]> git.saurik.com Git - apple/javascriptcore.git/blob - wtf/FastMalloc.cpp
JavaScriptCore-521.tar.gz
[apple/javascriptcore.git] / wtf / FastMalloc.cpp
1 // Copyright (c) 2005, 2007, Google Inc.
2 // All rights reserved.
3 // Copyright (C) 2005, 2006, 2007, 2008 Apple Inc. All rights reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // ---
32 // Author: Sanjay Ghemawat <opensource@google.com>
33 //
34 // A malloc that uses a per-thread cache to satisfy small malloc requests.
35 // (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
36 //
37 // See doc/tcmalloc.html for a high-level
38 // description of how this malloc works.
39 //
40 // SYNCHRONIZATION
41 // 1. The thread-specific lists are accessed without acquiring any locks.
42 // This is safe because each such list is only accessed by one thread.
43 // 2. We have a lock per central free-list, and hold it while manipulating
44 // the central free list for a particular size.
45 // 3. The central page allocator is protected by "pageheap_lock".
46 // 4. The pagemap (which maps from page-number to descriptor),
47 // can be read without holding any locks, and written while holding
48 // the "pageheap_lock".
49 // 5. To improve performance, a subset of the information one can get
50 // from the pagemap is cached in a data structure, pagemap_cache_,
51 // that atomically reads and writes its entries. This cache can be
52 // read and written without locking.
53 //
54 // This multi-threaded access to the pagemap is safe for fairly
55 // subtle reasons. We basically assume that when an object X is
56 // allocated by thread A and deallocated by thread B, there must
57 // have been appropriate synchronization in the handoff of object
58 // X from thread A to thread B. The same logic applies to pagemap_cache_.
59 //
60 // THE PAGEID-TO-SIZECLASS CACHE
61 // Hot PageID-to-sizeclass mappings are held by pagemap_cache_. If this cache
62 // returns 0 for a particular PageID then that means "no information," not that
63 // the sizeclass is 0. The cache may have stale information for pages that do
64 // not hold the beginning of any free()'able object. Staleness is eliminated
65 // in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
66 // do_memalign() for all other relevant pages.
67 //
68 // TODO: Bias reclamation to larger addresses
69 // TODO: implement mallinfo/mallopt
70 // TODO: Better testing
71 //
72 // 9/28/2003 (new page-level allocator replaces ptmalloc2):
73 // * malloc/free of small objects goes from ~300 ns to ~50 ns.
74 // * allocation of a reasonably complicated struct
75 // goes from about 1100 ns to about 300 ns.
76
77 #include "config.h"
78 #include "FastMalloc.h"
79
80 #include "Assertions.h"
81 #if ENABLE(JSC_MULTIPLE_THREADS)
82 #include <pthread.h>
83 #endif
84
85 #ifndef NO_TCMALLOC_SAMPLES
86 #ifdef WTF_CHANGES
87 #define NO_TCMALLOC_SAMPLES
88 #endif
89 #endif
90
91 #if !defined(USE_SYSTEM_MALLOC) && defined(NDEBUG)
92 #define FORCE_SYSTEM_MALLOC 0
93 #else
94 #define FORCE_SYSTEM_MALLOC 1
95 #endif
96
97 #define TCMALLOC_TRACK_DECOMMITED_SPANS (HAVE(VIRTUALALLOC))
98
99 #ifndef NDEBUG
100 namespace WTF {
101
102 #if ENABLE(JSC_MULTIPLE_THREADS)
103 static pthread_key_t isForbiddenKey;
104 static pthread_once_t isForbiddenKeyOnce = PTHREAD_ONCE_INIT;
105 static void initializeIsForbiddenKey()
106 {
107 pthread_key_create(&isForbiddenKey, 0);
108 }
109
110 static bool isForbidden()
111 {
112 pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
113 return !!pthread_getspecific(isForbiddenKey);
114 }
115
116 void fastMallocForbid()
117 {
118 pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
119 pthread_setspecific(isForbiddenKey, &isForbiddenKey);
120 }
121
122 void fastMallocAllow()
123 {
124 pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
125 pthread_setspecific(isForbiddenKey, 0);
126 }
127
128 #else
129
130 static bool staticIsForbidden;
131 static bool isForbidden()
132 {
133 return staticIsForbidden;
134 }
135
136 void fastMallocForbid()
137 {
138 staticIsForbidden = true;
139 }
140
141 void fastMallocAllow()
142 {
143 staticIsForbidden = false;
144 }
145 #endif // ENABLE(JSC_MULTIPLE_THREADS)
146
147 } // namespace WTF
148 #endif // NDEBUG
149
150 #include <string.h>
151
152 namespace WTF {
153
154 void* fastZeroedMalloc(size_t n)
155 {
156 void* result = fastMalloc(n);
157 memset(result, 0, n);
158 return result;
159 }
160
161 void* tryFastZeroedMalloc(size_t n)
162 {
163 void* result = tryFastMalloc(n);
164 if (!result)
165 return 0;
166 memset(result, 0, n);
167 return result;
168 }
169
170 } // namespace WTF
171
172 #if FORCE_SYSTEM_MALLOC
173
174 #include <stdlib.h>
175 #if !PLATFORM(WIN_OS)
176 #include <pthread.h>
177 #else
178 #include "windows.h"
179 #endif
180
181 namespace WTF {
182
183 void* tryFastMalloc(size_t n)
184 {
185 ASSERT(!isForbidden());
186 return malloc(n);
187 }
188
189 void* fastMalloc(size_t n)
190 {
191 ASSERT(!isForbidden());
192 void* result = malloc(n);
193 if (!result)
194 CRASH();
195 return result;
196 }
197
198 void* tryFastCalloc(size_t n_elements, size_t element_size)
199 {
200 ASSERT(!isForbidden());
201 return calloc(n_elements, element_size);
202 }
203
204 void* fastCalloc(size_t n_elements, size_t element_size)
205 {
206 ASSERT(!isForbidden());
207 void* result = calloc(n_elements, element_size);
208 if (!result)
209 CRASH();
210 return result;
211 }
212
213 void fastFree(void* p)
214 {
215 ASSERT(!isForbidden());
216 free(p);
217 }
218
219 void* tryFastRealloc(void* p, size_t n)
220 {
221 ASSERT(!isForbidden());
222 return realloc(p, n);
223 }
224
225 void* fastRealloc(void* p, size_t n)
226 {
227 ASSERT(!isForbidden());
228 void* result = realloc(p, n);
229 if (!result)
230 CRASH();
231 return result;
232 }
233
234 void releaseFastMallocFreeMemory() { }
235
236 FastMallocStatistics fastMallocStatistics()
237 {
238 FastMallocStatistics statistics = { 0, 0, 0, 0 };
239 return statistics;
240 }
241
242 } // namespace WTF
243
244 #if PLATFORM(DARWIN)
245 // This symbol is present in the JavaScriptCore exports file even when FastMalloc is disabled.
246 // It will never be used in this case, so it's type and value are less interesting than its presence.
247 extern "C" const int jscore_fastmalloc_introspection = 0;
248 #endif
249
250 #else // FORCE_SYSTEM_MALLOC
251
252 #if HAVE(STDINT_H)
253 #include <stdint.h>
254 #elif HAVE(INTTYPES_H)
255 #include <inttypes.h>
256 #else
257 #include <sys/types.h>
258 #endif
259
260 #include "AlwaysInline.h"
261 #include "Assertions.h"
262 #include "TCPackedCache.h"
263 #include "TCPageMap.h"
264 #include "TCSpinLock.h"
265 #include "TCSystemAlloc.h"
266 #include <algorithm>
267 #include <errno.h>
268 #include <new>
269 #include <pthread.h>
270 #include <stdarg.h>
271 #include <stddef.h>
272 #include <stdio.h>
273 #if COMPILER(MSVC)
274 #ifndef WIN32_LEAN_AND_MEAN
275 #define WIN32_LEAN_AND_MEAN
276 #endif
277 #include <windows.h>
278 #endif
279
280 #if WTF_CHANGES
281
282 #if PLATFORM(DARWIN)
283 #include "MallocZoneSupport.h"
284 #include <wtf/HashSet.h>
285 #endif
286
287 #ifndef PRIuS
288 #define PRIuS "zu"
289 #endif
290
291 // Calling pthread_getspecific through a global function pointer is faster than a normal
292 // call to the function on Mac OS X, and it's used in performance-critical code. So we
293 // use a function pointer. But that's not necessarily faster on other platforms, and we had
294 // problems with this technique on Windows, so we'll do this only on Mac OS X.
295 #if PLATFORM(DARWIN)
296 static void* (*pthread_getspecific_function_pointer)(pthread_key_t) = pthread_getspecific;
297 #define pthread_getspecific(key) pthread_getspecific_function_pointer(key)
298 #endif
299
300 #define DEFINE_VARIABLE(type, name, value, meaning) \
301 namespace FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead { \
302 type FLAGS_##name(value); \
303 char FLAGS_no##name; \
304 } \
305 using FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead::FLAGS_##name
306
307 #define DEFINE_int64(name, value, meaning) \
308 DEFINE_VARIABLE(int64_t, name, value, meaning)
309
310 #define DEFINE_double(name, value, meaning) \
311 DEFINE_VARIABLE(double, name, value, meaning)
312
313 namespace WTF {
314
315 #define malloc fastMalloc
316 #define calloc fastCalloc
317 #define free fastFree
318 #define realloc fastRealloc
319
320 #define MESSAGE LOG_ERROR
321 #define CHECK_CONDITION ASSERT
322
323 #if PLATFORM(DARWIN)
324 class TCMalloc_PageHeap;
325 class TCMalloc_ThreadCache;
326 class TCMalloc_Central_FreeListPadded;
327
328 class FastMallocZone {
329 public:
330 static void init();
331
332 static kern_return_t enumerate(task_t, void*, unsigned typeMmask, vm_address_t zoneAddress, memory_reader_t, vm_range_recorder_t);
333 static size_t goodSize(malloc_zone_t*, size_t size) { return size; }
334 static boolean_t check(malloc_zone_t*) { return true; }
335 static void print(malloc_zone_t*, boolean_t) { }
336 static void log(malloc_zone_t*, void*) { }
337 static void forceLock(malloc_zone_t*) { }
338 static void forceUnlock(malloc_zone_t*) { }
339 static void statistics(malloc_zone_t*, malloc_statistics_t* stats) { memset(stats, 0, sizeof(malloc_statistics_t)); }
340
341 private:
342 FastMallocZone(TCMalloc_PageHeap*, TCMalloc_ThreadCache**, TCMalloc_Central_FreeListPadded*);
343 static size_t size(malloc_zone_t*, const void*);
344 static void* zoneMalloc(malloc_zone_t*, size_t);
345 static void* zoneCalloc(malloc_zone_t*, size_t numItems, size_t size);
346 static void zoneFree(malloc_zone_t*, void*);
347 static void* zoneRealloc(malloc_zone_t*, void*, size_t);
348 static void* zoneValloc(malloc_zone_t*, size_t) { LOG_ERROR("valloc is not supported"); return 0; }
349 static void zoneDestroy(malloc_zone_t*) { }
350
351 malloc_zone_t m_zone;
352 TCMalloc_PageHeap* m_pageHeap;
353 TCMalloc_ThreadCache** m_threadHeaps;
354 TCMalloc_Central_FreeListPadded* m_centralCaches;
355 };
356
357 #endif
358
359 #endif
360
361 #ifndef WTF_CHANGES
362 // This #ifdef should almost never be set. Set NO_TCMALLOC_SAMPLES if
363 // you're porting to a system where you really can't get a stacktrace.
364 #ifdef NO_TCMALLOC_SAMPLES
365 // We use #define so code compiles even if you #include stacktrace.h somehow.
366 # define GetStackTrace(stack, depth, skip) (0)
367 #else
368 # include <google/stacktrace.h>
369 #endif
370 #endif
371
372 // Even if we have support for thread-local storage in the compiler
373 // and linker, the OS may not support it. We need to check that at
374 // runtime. Right now, we have to keep a manual set of "bad" OSes.
375 #if defined(HAVE_TLS)
376 static bool kernel_supports_tls = false; // be conservative
377 static inline bool KernelSupportsTLS() {
378 return kernel_supports_tls;
379 }
380 # if !HAVE_DECL_UNAME // if too old for uname, probably too old for TLS
381 static void CheckIfKernelSupportsTLS() {
382 kernel_supports_tls = false;
383 }
384 # else
385 # include <sys/utsname.h> // DECL_UNAME checked for <sys/utsname.h> too
386 static void CheckIfKernelSupportsTLS() {
387 struct utsname buf;
388 if (uname(&buf) != 0) { // should be impossible
389 MESSAGE("uname failed assuming no TLS support (errno=%d)\n", errno);
390 kernel_supports_tls = false;
391 } else if (strcasecmp(buf.sysname, "linux") == 0) {
392 // The linux case: the first kernel to support TLS was 2.6.0
393 if (buf.release[0] < '2' && buf.release[1] == '.') // 0.x or 1.x
394 kernel_supports_tls = false;
395 else if (buf.release[0] == '2' && buf.release[1] == '.' &&
396 buf.release[2] >= '0' && buf.release[2] < '6' &&
397 buf.release[3] == '.') // 2.0 - 2.5
398 kernel_supports_tls = false;
399 else
400 kernel_supports_tls = true;
401 } else { // some other kernel, we'll be optimisitic
402 kernel_supports_tls = true;
403 }
404 // TODO(csilvers): VLOG(1) the tls status once we support RAW_VLOG
405 }
406 # endif // HAVE_DECL_UNAME
407 #endif // HAVE_TLS
408
409 // __THROW is defined in glibc systems. It means, counter-intuitively,
410 // "This function will never throw an exception." It's an optional
411 // optimization tool, but we may need to use it to match glibc prototypes.
412 #ifndef __THROW // I guess we're not on a glibc system
413 # define __THROW // __THROW is just an optimization, so ok to make it ""
414 #endif
415
416 //-------------------------------------------------------------------
417 // Configuration
418 //-------------------------------------------------------------------
419
420 // Not all possible combinations of the following parameters make
421 // sense. In particular, if kMaxSize increases, you may have to
422 // increase kNumClasses as well.
423 static const size_t kPageShift = 12;
424 static const size_t kPageSize = 1 << kPageShift;
425 static const size_t kMaxSize = 8u * kPageSize;
426 static const size_t kAlignShift = 3;
427 static const size_t kAlignment = 1 << kAlignShift;
428 static const size_t kNumClasses = 68;
429
430 // Allocates a big block of memory for the pagemap once we reach more than
431 // 128MB
432 static const size_t kPageMapBigAllocationThreshold = 128 << 20;
433
434 // Minimum number of pages to fetch from system at a time. Must be
435 // significantly bigger than kBlockSize to amortize system-call
436 // overhead, and also to reduce external fragementation. Also, we
437 // should keep this value big because various incarnations of Linux
438 // have small limits on the number of mmap() regions per
439 // address-space.
440 static const size_t kMinSystemAlloc = 1 << (20 - kPageShift);
441
442 // Number of objects to move between a per-thread list and a central
443 // list in one shot. We want this to be not too small so we can
444 // amortize the lock overhead for accessing the central list. Making
445 // it too big may temporarily cause unnecessary memory wastage in the
446 // per-thread free list until the scavenger cleans up the list.
447 static int num_objects_to_move[kNumClasses];
448
449 // Maximum length we allow a per-thread free-list to have before we
450 // move objects from it into the corresponding central free-list. We
451 // want this big to avoid locking the central free-list too often. It
452 // should not hurt to make this list somewhat big because the
453 // scavenging code will shrink it down when its contents are not in use.
454 static const int kMaxFreeListLength = 256;
455
456 // Lower and upper bounds on the per-thread cache sizes
457 static const size_t kMinThreadCacheSize = kMaxSize * 2;
458 static const size_t kMaxThreadCacheSize = 512 * 1024;
459
460 // Default bound on the total amount of thread caches
461 static const size_t kDefaultOverallThreadCacheSize = 16 << 20;
462
463 // For all span-lengths < kMaxPages we keep an exact-size list.
464 // REQUIRED: kMaxPages >= kMinSystemAlloc;
465 static const size_t kMaxPages = kMinSystemAlloc;
466
467 /* The smallest prime > 2^n */
468 static int primes_list[] = {
469 // Small values might cause high rates of sampling
470 // and hence commented out.
471 // 2, 5, 11, 17, 37, 67, 131, 257,
472 // 521, 1031, 2053, 4099, 8209, 16411,
473 32771, 65537, 131101, 262147, 524309, 1048583,
474 2097169, 4194319, 8388617, 16777259, 33554467 };
475
476 // Twice the approximate gap between sampling actions.
477 // I.e., we take one sample approximately once every
478 // tcmalloc_sample_parameter/2
479 // bytes of allocation, i.e., ~ once every 128KB.
480 // Must be a prime number.
481 #ifdef NO_TCMALLOC_SAMPLES
482 DEFINE_int64(tcmalloc_sample_parameter, 0,
483 "Unused: code is compiled with NO_TCMALLOC_SAMPLES");
484 static size_t sample_period = 0;
485 #else
486 DEFINE_int64(tcmalloc_sample_parameter, 262147,
487 "Twice the approximate gap between sampling actions."
488 " Must be a prime number. Otherwise will be rounded up to a "
489 " larger prime number");
490 static size_t sample_period = 262147;
491 #endif
492
493 // Protects sample_period above
494 static SpinLock sample_period_lock = SPINLOCK_INITIALIZER;
495
496 // Parameters for controlling how fast memory is returned to the OS.
497
498 DEFINE_double(tcmalloc_release_rate, 1,
499 "Rate at which we release unused memory to the system. "
500 "Zero means we never release memory back to the system. "
501 "Increase this flag to return memory faster; decrease it "
502 "to return memory slower. Reasonable rates are in the "
503 "range [0,10]");
504
505 //-------------------------------------------------------------------
506 // Mapping from size to size_class and vice versa
507 //-------------------------------------------------------------------
508
509 // Sizes <= 1024 have an alignment >= 8. So for such sizes we have an
510 // array indexed by ceil(size/8). Sizes > 1024 have an alignment >= 128.
511 // So for these larger sizes we have an array indexed by ceil(size/128).
512 //
513 // We flatten both logical arrays into one physical array and use
514 // arithmetic to compute an appropriate index. The constants used by
515 // ClassIndex() were selected to make the flattening work.
516 //
517 // Examples:
518 // Size Expression Index
519 // -------------------------------------------------------
520 // 0 (0 + 7) / 8 0
521 // 1 (1 + 7) / 8 1
522 // ...
523 // 1024 (1024 + 7) / 8 128
524 // 1025 (1025 + 127 + (120<<7)) / 128 129
525 // ...
526 // 32768 (32768 + 127 + (120<<7)) / 128 376
527 static const size_t kMaxSmallSize = 1024;
528 static const int shift_amount[2] = { 3, 7 }; // For divides by 8 or 128
529 static const int add_amount[2] = { 7, 127 + (120 << 7) };
530 static unsigned char class_array[377];
531
532 // Compute index of the class_array[] entry for a given size
533 static inline int ClassIndex(size_t s) {
534 const int i = (s > kMaxSmallSize);
535 return static_cast<int>((s + add_amount[i]) >> shift_amount[i]);
536 }
537
538 // Mapping from size class to max size storable in that class
539 static size_t class_to_size[kNumClasses];
540
541 // Mapping from size class to number of pages to allocate at a time
542 static size_t class_to_pages[kNumClasses];
543
544 // TransferCache is used to cache transfers of num_objects_to_move[size_class]
545 // back and forth between thread caches and the central cache for a given size
546 // class.
547 struct TCEntry {
548 void *head; // Head of chain of objects.
549 void *tail; // Tail of chain of objects.
550 };
551 // A central cache freelist can have anywhere from 0 to kNumTransferEntries
552 // slots to put link list chains into. To keep memory usage bounded the total
553 // number of TCEntries across size classes is fixed. Currently each size
554 // class is initially given one TCEntry which also means that the maximum any
555 // one class can have is kNumClasses.
556 static const int kNumTransferEntries = kNumClasses;
557
558 // Note: the following only works for "n"s that fit in 32-bits, but
559 // that is fine since we only use it for small sizes.
560 static inline int LgFloor(size_t n) {
561 int log = 0;
562 for (int i = 4; i >= 0; --i) {
563 int shift = (1 << i);
564 size_t x = n >> shift;
565 if (x != 0) {
566 n = x;
567 log += shift;
568 }
569 }
570 ASSERT(n == 1);
571 return log;
572 }
573
574 // Some very basic linked list functions for dealing with using void * as
575 // storage.
576
577 static inline void *SLL_Next(void *t) {
578 return *(reinterpret_cast<void**>(t));
579 }
580
581 static inline void SLL_SetNext(void *t, void *n) {
582 *(reinterpret_cast<void**>(t)) = n;
583 }
584
585 static inline void SLL_Push(void **list, void *element) {
586 SLL_SetNext(element, *list);
587 *list = element;
588 }
589
590 static inline void *SLL_Pop(void **list) {
591 void *result = *list;
592 *list = SLL_Next(*list);
593 return result;
594 }
595
596
597 // Remove N elements from a linked list to which head points. head will be
598 // modified to point to the new head. start and end will point to the first
599 // and last nodes of the range. Note that end will point to NULL after this
600 // function is called.
601 static inline void SLL_PopRange(void **head, int N, void **start, void **end) {
602 if (N == 0) {
603 *start = NULL;
604 *end = NULL;
605 return;
606 }
607
608 void *tmp = *head;
609 for (int i = 1; i < N; ++i) {
610 tmp = SLL_Next(tmp);
611 }
612
613 *start = *head;
614 *end = tmp;
615 *head = SLL_Next(tmp);
616 // Unlink range from list.
617 SLL_SetNext(tmp, NULL);
618 }
619
620 static inline void SLL_PushRange(void **head, void *start, void *end) {
621 if (!start) return;
622 SLL_SetNext(end, *head);
623 *head = start;
624 }
625
626 static inline size_t SLL_Size(void *head) {
627 int count = 0;
628 while (head) {
629 count++;
630 head = SLL_Next(head);
631 }
632 return count;
633 }
634
635 // Setup helper functions.
636
637 static ALWAYS_INLINE size_t SizeClass(size_t size) {
638 return class_array[ClassIndex(size)];
639 }
640
641 // Get the byte-size for a specified class
642 static ALWAYS_INLINE size_t ByteSizeForClass(size_t cl) {
643 return class_to_size[cl];
644 }
645 static int NumMoveSize(size_t size) {
646 if (size == 0) return 0;
647 // Use approx 64k transfers between thread and central caches.
648 int num = static_cast<int>(64.0 * 1024.0 / size);
649 if (num < 2) num = 2;
650 // Clamp well below kMaxFreeListLength to avoid ping pong between central
651 // and thread caches.
652 if (num > static_cast<int>(0.8 * kMaxFreeListLength))
653 num = static_cast<int>(0.8 * kMaxFreeListLength);
654
655 // Also, avoid bringing in too many objects into small object free
656 // lists. There are lots of such lists, and if we allow each one to
657 // fetch too many at a time, we end up having to scavenge too often
658 // (especially when there are lots of threads and each thread gets a
659 // small allowance for its thread cache).
660 //
661 // TODO: Make thread cache free list sizes dynamic so that we do not
662 // have to equally divide a fixed resource amongst lots of threads.
663 if (num > 32) num = 32;
664
665 return num;
666 }
667
668 // Initialize the mapping arrays
669 static void InitSizeClasses() {
670 // Do some sanity checking on add_amount[]/shift_amount[]/class_array[]
671 if (ClassIndex(0) < 0) {
672 MESSAGE("Invalid class index %d for size 0\n", ClassIndex(0));
673 CRASH();
674 }
675 if (static_cast<size_t>(ClassIndex(kMaxSize)) >= sizeof(class_array)) {
676 MESSAGE("Invalid class index %d for kMaxSize\n", ClassIndex(kMaxSize));
677 CRASH();
678 }
679
680 // Compute the size classes we want to use
681 size_t sc = 1; // Next size class to assign
682 unsigned char alignshift = kAlignShift;
683 int last_lg = -1;
684 for (size_t size = kAlignment; size <= kMaxSize; size += (1 << alignshift)) {
685 int lg = LgFloor(size);
686 if (lg > last_lg) {
687 // Increase alignment every so often.
688 //
689 // Since we double the alignment every time size doubles and
690 // size >= 128, this means that space wasted due to alignment is
691 // at most 16/128 i.e., 12.5%. Plus we cap the alignment at 256
692 // bytes, so the space wasted as a percentage starts falling for
693 // sizes > 2K.
694 if ((lg >= 7) && (alignshift < 8)) {
695 alignshift++;
696 }
697 last_lg = lg;
698 }
699
700 // Allocate enough pages so leftover is less than 1/8 of total.
701 // This bounds wasted space to at most 12.5%.
702 size_t psize = kPageSize;
703 while ((psize % size) > (psize >> 3)) {
704 psize += kPageSize;
705 }
706 const size_t my_pages = psize >> kPageShift;
707
708 if (sc > 1 && my_pages == class_to_pages[sc-1]) {
709 // See if we can merge this into the previous class without
710 // increasing the fragmentation of the previous class.
711 const size_t my_objects = (my_pages << kPageShift) / size;
712 const size_t prev_objects = (class_to_pages[sc-1] << kPageShift)
713 / class_to_size[sc-1];
714 if (my_objects == prev_objects) {
715 // Adjust last class to include this size
716 class_to_size[sc-1] = size;
717 continue;
718 }
719 }
720
721 // Add new class
722 class_to_pages[sc] = my_pages;
723 class_to_size[sc] = size;
724 sc++;
725 }
726 if (sc != kNumClasses) {
727 MESSAGE("wrong number of size classes: found %" PRIuS " instead of %d\n",
728 sc, int(kNumClasses));
729 CRASH();
730 }
731
732 // Initialize the mapping arrays
733 int next_size = 0;
734 for (unsigned char c = 1; c < kNumClasses; c++) {
735 const size_t max_size_in_class = class_to_size[c];
736 for (size_t s = next_size; s <= max_size_in_class; s += kAlignment) {
737 class_array[ClassIndex(s)] = c;
738 }
739 next_size = static_cast<int>(max_size_in_class + kAlignment);
740 }
741
742 // Double-check sizes just to be safe
743 for (size_t size = 0; size <= kMaxSize; size++) {
744 const size_t sc = SizeClass(size);
745 if (sc == 0) {
746 MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
747 CRASH();
748 }
749 if (sc > 1 && size <= class_to_size[sc-1]) {
750 MESSAGE("Allocating unnecessarily large class %" PRIuS " for %" PRIuS
751 "\n", sc, size);
752 CRASH();
753 }
754 if (sc >= kNumClasses) {
755 MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
756 CRASH();
757 }
758 const size_t s = class_to_size[sc];
759 if (size > s) {
760 MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
761 CRASH();
762 }
763 if (s == 0) {
764 MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
765 CRASH();
766 }
767 }
768
769 // Initialize the num_objects_to_move array.
770 for (size_t cl = 1; cl < kNumClasses; ++cl) {
771 num_objects_to_move[cl] = NumMoveSize(ByteSizeForClass(cl));
772 }
773
774 #ifndef WTF_CHANGES
775 if (false) {
776 // Dump class sizes and maximum external wastage per size class
777 for (size_t cl = 1; cl < kNumClasses; ++cl) {
778 const int alloc_size = class_to_pages[cl] << kPageShift;
779 const int alloc_objs = alloc_size / class_to_size[cl];
780 const int min_used = (class_to_size[cl-1] + 1) * alloc_objs;
781 const int max_waste = alloc_size - min_used;
782 MESSAGE("SC %3d [ %8d .. %8d ] from %8d ; %2.0f%% maxwaste\n",
783 int(cl),
784 int(class_to_size[cl-1] + 1),
785 int(class_to_size[cl]),
786 int(class_to_pages[cl] << kPageShift),
787 max_waste * 100.0 / alloc_size
788 );
789 }
790 }
791 #endif
792 }
793
794 // -------------------------------------------------------------------------
795 // Simple allocator for objects of a specified type. External locking
796 // is required before accessing one of these objects.
797 // -------------------------------------------------------------------------
798
799 // Metadata allocator -- keeps stats about how many bytes allocated
800 static uint64_t metadata_system_bytes = 0;
801 static void* MetaDataAlloc(size_t bytes) {
802 void* result = TCMalloc_SystemAlloc(bytes, 0);
803 if (result != NULL) {
804 metadata_system_bytes += bytes;
805 }
806 return result;
807 }
808
809 template <class T>
810 class PageHeapAllocator {
811 private:
812 // How much to allocate from system at a time
813 static const size_t kAllocIncrement = 32 << 10;
814
815 // Aligned size of T
816 static const size_t kAlignedSize
817 = (((sizeof(T) + kAlignment - 1) / kAlignment) * kAlignment);
818
819 // Free area from which to carve new objects
820 char* free_area_;
821 size_t free_avail_;
822
823 // Free list of already carved objects
824 void* free_list_;
825
826 // Number of allocated but unfreed objects
827 int inuse_;
828
829 public:
830 void Init() {
831 ASSERT(kAlignedSize <= kAllocIncrement);
832 inuse_ = 0;
833 free_area_ = NULL;
834 free_avail_ = 0;
835 free_list_ = NULL;
836 }
837
838 T* New() {
839 // Consult free list
840 void* result;
841 if (free_list_ != NULL) {
842 result = free_list_;
843 free_list_ = *(reinterpret_cast<void**>(result));
844 } else {
845 if (free_avail_ < kAlignedSize) {
846 // Need more room
847 free_area_ = reinterpret_cast<char*>(MetaDataAlloc(kAllocIncrement));
848 if (free_area_ == NULL) CRASH();
849 free_avail_ = kAllocIncrement;
850 }
851 result = free_area_;
852 free_area_ += kAlignedSize;
853 free_avail_ -= kAlignedSize;
854 }
855 inuse_++;
856 return reinterpret_cast<T*>(result);
857 }
858
859 void Delete(T* p) {
860 *(reinterpret_cast<void**>(p)) = free_list_;
861 free_list_ = p;
862 inuse_--;
863 }
864
865 int inuse() const { return inuse_; }
866 };
867
868 // -------------------------------------------------------------------------
869 // Span - a contiguous run of pages
870 // -------------------------------------------------------------------------
871
872 // Type that can hold a page number
873 typedef uintptr_t PageID;
874
875 // Type that can hold the length of a run of pages
876 typedef uintptr_t Length;
877
878 static const Length kMaxValidPages = (~static_cast<Length>(0)) >> kPageShift;
879
880 // Convert byte size into pages. This won't overflow, but may return
881 // an unreasonably large value if bytes is huge enough.
882 static inline Length pages(size_t bytes) {
883 return (bytes >> kPageShift) +
884 ((bytes & (kPageSize - 1)) > 0 ? 1 : 0);
885 }
886
887 // Convert a user size into the number of bytes that will actually be
888 // allocated
889 static size_t AllocationSize(size_t bytes) {
890 if (bytes > kMaxSize) {
891 // Large object: we allocate an integral number of pages
892 ASSERT(bytes <= (kMaxValidPages << kPageShift));
893 return pages(bytes) << kPageShift;
894 } else {
895 // Small object: find the size class to which it belongs
896 return ByteSizeForClass(SizeClass(bytes));
897 }
898 }
899
900 // Information kept for a span (a contiguous run of pages).
901 struct Span {
902 PageID start; // Starting page number
903 Length length; // Number of pages in span
904 Span* next; // Used when in link list
905 Span* prev; // Used when in link list
906 void* objects; // Linked list of free objects
907 unsigned int free : 1; // Is the span free
908 #ifndef NO_TCMALLOC_SAMPLES
909 unsigned int sample : 1; // Sampled object?
910 #endif
911 unsigned int sizeclass : 8; // Size-class for small objects (or 0)
912 unsigned int refcount : 11; // Number of non-free objects
913 bool decommitted : 1;
914
915 #undef SPAN_HISTORY
916 #ifdef SPAN_HISTORY
917 // For debugging, we can keep a log events per span
918 int nexthistory;
919 char history[64];
920 int value[64];
921 #endif
922 };
923
924 #if TCMALLOC_TRACK_DECOMMITED_SPANS
925 #define ASSERT_SPAN_COMMITTED(span) ASSERT(!span->decommitted)
926 #else
927 #define ASSERT_SPAN_COMMITTED(span)
928 #endif
929
930 #ifdef SPAN_HISTORY
931 void Event(Span* span, char op, int v = 0) {
932 span->history[span->nexthistory] = op;
933 span->value[span->nexthistory] = v;
934 span->nexthistory++;
935 if (span->nexthistory == sizeof(span->history)) span->nexthistory = 0;
936 }
937 #else
938 #define Event(s,o,v) ((void) 0)
939 #endif
940
941 // Allocator/deallocator for spans
942 static PageHeapAllocator<Span> span_allocator;
943 static Span* NewSpan(PageID p, Length len) {
944 Span* result = span_allocator.New();
945 memset(result, 0, sizeof(*result));
946 result->start = p;
947 result->length = len;
948 #ifdef SPAN_HISTORY
949 result->nexthistory = 0;
950 #endif
951 return result;
952 }
953
954 static inline void DeleteSpan(Span* span) {
955 #ifndef NDEBUG
956 // In debug mode, trash the contents of deleted Spans
957 memset(span, 0x3f, sizeof(*span));
958 #endif
959 span_allocator.Delete(span);
960 }
961
962 // -------------------------------------------------------------------------
963 // Doubly linked list of spans.
964 // -------------------------------------------------------------------------
965
966 static inline void DLL_Init(Span* list) {
967 list->next = list;
968 list->prev = list;
969 }
970
971 static inline void DLL_Remove(Span* span) {
972 span->prev->next = span->next;
973 span->next->prev = span->prev;
974 span->prev = NULL;
975 span->next = NULL;
976 }
977
978 static ALWAYS_INLINE bool DLL_IsEmpty(const Span* list) {
979 return list->next == list;
980 }
981
982 static int DLL_Length(const Span* list) {
983 int result = 0;
984 for (Span* s = list->next; s != list; s = s->next) {
985 result++;
986 }
987 return result;
988 }
989
990 #if 0 /* Not needed at the moment -- causes compiler warnings if not used */
991 static void DLL_Print(const char* label, const Span* list) {
992 MESSAGE("%-10s %p:", label, list);
993 for (const Span* s = list->next; s != list; s = s->next) {
994 MESSAGE(" <%p,%u,%u>", s, s->start, s->length);
995 }
996 MESSAGE("\n");
997 }
998 #endif
999
1000 static inline void DLL_Prepend(Span* list, Span* span) {
1001 ASSERT(span->next == NULL);
1002 ASSERT(span->prev == NULL);
1003 span->next = list->next;
1004 span->prev = list;
1005 list->next->prev = span;
1006 list->next = span;
1007 }
1008
1009 // -------------------------------------------------------------------------
1010 // Stack traces kept for sampled allocations
1011 // The following state is protected by pageheap_lock_.
1012 // -------------------------------------------------------------------------
1013
1014 // size/depth are made the same size as a pointer so that some generic
1015 // code below can conveniently cast them back and forth to void*.
1016 static const int kMaxStackDepth = 31;
1017 struct StackTrace {
1018 uintptr_t size; // Size of object
1019 uintptr_t depth; // Number of PC values stored in array below
1020 void* stack[kMaxStackDepth];
1021 };
1022 static PageHeapAllocator<StackTrace> stacktrace_allocator;
1023 static Span sampled_objects;
1024
1025 // -------------------------------------------------------------------------
1026 // Map from page-id to per-page data
1027 // -------------------------------------------------------------------------
1028
1029 // We use PageMap2<> for 32-bit and PageMap3<> for 64-bit machines.
1030 // We also use a simple one-level cache for hot PageID-to-sizeclass mappings,
1031 // because sometimes the sizeclass is all the information we need.
1032
1033 // Selector class -- general selector uses 3-level map
1034 template <int BITS> class MapSelector {
1035 public:
1036 typedef TCMalloc_PageMap3<BITS-kPageShift> Type;
1037 typedef PackedCache<BITS, uint64_t> CacheType;
1038 };
1039
1040 #if defined(WTF_CHANGES)
1041 #if PLATFORM(X86_64)
1042 // On all known X86-64 platforms, the upper 16 bits are always unused and therefore
1043 // can be excluded from the PageMap key.
1044 // See http://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details
1045
1046 static const size_t kBitsUnusedOn64Bit = 16;
1047 #else
1048 static const size_t kBitsUnusedOn64Bit = 0;
1049 #endif
1050
1051 // A three-level map for 64-bit machines
1052 template <> class MapSelector<64> {
1053 public:
1054 typedef TCMalloc_PageMap3<64 - kPageShift - kBitsUnusedOn64Bit> Type;
1055 typedef PackedCache<64, uint64_t> CacheType;
1056 };
1057 #endif
1058
1059 // A two-level map for 32-bit machines
1060 template <> class MapSelector<32> {
1061 public:
1062 typedef TCMalloc_PageMap2<32 - kPageShift> Type;
1063 typedef PackedCache<32 - kPageShift, uint16_t> CacheType;
1064 };
1065
1066 // -------------------------------------------------------------------------
1067 // Page-level allocator
1068 // * Eager coalescing
1069 //
1070 // Heap for page-level allocation. We allow allocating and freeing a
1071 // contiguous runs of pages (called a "span").
1072 // -------------------------------------------------------------------------
1073
1074 class TCMalloc_PageHeap {
1075 public:
1076 void init();
1077
1078 // Allocate a run of "n" pages. Returns zero if out of memory.
1079 Span* New(Length n);
1080
1081 // Delete the span "[p, p+n-1]".
1082 // REQUIRES: span was returned by earlier call to New() and
1083 // has not yet been deleted.
1084 void Delete(Span* span);
1085
1086 // Mark an allocated span as being used for small objects of the
1087 // specified size-class.
1088 // REQUIRES: span was returned by an earlier call to New()
1089 // and has not yet been deleted.
1090 void RegisterSizeClass(Span* span, size_t sc);
1091
1092 // Split an allocated span into two spans: one of length "n" pages
1093 // followed by another span of length "span->length - n" pages.
1094 // Modifies "*span" to point to the first span of length "n" pages.
1095 // Returns a pointer to the second span.
1096 //
1097 // REQUIRES: "0 < n < span->length"
1098 // REQUIRES: !span->free
1099 // REQUIRES: span->sizeclass == 0
1100 Span* Split(Span* span, Length n);
1101
1102 // Return the descriptor for the specified page.
1103 inline Span* GetDescriptor(PageID p) const {
1104 return reinterpret_cast<Span*>(pagemap_.get(p));
1105 }
1106
1107 #ifdef WTF_CHANGES
1108 inline Span* GetDescriptorEnsureSafe(PageID p)
1109 {
1110 pagemap_.Ensure(p, 1);
1111 return GetDescriptor(p);
1112 }
1113
1114 size_t ReturnedBytes() const;
1115 #endif
1116
1117 // Dump state to stderr
1118 #ifndef WTF_CHANGES
1119 void Dump(TCMalloc_Printer* out);
1120 #endif
1121
1122 // Return number of bytes allocated from system
1123 inline uint64_t SystemBytes() const { return system_bytes_; }
1124
1125 // Return number of free bytes in heap
1126 uint64_t FreeBytes() const {
1127 return (static_cast<uint64_t>(free_pages_) << kPageShift);
1128 }
1129
1130 bool Check();
1131 bool CheckList(Span* list, Length min_pages, Length max_pages);
1132
1133 // Release all pages on the free list for reuse by the OS:
1134 void ReleaseFreePages();
1135
1136 // Return 0 if we have no information, or else the correct sizeclass for p.
1137 // Reads and writes to pagemap_cache_ do not require locking.
1138 // The entries are 64 bits on 64-bit hardware and 16 bits on
1139 // 32-bit hardware, and we don't mind raciness as long as each read of
1140 // an entry yields a valid entry, not a partially updated entry.
1141 size_t GetSizeClassIfCached(PageID p) const {
1142 return pagemap_cache_.GetOrDefault(p, 0);
1143 }
1144 void CacheSizeClass(PageID p, size_t cl) const { pagemap_cache_.Put(p, cl); }
1145
1146 private:
1147 // Pick the appropriate map and cache types based on pointer size
1148 typedef MapSelector<8*sizeof(uintptr_t)>::Type PageMap;
1149 typedef MapSelector<8*sizeof(uintptr_t)>::CacheType PageMapCache;
1150 PageMap pagemap_;
1151 mutable PageMapCache pagemap_cache_;
1152
1153 // We segregate spans of a given size into two circular linked
1154 // lists: one for normal spans, and one for spans whose memory
1155 // has been returned to the system.
1156 struct SpanList {
1157 Span normal;
1158 Span returned;
1159 };
1160
1161 // List of free spans of length >= kMaxPages
1162 SpanList large_;
1163
1164 // Array mapping from span length to a doubly linked list of free spans
1165 SpanList free_[kMaxPages];
1166
1167 // Number of pages kept in free lists
1168 uintptr_t free_pages_;
1169
1170 // Bytes allocated from system
1171 uint64_t system_bytes_;
1172
1173 bool GrowHeap(Length n);
1174
1175 // REQUIRES span->length >= n
1176 // Remove span from its free list, and move any leftover part of
1177 // span into appropriate free lists. Also update "span" to have
1178 // length exactly "n" and mark it as non-free so it can be returned
1179 // to the client.
1180 //
1181 // "released" is true iff "span" was found on a "returned" list.
1182 void Carve(Span* span, Length n, bool released);
1183
1184 void RecordSpan(Span* span) {
1185 pagemap_.set(span->start, span);
1186 if (span->length > 1) {
1187 pagemap_.set(span->start + span->length - 1, span);
1188 }
1189 }
1190
1191 // Allocate a large span of length == n. If successful, returns a
1192 // span of exactly the specified length. Else, returns NULL.
1193 Span* AllocLarge(Length n);
1194
1195 // Incrementally release some memory to the system.
1196 // IncrementalScavenge(n) is called whenever n pages are freed.
1197 void IncrementalScavenge(Length n);
1198
1199 // Number of pages to deallocate before doing more scavenging
1200 int64_t scavenge_counter_;
1201
1202 // Index of last free list we scavenged
1203 size_t scavenge_index_;
1204
1205 #if defined(WTF_CHANGES) && PLATFORM(DARWIN)
1206 friend class FastMallocZone;
1207 #endif
1208 };
1209
1210 void TCMalloc_PageHeap::init()
1211 {
1212 pagemap_.init(MetaDataAlloc);
1213 pagemap_cache_ = PageMapCache(0);
1214 free_pages_ = 0;
1215 system_bytes_ = 0;
1216 scavenge_counter_ = 0;
1217 // Start scavenging at kMaxPages list
1218 scavenge_index_ = kMaxPages-1;
1219 COMPILE_ASSERT(kNumClasses <= (1 << PageMapCache::kValuebits), valuebits);
1220 DLL_Init(&large_.normal);
1221 DLL_Init(&large_.returned);
1222 for (size_t i = 0; i < kMaxPages; i++) {
1223 DLL_Init(&free_[i].normal);
1224 DLL_Init(&free_[i].returned);
1225 }
1226 }
1227
1228 inline Span* TCMalloc_PageHeap::New(Length n) {
1229 ASSERT(Check());
1230 ASSERT(n > 0);
1231
1232 // Find first size >= n that has a non-empty list
1233 for (Length s = n; s < kMaxPages; s++) {
1234 Span* ll = NULL;
1235 bool released = false;
1236 if (!DLL_IsEmpty(&free_[s].normal)) {
1237 // Found normal span
1238 ll = &free_[s].normal;
1239 } else if (!DLL_IsEmpty(&free_[s].returned)) {
1240 // Found returned span; reallocate it
1241 ll = &free_[s].returned;
1242 released = true;
1243 } else {
1244 // Keep looking in larger classes
1245 continue;
1246 }
1247
1248 Span* result = ll->next;
1249 Carve(result, n, released);
1250 #if TCMALLOC_TRACK_DECOMMITED_SPANS
1251 if (result->decommitted) {
1252 TCMalloc_SystemCommit(reinterpret_cast<void*>(result->start << kPageShift), static_cast<size_t>(n << kPageShift));
1253 result->decommitted = false;
1254 }
1255 #endif
1256 ASSERT(Check());
1257 free_pages_ -= n;
1258 return result;
1259 }
1260
1261 Span* result = AllocLarge(n);
1262 if (result != NULL) {
1263 ASSERT_SPAN_COMMITTED(result);
1264 return result;
1265 }
1266
1267 // Grow the heap and try again
1268 if (!GrowHeap(n)) {
1269 ASSERT(Check());
1270 return NULL;
1271 }
1272
1273 return AllocLarge(n);
1274 }
1275
1276 Span* TCMalloc_PageHeap::AllocLarge(Length n) {
1277 // find the best span (closest to n in size).
1278 // The following loops implements address-ordered best-fit.
1279 bool from_released = false;
1280 Span *best = NULL;
1281
1282 // Search through normal list
1283 for (Span* span = large_.normal.next;
1284 span != &large_.normal;
1285 span = span->next) {
1286 if (span->length >= n) {
1287 if ((best == NULL)
1288 || (span->length < best->length)
1289 || ((span->length == best->length) && (span->start < best->start))) {
1290 best = span;
1291 from_released = false;
1292 }
1293 }
1294 }
1295
1296 // Search through released list in case it has a better fit
1297 for (Span* span = large_.returned.next;
1298 span != &large_.returned;
1299 span = span->next) {
1300 if (span->length >= n) {
1301 if ((best == NULL)
1302 || (span->length < best->length)
1303 || ((span->length == best->length) && (span->start < best->start))) {
1304 best = span;
1305 from_released = true;
1306 }
1307 }
1308 }
1309
1310 if (best != NULL) {
1311 Carve(best, n, from_released);
1312 #if TCMALLOC_TRACK_DECOMMITED_SPANS
1313 if (best->decommitted) {
1314 TCMalloc_SystemCommit(reinterpret_cast<void*>(best->start << kPageShift), static_cast<size_t>(n << kPageShift));
1315 best->decommitted = false;
1316 }
1317 #endif
1318 ASSERT(Check());
1319 free_pages_ -= n;
1320 return best;
1321 }
1322 return NULL;
1323 }
1324
1325 Span* TCMalloc_PageHeap::Split(Span* span, Length n) {
1326 ASSERT(0 < n);
1327 ASSERT(n < span->length);
1328 ASSERT(!span->free);
1329 ASSERT(span->sizeclass == 0);
1330 Event(span, 'T', n);
1331
1332 const Length extra = span->length - n;
1333 Span* leftover = NewSpan(span->start + n, extra);
1334 Event(leftover, 'U', extra);
1335 RecordSpan(leftover);
1336 pagemap_.set(span->start + n - 1, span); // Update map from pageid to span
1337 span->length = n;
1338
1339 return leftover;
1340 }
1341
1342 #if !TCMALLOC_TRACK_DECOMMITED_SPANS
1343 static ALWAYS_INLINE void propagateDecommittedState(Span*, Span*) { }
1344 #else
1345 static ALWAYS_INLINE void propagateDecommittedState(Span* destination, Span* source)
1346 {
1347 destination->decommitted = source->decommitted;
1348 }
1349 #endif
1350
1351 inline void TCMalloc_PageHeap::Carve(Span* span, Length n, bool released) {
1352 ASSERT(n > 0);
1353 DLL_Remove(span);
1354 span->free = 0;
1355 Event(span, 'A', n);
1356
1357 const int extra = static_cast<int>(span->length - n);
1358 ASSERT(extra >= 0);
1359 if (extra > 0) {
1360 Span* leftover = NewSpan(span->start + n, extra);
1361 leftover->free = 1;
1362 propagateDecommittedState(leftover, span);
1363 Event(leftover, 'S', extra);
1364 RecordSpan(leftover);
1365
1366 // Place leftover span on appropriate free list
1367 SpanList* listpair = (static_cast<size_t>(extra) < kMaxPages) ? &free_[extra] : &large_;
1368 Span* dst = released ? &listpair->returned : &listpair->normal;
1369 DLL_Prepend(dst, leftover);
1370
1371 span->length = n;
1372 pagemap_.set(span->start + n - 1, span);
1373 }
1374 }
1375
1376 #if !TCMALLOC_TRACK_DECOMMITED_SPANS
1377 static ALWAYS_INLINE void mergeDecommittedStates(Span*, Span*) { }
1378 #else
1379 static ALWAYS_INLINE void mergeDecommittedStates(Span* destination, Span* other)
1380 {
1381 if (other->decommitted)
1382 destination->decommitted = true;
1383 }
1384 #endif
1385
1386 inline void TCMalloc_PageHeap::Delete(Span* span) {
1387 ASSERT(Check());
1388 ASSERT(!span->free);
1389 ASSERT(span->length > 0);
1390 ASSERT(GetDescriptor(span->start) == span);
1391 ASSERT(GetDescriptor(span->start + span->length - 1) == span);
1392 span->sizeclass = 0;
1393 #ifndef NO_TCMALLOC_SAMPLES
1394 span->sample = 0;
1395 #endif
1396
1397 // Coalesce -- we guarantee that "p" != 0, so no bounds checking
1398 // necessary. We do not bother resetting the stale pagemap
1399 // entries for the pieces we are merging together because we only
1400 // care about the pagemap entries for the boundaries.
1401 //
1402 // Note that the spans we merge into "span" may come out of
1403 // a "returned" list. For simplicity, we move these into the
1404 // "normal" list of the appropriate size class.
1405 const PageID p = span->start;
1406 const Length n = span->length;
1407 Span* prev = GetDescriptor(p-1);
1408 if (prev != NULL && prev->free) {
1409 // Merge preceding span into this span
1410 ASSERT(prev->start + prev->length == p);
1411 const Length len = prev->length;
1412 mergeDecommittedStates(span, prev);
1413 DLL_Remove(prev);
1414 DeleteSpan(prev);
1415 span->start -= len;
1416 span->length += len;
1417 pagemap_.set(span->start, span);
1418 Event(span, 'L', len);
1419 }
1420 Span* next = GetDescriptor(p+n);
1421 if (next != NULL && next->free) {
1422 // Merge next span into this span
1423 ASSERT(next->start == p+n);
1424 const Length len = next->length;
1425 mergeDecommittedStates(span, next);
1426 DLL_Remove(next);
1427 DeleteSpan(next);
1428 span->length += len;
1429 pagemap_.set(span->start + span->length - 1, span);
1430 Event(span, 'R', len);
1431 }
1432
1433 Event(span, 'D', span->length);
1434 span->free = 1;
1435 if (span->length < kMaxPages) {
1436 DLL_Prepend(&free_[span->length].normal, span);
1437 } else {
1438 DLL_Prepend(&large_.normal, span);
1439 }
1440 free_pages_ += n;
1441
1442 IncrementalScavenge(n);
1443 ASSERT(Check());
1444 }
1445
1446 void TCMalloc_PageHeap::IncrementalScavenge(Length n) {
1447 // Fast path; not yet time to release memory
1448 scavenge_counter_ -= n;
1449 if (scavenge_counter_ >= 0) return; // Not yet time to scavenge
1450
1451 static const size_t kDefaultReleaseDelay = 64;
1452
1453 // Find index of free list to scavenge
1454 size_t index = scavenge_index_ + 1;
1455 for (size_t i = 0; i < kMaxPages+1; i++) {
1456 if (index > kMaxPages) index = 0;
1457 SpanList* slist = (index == kMaxPages) ? &large_ : &free_[index];
1458 if (!DLL_IsEmpty(&slist->normal)) {
1459 // Release the last span on the normal portion of this list
1460 Span* s = slist->normal.prev;
1461 DLL_Remove(s);
1462 TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
1463 static_cast<size_t>(s->length << kPageShift));
1464 #if TCMALLOC_TRACK_DECOMMITED_SPANS
1465 s->decommitted = true;
1466 #endif
1467 DLL_Prepend(&slist->returned, s);
1468
1469 scavenge_counter_ = std::max<size_t>(16UL, std::min<size_t>(kDefaultReleaseDelay, kDefaultReleaseDelay - (free_pages_ / kDefaultReleaseDelay)));
1470
1471 if (index == kMaxPages && !DLL_IsEmpty(&slist->normal))
1472 scavenge_index_ = index - 1;
1473 else
1474 scavenge_index_ = index;
1475 return;
1476 }
1477 index++;
1478 }
1479
1480 // Nothing to scavenge, delay for a while
1481 scavenge_counter_ = kDefaultReleaseDelay;
1482 }
1483
1484 void TCMalloc_PageHeap::RegisterSizeClass(Span* span, size_t sc) {
1485 // Associate span object with all interior pages as well
1486 ASSERT(!span->free);
1487 ASSERT(GetDescriptor(span->start) == span);
1488 ASSERT(GetDescriptor(span->start+span->length-1) == span);
1489 Event(span, 'C', sc);
1490 span->sizeclass = static_cast<unsigned int>(sc);
1491 for (Length i = 1; i < span->length-1; i++) {
1492 pagemap_.set(span->start+i, span);
1493 }
1494 }
1495
1496 #ifdef WTF_CHANGES
1497 size_t TCMalloc_PageHeap::ReturnedBytes() const {
1498 size_t result = 0;
1499 for (unsigned s = 0; s < kMaxPages; s++) {
1500 const int r_length = DLL_Length(&free_[s].returned);
1501 unsigned r_pages = s * r_length;
1502 result += r_pages << kPageShift;
1503 }
1504
1505 for (Span* s = large_.returned.next; s != &large_.returned; s = s->next)
1506 result += s->length << kPageShift;
1507 return result;
1508 }
1509 #endif
1510
1511 #ifndef WTF_CHANGES
1512 static double PagesToMB(uint64_t pages) {
1513 return (pages << kPageShift) / 1048576.0;
1514 }
1515
1516 void TCMalloc_PageHeap::Dump(TCMalloc_Printer* out) {
1517 int nonempty_sizes = 0;
1518 for (int s = 0; s < kMaxPages; s++) {
1519 if (!DLL_IsEmpty(&free_[s].normal) || !DLL_IsEmpty(&free_[s].returned)) {
1520 nonempty_sizes++;
1521 }
1522 }
1523 out->printf("------------------------------------------------\n");
1524 out->printf("PageHeap: %d sizes; %6.1f MB free\n",
1525 nonempty_sizes, PagesToMB(free_pages_));
1526 out->printf("------------------------------------------------\n");
1527 uint64_t total_normal = 0;
1528 uint64_t total_returned = 0;
1529 for (int s = 0; s < kMaxPages; s++) {
1530 const int n_length = DLL_Length(&free_[s].normal);
1531 const int r_length = DLL_Length(&free_[s].returned);
1532 if (n_length + r_length > 0) {
1533 uint64_t n_pages = s * n_length;
1534 uint64_t r_pages = s * r_length;
1535 total_normal += n_pages;
1536 total_returned += r_pages;
1537 out->printf("%6u pages * %6u spans ~ %6.1f MB; %6.1f MB cum"
1538 "; unmapped: %6.1f MB; %6.1f MB cum\n",
1539 s,
1540 (n_length + r_length),
1541 PagesToMB(n_pages + r_pages),
1542 PagesToMB(total_normal + total_returned),
1543 PagesToMB(r_pages),
1544 PagesToMB(total_returned));
1545 }
1546 }
1547
1548 uint64_t n_pages = 0;
1549 uint64_t r_pages = 0;
1550 int n_spans = 0;
1551 int r_spans = 0;
1552 out->printf("Normal large spans:\n");
1553 for (Span* s = large_.normal.next; s != &large_.normal; s = s->next) {
1554 out->printf(" [ %6" PRIuS " pages ] %6.1f MB\n",
1555 s->length, PagesToMB(s->length));
1556 n_pages += s->length;
1557 n_spans++;
1558 }
1559 out->printf("Unmapped large spans:\n");
1560 for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) {
1561 out->printf(" [ %6" PRIuS " pages ] %6.1f MB\n",
1562 s->length, PagesToMB(s->length));
1563 r_pages += s->length;
1564 r_spans++;
1565 }
1566 total_normal += n_pages;
1567 total_returned += r_pages;
1568 out->printf(">255 large * %6u spans ~ %6.1f MB; %6.1f MB cum"
1569 "; unmapped: %6.1f MB; %6.1f MB cum\n",
1570 (n_spans + r_spans),
1571 PagesToMB(n_pages + r_pages),
1572 PagesToMB(total_normal + total_returned),
1573 PagesToMB(r_pages),
1574 PagesToMB(total_returned));
1575 }
1576 #endif
1577
1578 bool TCMalloc_PageHeap::GrowHeap(Length n) {
1579 ASSERT(kMaxPages >= kMinSystemAlloc);
1580 if (n > kMaxValidPages) return false;
1581 Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc);
1582 size_t actual_size;
1583 void* ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
1584 if (ptr == NULL) {
1585 if (n < ask) {
1586 // Try growing just "n" pages
1587 ask = n;
1588 ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
1589 }
1590 if (ptr == NULL) return false;
1591 }
1592 ask = actual_size >> kPageShift;
1593
1594 uint64_t old_system_bytes = system_bytes_;
1595 system_bytes_ += (ask << kPageShift);
1596 const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
1597 ASSERT(p > 0);
1598
1599 // If we have already a lot of pages allocated, just pre allocate a bunch of
1600 // memory for the page map. This prevents fragmentation by pagemap metadata
1601 // when a program keeps allocating and freeing large blocks.
1602
1603 if (old_system_bytes < kPageMapBigAllocationThreshold
1604 && system_bytes_ >= kPageMapBigAllocationThreshold) {
1605 pagemap_.PreallocateMoreMemory();
1606 }
1607
1608 // Make sure pagemap_ has entries for all of the new pages.
1609 // Plus ensure one before and one after so coalescing code
1610 // does not need bounds-checking.
1611 if (pagemap_.Ensure(p-1, ask+2)) {
1612 // Pretend the new area is allocated and then Delete() it to
1613 // cause any necessary coalescing to occur.
1614 //
1615 // We do not adjust free_pages_ here since Delete() will do it for us.
1616 Span* span = NewSpan(p, ask);
1617 RecordSpan(span);
1618 Delete(span);
1619 ASSERT(Check());
1620 return true;
1621 } else {
1622 // We could not allocate memory within "pagemap_"
1623 // TODO: Once we can return memory to the system, return the new span
1624 return false;
1625 }
1626 }
1627
1628 bool TCMalloc_PageHeap::Check() {
1629 ASSERT(free_[0].normal.next == &free_[0].normal);
1630 ASSERT(free_[0].returned.next == &free_[0].returned);
1631 CheckList(&large_.normal, kMaxPages, 1000000000);
1632 CheckList(&large_.returned, kMaxPages, 1000000000);
1633 for (Length s = 1; s < kMaxPages; s++) {
1634 CheckList(&free_[s].normal, s, s);
1635 CheckList(&free_[s].returned, s, s);
1636 }
1637 return true;
1638 }
1639
1640 #if ASSERT_DISABLED
1641 bool TCMalloc_PageHeap::CheckList(Span*, Length, Length) {
1642 return true;
1643 }
1644 #else
1645 bool TCMalloc_PageHeap::CheckList(Span* list, Length min_pages, Length max_pages) {
1646 for (Span* s = list->next; s != list; s = s->next) {
1647 CHECK_CONDITION(s->free);
1648 CHECK_CONDITION(s->length >= min_pages);
1649 CHECK_CONDITION(s->length <= max_pages);
1650 CHECK_CONDITION(GetDescriptor(s->start) == s);
1651 CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
1652 }
1653 return true;
1654 }
1655 #endif
1656
1657 static void ReleaseFreeList(Span* list, Span* returned) {
1658 // Walk backwards through list so that when we push these
1659 // spans on the "returned" list, we preserve the order.
1660 while (!DLL_IsEmpty(list)) {
1661 Span* s = list->prev;
1662 DLL_Remove(s);
1663 DLL_Prepend(returned, s);
1664 TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
1665 static_cast<size_t>(s->length << kPageShift));
1666 }
1667 }
1668
1669 void TCMalloc_PageHeap::ReleaseFreePages() {
1670 for (Length s = 0; s < kMaxPages; s++) {
1671 ReleaseFreeList(&free_[s].normal, &free_[s].returned);
1672 }
1673 ReleaseFreeList(&large_.normal, &large_.returned);
1674 ASSERT(Check());
1675 }
1676
1677 //-------------------------------------------------------------------
1678 // Free list
1679 //-------------------------------------------------------------------
1680
1681 class TCMalloc_ThreadCache_FreeList {
1682 private:
1683 void* list_; // Linked list of nodes
1684 uint16_t length_; // Current length
1685 uint16_t lowater_; // Low water mark for list length
1686
1687 public:
1688 void Init() {
1689 list_ = NULL;
1690 length_ = 0;
1691 lowater_ = 0;
1692 }
1693
1694 // Return current length of list
1695 int length() const {
1696 return length_;
1697 }
1698
1699 // Is list empty?
1700 bool empty() const {
1701 return list_ == NULL;
1702 }
1703
1704 // Low-water mark management
1705 int lowwatermark() const { return lowater_; }
1706 void clear_lowwatermark() { lowater_ = length_; }
1707
1708 ALWAYS_INLINE void Push(void* ptr) {
1709 SLL_Push(&list_, ptr);
1710 length_++;
1711 }
1712
1713 void PushRange(int N, void *start, void *end) {
1714 SLL_PushRange(&list_, start, end);
1715 length_ = length_ + static_cast<uint16_t>(N);
1716 }
1717
1718 void PopRange(int N, void **start, void **end) {
1719 SLL_PopRange(&list_, N, start, end);
1720 ASSERT(length_ >= N);
1721 length_ = length_ - static_cast<uint16_t>(N);
1722 if (length_ < lowater_) lowater_ = length_;
1723 }
1724
1725 ALWAYS_INLINE void* Pop() {
1726 ASSERT(list_ != NULL);
1727 length_--;
1728 if (length_ < lowater_) lowater_ = length_;
1729 return SLL_Pop(&list_);
1730 }
1731
1732 #ifdef WTF_CHANGES
1733 template <class Finder, class Reader>
1734 void enumerateFreeObjects(Finder& finder, const Reader& reader)
1735 {
1736 for (void* nextObject = list_; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject)))
1737 finder.visit(nextObject);
1738 }
1739 #endif
1740 };
1741
1742 //-------------------------------------------------------------------
1743 // Data kept per thread
1744 //-------------------------------------------------------------------
1745
1746 class TCMalloc_ThreadCache {
1747 private:
1748 typedef TCMalloc_ThreadCache_FreeList FreeList;
1749 #if COMPILER(MSVC)
1750 typedef DWORD ThreadIdentifier;
1751 #else
1752 typedef pthread_t ThreadIdentifier;
1753 #endif
1754
1755 size_t size_; // Combined size of data
1756 ThreadIdentifier tid_; // Which thread owns it
1757 bool in_setspecific_; // Called pthread_setspecific?
1758 FreeList list_[kNumClasses]; // Array indexed by size-class
1759
1760 // We sample allocations, biased by the size of the allocation
1761 uint32_t rnd_; // Cheap random number generator
1762 size_t bytes_until_sample_; // Bytes until we sample next
1763
1764 // Allocate a new heap. REQUIRES: pageheap_lock is held.
1765 static inline TCMalloc_ThreadCache* NewHeap(ThreadIdentifier tid);
1766
1767 // Use only as pthread thread-specific destructor function.
1768 static void DestroyThreadCache(void* ptr);
1769 public:
1770 // All ThreadCache objects are kept in a linked list (for stats collection)
1771 TCMalloc_ThreadCache* next_;
1772 TCMalloc_ThreadCache* prev_;
1773
1774 void Init(ThreadIdentifier tid);
1775 void Cleanup();
1776
1777 // Accessors (mostly just for printing stats)
1778 int freelist_length(size_t cl) const { return list_[cl].length(); }
1779
1780 // Total byte size in cache
1781 size_t Size() const { return size_; }
1782
1783 void* Allocate(size_t size);
1784 void Deallocate(void* ptr, size_t size_class);
1785
1786 void FetchFromCentralCache(size_t cl, size_t allocationSize);
1787 void ReleaseToCentralCache(size_t cl, int N);
1788 void Scavenge();
1789 void Print() const;
1790
1791 // Record allocation of "k" bytes. Return true iff allocation
1792 // should be sampled
1793 bool SampleAllocation(size_t k);
1794
1795 // Pick next sampling point
1796 void PickNextSample(size_t k);
1797
1798 static void InitModule();
1799 static void InitTSD();
1800 static TCMalloc_ThreadCache* GetThreadHeap();
1801 static TCMalloc_ThreadCache* GetCache();
1802 static TCMalloc_ThreadCache* GetCacheIfPresent();
1803 static TCMalloc_ThreadCache* CreateCacheIfNecessary();
1804 static void DeleteCache(TCMalloc_ThreadCache* heap);
1805 static void BecomeIdle();
1806 static void RecomputeThreadCacheSize();
1807
1808 #ifdef WTF_CHANGES
1809 template <class Finder, class Reader>
1810 void enumerateFreeObjects(Finder& finder, const Reader& reader)
1811 {
1812 for (unsigned sizeClass = 0; sizeClass < kNumClasses; sizeClass++)
1813 list_[sizeClass].enumerateFreeObjects(finder, reader);
1814 }
1815 #endif
1816 };
1817
1818 //-------------------------------------------------------------------
1819 // Data kept per size-class in central cache
1820 //-------------------------------------------------------------------
1821
1822 class TCMalloc_Central_FreeList {
1823 public:
1824 void Init(size_t cl);
1825
1826 // These methods all do internal locking.
1827
1828 // Insert the specified range into the central freelist. N is the number of
1829 // elements in the range.
1830 void InsertRange(void *start, void *end, int N);
1831
1832 // Returns the actual number of fetched elements into N.
1833 void RemoveRange(void **start, void **end, int *N);
1834
1835 // Returns the number of free objects in cache.
1836 size_t length() {
1837 SpinLockHolder h(&lock_);
1838 return counter_;
1839 }
1840
1841 // Returns the number of free objects in the transfer cache.
1842 int tc_length() {
1843 SpinLockHolder h(&lock_);
1844 return used_slots_ * num_objects_to_move[size_class_];
1845 }
1846
1847 #ifdef WTF_CHANGES
1848 template <class Finder, class Reader>
1849 void enumerateFreeObjects(Finder& finder, const Reader& reader, TCMalloc_Central_FreeList* remoteCentralFreeList)
1850 {
1851 for (Span* span = &empty_; span && span != &empty_; span = (span->next ? reader(span->next) : 0))
1852 ASSERT(!span->objects);
1853
1854 ASSERT(!nonempty_.objects);
1855 static const ptrdiff_t nonemptyOffset = reinterpret_cast<const char*>(&nonempty_) - reinterpret_cast<const char*>(this);
1856
1857 Span* remoteNonempty = reinterpret_cast<Span*>(reinterpret_cast<char*>(remoteCentralFreeList) + nonemptyOffset);
1858 Span* remoteSpan = nonempty_.next;
1859
1860 for (Span* span = reader(remoteSpan); span && remoteSpan != remoteNonempty; remoteSpan = span->next, span = (span->next ? reader(span->next) : 0)) {
1861 for (void* nextObject = span->objects; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject)))
1862 finder.visit(nextObject);
1863 }
1864 }
1865 #endif
1866
1867 private:
1868 // REQUIRES: lock_ is held
1869 // Remove object from cache and return.
1870 // Return NULL if no free entries in cache.
1871 void* FetchFromSpans();
1872
1873 // REQUIRES: lock_ is held
1874 // Remove object from cache and return. Fetches
1875 // from pageheap if cache is empty. Only returns
1876 // NULL on allocation failure.
1877 void* FetchFromSpansSafe();
1878
1879 // REQUIRES: lock_ is held
1880 // Release a linked list of objects to spans.
1881 // May temporarily release lock_.
1882 void ReleaseListToSpans(void *start);
1883
1884 // REQUIRES: lock_ is held
1885 // Release an object to spans.
1886 // May temporarily release lock_.
1887 void ReleaseToSpans(void* object);
1888
1889 // REQUIRES: lock_ is held
1890 // Populate cache by fetching from the page heap.
1891 // May temporarily release lock_.
1892 void Populate();
1893
1894 // REQUIRES: lock is held.
1895 // Tries to make room for a TCEntry. If the cache is full it will try to
1896 // expand it at the cost of some other cache size. Return false if there is
1897 // no space.
1898 bool MakeCacheSpace();
1899
1900 // REQUIRES: lock_ for locked_size_class is held.
1901 // Picks a "random" size class to steal TCEntry slot from. In reality it
1902 // just iterates over the sizeclasses but does so without taking a lock.
1903 // Returns true on success.
1904 // May temporarily lock a "random" size class.
1905 static bool EvictRandomSizeClass(size_t locked_size_class, bool force);
1906
1907 // REQUIRES: lock_ is *not* held.
1908 // Tries to shrink the Cache. If force is true it will relase objects to
1909 // spans if it allows it to shrink the cache. Return false if it failed to
1910 // shrink the cache. Decrements cache_size_ on succeess.
1911 // May temporarily take lock_. If it takes lock_, the locked_size_class
1912 // lock is released to the thread from holding two size class locks
1913 // concurrently which could lead to a deadlock.
1914 bool ShrinkCache(int locked_size_class, bool force);
1915
1916 // This lock protects all the data members. cached_entries and cache_size_
1917 // may be looked at without holding the lock.
1918 SpinLock lock_;
1919
1920 // We keep linked lists of empty and non-empty spans.
1921 size_t size_class_; // My size class
1922 Span empty_; // Dummy header for list of empty spans
1923 Span nonempty_; // Dummy header for list of non-empty spans
1924 size_t counter_; // Number of free objects in cache entry
1925
1926 // Here we reserve space for TCEntry cache slots. Since one size class can
1927 // end up getting all the TCEntries quota in the system we just preallocate
1928 // sufficient number of entries here.
1929 TCEntry tc_slots_[kNumTransferEntries];
1930
1931 // Number of currently used cached entries in tc_slots_. This variable is
1932 // updated under a lock but can be read without one.
1933 int32_t used_slots_;
1934 // The current number of slots for this size class. This is an
1935 // adaptive value that is increased if there is lots of traffic
1936 // on a given size class.
1937 int32_t cache_size_;
1938 };
1939
1940 // Pad each CentralCache object to multiple of 64 bytes
1941 class TCMalloc_Central_FreeListPadded : public TCMalloc_Central_FreeList {
1942 private:
1943 char pad_[(64 - (sizeof(TCMalloc_Central_FreeList) % 64)) % 64];
1944 };
1945
1946 //-------------------------------------------------------------------
1947 // Global variables
1948 //-------------------------------------------------------------------
1949
1950 // Central cache -- a collection of free-lists, one per size-class.
1951 // We have a separate lock per free-list to reduce contention.
1952 static TCMalloc_Central_FreeListPadded central_cache[kNumClasses];
1953
1954 // Page-level allocator
1955 static SpinLock pageheap_lock = SPINLOCK_INITIALIZER;
1956
1957 #if PLATFORM(ARM)
1958 static void* pageheap_memory[(sizeof(TCMalloc_PageHeap) + sizeof(void*) - 1) / sizeof(void*)] __attribute__((aligned));
1959 #else
1960 static void* pageheap_memory[(sizeof(TCMalloc_PageHeap) + sizeof(void*) - 1) / sizeof(void*)];
1961 #endif
1962 static bool phinited = false;
1963
1964 // Avoid extra level of indirection by making "pageheap" be just an alias
1965 // of pageheap_memory.
1966 typedef union {
1967 void* m_memory;
1968 TCMalloc_PageHeap* m_pageHeap;
1969 } PageHeapUnion;
1970
1971 static inline TCMalloc_PageHeap* getPageHeap()
1972 {
1973 PageHeapUnion u = { &pageheap_memory[0] };
1974 return u.m_pageHeap;
1975 }
1976
1977 #define pageheap getPageHeap()
1978
1979 // If TLS is available, we also store a copy
1980 // of the per-thread object in a __thread variable
1981 // since __thread variables are faster to read
1982 // than pthread_getspecific(). We still need
1983 // pthread_setspecific() because __thread
1984 // variables provide no way to run cleanup
1985 // code when a thread is destroyed.
1986 #ifdef HAVE_TLS
1987 static __thread TCMalloc_ThreadCache *threadlocal_heap;
1988 #endif
1989 // Thread-specific key. Initialization here is somewhat tricky
1990 // because some Linux startup code invokes malloc() before it
1991 // is in a good enough state to handle pthread_keycreate().
1992 // Therefore, we use TSD keys only after tsd_inited is set to true.
1993 // Until then, we use a slow path to get the heap object.
1994 static bool tsd_inited = false;
1995 static pthread_key_t heap_key;
1996 #if COMPILER(MSVC)
1997 DWORD tlsIndex = TLS_OUT_OF_INDEXES;
1998 #endif
1999
2000 static ALWAYS_INLINE void setThreadHeap(TCMalloc_ThreadCache* heap)
2001 {
2002 // still do pthread_setspecific when using MSVC fast TLS to
2003 // benefit from the delete callback.
2004 pthread_setspecific(heap_key, heap);
2005 #if COMPILER(MSVC)
2006 TlsSetValue(tlsIndex, heap);
2007 #endif
2008 }
2009
2010 // Allocator for thread heaps
2011 static PageHeapAllocator<TCMalloc_ThreadCache> threadheap_allocator;
2012
2013 // Linked list of heap objects. Protected by pageheap_lock.
2014 static TCMalloc_ThreadCache* thread_heaps = NULL;
2015 static int thread_heap_count = 0;
2016
2017 // Overall thread cache size. Protected by pageheap_lock.
2018 static size_t overall_thread_cache_size = kDefaultOverallThreadCacheSize;
2019
2020 // Global per-thread cache size. Writes are protected by
2021 // pageheap_lock. Reads are done without any locking, which should be
2022 // fine as long as size_t can be written atomically and we don't place
2023 // invariants between this variable and other pieces of state.
2024 static volatile size_t per_thread_cache_size = kMaxThreadCacheSize;
2025
2026 //-------------------------------------------------------------------
2027 // Central cache implementation
2028 //-------------------------------------------------------------------
2029
2030 void TCMalloc_Central_FreeList::Init(size_t cl) {
2031 lock_.Init();
2032 size_class_ = cl;
2033 DLL_Init(&empty_);
2034 DLL_Init(&nonempty_);
2035 counter_ = 0;
2036
2037 cache_size_ = 1;
2038 used_slots_ = 0;
2039 ASSERT(cache_size_ <= kNumTransferEntries);
2040 }
2041
2042 void TCMalloc_Central_FreeList::ReleaseListToSpans(void* start) {
2043 while (start) {
2044 void *next = SLL_Next(start);
2045 ReleaseToSpans(start);
2046 start = next;
2047 }
2048 }
2049
2050 ALWAYS_INLINE void TCMalloc_Central_FreeList::ReleaseToSpans(void* object) {
2051 const PageID p = reinterpret_cast<uintptr_t>(object) >> kPageShift;
2052 Span* span = pageheap->GetDescriptor(p);
2053 ASSERT(span != NULL);
2054 ASSERT(span->refcount > 0);
2055
2056 // If span is empty, move it to non-empty list
2057 if (span->objects == NULL) {
2058 DLL_Remove(span);
2059 DLL_Prepend(&nonempty_, span);
2060 Event(span, 'N', 0);
2061 }
2062
2063 // The following check is expensive, so it is disabled by default
2064 if (false) {
2065 // Check that object does not occur in list
2066 int got = 0;
2067 for (void* p = span->objects; p != NULL; p = *((void**) p)) {
2068 ASSERT(p != object);
2069 got++;
2070 }
2071 ASSERT(got + span->refcount ==
2072 (span->length<<kPageShift)/ByteSizeForClass(span->sizeclass));
2073 }
2074
2075 counter_++;
2076 span->refcount--;
2077 if (span->refcount == 0) {
2078 Event(span, '#', 0);
2079 counter_ -= (span->length<<kPageShift) / ByteSizeForClass(span->sizeclass);
2080 DLL_Remove(span);
2081
2082 // Release central list lock while operating on pageheap
2083 lock_.Unlock();
2084 {
2085 SpinLockHolder h(&pageheap_lock);
2086 pageheap->Delete(span);
2087 }
2088 lock_.Lock();
2089 } else {
2090 *(reinterpret_cast<void**>(object)) = span->objects;
2091 span->objects = object;
2092 }
2093 }
2094
2095 ALWAYS_INLINE bool TCMalloc_Central_FreeList::EvictRandomSizeClass(
2096 size_t locked_size_class, bool force) {
2097 static int race_counter = 0;
2098 int t = race_counter++; // Updated without a lock, but who cares.
2099 if (t >= static_cast<int>(kNumClasses)) {
2100 while (t >= static_cast<int>(kNumClasses)) {
2101 t -= kNumClasses;
2102 }
2103 race_counter = t;
2104 }
2105 ASSERT(t >= 0);
2106 ASSERT(t < static_cast<int>(kNumClasses));
2107 if (t == static_cast<int>(locked_size_class)) return false;
2108 return central_cache[t].ShrinkCache(static_cast<int>(locked_size_class), force);
2109 }
2110
2111 bool TCMalloc_Central_FreeList::MakeCacheSpace() {
2112 // Is there room in the cache?
2113 if (used_slots_ < cache_size_) return true;
2114 // Check if we can expand this cache?
2115 if (cache_size_ == kNumTransferEntries) return false;
2116 // Ok, we'll try to grab an entry from some other size class.
2117 if (EvictRandomSizeClass(size_class_, false) ||
2118 EvictRandomSizeClass(size_class_, true)) {
2119 // Succeeded in evicting, we're going to make our cache larger.
2120 cache_size_++;
2121 return true;
2122 }
2123 return false;
2124 }
2125
2126
2127 namespace {
2128 class LockInverter {
2129 private:
2130 SpinLock *held_, *temp_;
2131 public:
2132 inline explicit LockInverter(SpinLock* held, SpinLock *temp)
2133 : held_(held), temp_(temp) { held_->Unlock(); temp_->Lock(); }
2134 inline ~LockInverter() { temp_->Unlock(); held_->Lock(); }
2135 };
2136 }
2137
2138 bool TCMalloc_Central_FreeList::ShrinkCache(int locked_size_class, bool force) {
2139 // Start with a quick check without taking a lock.
2140 if (cache_size_ == 0) return false;
2141 // We don't evict from a full cache unless we are 'forcing'.
2142 if (force == false && used_slots_ == cache_size_) return false;
2143
2144 // Grab lock, but first release the other lock held by this thread. We use
2145 // the lock inverter to ensure that we never hold two size class locks
2146 // concurrently. That can create a deadlock because there is no well
2147 // defined nesting order.
2148 LockInverter li(&central_cache[locked_size_class].lock_, &lock_);
2149 ASSERT(used_slots_ <= cache_size_);
2150 ASSERT(0 <= cache_size_);
2151 if (cache_size_ == 0) return false;
2152 if (used_slots_ == cache_size_) {
2153 if (force == false) return false;
2154 // ReleaseListToSpans releases the lock, so we have to make all the
2155 // updates to the central list before calling it.
2156 cache_size_--;
2157 used_slots_--;
2158 ReleaseListToSpans(tc_slots_[used_slots_].head);
2159 return true;
2160 }
2161 cache_size_--;
2162 return true;
2163 }
2164
2165 void TCMalloc_Central_FreeList::InsertRange(void *start, void *end, int N) {
2166 SpinLockHolder h(&lock_);
2167 if (N == num_objects_to_move[size_class_] &&
2168 MakeCacheSpace()) {
2169 int slot = used_slots_++;
2170 ASSERT(slot >=0);
2171 ASSERT(slot < kNumTransferEntries);
2172 TCEntry *entry = &tc_slots_[slot];
2173 entry->head = start;
2174 entry->tail = end;
2175 return;
2176 }
2177 ReleaseListToSpans(start);
2178 }
2179
2180 void TCMalloc_Central_FreeList::RemoveRange(void **start, void **end, int *N) {
2181 int num = *N;
2182 ASSERT(num > 0);
2183
2184 SpinLockHolder h(&lock_);
2185 if (num == num_objects_to_move[size_class_] && used_slots_ > 0) {
2186 int slot = --used_slots_;
2187 ASSERT(slot >= 0);
2188 TCEntry *entry = &tc_slots_[slot];
2189 *start = entry->head;
2190 *end = entry->tail;
2191 return;
2192 }
2193
2194 // TODO: Prefetch multiple TCEntries?
2195 void *tail = FetchFromSpansSafe();
2196 if (!tail) {
2197 // We are completely out of memory.
2198 *start = *end = NULL;
2199 *N = 0;
2200 return;
2201 }
2202
2203 SLL_SetNext(tail, NULL);
2204 void *head = tail;
2205 int count = 1;
2206 while (count < num) {
2207 void *t = FetchFromSpans();
2208 if (!t) break;
2209 SLL_Push(&head, t);
2210 count++;
2211 }
2212 *start = head;
2213 *end = tail;
2214 *N = count;
2215 }
2216
2217
2218 void* TCMalloc_Central_FreeList::FetchFromSpansSafe() {
2219 void *t = FetchFromSpans();
2220 if (!t) {
2221 Populate();
2222 t = FetchFromSpans();
2223 }
2224 return t;
2225 }
2226
2227 void* TCMalloc_Central_FreeList::FetchFromSpans() {
2228 if (DLL_IsEmpty(&nonempty_)) return NULL;
2229 Span* span = nonempty_.next;
2230
2231 ASSERT(span->objects != NULL);
2232 ASSERT_SPAN_COMMITTED(span);
2233 span->refcount++;
2234 void* result = span->objects;
2235 span->objects = *(reinterpret_cast<void**>(result));
2236 if (span->objects == NULL) {
2237 // Move to empty list
2238 DLL_Remove(span);
2239 DLL_Prepend(&empty_, span);
2240 Event(span, 'E', 0);
2241 }
2242 counter_--;
2243 return result;
2244 }
2245
2246 // Fetch memory from the system and add to the central cache freelist.
2247 ALWAYS_INLINE void TCMalloc_Central_FreeList::Populate() {
2248 // Release central list lock while operating on pageheap
2249 lock_.Unlock();
2250 const size_t npages = class_to_pages[size_class_];
2251
2252 Span* span;
2253 {
2254 SpinLockHolder h(&pageheap_lock);
2255 span = pageheap->New(npages);
2256 if (span) pageheap->RegisterSizeClass(span, size_class_);
2257 }
2258 if (span == NULL) {
2259 MESSAGE("allocation failed: %d\n", errno);
2260 lock_.Lock();
2261 return;
2262 }
2263 ASSERT_SPAN_COMMITTED(span);
2264 ASSERT(span->length == npages);
2265 // Cache sizeclass info eagerly. Locking is not necessary.
2266 // (Instead of being eager, we could just replace any stale info
2267 // about this span, but that seems to be no better in practice.)
2268 for (size_t i = 0; i < npages; i++) {
2269 pageheap->CacheSizeClass(span->start + i, size_class_);
2270 }
2271
2272 // Split the block into pieces and add to the free-list
2273 // TODO: coloring of objects to avoid cache conflicts?
2274 void** tail = &span->objects;
2275 char* ptr = reinterpret_cast<char*>(span->start << kPageShift);
2276 char* limit = ptr + (npages << kPageShift);
2277 const size_t size = ByteSizeForClass(size_class_);
2278 int num = 0;
2279 char* nptr;
2280 while ((nptr = ptr + size) <= limit) {
2281 *tail = ptr;
2282 tail = reinterpret_cast<void**>(ptr);
2283 ptr = nptr;
2284 num++;
2285 }
2286 ASSERT(ptr <= limit);
2287 *tail = NULL;
2288 span->refcount = 0; // No sub-object in use yet
2289
2290 // Add span to list of non-empty spans
2291 lock_.Lock();
2292 DLL_Prepend(&nonempty_, span);
2293 counter_ += num;
2294 }
2295
2296 //-------------------------------------------------------------------
2297 // TCMalloc_ThreadCache implementation
2298 //-------------------------------------------------------------------
2299
2300 inline bool TCMalloc_ThreadCache::SampleAllocation(size_t k) {
2301 if (bytes_until_sample_ < k) {
2302 PickNextSample(k);
2303 return true;
2304 } else {
2305 bytes_until_sample_ -= k;
2306 return false;
2307 }
2308 }
2309
2310 void TCMalloc_ThreadCache::Init(ThreadIdentifier tid) {
2311 size_ = 0;
2312 next_ = NULL;
2313 prev_ = NULL;
2314 tid_ = tid;
2315 in_setspecific_ = false;
2316 for (size_t cl = 0; cl < kNumClasses; ++cl) {
2317 list_[cl].Init();
2318 }
2319
2320 // Initialize RNG -- run it for a bit to get to good values
2321 bytes_until_sample_ = 0;
2322 rnd_ = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(this));
2323 for (int i = 0; i < 100; i++) {
2324 PickNextSample(static_cast<size_t>(FLAGS_tcmalloc_sample_parameter * 2));
2325 }
2326 }
2327
2328 void TCMalloc_ThreadCache::Cleanup() {
2329 // Put unused memory back into central cache
2330 for (size_t cl = 0; cl < kNumClasses; ++cl) {
2331 if (list_[cl].length() > 0) {
2332 ReleaseToCentralCache(cl, list_[cl].length());
2333 }
2334 }
2335 }
2336
2337 ALWAYS_INLINE void* TCMalloc_ThreadCache::Allocate(size_t size) {
2338 ASSERT(size <= kMaxSize);
2339 const size_t cl = SizeClass(size);
2340 FreeList* list = &list_[cl];
2341 size_t allocationSize = ByteSizeForClass(cl);
2342 if (list->empty()) {
2343 FetchFromCentralCache(cl, allocationSize);
2344 if (list->empty()) return NULL;
2345 }
2346 size_ -= allocationSize;
2347 return list->Pop();
2348 }
2349
2350 inline void TCMalloc_ThreadCache::Deallocate(void* ptr, size_t cl) {
2351 size_ += ByteSizeForClass(cl);
2352 FreeList* list = &list_[cl];
2353 list->Push(ptr);
2354 // If enough data is free, put back into central cache
2355 if (list->length() > kMaxFreeListLength) {
2356 ReleaseToCentralCache(cl, num_objects_to_move[cl]);
2357 }
2358 if (size_ >= per_thread_cache_size) Scavenge();
2359 }
2360
2361 // Remove some objects of class "cl" from central cache and add to thread heap
2362 ALWAYS_INLINE void TCMalloc_ThreadCache::FetchFromCentralCache(size_t cl, size_t allocationSize) {
2363 int fetch_count = num_objects_to_move[cl];
2364 void *start, *end;
2365 central_cache[cl].RemoveRange(&start, &end, &fetch_count);
2366 list_[cl].PushRange(fetch_count, start, end);
2367 size_ += allocationSize * fetch_count;
2368 }
2369
2370 // Remove some objects of class "cl" from thread heap and add to central cache
2371 inline void TCMalloc_ThreadCache::ReleaseToCentralCache(size_t cl, int N) {
2372 ASSERT(N > 0);
2373 FreeList* src = &list_[cl];
2374 if (N > src->length()) N = src->length();
2375 size_ -= N*ByteSizeForClass(cl);
2376
2377 // We return prepackaged chains of the correct size to the central cache.
2378 // TODO: Use the same format internally in the thread caches?
2379 int batch_size = num_objects_to_move[cl];
2380 while (N > batch_size) {
2381 void *tail, *head;
2382 src->PopRange(batch_size, &head, &tail);
2383 central_cache[cl].InsertRange(head, tail, batch_size);
2384 N -= batch_size;
2385 }
2386 void *tail, *head;
2387 src->PopRange(N, &head, &tail);
2388 central_cache[cl].InsertRange(head, tail, N);
2389 }
2390
2391 // Release idle memory to the central cache
2392 inline void TCMalloc_ThreadCache::Scavenge() {
2393 // If the low-water mark for the free list is L, it means we would
2394 // not have had to allocate anything from the central cache even if
2395 // we had reduced the free list size by L. We aim to get closer to
2396 // that situation by dropping L/2 nodes from the free list. This
2397 // may not release much memory, but if so we will call scavenge again
2398 // pretty soon and the low-water marks will be high on that call.
2399 //int64 start = CycleClock::Now();
2400
2401 for (size_t cl = 0; cl < kNumClasses; cl++) {
2402 FreeList* list = &list_[cl];
2403 const int lowmark = list->lowwatermark();
2404 if (lowmark > 0) {
2405 const int drop = (lowmark > 1) ? lowmark/2 : 1;
2406 ReleaseToCentralCache(cl, drop);
2407 }
2408 list->clear_lowwatermark();
2409 }
2410
2411 //int64 finish = CycleClock::Now();
2412 //CycleTimer ct;
2413 //MESSAGE("GC: %.0f ns\n", ct.CyclesToUsec(finish-start)*1000.0);
2414 }
2415
2416 void TCMalloc_ThreadCache::PickNextSample(size_t k) {
2417 // Make next "random" number
2418 // x^32+x^22+x^2+x^1+1 is a primitive polynomial for random numbers
2419 static const uint32_t kPoly = (1 << 22) | (1 << 2) | (1 << 1) | (1 << 0);
2420 uint32_t r = rnd_;
2421 rnd_ = (r << 1) ^ ((static_cast<int32_t>(r) >> 31) & kPoly);
2422
2423 // Next point is "rnd_ % (sample_period)". I.e., average
2424 // increment is "sample_period/2".
2425 const int flag_value = static_cast<int>(FLAGS_tcmalloc_sample_parameter);
2426 static int last_flag_value = -1;
2427
2428 if (flag_value != last_flag_value) {
2429 SpinLockHolder h(&sample_period_lock);
2430 int i;
2431 for (i = 0; i < (static_cast<int>(sizeof(primes_list)/sizeof(primes_list[0])) - 1); i++) {
2432 if (primes_list[i] >= flag_value) {
2433 break;
2434 }
2435 }
2436 sample_period = primes_list[i];
2437 last_flag_value = flag_value;
2438 }
2439
2440 bytes_until_sample_ += rnd_ % sample_period;
2441
2442 if (k > (static_cast<size_t>(-1) >> 2)) {
2443 // If the user has asked for a huge allocation then it is possible
2444 // for the code below to loop infinitely. Just return (note that
2445 // this throws off the sampling accuracy somewhat, but a user who
2446 // is allocating more than 1G of memory at a time can live with a
2447 // minor inaccuracy in profiling of small allocations, and also
2448 // would rather not wait for the loop below to terminate).
2449 return;
2450 }
2451
2452 while (bytes_until_sample_ < k) {
2453 // Increase bytes_until_sample_ by enough average sampling periods
2454 // (sample_period >> 1) to allow us to sample past the current
2455 // allocation.
2456 bytes_until_sample_ += (sample_period >> 1);
2457 }
2458
2459 bytes_until_sample_ -= k;
2460 }
2461
2462 void TCMalloc_ThreadCache::InitModule() {
2463 // There is a slight potential race here because of double-checked
2464 // locking idiom. However, as long as the program does a small
2465 // allocation before switching to multi-threaded mode, we will be
2466 // fine. We increase the chances of doing such a small allocation
2467 // by doing one in the constructor of the module_enter_exit_hook
2468 // object declared below.
2469 SpinLockHolder h(&pageheap_lock);
2470 if (!phinited) {
2471 #ifdef WTF_CHANGES
2472 InitTSD();
2473 #endif
2474 InitSizeClasses();
2475 threadheap_allocator.Init();
2476 span_allocator.Init();
2477 span_allocator.New(); // Reduce cache conflicts
2478 span_allocator.New(); // Reduce cache conflicts
2479 stacktrace_allocator.Init();
2480 DLL_Init(&sampled_objects);
2481 for (size_t i = 0; i < kNumClasses; ++i) {
2482 central_cache[i].Init(i);
2483 }
2484 pageheap->init();
2485 phinited = 1;
2486 #if defined(WTF_CHANGES) && PLATFORM(DARWIN)
2487 FastMallocZone::init();
2488 #endif
2489 }
2490 }
2491
2492 inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::NewHeap(ThreadIdentifier tid) {
2493 // Create the heap and add it to the linked list
2494 TCMalloc_ThreadCache *heap = threadheap_allocator.New();
2495 heap->Init(tid);
2496 heap->next_ = thread_heaps;
2497 heap->prev_ = NULL;
2498 if (thread_heaps != NULL) thread_heaps->prev_ = heap;
2499 thread_heaps = heap;
2500 thread_heap_count++;
2501 RecomputeThreadCacheSize();
2502 return heap;
2503 }
2504
2505 inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetThreadHeap() {
2506 #ifdef HAVE_TLS
2507 // __thread is faster, but only when the kernel supports it
2508 if (KernelSupportsTLS())
2509 return threadlocal_heap;
2510 #elif COMPILER(MSVC)
2511 return static_cast<TCMalloc_ThreadCache*>(TlsGetValue(tlsIndex));
2512 #else
2513 return static_cast<TCMalloc_ThreadCache*>(pthread_getspecific(heap_key));
2514 #endif
2515 }
2516
2517 inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCache() {
2518 TCMalloc_ThreadCache* ptr = NULL;
2519 if (!tsd_inited) {
2520 InitModule();
2521 } else {
2522 ptr = GetThreadHeap();
2523 }
2524 if (ptr == NULL) ptr = CreateCacheIfNecessary();
2525 return ptr;
2526 }
2527
2528 // In deletion paths, we do not try to create a thread-cache. This is
2529 // because we may be in the thread destruction code and may have
2530 // already cleaned up the cache for this thread.
2531 inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCacheIfPresent() {
2532 if (!tsd_inited) return NULL;
2533 void* const p = GetThreadHeap();
2534 return reinterpret_cast<TCMalloc_ThreadCache*>(p);
2535 }
2536
2537 void TCMalloc_ThreadCache::InitTSD() {
2538 ASSERT(!tsd_inited);
2539 pthread_key_create(&heap_key, DestroyThreadCache);
2540 #if COMPILER(MSVC)
2541 tlsIndex = TlsAlloc();
2542 #endif
2543 tsd_inited = true;
2544
2545 #if !COMPILER(MSVC)
2546 // We may have used a fake pthread_t for the main thread. Fix it.
2547 pthread_t zero;
2548 memset(&zero, 0, sizeof(zero));
2549 #endif
2550 #ifndef WTF_CHANGES
2551 SpinLockHolder h(&pageheap_lock);
2552 #else
2553 ASSERT(pageheap_lock.IsHeld());
2554 #endif
2555 for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
2556 #if COMPILER(MSVC)
2557 if (h->tid_ == 0) {
2558 h->tid_ = GetCurrentThreadId();
2559 }
2560 #else
2561 if (pthread_equal(h->tid_, zero)) {
2562 h->tid_ = pthread_self();
2563 }
2564 #endif
2565 }
2566 }
2567
2568 TCMalloc_ThreadCache* TCMalloc_ThreadCache::CreateCacheIfNecessary() {
2569 // Initialize per-thread data if necessary
2570 TCMalloc_ThreadCache* heap = NULL;
2571 {
2572 SpinLockHolder h(&pageheap_lock);
2573
2574 #if COMPILER(MSVC)
2575 DWORD me;
2576 if (!tsd_inited) {
2577 me = 0;
2578 } else {
2579 me = GetCurrentThreadId();
2580 }
2581 #else
2582 // Early on in glibc's life, we cannot even call pthread_self()
2583 pthread_t me;
2584 if (!tsd_inited) {
2585 memset(&me, 0, sizeof(me));
2586 } else {
2587 me = pthread_self();
2588 }
2589 #endif
2590
2591 // This may be a recursive malloc call from pthread_setspecific()
2592 // In that case, the heap for this thread has already been created
2593 // and added to the linked list. So we search for that first.
2594 for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
2595 #if COMPILER(MSVC)
2596 if (h->tid_ == me) {
2597 #else
2598 if (pthread_equal(h->tid_, me)) {
2599 #endif
2600 heap = h;
2601 break;
2602 }
2603 }
2604
2605 if (heap == NULL) heap = NewHeap(me);
2606 }
2607
2608 // We call pthread_setspecific() outside the lock because it may
2609 // call malloc() recursively. The recursive call will never get
2610 // here again because it will find the already allocated heap in the
2611 // linked list of heaps.
2612 if (!heap->in_setspecific_ && tsd_inited) {
2613 heap->in_setspecific_ = true;
2614 setThreadHeap(heap);
2615 }
2616 return heap;
2617 }
2618
2619 void TCMalloc_ThreadCache::BecomeIdle() {
2620 if (!tsd_inited) return; // No caches yet
2621 TCMalloc_ThreadCache* heap = GetThreadHeap();
2622 if (heap == NULL) return; // No thread cache to remove
2623 if (heap->in_setspecific_) return; // Do not disturb the active caller
2624
2625 heap->in_setspecific_ = true;
2626 pthread_setspecific(heap_key, NULL);
2627 #ifdef HAVE_TLS
2628 // Also update the copy in __thread
2629 threadlocal_heap = NULL;
2630 #endif
2631 heap->in_setspecific_ = false;
2632 if (GetThreadHeap() == heap) {
2633 // Somehow heap got reinstated by a recursive call to malloc
2634 // from pthread_setspecific. We give up in this case.
2635 return;
2636 }
2637
2638 // We can now get rid of the heap
2639 DeleteCache(heap);
2640 }
2641
2642 void TCMalloc_ThreadCache::DestroyThreadCache(void* ptr) {
2643 // Note that "ptr" cannot be NULL since pthread promises not
2644 // to invoke the destructor on NULL values, but for safety,
2645 // we check anyway.
2646 if (ptr == NULL) return;
2647 #ifdef HAVE_TLS
2648 // Prevent fast path of GetThreadHeap() from returning heap.
2649 threadlocal_heap = NULL;
2650 #endif
2651 DeleteCache(reinterpret_cast<TCMalloc_ThreadCache*>(ptr));
2652 }
2653
2654 void TCMalloc_ThreadCache::DeleteCache(TCMalloc_ThreadCache* heap) {
2655 // Remove all memory from heap
2656 heap->Cleanup();
2657
2658 // Remove from linked list
2659 SpinLockHolder h(&pageheap_lock);
2660 if (heap->next_ != NULL) heap->next_->prev_ = heap->prev_;
2661 if (heap->prev_ != NULL) heap->prev_->next_ = heap->next_;
2662 if (thread_heaps == heap) thread_heaps = heap->next_;
2663 thread_heap_count--;
2664 RecomputeThreadCacheSize();
2665
2666 threadheap_allocator.Delete(heap);
2667 }
2668
2669 void TCMalloc_ThreadCache::RecomputeThreadCacheSize() {
2670 // Divide available space across threads
2671 int n = thread_heap_count > 0 ? thread_heap_count : 1;
2672 size_t space = overall_thread_cache_size / n;
2673
2674 // Limit to allowed range
2675 if (space < kMinThreadCacheSize) space = kMinThreadCacheSize;
2676 if (space > kMaxThreadCacheSize) space = kMaxThreadCacheSize;
2677
2678 per_thread_cache_size = space;
2679 }
2680
2681 void TCMalloc_ThreadCache::Print() const {
2682 for (size_t cl = 0; cl < kNumClasses; ++cl) {
2683 MESSAGE(" %5" PRIuS " : %4d len; %4d lo\n",
2684 ByteSizeForClass(cl),
2685 list_[cl].length(),
2686 list_[cl].lowwatermark());
2687 }
2688 }
2689
2690 // Extract interesting stats
2691 struct TCMallocStats {
2692 uint64_t system_bytes; // Bytes alloced from system
2693 uint64_t thread_bytes; // Bytes in thread caches
2694 uint64_t central_bytes; // Bytes in central cache
2695 uint64_t transfer_bytes; // Bytes in central transfer cache
2696 uint64_t pageheap_bytes; // Bytes in page heap
2697 uint64_t metadata_bytes; // Bytes alloced for metadata
2698 };
2699
2700 #ifndef WTF_CHANGES
2701 // Get stats into "r". Also get per-size-class counts if class_count != NULL
2702 static void ExtractStats(TCMallocStats* r, uint64_t* class_count) {
2703 r->central_bytes = 0;
2704 r->transfer_bytes = 0;
2705 for (int cl = 0; cl < kNumClasses; ++cl) {
2706 const int length = central_cache[cl].length();
2707 const int tc_length = central_cache[cl].tc_length();
2708 r->central_bytes += static_cast<uint64_t>(ByteSizeForClass(cl)) * length;
2709 r->transfer_bytes +=
2710 static_cast<uint64_t>(ByteSizeForClass(cl)) * tc_length;
2711 if (class_count) class_count[cl] = length + tc_length;
2712 }
2713
2714 // Add stats from per-thread heaps
2715 r->thread_bytes = 0;
2716 { // scope
2717 SpinLockHolder h(&pageheap_lock);
2718 for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
2719 r->thread_bytes += h->Size();
2720 if (class_count) {
2721 for (size_t cl = 0; cl < kNumClasses; ++cl) {
2722 class_count[cl] += h->freelist_length(cl);
2723 }
2724 }
2725 }
2726 }
2727
2728 { //scope
2729 SpinLockHolder h(&pageheap_lock);
2730 r->system_bytes = pageheap->SystemBytes();
2731 r->metadata_bytes = metadata_system_bytes;
2732 r->pageheap_bytes = pageheap->FreeBytes();
2733 }
2734 }
2735 #endif
2736
2737 #ifndef WTF_CHANGES
2738 // WRITE stats to "out"
2739 static void DumpStats(TCMalloc_Printer* out, int level) {
2740 TCMallocStats stats;
2741 uint64_t class_count[kNumClasses];
2742 ExtractStats(&stats, (level >= 2 ? class_count : NULL));
2743
2744 if (level >= 2) {
2745 out->printf("------------------------------------------------\n");
2746 uint64_t cumulative = 0;
2747 for (int cl = 0; cl < kNumClasses; ++cl) {
2748 if (class_count[cl] > 0) {
2749 uint64_t class_bytes = class_count[cl] * ByteSizeForClass(cl);
2750 cumulative += class_bytes;
2751 out->printf("class %3d [ %8" PRIuS " bytes ] : "
2752 "%8" PRIu64 " objs; %5.1f MB; %5.1f cum MB\n",
2753 cl, ByteSizeForClass(cl),
2754 class_count[cl],
2755 class_bytes / 1048576.0,
2756 cumulative / 1048576.0);
2757 }
2758 }
2759
2760 SpinLockHolder h(&pageheap_lock);
2761 pageheap->Dump(out);
2762 }
2763
2764 const uint64_t bytes_in_use = stats.system_bytes
2765 - stats.pageheap_bytes
2766 - stats.central_bytes
2767 - stats.transfer_bytes
2768 - stats.thread_bytes;
2769
2770 out->printf("------------------------------------------------\n"
2771 "MALLOC: %12" PRIu64 " Heap size\n"
2772 "MALLOC: %12" PRIu64 " Bytes in use by application\n"
2773 "MALLOC: %12" PRIu64 " Bytes free in page heap\n"
2774 "MALLOC: %12" PRIu64 " Bytes free in central cache\n"
2775 "MALLOC: %12" PRIu64 " Bytes free in transfer cache\n"
2776 "MALLOC: %12" PRIu64 " Bytes free in thread caches\n"
2777 "MALLOC: %12" PRIu64 " Spans in use\n"
2778 "MALLOC: %12" PRIu64 " Thread heaps in use\n"
2779 "MALLOC: %12" PRIu64 " Metadata allocated\n"
2780 "------------------------------------------------\n",
2781 stats.system_bytes,
2782 bytes_in_use,
2783 stats.pageheap_bytes,
2784 stats.central_bytes,
2785 stats.transfer_bytes,
2786 stats.thread_bytes,
2787 uint64_t(span_allocator.inuse()),
2788 uint64_t(threadheap_allocator.inuse()),
2789 stats.metadata_bytes);
2790 }
2791
2792 static void PrintStats(int level) {
2793 const int kBufferSize = 16 << 10;
2794 char* buffer = new char[kBufferSize];
2795 TCMalloc_Printer printer(buffer, kBufferSize);
2796 DumpStats(&printer, level);
2797 write(STDERR_FILENO, buffer, strlen(buffer));
2798 delete[] buffer;
2799 }
2800
2801 static void** DumpStackTraces() {
2802 // Count how much space we need
2803 int needed_slots = 0;
2804 {
2805 SpinLockHolder h(&pageheap_lock);
2806 for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
2807 StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
2808 needed_slots += 3 + stack->depth;
2809 }
2810 needed_slots += 100; // Slop in case sample grows
2811 needed_slots += needed_slots/8; // An extra 12.5% slop
2812 }
2813
2814 void** result = new void*[needed_slots];
2815 if (result == NULL) {
2816 MESSAGE("tcmalloc: could not allocate %d slots for stack traces\n",
2817 needed_slots);
2818 return NULL;
2819 }
2820
2821 SpinLockHolder h(&pageheap_lock);
2822 int used_slots = 0;
2823 for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
2824 ASSERT(used_slots < needed_slots); // Need to leave room for terminator
2825 StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
2826 if (used_slots + 3 + stack->depth >= needed_slots) {
2827 // No more room
2828 break;
2829 }
2830
2831 result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
2832 result[used_slots+1] = reinterpret_cast<void*>(stack->size);
2833 result[used_slots+2] = reinterpret_cast<void*>(stack->depth);
2834 for (int d = 0; d < stack->depth; d++) {
2835 result[used_slots+3+d] = stack->stack[d];
2836 }
2837 used_slots += 3 + stack->depth;
2838 }
2839 result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
2840 return result;
2841 }
2842 #endif
2843
2844 #ifndef WTF_CHANGES
2845
2846 // TCMalloc's support for extra malloc interfaces
2847 class TCMallocImplementation : public MallocExtension {
2848 public:
2849 virtual void GetStats(char* buffer, int buffer_length) {
2850 ASSERT(buffer_length > 0);
2851 TCMalloc_Printer printer(buffer, buffer_length);
2852
2853 // Print level one stats unless lots of space is available
2854 if (buffer_length < 10000) {
2855 DumpStats(&printer, 1);
2856 } else {
2857 DumpStats(&printer, 2);
2858 }
2859 }
2860
2861 virtual void** ReadStackTraces() {
2862 return DumpStackTraces();
2863 }
2864
2865 virtual bool GetNumericProperty(const char* name, size_t* value) {
2866 ASSERT(name != NULL);
2867
2868 if (strcmp(name, "generic.current_allocated_bytes") == 0) {
2869 TCMallocStats stats;
2870 ExtractStats(&stats, NULL);
2871 *value = stats.system_bytes
2872 - stats.thread_bytes
2873 - stats.central_bytes
2874 - stats.pageheap_bytes;
2875 return true;
2876 }
2877
2878 if (strcmp(name, "generic.heap_size") == 0) {
2879 TCMallocStats stats;
2880 ExtractStats(&stats, NULL);
2881 *value = stats.system_bytes;
2882 return true;
2883 }
2884
2885 if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
2886 // We assume that bytes in the page heap are not fragmented too
2887 // badly, and are therefore available for allocation.
2888 SpinLockHolder l(&pageheap_lock);
2889 *value = pageheap->FreeBytes();
2890 return true;
2891 }
2892
2893 if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
2894 SpinLockHolder l(&pageheap_lock);
2895 *value = overall_thread_cache_size;
2896 return true;
2897 }
2898
2899 if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
2900 TCMallocStats stats;
2901 ExtractStats(&stats, NULL);
2902 *value = stats.thread_bytes;
2903 return true;
2904 }
2905
2906 return false;
2907 }
2908
2909 virtual bool SetNumericProperty(const char* name, size_t value) {
2910 ASSERT(name != NULL);
2911
2912 if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
2913 // Clip the value to a reasonable range
2914 if (value < kMinThreadCacheSize) value = kMinThreadCacheSize;
2915 if (value > (1<<30)) value = (1<<30); // Limit to 1GB
2916
2917 SpinLockHolder l(&pageheap_lock);
2918 overall_thread_cache_size = static_cast<size_t>(value);
2919 TCMalloc_ThreadCache::RecomputeThreadCacheSize();
2920 return true;
2921 }
2922
2923 return false;
2924 }
2925
2926 virtual void MarkThreadIdle() {
2927 TCMalloc_ThreadCache::BecomeIdle();
2928 }
2929
2930 virtual void ReleaseFreeMemory() {
2931 SpinLockHolder h(&pageheap_lock);
2932 pageheap->ReleaseFreePages();
2933 }
2934 };
2935 #endif
2936
2937 // The constructor allocates an object to ensure that initialization
2938 // runs before main(), and therefore we do not have a chance to become
2939 // multi-threaded before initialization. We also create the TSD key
2940 // here. Presumably by the time this constructor runs, glibc is in
2941 // good enough shape to handle pthread_key_create().
2942 //
2943 // The constructor also takes the opportunity to tell STL to use
2944 // tcmalloc. We want to do this early, before construct time, so
2945 // all user STL allocations go through tcmalloc (which works really
2946 // well for STL).
2947 //
2948 // The destructor prints stats when the program exits.
2949 class TCMallocGuard {
2950 public:
2951
2952 TCMallocGuard() {
2953 #ifdef HAVE_TLS // this is true if the cc/ld/libc combo support TLS
2954 // Check whether the kernel also supports TLS (needs to happen at runtime)
2955 CheckIfKernelSupportsTLS();
2956 #endif
2957 #ifndef WTF_CHANGES
2958 #ifdef WIN32 // patch the windows VirtualAlloc, etc.
2959 PatchWindowsFunctions(); // defined in windows/patch_functions.cc
2960 #endif
2961 #endif
2962 free(malloc(1));
2963 TCMalloc_ThreadCache::InitTSD();
2964 free(malloc(1));
2965 #ifndef WTF_CHANGES
2966 MallocExtension::Register(new TCMallocImplementation);
2967 #endif
2968 }
2969
2970 #ifndef WTF_CHANGES
2971 ~TCMallocGuard() {
2972 const char* env = getenv("MALLOCSTATS");
2973 if (env != NULL) {
2974 int level = atoi(env);
2975 if (level < 1) level = 1;
2976 PrintStats(level);
2977 }
2978 #ifdef WIN32
2979 UnpatchWindowsFunctions();
2980 #endif
2981 }
2982 #endif
2983 };
2984
2985 #ifndef WTF_CHANGES
2986 static TCMallocGuard module_enter_exit_hook;
2987 #endif
2988
2989
2990 //-------------------------------------------------------------------
2991 // Helpers for the exported routines below
2992 //-------------------------------------------------------------------
2993
2994 #ifndef WTF_CHANGES
2995
2996 static Span* DoSampledAllocation(size_t size) {
2997
2998 // Grab the stack trace outside the heap lock
2999 StackTrace tmp;
3000 tmp.depth = GetStackTrace(tmp.stack, kMaxStackDepth, 1);
3001 tmp.size = size;
3002
3003 SpinLockHolder h(&pageheap_lock);
3004 // Allocate span
3005 Span *span = pageheap->New(pages(size == 0 ? 1 : size));
3006 if (span == NULL) {
3007 return NULL;
3008 }
3009
3010 // Allocate stack trace
3011 StackTrace *stack = stacktrace_allocator.New();
3012 if (stack == NULL) {
3013 // Sampling failed because of lack of memory
3014 return span;
3015 }
3016
3017 *stack = tmp;
3018 span->sample = 1;
3019 span->objects = stack;
3020 DLL_Prepend(&sampled_objects, span);
3021
3022 return span;
3023 }
3024 #endif
3025
3026 static inline bool CheckCachedSizeClass(void *ptr) {
3027 PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
3028 size_t cached_value = pageheap->GetSizeClassIfCached(p);
3029 return cached_value == 0 ||
3030 cached_value == pageheap->GetDescriptor(p)->sizeclass;
3031 }
3032
3033 static inline void* CheckedMallocResult(void *result)
3034 {
3035 ASSERT(result == 0 || CheckCachedSizeClass(result));
3036 return result;
3037 }
3038
3039 static inline void* SpanToMallocResult(Span *span) {
3040 ASSERT_SPAN_COMMITTED(span);
3041 pageheap->CacheSizeClass(span->start, 0);
3042 return
3043 CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift));
3044 }
3045
3046 #ifdef WTF_CHANGES
3047 template <bool crashOnFailure>
3048 #endif
3049 static ALWAYS_INLINE void* do_malloc(size_t size) {
3050 void* ret = NULL;
3051
3052 #ifdef WTF_CHANGES
3053 ASSERT(!isForbidden());
3054 #endif
3055
3056 // The following call forces module initialization
3057 TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
3058 #ifndef WTF_CHANGES
3059 if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
3060 Span* span = DoSampledAllocation(size);
3061 if (span != NULL) {
3062 ret = SpanToMallocResult(span);
3063 }
3064 } else
3065 #endif
3066 if (size > kMaxSize) {
3067 // Use page-level allocator
3068 SpinLockHolder h(&pageheap_lock);
3069 Span* span = pageheap->New(pages(size));
3070 if (span != NULL) {
3071 ret = SpanToMallocResult(span);
3072 }
3073 } else {
3074 // The common case, and also the simplest. This just pops the
3075 // size-appropriate freelist, afer replenishing it if it's empty.
3076 ret = CheckedMallocResult(heap->Allocate(size));
3077 }
3078 if (!ret) {
3079 #ifdef WTF_CHANGES
3080 if (crashOnFailure) // This branch should be optimized out by the compiler.
3081 CRASH();
3082 #else
3083 errno = ENOMEM;
3084 #endif
3085 }
3086 return ret;
3087 }
3088
3089 static ALWAYS_INLINE void do_free(void* ptr) {
3090 if (ptr == NULL) return;
3091 ASSERT(pageheap != NULL); // Should not call free() before malloc()
3092 const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
3093 Span* span = NULL;
3094 size_t cl = pageheap->GetSizeClassIfCached(p);
3095
3096 if (cl == 0) {
3097 span = pageheap->GetDescriptor(p);
3098 cl = span->sizeclass;
3099 pageheap->CacheSizeClass(p, cl);
3100 }
3101 if (cl != 0) {
3102 #ifndef NO_TCMALLOC_SAMPLES
3103 ASSERT(!pageheap->GetDescriptor(p)->sample);
3104 #endif
3105 TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCacheIfPresent();
3106 if (heap != NULL) {
3107 heap->Deallocate(ptr, cl);
3108 } else {
3109 // Delete directly into central cache
3110 SLL_SetNext(ptr, NULL);
3111 central_cache[cl].InsertRange(ptr, ptr, 1);
3112 }
3113 } else {
3114 SpinLockHolder h(&pageheap_lock);
3115 ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
3116 ASSERT(span != NULL && span->start == p);
3117 #ifndef NO_TCMALLOC_SAMPLES
3118 if (span->sample) {
3119 DLL_Remove(span);
3120 stacktrace_allocator.Delete(reinterpret_cast<StackTrace*>(span->objects));
3121 span->objects = NULL;
3122 }
3123 #endif
3124 pageheap->Delete(span);
3125 }
3126 }
3127
3128 #ifndef WTF_CHANGES
3129 // For use by exported routines below that want specific alignments
3130 //
3131 // Note: this code can be slow, and can significantly fragment memory.
3132 // The expectation is that memalign/posix_memalign/valloc/pvalloc will
3133 // not be invoked very often. This requirement simplifies our
3134 // implementation and allows us to tune for expected allocation
3135 // patterns.
3136 static void* do_memalign(size_t align, size_t size) {
3137 ASSERT((align & (align - 1)) == 0);
3138 ASSERT(align > 0);
3139 if (pageheap == NULL) TCMalloc_ThreadCache::InitModule();
3140
3141 // Allocate at least one byte to avoid boundary conditions below
3142 if (size == 0) size = 1;
3143
3144 if (size <= kMaxSize && align < kPageSize) {
3145 // Search through acceptable size classes looking for one with
3146 // enough alignment. This depends on the fact that
3147 // InitSizeClasses() currently produces several size classes that
3148 // are aligned at powers of two. We will waste time and space if
3149 // we miss in the size class array, but that is deemed acceptable
3150 // since memalign() should be used rarely.
3151 size_t cl = SizeClass(size);
3152 while (cl < kNumClasses && ((class_to_size[cl] & (align - 1)) != 0)) {
3153 cl++;
3154 }
3155 if (cl < kNumClasses) {
3156 TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
3157 return CheckedMallocResult(heap->Allocate(class_to_size[cl]));
3158 }
3159 }
3160
3161 // We will allocate directly from the page heap
3162 SpinLockHolder h(&pageheap_lock);
3163
3164 if (align <= kPageSize) {
3165 // Any page-level allocation will be fine
3166 // TODO: We could put the rest of this page in the appropriate
3167 // TODO: cache but it does not seem worth it.
3168 Span* span = pageheap->New(pages(size));
3169 return span == NULL ? NULL : SpanToMallocResult(span);
3170 }
3171
3172 // Allocate extra pages and carve off an aligned portion
3173 const Length alloc = pages(size + align);
3174 Span* span = pageheap->New(alloc);
3175 if (span == NULL) return NULL;
3176
3177 // Skip starting portion so that we end up aligned
3178 Length skip = 0;
3179 while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
3180 skip++;
3181 }
3182 ASSERT(skip < alloc);
3183 if (skip > 0) {
3184 Span* rest = pageheap->Split(span, skip);
3185 pageheap->Delete(span);
3186 span = rest;
3187 }
3188
3189 // Skip trailing portion that we do not need to return
3190 const Length needed = pages(size);
3191 ASSERT(span->length >= needed);
3192 if (span->length > needed) {
3193 Span* trailer = pageheap->Split(span, needed);
3194 pageheap->Delete(trailer);
3195 }
3196 return SpanToMallocResult(span);
3197 }
3198 #endif
3199
3200 // Helpers for use by exported routines below:
3201
3202 #ifndef WTF_CHANGES
3203 static inline void do_malloc_stats() {
3204 PrintStats(1);
3205 }
3206 #endif
3207
3208 static inline int do_mallopt(int, int) {
3209 return 1; // Indicates error
3210 }
3211
3212 #ifdef HAVE_STRUCT_MALLINFO // mallinfo isn't defined on freebsd, for instance
3213 static inline struct mallinfo do_mallinfo() {
3214 TCMallocStats stats;
3215 ExtractStats(&stats, NULL);
3216
3217 // Just some of the fields are filled in.
3218 struct mallinfo info;
3219 memset(&info, 0, sizeof(info));
3220
3221 // Unfortunately, the struct contains "int" field, so some of the
3222 // size values will be truncated.
3223 info.arena = static_cast<int>(stats.system_bytes);
3224 info.fsmblks = static_cast<int>(stats.thread_bytes
3225 + stats.central_bytes
3226 + stats.transfer_bytes);
3227 info.fordblks = static_cast<int>(stats.pageheap_bytes);
3228 info.uordblks = static_cast<int>(stats.system_bytes
3229 - stats.thread_bytes
3230 - stats.central_bytes
3231 - stats.transfer_bytes
3232 - stats.pageheap_bytes);
3233
3234 return info;
3235 }
3236 #endif
3237
3238 //-------------------------------------------------------------------
3239 // Exported routines
3240 //-------------------------------------------------------------------
3241
3242 // CAVEAT: The code structure below ensures that MallocHook methods are always
3243 // called from the stack frame of the invoked allocation function.
3244 // heap-checker.cc depends on this to start a stack trace from
3245 // the call to the (de)allocation function.
3246
3247 #ifndef WTF_CHANGES
3248 extern "C"
3249 #else
3250 #define do_malloc do_malloc<crashOnFailure>
3251
3252 template <bool crashOnFailure>
3253 void* malloc(size_t);
3254
3255 void* fastMalloc(size_t size)
3256 {
3257 return malloc<true>(size);
3258 }
3259
3260 void* tryFastMalloc(size_t size)
3261 {
3262 return malloc<false>(size);
3263 }
3264
3265 template <bool crashOnFailure>
3266 ALWAYS_INLINE
3267 #endif
3268 void* malloc(size_t size) {
3269 void* result = do_malloc(size);
3270 #ifndef WTF_CHANGES
3271 MallocHook::InvokeNewHook(result, size);
3272 #endif
3273 return result;
3274 }
3275
3276 #ifndef WTF_CHANGES
3277 extern "C"
3278 #endif
3279 void free(void* ptr) {
3280 #ifndef WTF_CHANGES
3281 MallocHook::InvokeDeleteHook(ptr);
3282 #endif
3283 do_free(ptr);
3284 }
3285
3286 #ifndef WTF_CHANGES
3287 extern "C"
3288 #else
3289 template <bool crashOnFailure>
3290 void* calloc(size_t, size_t);
3291
3292 void* fastCalloc(size_t n, size_t elem_size)
3293 {
3294 return calloc<true>(n, elem_size);
3295 }
3296
3297 void* tryFastCalloc(size_t n, size_t elem_size)
3298 {
3299 return calloc<false>(n, elem_size);
3300 }
3301
3302 template <bool crashOnFailure>
3303 ALWAYS_INLINE
3304 #endif
3305 void* calloc(size_t n, size_t elem_size) {
3306 const size_t totalBytes = n * elem_size;
3307
3308 // Protect against overflow
3309 if (n > 1 && elem_size && (totalBytes / elem_size) != n)
3310 return 0;
3311
3312 void* result = do_malloc(totalBytes);
3313 if (result != NULL) {
3314 memset(result, 0, totalBytes);
3315 }
3316 #ifndef WTF_CHANGES
3317 MallocHook::InvokeNewHook(result, totalBytes);
3318 #endif
3319 return result;
3320 }
3321
3322 // Since cfree isn't used anywhere, we don't compile it in.
3323 #ifndef WTF_CHANGES
3324 #ifndef WTF_CHANGES
3325 extern "C"
3326 #endif
3327 void cfree(void* ptr) {
3328 #ifndef WTF_CHANGES
3329 MallocHook::InvokeDeleteHook(ptr);
3330 #endif
3331 do_free(ptr);
3332 }
3333 #endif
3334
3335 #ifndef WTF_CHANGES
3336 extern "C"
3337 #else
3338 template <bool crashOnFailure>
3339 void* realloc(void*, size_t);
3340
3341 void* fastRealloc(void* old_ptr, size_t new_size)
3342 {
3343 return realloc<true>(old_ptr, new_size);
3344 }
3345
3346 void* tryFastRealloc(void* old_ptr, size_t new_size)
3347 {
3348 return realloc<false>(old_ptr, new_size);
3349 }
3350
3351 template <bool crashOnFailure>
3352 ALWAYS_INLINE
3353 #endif
3354 void* realloc(void* old_ptr, size_t new_size) {
3355 if (old_ptr == NULL) {
3356 void* result = do_malloc(new_size);
3357 #ifndef WTF_CHANGES
3358 MallocHook::InvokeNewHook(result, new_size);
3359 #endif
3360 return result;
3361 }
3362 if (new_size == 0) {
3363 #ifndef WTF_CHANGES
3364 MallocHook::InvokeDeleteHook(old_ptr);
3365 #endif
3366 free(old_ptr);
3367 return NULL;
3368 }
3369
3370 // Get the size of the old entry
3371 const PageID p = reinterpret_cast<uintptr_t>(old_ptr) >> kPageShift;
3372 size_t cl = pageheap->GetSizeClassIfCached(p);
3373 Span *span = NULL;
3374 size_t old_size;
3375 if (cl == 0) {
3376 span = pageheap->GetDescriptor(p);
3377 cl = span->sizeclass;
3378 pageheap->CacheSizeClass(p, cl);
3379 }
3380 if (cl != 0) {
3381 old_size = ByteSizeForClass(cl);
3382 } else {
3383 ASSERT(span != NULL);
3384 old_size = span->length << kPageShift;
3385 }
3386
3387 // Reallocate if the new size is larger than the old size,
3388 // or if the new size is significantly smaller than the old size.
3389 if ((new_size > old_size) || (AllocationSize(new_size) < old_size)) {
3390 // Need to reallocate
3391 void* new_ptr = do_malloc(new_size);
3392 if (new_ptr == NULL) {
3393 return NULL;
3394 }
3395 #ifndef WTF_CHANGES
3396 MallocHook::InvokeNewHook(new_ptr, new_size);
3397 #endif
3398 memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
3399 #ifndef WTF_CHANGES
3400 MallocHook::InvokeDeleteHook(old_ptr);
3401 #endif
3402 // We could use a variant of do_free() that leverages the fact
3403 // that we already know the sizeclass of old_ptr. The benefit
3404 // would be small, so don't bother.
3405 do_free(old_ptr);
3406 return new_ptr;
3407 } else {
3408 return old_ptr;
3409 }
3410 }
3411
3412 #ifdef WTF_CHANGES
3413 #undef do_malloc
3414 #else
3415
3416 static SpinLock set_new_handler_lock = SPINLOCK_INITIALIZER;
3417
3418 static inline void* cpp_alloc(size_t size, bool nothrow) {
3419 for (;;) {
3420 void* p = do_malloc(size);
3421 #ifdef PREANSINEW
3422 return p;
3423 #else
3424 if (p == NULL) { // allocation failed
3425 // Get the current new handler. NB: this function is not
3426 // thread-safe. We make a feeble stab at making it so here, but
3427 // this lock only protects against tcmalloc interfering with
3428 // itself, not with other libraries calling set_new_handler.
3429 std::new_handler nh;
3430 {
3431 SpinLockHolder h(&set_new_handler_lock);
3432 nh = std::set_new_handler(0);
3433 (void) std::set_new_handler(nh);
3434 }
3435 // If no new_handler is established, the allocation failed.
3436 if (!nh) {
3437 if (nothrow) return 0;
3438 throw std::bad_alloc();
3439 }
3440 // Otherwise, try the new_handler. If it returns, retry the
3441 // allocation. If it throws std::bad_alloc, fail the allocation.
3442 // if it throws something else, don't interfere.
3443 try {
3444 (*nh)();
3445 } catch (const std::bad_alloc&) {
3446 if (!nothrow) throw;
3447 return p;
3448 }
3449 } else { // allocation success
3450 return p;
3451 }
3452 #endif
3453 }
3454 }
3455
3456 void* operator new(size_t size) {
3457 void* p = cpp_alloc(size, false);
3458 // We keep this next instruction out of cpp_alloc for a reason: when
3459 // it's in, and new just calls cpp_alloc, the optimizer may fold the
3460 // new call into cpp_alloc, which messes up our whole section-based
3461 // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
3462 // isn't the last thing this fn calls, and prevents the folding.
3463 MallocHook::InvokeNewHook(p, size);
3464 return p;
3465 }
3466
3467 void* operator new(size_t size, const std::nothrow_t&) __THROW {
3468 void* p = cpp_alloc(size, true);
3469 MallocHook::InvokeNewHook(p, size);
3470 return p;
3471 }
3472
3473 void operator delete(void* p) __THROW {
3474 MallocHook::InvokeDeleteHook(p);
3475 do_free(p);
3476 }
3477
3478 void operator delete(void* p, const std::nothrow_t&) __THROW {
3479 MallocHook::InvokeDeleteHook(p);
3480 do_free(p);
3481 }
3482
3483 void* operator new[](size_t size) {
3484 void* p = cpp_alloc(size, false);
3485 // We keep this next instruction out of cpp_alloc for a reason: when
3486 // it's in, and new just calls cpp_alloc, the optimizer may fold the
3487 // new call into cpp_alloc, which messes up our whole section-based
3488 // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
3489 // isn't the last thing this fn calls, and prevents the folding.
3490 MallocHook::InvokeNewHook(p, size);
3491 return p;
3492 }
3493
3494 void* operator new[](size_t size, const std::nothrow_t&) __THROW {
3495 void* p = cpp_alloc(size, true);
3496 MallocHook::InvokeNewHook(p, size);
3497 return p;
3498 }
3499
3500 void operator delete[](void* p) __THROW {
3501 MallocHook::InvokeDeleteHook(p);
3502 do_free(p);
3503 }
3504
3505 void operator delete[](void* p, const std::nothrow_t&) __THROW {
3506 MallocHook::InvokeDeleteHook(p);
3507 do_free(p);
3508 }
3509
3510 extern "C" void* memalign(size_t align, size_t size) __THROW {
3511 void* result = do_memalign(align, size);
3512 MallocHook::InvokeNewHook(result, size);
3513 return result;
3514 }
3515
3516 extern "C" int posix_memalign(void** result_ptr, size_t align, size_t size)
3517 __THROW {
3518 if (((align % sizeof(void*)) != 0) ||
3519 ((align & (align - 1)) != 0) ||
3520 (align == 0)) {
3521 return EINVAL;
3522 }
3523
3524 void* result = do_memalign(align, size);
3525 MallocHook::InvokeNewHook(result, size);
3526 if (result == NULL) {
3527 return ENOMEM;
3528 } else {
3529 *result_ptr = result;
3530 return 0;
3531 }
3532 }
3533
3534 static size_t pagesize = 0;
3535
3536 extern "C" void* valloc(size_t size) __THROW {
3537 // Allocate page-aligned object of length >= size bytes
3538 if (pagesize == 0) pagesize = getpagesize();
3539 void* result = do_memalign(pagesize, size);
3540 MallocHook::InvokeNewHook(result, size);
3541 return result;
3542 }
3543
3544 extern "C" void* pvalloc(size_t size) __THROW {
3545 // Round up size to a multiple of pagesize
3546 if (pagesize == 0) pagesize = getpagesize();
3547 size = (size + pagesize - 1) & ~(pagesize - 1);
3548 void* result = do_memalign(pagesize, size);
3549 MallocHook::InvokeNewHook(result, size);
3550 return result;
3551 }
3552
3553 extern "C" void malloc_stats(void) {
3554 do_malloc_stats();
3555 }
3556
3557 extern "C" int mallopt(int cmd, int value) {
3558 return do_mallopt(cmd, value);
3559 }
3560
3561 #ifdef HAVE_STRUCT_MALLINFO
3562 extern "C" struct mallinfo mallinfo(void) {
3563 return do_mallinfo();
3564 }
3565 #endif
3566
3567 //-------------------------------------------------------------------
3568 // Some library routines on RedHat 9 allocate memory using malloc()
3569 // and free it using __libc_free() (or vice-versa). Since we provide
3570 // our own implementations of malloc/free, we need to make sure that
3571 // the __libc_XXX variants (defined as part of glibc) also point to
3572 // the same implementations.
3573 //-------------------------------------------------------------------
3574
3575 #if defined(__GLIBC__)
3576 extern "C" {
3577 # if defined(__GNUC__) && !defined(__MACH__) && defined(HAVE___ATTRIBUTE__)
3578 // Potentially faster variants that use the gcc alias extension.
3579 // Mach-O (Darwin) does not support weak aliases, hence the __MACH__ check.
3580 # define ALIAS(x) __attribute__ ((weak, alias (x)))
3581 void* __libc_malloc(size_t size) ALIAS("malloc");
3582 void __libc_free(void* ptr) ALIAS("free");
3583 void* __libc_realloc(void* ptr, size_t size) ALIAS("realloc");
3584 void* __libc_calloc(size_t n, size_t size) ALIAS("calloc");
3585 void __libc_cfree(void* ptr) ALIAS("cfree");
3586 void* __libc_memalign(size_t align, size_t s) ALIAS("memalign");
3587 void* __libc_valloc(size_t size) ALIAS("valloc");
3588 void* __libc_pvalloc(size_t size) ALIAS("pvalloc");
3589 int __posix_memalign(void** r, size_t a, size_t s) ALIAS("posix_memalign");
3590 # undef ALIAS
3591 # else /* not __GNUC__ */
3592 // Portable wrappers
3593 void* __libc_malloc(size_t size) { return malloc(size); }
3594 void __libc_free(void* ptr) { free(ptr); }
3595 void* __libc_realloc(void* ptr, size_t size) { return realloc(ptr, size); }
3596 void* __libc_calloc(size_t n, size_t size) { return calloc(n, size); }
3597 void __libc_cfree(void* ptr) { cfree(ptr); }
3598 void* __libc_memalign(size_t align, size_t s) { return memalign(align, s); }
3599 void* __libc_valloc(size_t size) { return valloc(size); }
3600 void* __libc_pvalloc(size_t size) { return pvalloc(size); }
3601 int __posix_memalign(void** r, size_t a, size_t s) {
3602 return posix_memalign(r, a, s);
3603 }
3604 # endif /* __GNUC__ */
3605 }
3606 #endif /* __GLIBC__ */
3607
3608 // Override __libc_memalign in libc on linux boxes specially.
3609 // They have a bug in libc that causes them to (very rarely) allocate
3610 // with __libc_memalign() yet deallocate with free() and the
3611 // definitions above don't catch it.
3612 // This function is an exception to the rule of calling MallocHook method
3613 // from the stack frame of the allocation function;
3614 // heap-checker handles this special case explicitly.
3615 static void *MemalignOverride(size_t align, size_t size, const void *caller)
3616 __THROW {
3617 void* result = do_memalign(align, size);
3618 MallocHook::InvokeNewHook(result, size);
3619 return result;
3620 }
3621 void *(*__memalign_hook)(size_t, size_t, const void *) = MemalignOverride;
3622
3623 #endif
3624
3625 #if defined(WTF_CHANGES) && PLATFORM(DARWIN)
3626
3627 class FreeObjectFinder {
3628 const RemoteMemoryReader& m_reader;
3629 HashSet<void*> m_freeObjects;
3630
3631 public:
3632 FreeObjectFinder(const RemoteMemoryReader& reader) : m_reader(reader) { }
3633
3634 void visit(void* ptr) { m_freeObjects.add(ptr); }
3635 bool isFreeObject(void* ptr) const { return m_freeObjects.contains(ptr); }
3636 size_t freeObjectCount() const { return m_freeObjects.size(); }
3637
3638 void findFreeObjects(TCMalloc_ThreadCache* threadCache)
3639 {
3640 for (; threadCache; threadCache = (threadCache->next_ ? m_reader(threadCache->next_) : 0))
3641 threadCache->enumerateFreeObjects(*this, m_reader);
3642 }
3643
3644 void findFreeObjects(TCMalloc_Central_FreeListPadded* centralFreeList, size_t numSizes, TCMalloc_Central_FreeListPadded* remoteCentralFreeList)
3645 {
3646 for (unsigned i = 0; i < numSizes; i++)
3647 centralFreeList[i].enumerateFreeObjects(*this, m_reader, remoteCentralFreeList + i);
3648 }
3649 };
3650
3651 class PageMapFreeObjectFinder {
3652 const RemoteMemoryReader& m_reader;
3653 FreeObjectFinder& m_freeObjectFinder;
3654
3655 public:
3656 PageMapFreeObjectFinder(const RemoteMemoryReader& reader, FreeObjectFinder& freeObjectFinder)
3657 : m_reader(reader)
3658 , m_freeObjectFinder(freeObjectFinder)
3659 { }
3660
3661 int visit(void* ptr) const
3662 {
3663 if (!ptr)
3664 return 1;
3665
3666 Span* span = m_reader(reinterpret_cast<Span*>(ptr));
3667 if (span->free) {
3668 void* ptr = reinterpret_cast<void*>(span->start << kPageShift);
3669 m_freeObjectFinder.visit(ptr);
3670 } else if (span->sizeclass) {
3671 // Walk the free list of the small-object span, keeping track of each object seen
3672 for (void* nextObject = span->objects; nextObject; nextObject = *m_reader(reinterpret_cast<void**>(nextObject)))
3673 m_freeObjectFinder.visit(nextObject);
3674 }
3675 return span->length;
3676 }
3677 };
3678
3679 class PageMapMemoryUsageRecorder {
3680 task_t m_task;
3681 void* m_context;
3682 unsigned m_typeMask;
3683 vm_range_recorder_t* m_recorder;
3684 const RemoteMemoryReader& m_reader;
3685 const FreeObjectFinder& m_freeObjectFinder;
3686 mutable HashSet<void*> m_seenPointers;
3687
3688 public:
3689 PageMapMemoryUsageRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader, const FreeObjectFinder& freeObjectFinder)
3690 : m_task(task)
3691 , m_context(context)
3692 , m_typeMask(typeMask)
3693 , m_recorder(recorder)
3694 , m_reader(reader)
3695 , m_freeObjectFinder(freeObjectFinder)
3696 { }
3697
3698 int visit(void* ptr) const
3699 {
3700 if (!ptr)
3701 return 1;
3702
3703 Span* span = m_reader(reinterpret_cast<Span*>(ptr));
3704 if (m_seenPointers.contains(ptr))
3705 return span->length;
3706 m_seenPointers.add(ptr);
3707
3708 // Mark the memory used for the Span itself as an administrative region
3709 vm_range_t ptrRange = { reinterpret_cast<vm_address_t>(ptr), sizeof(Span) };
3710 if (m_typeMask & (MALLOC_PTR_REGION_RANGE_TYPE | MALLOC_ADMIN_REGION_RANGE_TYPE))
3711 (*m_recorder)(m_task, m_context, MALLOC_ADMIN_REGION_RANGE_TYPE, &ptrRange, 1);
3712
3713 ptrRange.address = span->start << kPageShift;
3714 ptrRange.size = span->length * kPageSize;
3715
3716 // Mark the memory region the span represents as candidates for containing pointers
3717 if (m_typeMask & (MALLOC_PTR_REGION_RANGE_TYPE | MALLOC_ADMIN_REGION_RANGE_TYPE))
3718 (*m_recorder)(m_task, m_context, MALLOC_PTR_REGION_RANGE_TYPE, &ptrRange, 1);
3719
3720 if (!span->free && (m_typeMask & MALLOC_PTR_IN_USE_RANGE_TYPE)) {
3721 // If it's an allocated large object span, mark it as in use
3722 if (span->sizeclass == 0 && !m_freeObjectFinder.isFreeObject(reinterpret_cast<void*>(ptrRange.address)))
3723 (*m_recorder)(m_task, m_context, MALLOC_PTR_IN_USE_RANGE_TYPE, &ptrRange, 1);
3724 else if (span->sizeclass) {
3725 const size_t byteSize = ByteSizeForClass(span->sizeclass);
3726 unsigned totalObjects = (span->length << kPageShift) / byteSize;
3727 ASSERT(span->refcount <= totalObjects);
3728 char* ptr = reinterpret_cast<char*>(span->start << kPageShift);
3729
3730 // Mark each allocated small object within the span as in use
3731 for (unsigned i = 0; i < totalObjects; i++) {
3732 char* thisObject = ptr + (i * byteSize);
3733 if (m_freeObjectFinder.isFreeObject(thisObject))
3734 continue;
3735
3736 vm_range_t objectRange = { reinterpret_cast<vm_address_t>(thisObject), byteSize };
3737 (*m_recorder)(m_task, m_context, MALLOC_PTR_IN_USE_RANGE_TYPE, &objectRange, 1);
3738 }
3739 }
3740 }
3741
3742 return span->length;
3743 }
3744 };
3745
3746 kern_return_t FastMallocZone::enumerate(task_t task, void* context, unsigned typeMask, vm_address_t zoneAddress, memory_reader_t reader, vm_range_recorder_t recorder)
3747 {
3748 RemoteMemoryReader memoryReader(task, reader);
3749
3750 InitSizeClasses();
3751
3752 FastMallocZone* mzone = memoryReader(reinterpret_cast<FastMallocZone*>(zoneAddress));
3753 TCMalloc_PageHeap* pageHeap = memoryReader(mzone->m_pageHeap);
3754 TCMalloc_ThreadCache** threadHeapsPointer = memoryReader(mzone->m_threadHeaps);
3755 TCMalloc_ThreadCache* threadHeaps = memoryReader(*threadHeapsPointer);
3756
3757 TCMalloc_Central_FreeListPadded* centralCaches = memoryReader(mzone->m_centralCaches, sizeof(TCMalloc_Central_FreeListPadded) * kNumClasses);
3758
3759 FreeObjectFinder finder(memoryReader);
3760 finder.findFreeObjects(threadHeaps);
3761 finder.findFreeObjects(centralCaches, kNumClasses, mzone->m_centralCaches);
3762
3763 TCMalloc_PageHeap::PageMap* pageMap = &pageHeap->pagemap_;
3764 PageMapFreeObjectFinder pageMapFinder(memoryReader, finder);
3765 pageMap->visit(pageMapFinder, memoryReader);
3766
3767 PageMapMemoryUsageRecorder usageRecorder(task, context, typeMask, recorder, memoryReader, finder);
3768 pageMap->visit(usageRecorder, memoryReader);
3769
3770 return 0;
3771 }
3772
3773 size_t FastMallocZone::size(malloc_zone_t*, const void*)
3774 {
3775 return 0;
3776 }
3777
3778 void* FastMallocZone::zoneMalloc(malloc_zone_t*, size_t)
3779 {
3780 return 0;
3781 }
3782
3783 void* FastMallocZone::zoneCalloc(malloc_zone_t*, size_t, size_t)
3784 {
3785 return 0;
3786 }
3787
3788 void FastMallocZone::zoneFree(malloc_zone_t*, void* ptr)
3789 {
3790 // Due to <rdar://problem/5671357> zoneFree may be called by the system free even if the pointer
3791 // is not in this zone. When this happens, the pointer being freed was not allocated by any
3792 // zone so we need to print a useful error for the application developer.
3793 malloc_printf("*** error for object %p: pointer being freed was not allocated\n", ptr);
3794 }
3795
3796 void* FastMallocZone::zoneRealloc(malloc_zone_t*, void*, size_t)
3797 {
3798 return 0;
3799 }
3800
3801
3802 #undef malloc
3803 #undef free
3804 #undef realloc
3805 #undef calloc
3806
3807 extern "C" {
3808 malloc_introspection_t jscore_fastmalloc_introspection = { &FastMallocZone::enumerate, &FastMallocZone::goodSize, &FastMallocZone::check, &FastMallocZone::print,
3809 &FastMallocZone::log, &FastMallocZone::forceLock, &FastMallocZone::forceUnlock, &FastMallocZone::statistics };
3810 }
3811
3812 FastMallocZone::FastMallocZone(TCMalloc_PageHeap* pageHeap, TCMalloc_ThreadCache** threadHeaps, TCMalloc_Central_FreeListPadded* centralCaches)
3813 : m_pageHeap(pageHeap)
3814 , m_threadHeaps(threadHeaps)
3815 , m_centralCaches(centralCaches)
3816 {
3817 memset(&m_zone, 0, sizeof(m_zone));
3818 m_zone.zone_name = "JavaScriptCore FastMalloc";
3819 m_zone.size = &FastMallocZone::size;
3820 m_zone.malloc = &FastMallocZone::zoneMalloc;
3821 m_zone.calloc = &FastMallocZone::zoneCalloc;
3822 m_zone.realloc = &FastMallocZone::zoneRealloc;
3823 m_zone.free = &FastMallocZone::zoneFree;
3824 m_zone.valloc = &FastMallocZone::zoneValloc;
3825 m_zone.destroy = &FastMallocZone::zoneDestroy;
3826 m_zone.introspect = &jscore_fastmalloc_introspection;
3827 malloc_zone_register(&m_zone);
3828 }
3829
3830
3831 void FastMallocZone::init()
3832 {
3833 static FastMallocZone zone(pageheap, &thread_heaps, static_cast<TCMalloc_Central_FreeListPadded*>(central_cache));
3834 }
3835
3836 #endif
3837
3838 #if WTF_CHANGES
3839 void releaseFastMallocFreeMemory()
3840 {
3841 // Flush free pages in the current thread cache back to the page heap.
3842 // Low watermark mechanism in Scavenge() prevents full return on the first pass.
3843 // The second pass flushes everything.
3844 if (TCMalloc_ThreadCache* threadCache = TCMalloc_ThreadCache::GetCacheIfPresent()) {
3845 threadCache->Scavenge();
3846 threadCache->Scavenge();
3847 }
3848
3849 SpinLockHolder h(&pageheap_lock);
3850 pageheap->ReleaseFreePages();
3851 }
3852
3853 FastMallocStatistics fastMallocStatistics()
3854 {
3855 FastMallocStatistics statistics;
3856 {
3857 SpinLockHolder lockHolder(&pageheap_lock);
3858 statistics.heapSize = static_cast<size_t>(pageheap->SystemBytes());
3859 statistics.freeSizeInHeap = static_cast<size_t>(pageheap->FreeBytes());
3860 statistics.returnedSize = pageheap->ReturnedBytes();
3861 statistics.freeSizeInCaches = 0;
3862 for (TCMalloc_ThreadCache* threadCache = thread_heaps; threadCache ; threadCache = threadCache->next_)
3863 statistics.freeSizeInCaches += threadCache->Size();
3864 }
3865 for (unsigned cl = 0; cl < kNumClasses; ++cl) {
3866 const int length = central_cache[cl].length();
3867 const int tc_length = central_cache[cl].tc_length();
3868 statistics.freeSizeInCaches += ByteSizeForClass(cl) * (length + tc_length);
3869 }
3870 return statistics;
3871 }
3872
3873 } // namespace WTF
3874 #endif
3875
3876 #endif // FORCE_SYSTEM_MALLOC