148 static ARMWord RN(int reg)
1149 {
1150 ASSERT(reg <= ARMRegisters::pc);
1151 return reg << 16;
1152 }
1153
1154 static ARMWord getConditionalField(ARMWord i)
1155 {
1156 return i & ConditionalFieldMask;
1157 }
1158
1159 static ARMWord toARMWord(Condition cc)
1160 {
1161 return static_cast<ARMWord>(cc);
1162 }
1163
1164 static ARMWord toARMWord(uint32_t u)
1165 {
1166 return static_cast<ARMWord>(u);
1167 }
1168
1169 int genInt(int reg, ARMWord imm, bool positive);
1170
1171 ARMBuffer m_buffer;
1172 Jumps m_jumps;
1173 uint32_t m_indexOfTailOfLastWatchpoint;
1174 };
1175
1176 } // namespace JSC
1177
1178 #endif // ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)
1179
1180 #endif // ARMAssembler_h