1 // Copyright (c) 2007, Google Inc.
2 // All rights reserved.
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 // This file provides a minimal cache that can hold a <key, value> pair
34 // with little if any wasted space. The types of the key and value
35 // must be unsigned integral types or at least have unsigned semantics
36 // for >>, casting, and similar operations.
38 // Synchronization is not provided. However, the cache is implemented
39 // as an array of cache entries whose type is chosen at compile time.
40 // If a[i] is atomic on your hardware for the chosen array type then
41 // raciness will not necessarily lead to bugginess. The cache entries
42 // must be large enough to hold a partial key and a value packed
43 // together. The partial keys are bit strings of length
44 // kKeybits - kHashbits, and the values are bit strings of length kValuebits.
46 // In an effort to use minimal space, every cache entry represents
47 // some <key, value> pair; the class provides no way to mark a cache
48 // entry as empty or uninitialized. In practice, you may want to have
49 // reserved keys or values to get around this limitation. For example, in
50 // tcmalloc's PageID-to-sizeclass cache, a value of 0 is used as
51 // "unknown sizeclass."
53 // Usage Considerations
54 // --------------------
56 // kHashbits controls the size of the cache. The best value for
57 // kHashbits will of course depend on the application. Perhaps try
58 // tuning the value of kHashbits by measuring different values on your
59 // favorite benchmark. Also remember not to be a pig; other
60 // programs that need resources may suffer if you are.
62 // The main uses for this class will be when performance is
63 // critical and there's a convenient type to hold the cache's
64 // entries. As described above, the number of bits required
65 // for a cache entry is (kKeybits - kHashbits) + kValuebits. Suppose
66 // kKeybits + kValuebits is 43. Then it probably makes sense to
67 // chose kHashbits >= 11 so that cache entries fit in a uint32.
69 // On the other hand, suppose kKeybits = kValuebits = 64. Then
70 // using this class may be less worthwhile. You'll probably
71 // be using 128 bits for each entry anyway, so maybe just pick
72 // a hash function, H, and use an array indexed by H(key):
73 // void Put(K key, V value) { a_[H(key)] = pair<K, V>(key, value); }
74 // V GetOrDefault(K key, V default) { const pair<K, V> &p = a_[H(key)]; ... }
80 // For caches used only by one thread, the following is true:
82 // (c.Put(key, value), c.GetOrDefault(key, 0)) == value
84 // (c.Put(key, value), <...>, c.GetOrDefault(key, 0)) == value
85 // if the elided code contains no c.Put calls.
87 // 2. Has(key) will return false if no <key, value> pair with that key
88 // has ever been Put. However, a newly initialized cache will have
89 // some <key, value> pairs already present. When you create a new
90 // cache, you must specify an "initial value." The initialization
91 // procedure is equivalent to Clear(initial_value), which is
92 // equivalent to Put(k, initial_value) for all keys k from 0 to
95 // 3. If key and key' differ then the only way Put(key, value) may
96 // cause Has(key') to change is that Has(key') may change from true to
97 // false. Furthermore, a Put() call that doesn't change Has(key')
98 // doesn't change GetOrDefault(key', ...) either.
100 // Implementation details:
102 // This is a direct-mapped cache with 2^kHashbits entries;
103 // the hash function simply takes the low bits of the key.
104 // So, we don't have to store the low bits of the key in the entries.
105 // Instead, an entry is the high bits of a key and a value, packed
106 // together. E.g., a 20 bit key and a 7 bit value only require
107 // a uint16 for each entry if kHashbits >= 11.
109 // Alternatives to this scheme will be added as needed.
111 #ifndef TCMALLOC_PACKED_CACHE_INL_H__
112 #define TCMALLOC_PACKED_CACHE_INL_H__
115 #include "base/basictypes.h" // for COMPILE_ASSERT
116 #include "base/logging.h" // for DCHECK
120 #define DCHECK_EQ(val1, val2) ASSERT((val1) == (val2))
123 // A safe way of doing "(1 << n) - 1" -- without worrying about overflow
124 // Note this will all be resolved to a constant expression at compile-time
125 #define N_ONES_(IntType, N) \
126 ( (N) == 0 ? 0 : ((static_cast<IntType>(1) << ((N)-1))-1 + \
127 (static_cast<IntType>(1) << ((N)-1))) )
129 // The types K and V provide upper bounds on the number of valid keys
130 // and values, but we explicitly require the keys to be less than
131 // 2^kKeybits and the values to be less than 2^kValuebits. The size of
132 // the table is controlled by kHashbits, and the type of each entry in
133 // the cache is T. See also the big comment at the top of the file.
134 template <int kKeybits
, typename T
>
139 static const size_t kHashbits
= 12;
140 static const size_t kValuebits
= 8;
142 explicit PackedCache(V initial_value
) {
143 COMPILE_ASSERT(kKeybits
<= sizeof(K
) * 8, key_size
);
144 COMPILE_ASSERT(kValuebits
<= sizeof(V
) * 8, value_size
);
145 COMPILE_ASSERT(kHashbits
<= kKeybits
, hash_function
);
146 COMPILE_ASSERT(kKeybits
- kHashbits
+ kValuebits
<= kTbits
,
147 entry_size_must_be_big_enough
);
148 Clear(initial_value
);
151 void Put(K key
, V value
) {
152 DCHECK_EQ(key
, key
& kKeyMask
);
153 DCHECK_EQ(value
, value
& kValueMask
);
154 array_
[Hash(key
)] = static_cast<T
>(KeyToUpper(key
) | value
);
157 bool Has(K key
) const {
158 DCHECK_EQ(key
, key
& kKeyMask
);
159 return KeyMatch(array_
[Hash(key
)], key
);
162 V
GetOrDefault(K key
, V default_value
) const {
163 // As with other code in this class, we touch array_ as few times
164 // as we can. Assuming entries are read atomically (e.g., their
165 // type is uintptr_t on most hardware) then certain races are
167 DCHECK_EQ(key
, key
& kKeyMask
);
168 T entry
= array_
[Hash(key
)];
169 return KeyMatch(entry
, key
) ? EntryToValue(entry
) : default_value
;
172 void Clear(V value
) {
173 DCHECK_EQ(value
, value
& kValueMask
);
174 for (int i
= 0; i
< 1 << kHashbits
; i
++) {
175 array_
[i
] = static_cast<T
>(value
);
180 // We are going to pack a value and the upper part of a key into
181 // an entry of type T. The UPPER type is for the upper part of a key,
182 // after the key has been masked and shifted for inclusion in an entry.
185 static V
EntryToValue(T t
) { return t
& kValueMask
; }
187 static UPPER
EntryToUpper(T t
) { return t
& kUpperMask
; }
189 // If v is a V and u is an UPPER then you can create an entry by
190 // doing u | v. kHashbits determines where in a K to find the upper
191 // part of the key, and kValuebits determines where in the entry to put
193 static UPPER
KeyToUpper(K k
) {
194 const int shift
= kHashbits
- kValuebits
;
195 // Assume kHashbits >= kValuebits. It would be easy to lift this assumption.
196 return static_cast<T
>(k
>> shift
) & kUpperMask
;
199 // This is roughly the inverse of KeyToUpper(). Some of the key has been
200 // thrown away, since KeyToUpper() masks off the low bits of the key.
201 static K
UpperToPartialKey(UPPER u
) {
202 DCHECK_EQ(u
, u
& kUpperMask
);
203 const int shift
= kHashbits
- kValuebits
;
204 // Assume kHashbits >= kValuebits. It would be easy to lift this assumption.
205 return static_cast<K
>(u
) << shift
;
208 static size_t Hash(K key
) {
209 return static_cast<size_t>(key
) & N_ONES_(size_t, kHashbits
);
212 // Does the entry's partial key match the relevant part of the given key?
213 static bool KeyMatch(T entry
, K key
) {
214 return ((KeyToUpper(key
) ^ entry
) & kUpperMask
) == 0;
217 static const size_t kTbits
= 8 * sizeof(T
);
218 static const int kUpperbits
= kKeybits
- kHashbits
;
221 static const K kKeyMask
= N_ONES_(K
, kKeybits
);
224 static const T kUpperMask
= N_ONES_(T
, kUpperbits
) << kValuebits
;
226 // For masking a V or a T.
227 static const V kValueMask
= N_ONES_(V
, kValuebits
);
229 T array_
[1 << kHashbits
];
234 #endif // TCMALLOC_PACKED_CACHE_INL_H__