]> git.saurik.com Git - apple/javascriptcore.git/blob - assembler/ARMAssembler.h
JavaScriptCore-1218.34.tar.gz
[apple/javascriptcore.git] / assembler / ARMAssembler.h
1 /*
2 * Copyright (C) 2009, 2010 University of Szeged
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY UNIVERSITY OF SZEGED ``AS IS'' AND ANY
15 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UNIVERSITY OF SZEGED OR
18 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
22 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #ifndef ARMAssembler_h
28 #define ARMAssembler_h
29
30 #if ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)
31
32 #include "AssemblerBufferWithConstantPool.h"
33 #include "JITCompilationEffort.h"
34 #include <wtf/Assertions.h>
35 namespace JSC {
36
37 typedef uint32_t ARMWord;
38
39 namespace ARMRegisters {
40 typedef enum {
41 r0 = 0,
42 r1,
43 r2,
44 r3, S0 = r3, /* Same as thumb assembler. */
45 r4,
46 r5,
47 r6,
48 r7,
49 r8,
50 r9,
51 r10,
52 r11,
53 r12, S1 = r12,
54 r13, sp = r13,
55 r14, lr = r14,
56 r15, pc = r15
57 } RegisterID;
58
59 typedef enum {
60 d0,
61 d1,
62 d2,
63 d3,
64 d4,
65 d5,
66 d6,
67 d7, SD0 = d7, /* Same as thumb assembler. */
68 d8,
69 d9,
70 d10,
71 d11,
72 d12,
73 d13,
74 d14,
75 d15,
76 d16,
77 d17,
78 d18,
79 d19,
80 d20,
81 d21,
82 d22,
83 d23,
84 d24,
85 d25,
86 d26,
87 d27,
88 d28,
89 d29,
90 d30,
91 d31
92 } FPRegisterID;
93
94 } // namespace ARMRegisters
95
96 class ARMAssembler {
97 public:
98 typedef ARMRegisters::RegisterID RegisterID;
99 typedef ARMRegisters::FPRegisterID FPRegisterID;
100 typedef AssemblerBufferWithConstantPool<2048, 4, 4, ARMAssembler> ARMBuffer;
101 typedef SegmentedVector<AssemblerLabel, 64> Jumps;
102
103 ARMAssembler()
104 : m_indexOfTailOfLastWatchpoint(1)
105 {
106 }
107
108 // ARM conditional constants
109 typedef enum {
110 EQ = 0x00000000, // Zero / Equal.
111 NE = 0x10000000, // Non-zero / Not equal.
112 CS = 0x20000000, // Unsigned higher or same.
113 CC = 0x30000000, // Unsigned lower.
114 MI = 0x40000000, // Negative.
115 PL = 0x50000000, // Positive or zero.
116 VS = 0x60000000, // Overflowed.
117 VC = 0x70000000, // Not overflowed.
118 HI = 0x80000000, // Unsigned higher.
119 LS = 0x90000000, // Unsigned lower or same.
120 GE = 0xa0000000, // Signed greater than or equal.
121 LT = 0xb0000000, // Signed less than.
122 GT = 0xc0000000, // Signed greater than.
123 LE = 0xd0000000, // Signed less than or equal.
124 AL = 0xe0000000 // Unconditional / Always execute.
125 } Condition;
126
127 // ARM instruction constants
128 enum {
129 AND = (0x0 << 21),
130 EOR = (0x1 << 21),
131 SUB = (0x2 << 21),
132 RSB = (0x3 << 21),
133 ADD = (0x4 << 21),
134 ADC = (0x5 << 21),
135 SBC = (0x6 << 21),
136 RSC = (0x7 << 21),
137 TST = (0x8 << 21),
138 TEQ = (0x9 << 21),
139 CMP = (0xa << 21),
140 CMN = (0xb << 21),
141 ORR = (0xc << 21),
142 MOV = (0xd << 21),
143 BIC = (0xe << 21),
144 MVN = (0xf << 21),
145 MUL = 0x00000090,
146 MULL = 0x00c00090,
147 VMOV_F64 = 0x0eb00b40,
148 VADD_F64 = 0x0e300b00,
149 VDIV_F64 = 0x0e800b00,
150 VSUB_F64 = 0x0e300b40,
151 VMUL_F64 = 0x0e200b00,
152 VCMP_F64 = 0x0eb40b40,
153 VSQRT_F64 = 0x0eb10bc0,
154 VABS_F64 = 0x0eb00bc0,
155 VNEG_F64 = 0x0eb10b40,
156 STMDB = 0x09200000,
157 LDMIA = 0x08b00000,
158 B = 0x0a000000,
159 BL = 0x0b000000,
160 BX = 0x012fff10,
161 VMOV_VFP64 = 0x0c400a10,
162 VMOV_ARM64 = 0x0c500a10,
163 VMOV_VFP32 = 0x0e000a10,
164 VMOV_ARM32 = 0x0e100a10,
165 VCVT_F64_S32 = 0x0eb80bc0,
166 VCVT_S32_F64 = 0x0ebd0bc0,
167 VCVT_U32_F64 = 0x0ebc0bc0,
168 VCVT_F32_F64 = 0x0eb70bc0,
169 VCVT_F64_F32 = 0x0eb70ac0,
170 VMRS_APSR = 0x0ef1fa10,
171 CLZ = 0x016f0f10,
172 BKPT = 0xe1200070,
173 BLX = 0x012fff30,
174 #if WTF_ARM_ARCH_AT_LEAST(7)
175 MOVW = 0x03000000,
176 MOVT = 0x03400000,
177 #endif
178 NOP = 0xe1a00000,
179 };
180
181 enum {
182 Op2Immediate = (1 << 25),
183 ImmediateForHalfWordTransfer = (1 << 22),
184 Op2InvertedImmediate = (1 << 26),
185 SetConditionalCodes = (1 << 20),
186 Op2IsRegisterArgument = (1 << 25),
187 // Data transfer flags.
188 DataTransferUp = (1 << 23),
189 DataTransferWriteBack = (1 << 21),
190 DataTransferPostUpdate = (1 << 24),
191 DataTransferLoad = (1 << 20),
192 ByteDataTransfer = (1 << 22),
193 };
194
195 enum DataTransferTypeA {
196 LoadUint32 = 0x05000000 | DataTransferLoad,
197 LoadUint8 = 0x05400000 | DataTransferLoad,
198 StoreUint32 = 0x05000000,
199 StoreUint8 = 0x05400000,
200 };
201
202 enum DataTransferTypeB {
203 LoadUint16 = 0x010000b0 | DataTransferLoad,
204 LoadInt16 = 0x010000f0 | DataTransferLoad,
205 LoadInt8 = 0x010000d0 | DataTransferLoad,
206 StoreUint16 = 0x010000b0,
207 };
208
209 enum DataTransferTypeFloat {
210 LoadFloat = 0x0d000a00 | DataTransferLoad,
211 LoadDouble = 0x0d000b00 | DataTransferLoad,
212 StoreFloat = 0x0d000a00,
213 StoreDouble = 0x0d000b00,
214 };
215
216 // Masks of ARM instructions
217 enum {
218 BranchOffsetMask = 0x00ffffff,
219 ConditionalFieldMask = 0xf0000000,
220 DataTransferOffsetMask = 0xfff,
221 };
222
223 enum {
224 MinimumBranchOffsetDistance = -0x00800000,
225 MaximumBranchOffsetDistance = 0x007fffff,
226 };
227
228 enum {
229 padForAlign8 = 0x00,
230 padForAlign16 = 0x0000,
231 padForAlign32 = 0xe12fff7f // 'bkpt 0xffff' instruction.
232 };
233
234 static const ARMWord InvalidImmediate = 0xf0000000;
235 static const ARMWord InvalidBranchTarget = 0xffffffff;
236 static const int DefaultPrefetchOffset = 2;
237
238 static const ARMWord BlxInstructionMask = 0x012fff30;
239 static const ARMWord LdrOrAddInstructionMask = 0x0ff00000;
240 static const ARMWord LdrPcImmediateInstructionMask = 0x0f7f0000;
241
242 static const ARMWord AddImmediateInstruction = 0x02800000;
243 static const ARMWord BlxInstruction = 0x012fff30;
244 static const ARMWord LdrImmediateInstruction = 0x05900000;
245 static const ARMWord LdrPcImmediateInstruction = 0x051f0000;
246
247 // Instruction formating
248
249 void emitInstruction(ARMWord op, int rd, int rn, ARMWord op2)
250 {
251 ASSERT(((op2 & ~Op2Immediate) <= 0xfff) || (((op2 & ~ImmediateForHalfWordTransfer) <= 0xfff)));
252 m_buffer.putInt(op | RN(rn) | RD(rd) | op2);
253 }
254
255 void emitDoublePrecisionInstruction(ARMWord op, int dd, int dn, int dm)
256 {
257 ASSERT((dd >= 0 && dd <= 31) && (dn >= 0 && dn <= 31) && (dm >= 0 && dm <= 31));
258 m_buffer.putInt(op | ((dd & 0xf) << 12) | ((dd & 0x10) << (22 - 4))
259 | ((dn & 0xf) << 16) | ((dn & 0x10) << (7 - 4))
260 | (dm & 0xf) | ((dm & 0x10) << (5 - 4)));
261 }
262
263 void emitSinglePrecisionInstruction(ARMWord op, int sd, int sn, int sm)
264 {
265 ASSERT((sd >= 0 && sd <= 31) && (sn >= 0 && sn <= 31) && (sm >= 0 && sm <= 31));
266 m_buffer.putInt(op | ((sd >> 1) << 12) | ((sd & 0x1) << 22)
267 | ((sn >> 1) << 16) | ((sn & 0x1) << 7)
268 | (sm >> 1) | ((sm & 0x1) << 5));
269 }
270
271 void bitAnd(int rd, int rn, ARMWord op2, Condition cc = AL)
272 {
273 emitInstruction(toARMWord(cc) | AND, rd, rn, op2);
274 }
275
276 void bitAnds(int rd, int rn, ARMWord op2, Condition cc = AL)
277 {
278 emitInstruction(toARMWord(cc) | AND | SetConditionalCodes, rd, rn, op2);
279 }
280
281 void eor(int rd, int rn, ARMWord op2, Condition cc = AL)
282 {
283 emitInstruction(toARMWord(cc) | EOR, rd, rn, op2);
284 }
285
286 void eors(int rd, int rn, ARMWord op2, Condition cc = AL)
287 {
288 emitInstruction(toARMWord(cc) | EOR | SetConditionalCodes, rd, rn, op2);
289 }
290
291 void sub(int rd, int rn, ARMWord op2, Condition cc = AL)
292 {
293 emitInstruction(toARMWord(cc) | SUB, rd, rn, op2);
294 }
295
296 void subs(int rd, int rn, ARMWord op2, Condition cc = AL)
297 {
298 emitInstruction(toARMWord(cc) | SUB | SetConditionalCodes, rd, rn, op2);
299 }
300
301 void rsb(int rd, int rn, ARMWord op2, Condition cc = AL)
302 {
303 emitInstruction(toARMWord(cc) | RSB, rd, rn, op2);
304 }
305
306 void rsbs(int rd, int rn, ARMWord op2, Condition cc = AL)
307 {
308 emitInstruction(toARMWord(cc) | RSB | SetConditionalCodes, rd, rn, op2);
309 }
310
311 void add(int rd, int rn, ARMWord op2, Condition cc = AL)
312 {
313 emitInstruction(toARMWord(cc) | ADD, rd, rn, op2);
314 }
315
316 void adds(int rd, int rn, ARMWord op2, Condition cc = AL)
317 {
318 emitInstruction(toARMWord(cc) | ADD | SetConditionalCodes, rd, rn, op2);
319 }
320
321 void adc(int rd, int rn, ARMWord op2, Condition cc = AL)
322 {
323 emitInstruction(toARMWord(cc) | ADC, rd, rn, op2);
324 }
325
326 void adcs(int rd, int rn, ARMWord op2, Condition cc = AL)
327 {
328 emitInstruction(toARMWord(cc) | ADC | SetConditionalCodes, rd, rn, op2);
329 }
330
331 void sbc(int rd, int rn, ARMWord op2, Condition cc = AL)
332 {
333 emitInstruction(toARMWord(cc) | SBC, rd, rn, op2);
334 }
335
336 void sbcs(int rd, int rn, ARMWord op2, Condition cc = AL)
337 {
338 emitInstruction(toARMWord(cc) | SBC | SetConditionalCodes, rd, rn, op2);
339 }
340
341 void rsc(int rd, int rn, ARMWord op2, Condition cc = AL)
342 {
343 emitInstruction(toARMWord(cc) | RSC, rd, rn, op2);
344 }
345
346 void rscs(int rd, int rn, ARMWord op2, Condition cc = AL)
347 {
348 emitInstruction(toARMWord(cc) | RSC | SetConditionalCodes, rd, rn, op2);
349 }
350
351 void tst(int rn, ARMWord op2, Condition cc = AL)
352 {
353 emitInstruction(toARMWord(cc) | TST | SetConditionalCodes, 0, rn, op2);
354 }
355
356 void teq(int rn, ARMWord op2, Condition cc = AL)
357 {
358 emitInstruction(toARMWord(cc) | TEQ | SetConditionalCodes, 0, rn, op2);
359 }
360
361 void cmp(int rn, ARMWord op2, Condition cc = AL)
362 {
363 emitInstruction(toARMWord(cc) | CMP | SetConditionalCodes, 0, rn, op2);
364 }
365
366 void cmn(int rn, ARMWord op2, Condition cc = AL)
367 {
368 emitInstruction(toARMWord(cc) | CMN | SetConditionalCodes, 0, rn, op2);
369 }
370
371 void orr(int rd, int rn, ARMWord op2, Condition cc = AL)
372 {
373 emitInstruction(toARMWord(cc) | ORR, rd, rn, op2);
374 }
375
376 void orrs(int rd, int rn, ARMWord op2, Condition cc = AL)
377 {
378 emitInstruction(toARMWord(cc) | ORR | SetConditionalCodes, rd, rn, op2);
379 }
380
381 void mov(int rd, ARMWord op2, Condition cc = AL)
382 {
383 emitInstruction(toARMWord(cc) | MOV, rd, ARMRegisters::r0, op2);
384 }
385
386 #if WTF_ARM_ARCH_AT_LEAST(7)
387 void movw(int rd, ARMWord op2, Condition cc = AL)
388 {
389 ASSERT((op2 | 0xf0fff) == 0xf0fff);
390 m_buffer.putInt(toARMWord(cc) | MOVW | RD(rd) | op2);
391 }
392
393 void movt(int rd, ARMWord op2, Condition cc = AL)
394 {
395 ASSERT((op2 | 0xf0fff) == 0xf0fff);
396 m_buffer.putInt(toARMWord(cc) | MOVT | RD(rd) | op2);
397 }
398 #endif
399
400 void movs(int rd, ARMWord op2, Condition cc = AL)
401 {
402 emitInstruction(toARMWord(cc) | MOV | SetConditionalCodes, rd, ARMRegisters::r0, op2);
403 }
404
405 void bic(int rd, int rn, ARMWord op2, Condition cc = AL)
406 {
407 emitInstruction(toARMWord(cc) | BIC, rd, rn, op2);
408 }
409
410 void bics(int rd, int rn, ARMWord op2, Condition cc = AL)
411 {
412 emitInstruction(toARMWord(cc) | BIC | SetConditionalCodes, rd, rn, op2);
413 }
414
415 void mvn(int rd, ARMWord op2, Condition cc = AL)
416 {
417 emitInstruction(toARMWord(cc) | MVN, rd, ARMRegisters::r0, op2);
418 }
419
420 void mvns(int rd, ARMWord op2, Condition cc = AL)
421 {
422 emitInstruction(toARMWord(cc) | MVN | SetConditionalCodes, rd, ARMRegisters::r0, op2);
423 }
424
425 void mul(int rd, int rn, int rm, Condition cc = AL)
426 {
427 m_buffer.putInt(toARMWord(cc) | MUL | RN(rd) | RS(rn) | RM(rm));
428 }
429
430 void muls(int rd, int rn, int rm, Condition cc = AL)
431 {
432 m_buffer.putInt(toARMWord(cc) | MUL | SetConditionalCodes | RN(rd) | RS(rn) | RM(rm));
433 }
434
435 void mull(int rdhi, int rdlo, int rn, int rm, Condition cc = AL)
436 {
437 m_buffer.putInt(toARMWord(cc) | MULL | RN(rdhi) | RD(rdlo) | RS(rn) | RM(rm));
438 }
439
440 void vmov_f64(int dd, int dm, Condition cc = AL)
441 {
442 emitDoublePrecisionInstruction(toARMWord(cc) | VMOV_F64, dd, 0, dm);
443 }
444
445 void vadd_f64(int dd, int dn, int dm, Condition cc = AL)
446 {
447 emitDoublePrecisionInstruction(toARMWord(cc) | VADD_F64, dd, dn, dm);
448 }
449
450 void vdiv_f64(int dd, int dn, int dm, Condition cc = AL)
451 {
452 emitDoublePrecisionInstruction(toARMWord(cc) | VDIV_F64, dd, dn, dm);
453 }
454
455 void vsub_f64(int dd, int dn, int dm, Condition cc = AL)
456 {
457 emitDoublePrecisionInstruction(toARMWord(cc) | VSUB_F64, dd, dn, dm);
458 }
459
460 void vmul_f64(int dd, int dn, int dm, Condition cc = AL)
461 {
462 emitDoublePrecisionInstruction(toARMWord(cc) | VMUL_F64, dd, dn, dm);
463 }
464
465 void vcmp_f64(int dd, int dm, Condition cc = AL)
466 {
467 emitDoublePrecisionInstruction(toARMWord(cc) | VCMP_F64, dd, 0, dm);
468 }
469
470 void vsqrt_f64(int dd, int dm, Condition cc = AL)
471 {
472 emitDoublePrecisionInstruction(toARMWord(cc) | VSQRT_F64, dd, 0, dm);
473 }
474
475 void vabs_f64(int dd, int dm, Condition cc = AL)
476 {
477 emitDoublePrecisionInstruction(toARMWord(cc) | VABS_F64, dd, 0, dm);
478 }
479
480 void vneg_f64(int dd, int dm, Condition cc = AL)
481 {
482 emitDoublePrecisionInstruction(toARMWord(cc) | VNEG_F64, dd, 0, dm);
483 }
484
485 void ldrImmediate(int rd, ARMWord imm, Condition cc = AL)
486 {
487 m_buffer.putIntWithConstantInt(toARMWord(cc) | LoadUint32 | DataTransferUp | RN(ARMRegisters::pc) | RD(rd), imm, true);
488 }
489
490 void ldrUniqueImmediate(int rd, ARMWord imm, Condition cc = AL)
491 {
492 m_buffer.putIntWithConstantInt(toARMWord(cc) | LoadUint32 | DataTransferUp | RN(ARMRegisters::pc) | RD(rd), imm);
493 }
494
495 void dtrUp(DataTransferTypeA transferType, int rd, int rb, ARMWord op2, Condition cc = AL)
496 {
497 emitInstruction(toARMWord(cc) | transferType | DataTransferUp, rd, rb, op2);
498 }
499
500 void dtrUpRegister(DataTransferTypeA transferType, int rd, int rb, int rm, Condition cc = AL)
501 {
502 emitInstruction(toARMWord(cc) | transferType | DataTransferUp | Op2IsRegisterArgument, rd, rb, rm);
503 }
504
505 void dtrDown(DataTransferTypeA transferType, int rd, int rb, ARMWord op2, Condition cc = AL)
506 {
507 emitInstruction(toARMWord(cc) | transferType, rd, rb, op2);
508 }
509
510 void dtrDownRegister(DataTransferTypeA transferType, int rd, int rb, int rm, Condition cc = AL)
511 {
512 emitInstruction(toARMWord(cc) | transferType | Op2IsRegisterArgument, rd, rb, rm);
513 }
514
515 void halfDtrUp(DataTransferTypeB transferType, int rd, int rb, ARMWord op2, Condition cc = AL)
516 {
517 emitInstruction(toARMWord(cc) | transferType | DataTransferUp, rd, rb, op2);
518 }
519
520 void halfDtrUpRegister(DataTransferTypeB transferType, int rd, int rn, int rm, Condition cc = AL)
521 {
522 emitInstruction(toARMWord(cc) | transferType | DataTransferUp, rd, rn, rm);
523 }
524
525 void halfDtrDown(DataTransferTypeB transferType, int rd, int rb, ARMWord op2, Condition cc = AL)
526 {
527 emitInstruction(toARMWord(cc) | transferType, rd, rb, op2);
528 }
529
530 void halfDtrDownRegister(DataTransferTypeB transferType, int rd, int rn, int rm, Condition cc = AL)
531 {
532 emitInstruction(toARMWord(cc) | transferType, rd, rn, rm);
533 }
534
535 void doubleDtrUp(DataTransferTypeFloat type, int rd, int rb, ARMWord op2, Condition cc = AL)
536 {
537 ASSERT(op2 <= 0xff && rd <= 15);
538 /* Only d0-d15 and s0, s2, s4 ... s30 are supported. */
539 m_buffer.putInt(toARMWord(cc) | DataTransferUp | type | (rd << 12) | RN(rb) | op2);
540 }
541
542 void doubleDtrDown(DataTransferTypeFloat type, int rd, int rb, ARMWord op2, Condition cc = AL)
543 {
544 ASSERT(op2 <= 0xff && rd <= 15);
545 /* Only d0-d15 and s0, s2, s4 ... s30 are supported. */
546 m_buffer.putInt(toARMWord(cc) | type | (rd << 12) | RN(rb) | op2);
547 }
548
549 void push(int reg, Condition cc = AL)
550 {
551 ASSERT(ARMWord(reg) <= 0xf);
552 m_buffer.putInt(toARMWord(cc) | StoreUint32 | DataTransferWriteBack | RN(ARMRegisters::sp) | RD(reg) | 0x4);
553 }
554
555 void pop(int reg, Condition cc = AL)
556 {
557 ASSERT(ARMWord(reg) <= 0xf);
558 m_buffer.putInt(toARMWord(cc) | (LoadUint32 ^ DataTransferPostUpdate) | DataTransferUp | RN(ARMRegisters::sp) | RD(reg) | 0x4);
559 }
560
561 inline void poke(int reg, Condition cc = AL)
562 {
563 dtrDown(StoreUint32, ARMRegisters::sp, 0, reg, cc);
564 }
565
566 inline void peek(int reg, Condition cc = AL)
567 {
568 dtrUp(LoadUint32, reg, ARMRegisters::sp, 0, cc);
569 }
570
571 void vmov_vfp64(int sm, int rt, int rt2, Condition cc = AL)
572 {
573 ASSERT(rt != rt2);
574 m_buffer.putInt(toARMWord(cc) | VMOV_VFP64 | RN(rt2) | RD(rt) | (sm & 0xf) | ((sm & 0x10) << (5 - 4)));
575 }
576
577 void vmov_arm64(int rt, int rt2, int sm, Condition cc = AL)
578 {
579 ASSERT(rt != rt2);
580 m_buffer.putInt(toARMWord(cc) | VMOV_ARM64 | RN(rt2) | RD(rt) | (sm & 0xf) | ((sm & 0x10) << (5 - 4)));
581 }
582
583 void vmov_vfp32(int sn, int rt, Condition cc = AL)
584 {
585 ASSERT(rt <= 15);
586 emitSinglePrecisionInstruction(toARMWord(cc) | VMOV_VFP32, rt << 1, sn, 0);
587 }
588
589 void vmov_arm32(int rt, int sn, Condition cc = AL)
590 {
591 ASSERT(rt <= 15);
592 emitSinglePrecisionInstruction(toARMWord(cc) | VMOV_ARM32, rt << 1, sn, 0);
593 }
594
595 void vcvt_f64_s32(int dd, int sm, Condition cc = AL)
596 {
597 ASSERT(!(sm & 0x1)); // sm must be divisible by 2
598 emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_F64_S32, dd, 0, (sm >> 1));
599 }
600
601 void vcvt_s32_f64(int sd, int dm, Condition cc = AL)
602 {
603 ASSERT(!(sd & 0x1)); // sd must be divisible by 2
604 emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_S32_F64, (sd >> 1), 0, dm);
605 }
606
607 void vcvt_u32_f64(int sd, int dm, Condition cc = AL)
608 {
609 ASSERT(!(sd & 0x1)); // sd must be divisible by 2
610 emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_U32_F64, (sd >> 1), 0, dm);
611 }
612
613 void vcvt_f64_f32(int dd, int sm, Condition cc = AL)
614 {
615 ASSERT(dd <= 15 && sm <= 15);
616 emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_F64_F32, dd, 0, sm);
617 }
618
619 void vcvt_f32_f64(int dd, int sm, Condition cc = AL)
620 {
621 ASSERT(dd <= 15 && sm <= 15);
622 emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_F32_F64, dd, 0, sm);
623 }
624
625 void vmrs_apsr(Condition cc = AL)
626 {
627 m_buffer.putInt(toARMWord(cc) | VMRS_APSR);
628 }
629
630 void clz(int rd, int rm, Condition cc = AL)
631 {
632 m_buffer.putInt(toARMWord(cc) | CLZ | RD(rd) | RM(rm));
633 }
634
635 void bkpt(ARMWord value)
636 {
637 m_buffer.putInt(BKPT | ((value & 0xff0) << 4) | (value & 0xf));
638 }
639
640 void nop()
641 {
642 m_buffer.putInt(NOP);
643 }
644
645 void bx(int rm, Condition cc = AL)
646 {
647 emitInstruction(toARMWord(cc) | BX, 0, 0, RM(rm));
648 }
649
650 AssemblerLabel blx(int rm, Condition cc = AL)
651 {
652 emitInstruction(toARMWord(cc) | BLX, 0, 0, RM(rm));
653 return m_buffer.label();
654 }
655
656 static ARMWord lsl(int reg, ARMWord value)
657 {
658 ASSERT(reg <= ARMRegisters::pc);
659 ASSERT(value <= 0x1f);
660 return reg | (value << 7) | 0x00;
661 }
662
663 static ARMWord lsr(int reg, ARMWord value)
664 {
665 ASSERT(reg <= ARMRegisters::pc);
666 ASSERT(value <= 0x1f);
667 return reg | (value << 7) | 0x20;
668 }
669
670 static ARMWord asr(int reg, ARMWord value)
671 {
672 ASSERT(reg <= ARMRegisters::pc);
673 ASSERT(value <= 0x1f);
674 return reg | (value << 7) | 0x40;
675 }
676
677 static ARMWord lslRegister(int reg, int shiftReg)
678 {
679 ASSERT(reg <= ARMRegisters::pc);
680 ASSERT(shiftReg <= ARMRegisters::pc);
681 return reg | (shiftReg << 8) | 0x10;
682 }
683
684 static ARMWord lsrRegister(int reg, int shiftReg)
685 {
686 ASSERT(reg <= ARMRegisters::pc);
687 ASSERT(shiftReg <= ARMRegisters::pc);
688 return reg | (shiftReg << 8) | 0x30;
689 }
690
691 static ARMWord asrRegister(int reg, int shiftReg)
692 {
693 ASSERT(reg <= ARMRegisters::pc);
694 ASSERT(shiftReg <= ARMRegisters::pc);
695 return reg | (shiftReg << 8) | 0x50;
696 }
697
698 // General helpers
699
700 size_t codeSize() const
701 {
702 return m_buffer.codeSize();
703 }
704
705 void ensureSpace(int insnSpace, int constSpace)
706 {
707 m_buffer.ensureSpace(insnSpace, constSpace);
708 }
709
710 int sizeOfConstantPool()
711 {
712 return m_buffer.sizeOfConstantPool();
713 }
714
715 AssemblerLabel labelIgnoringWatchpoints()
716 {
717 m_buffer.ensureSpaceForAnyInstruction();
718 return m_buffer.label();
719 }
720
721 AssemblerLabel labelForWatchpoint()
722 {
723 m_buffer.ensureSpaceForAnyInstruction(maxJumpReplacementSize() / sizeof(ARMWord));
724 AssemblerLabel result = m_buffer.label();
725 if (result.m_offset != (m_indexOfTailOfLastWatchpoint - maxJumpReplacementSize()))
726 result = label();
727 m_indexOfTailOfLastWatchpoint = result.m_offset + maxJumpReplacementSize();
728 return label();
729 }
730
731 AssemblerLabel label()
732 {
733 AssemblerLabel result = labelIgnoringWatchpoints();
734 while (result.m_offset + 1 < m_indexOfTailOfLastWatchpoint) {
735 nop();
736 // The available number of instructions are ensured by labelForWatchpoint.
737 result = m_buffer.label();
738 }
739 return result;
740 }
741
742 AssemblerLabel align(int alignment)
743 {
744 while (!m_buffer.isAligned(alignment))
745 mov(ARMRegisters::r0, ARMRegisters::r0);
746
747 return label();
748 }
749
750 AssemblerLabel loadBranchTarget(int rd, Condition cc = AL, int useConstantPool = 0)
751 {
752 ensureSpace(sizeof(ARMWord), sizeof(ARMWord));
753 m_jumps.append(m_buffer.codeSize() | (useConstantPool & 0x1));
754 ldrUniqueImmediate(rd, InvalidBranchTarget, cc);
755 return m_buffer.label();
756 }
757
758 AssemblerLabel jmp(Condition cc = AL, int useConstantPool = 0)
759 {
760 return loadBranchTarget(ARMRegisters::pc, cc, useConstantPool);
761 }
762
763 PassRefPtr<ExecutableMemoryHandle> executableCopy(VM&, void* ownerUID, JITCompilationEffort);
764
765 unsigned debugOffset() { return m_buffer.debugOffset(); }
766
767 // DFG assembly helpers for moving data between fp and registers.
768 void vmov(RegisterID rd1, RegisterID rd2, FPRegisterID rn)
769 {
770 vmov_arm64(rd1, rd2, rn);
771 }
772
773 void vmov(FPRegisterID rd, RegisterID rn1, RegisterID rn2)
774 {
775 vmov_vfp64(rd, rn1, rn2);
776 }
777
778 // Patching helpers
779
780 static ARMWord* getLdrImmAddress(ARMWord* insn)
781 {
782 // Check for call
783 if ((*insn & LdrPcImmediateInstructionMask) != LdrPcImmediateInstruction) {
784 // Must be BLX
785 ASSERT((*insn & BlxInstructionMask) == BlxInstruction);
786 insn--;
787 }
788
789 // Must be an ldr ..., [pc +/- imm]
790 ASSERT((*insn & LdrPcImmediateInstructionMask) == LdrPcImmediateInstruction);
791
792 ARMWord addr = reinterpret_cast<ARMWord>(insn) + DefaultPrefetchOffset * sizeof(ARMWord);
793 if (*insn & DataTransferUp)
794 return reinterpret_cast<ARMWord*>(addr + (*insn & DataTransferOffsetMask));
795 return reinterpret_cast<ARMWord*>(addr - (*insn & DataTransferOffsetMask));
796 }
797
798 static ARMWord* getLdrImmAddressOnPool(ARMWord* insn, uint32_t* constPool)
799 {
800 // Must be an ldr ..., [pc +/- imm]
801 ASSERT((*insn & LdrPcImmediateInstructionMask) == LdrPcImmediateInstruction);
802
803 if (*insn & 0x1)
804 return reinterpret_cast<ARMWord*>(constPool + ((*insn & DataTransferOffsetMask) >> 1));
805 return getLdrImmAddress(insn);
806 }
807
808 static void patchPointerInternal(intptr_t from, void* to)
809 {
810 ARMWord* insn = reinterpret_cast<ARMWord*>(from);
811 ARMWord* addr = getLdrImmAddress(insn);
812 *addr = reinterpret_cast<ARMWord>(to);
813 }
814
815 static ARMWord patchConstantPoolLoad(ARMWord load, ARMWord value)
816 {
817 value = (value << 1) + 1;
818 ASSERT(!(value & ~DataTransferOffsetMask));
819 return (load & ~DataTransferOffsetMask) | value;
820 }
821
822 static void patchConstantPoolLoad(void* loadAddr, void* constPoolAddr);
823
824 // Read pointers
825 static void* readPointer(void* from)
826 {
827 ARMWord* instruction = reinterpret_cast<ARMWord*>(from);
828 ARMWord* address = getLdrImmAddress(instruction);
829 return *reinterpret_cast<void**>(address);
830 }
831
832 // Patch pointers
833
834 static void linkPointer(void* code, AssemblerLabel from, void* to)
835 {
836 patchPointerInternal(reinterpret_cast<intptr_t>(code) + from.m_offset, to);
837 }
838
839 static void repatchInt32(void* where, int32_t to)
840 {
841 patchPointerInternal(reinterpret_cast<intptr_t>(where), reinterpret_cast<void*>(to));
842 }
843
844 static void repatchCompact(void* where, int32_t value)
845 {
846 ARMWord* instruction = reinterpret_cast<ARMWord*>(where);
847 ASSERT((*instruction & 0x0f700000) == LoadUint32);
848 if (value >= 0)
849 *instruction = (*instruction & 0xff7ff000) | DataTransferUp | value;
850 else
851 *instruction = (*instruction & 0xff7ff000) | -value;
852 cacheFlush(instruction, sizeof(ARMWord));
853 }
854
855 static void repatchPointer(void* from, void* to)
856 {
857 patchPointerInternal(reinterpret_cast<intptr_t>(from), to);
858 }
859
860 // Linkers
861 static intptr_t getAbsoluteJumpAddress(void* base, int offset = 0)
862 {
863 return reinterpret_cast<intptr_t>(base) + offset - sizeof(ARMWord);
864 }
865
866 void linkJump(AssemblerLabel from, AssemblerLabel to)
867 {
868 ARMWord* insn = reinterpret_cast<ARMWord*>(getAbsoluteJumpAddress(m_buffer.data(), from.m_offset));
869 ARMWord* addr = getLdrImmAddressOnPool(insn, m_buffer.poolAddress());
870 *addr = toARMWord(to.m_offset);
871 }
872
873 static void linkJump(void* code, AssemblerLabel from, void* to)
874 {
875 patchPointerInternal(getAbsoluteJumpAddress(code, from.m_offset), to);
876 }
877
878 static void relinkJump(void* from, void* to)
879 {
880 patchPointerInternal(getAbsoluteJumpAddress(from), to);
881 }
882
883 static void linkCall(void* code, AssemblerLabel from, void* to)
884 {
885 patchPointerInternal(getAbsoluteJumpAddress(code, from.m_offset), to);
886 }
887
888 static void relinkCall(void* from, void* to)
889 {
890 patchPointerInternal(getAbsoluteJumpAddress(from), to);
891 }
892
893 static void* readCallTarget(void* from)
894 {
895 return reinterpret_cast<void*>(readPointer(reinterpret_cast<void*>(getAbsoluteJumpAddress(from))));
896 }
897
898 static void replaceWithJump(void* instructionStart, void* to)
899 {
900 ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart);
901 intptr_t difference = reinterpret_cast<intptr_t>(to) - (reinterpret_cast<intptr_t>(instruction) + DefaultPrefetchOffset * sizeof(ARMWord));
902
903 if (!(difference & 1)) {
904 difference >>= 2;
905 if ((difference <= MaximumBranchOffsetDistance && difference >= MinimumBranchOffsetDistance)) {
906 // Direct branch.
907 instruction[0] = B | AL | (difference & BranchOffsetMask);
908 cacheFlush(instruction, sizeof(ARMWord));
909 return;
910 }
911 }
912
913 // Load target.
914 instruction[0] = LoadUint32 | AL | RN(ARMRegisters::pc) | RD(ARMRegisters::pc) | 4;
915 instruction[1] = reinterpret_cast<ARMWord>(to);
916 cacheFlush(instruction, sizeof(ARMWord) * 2);
917 }
918
919 static ptrdiff_t maxJumpReplacementSize()
920 {
921 return sizeof(ARMWord) * 2;
922 }
923
924 static void replaceWithLoad(void* instructionStart)
925 {
926 ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart);
927 cacheFlush(instruction, sizeof(ARMWord));
928
929 ASSERT((*instruction & LdrOrAddInstructionMask) == AddImmediateInstruction || (*instruction & LdrOrAddInstructionMask) == LdrImmediateInstruction);
930 if ((*instruction & LdrOrAddInstructionMask) == AddImmediateInstruction) {
931 *instruction = (*instruction & ~LdrOrAddInstructionMask) | LdrImmediateInstruction;
932 cacheFlush(instruction, sizeof(ARMWord));
933 }
934 }
935
936 static void replaceWithAddressComputation(void* instructionStart)
937 {
938 ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart);
939 cacheFlush(instruction, sizeof(ARMWord));
940
941 ASSERT((*instruction & LdrOrAddInstructionMask) == AddImmediateInstruction || (*instruction & LdrOrAddInstructionMask) == LdrImmediateInstruction);
942 if ((*instruction & LdrOrAddInstructionMask) == LdrImmediateInstruction) {
943 *instruction = (*instruction & ~LdrOrAddInstructionMask) | AddImmediateInstruction;
944 cacheFlush(instruction, sizeof(ARMWord));
945 }
946 }
947
948 static void revertBranchPtrWithPatch(void* instructionStart, RegisterID rn, ARMWord imm)
949 {
950 ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart);
951
952 ASSERT((instruction[2] & LdrPcImmediateInstructionMask) == LdrPcImmediateInstruction);
953 instruction[0] = toARMWord(AL) | ((instruction[2] & 0x0fff0fff) + sizeof(ARMWord)) | RD(ARMRegisters::S1);
954 *getLdrImmAddress(instruction) = imm;
955 instruction[1] = toARMWord(AL) | CMP | SetConditionalCodes | RN(rn) | RM(ARMRegisters::S1);
956 cacheFlush(instruction, 2 * sizeof(ARMWord));
957 }
958
959 // Address operations
960
961 static void* getRelocatedAddress(void* code, AssemblerLabel label)
962 {
963 return reinterpret_cast<void*>(reinterpret_cast<char*>(code) + label.m_offset);
964 }
965
966 // Address differences
967
968 static int getDifferenceBetweenLabels(AssemblerLabel a, AssemblerLabel b)
969 {
970 return b.m_offset - a.m_offset;
971 }
972
973 static unsigned getCallReturnOffset(AssemblerLabel call)
974 {
975 return call.m_offset;
976 }
977
978 // Handle immediates
979
980 static ARMWord getOp2(ARMWord imm);
981
982 // Fast case if imm is known to be between 0 and 0xff
983 static ARMWord getOp2Byte(ARMWord imm)
984 {
985 ASSERT(imm <= 0xff);
986 return Op2Immediate | imm;
987 }
988
989 static ARMWord getOp2Half(ARMWord imm)
990 {
991 ASSERT(imm <= 0xff);
992 return ImmediateForHalfWordTransfer | (imm & 0x0f) | ((imm & 0xf0) << 4);
993 }
994
995 #if WTF_ARM_ARCH_AT_LEAST(7)
996 static ARMWord getImm16Op2(ARMWord imm)
997 {
998 if (imm <= 0xffff)
999 return (imm & 0xf000) << 4 | (imm & 0xfff);
1000 return InvalidImmediate;
1001 }
1002 #endif
1003 ARMWord getImm(ARMWord imm, int tmpReg, bool invert = false);
1004 void moveImm(ARMWord imm, int dest);
1005 ARMWord encodeComplexImm(ARMWord imm, int dest);
1006
1007 // Memory load/store helpers
1008
1009 void dataTransfer32(DataTransferTypeA, RegisterID srcDst, RegisterID base, int32_t offset);
1010 void baseIndexTransfer32(DataTransferTypeA, RegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset);
1011 void dataTransfer16(DataTransferTypeB, RegisterID srcDst, RegisterID base, int32_t offset);
1012 void baseIndexTransfer16(DataTransferTypeB, RegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset);
1013 void dataTransferFloat(DataTransferTypeFloat, FPRegisterID srcDst, RegisterID base, int32_t offset);
1014 void baseIndexTransferFloat(DataTransferTypeFloat, FPRegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset);
1015
1016 // Constant pool hnadlers
1017
1018 static ARMWord placeConstantPoolBarrier(int offset)
1019 {
1020 offset = (offset - sizeof(ARMWord)) >> 2;
1021 ASSERT((offset <= MaximumBranchOffsetDistance && offset >= MinimumBranchOffsetDistance));
1022 return AL | B | (offset & BranchOffsetMask);
1023 }
1024
1025 #if OS(LINUX) && COMPILER(GCC)
1026 static inline void linuxPageFlush(uintptr_t begin, uintptr_t end)
1027 {
1028 asm volatile(
1029 "push {r7}\n"
1030 "mov r0, %0\n"
1031 "mov r1, %1\n"
1032 "mov r7, #0xf0000\n"
1033 "add r7, r7, #0x2\n"
1034 "mov r2, #0x0\n"
1035 "svc 0x0\n"
1036 "pop {r7}\n"
1037 :
1038 : "r" (begin), "r" (end)
1039 : "r0", "r1", "r2");
1040 }
1041 #endif
1042
1043 #if OS(LINUX) && COMPILER(RVCT)
1044 static __asm void cacheFlush(void* code, size_t);
1045 #else
1046 static void cacheFlush(void* code, size_t size)
1047 {
1048 #if OS(LINUX) && COMPILER(GCC)
1049 size_t page = pageSize();
1050 uintptr_t current = reinterpret_cast<uintptr_t>(code);
1051 uintptr_t end = current + size;
1052 uintptr_t firstPageEnd = (current & ~(page - 1)) + page;
1053
1054 if (end <= firstPageEnd) {
1055 linuxPageFlush(current, end);
1056 return;
1057 }
1058
1059 linuxPageFlush(current, firstPageEnd);
1060
1061 for (current = firstPageEnd; current + page < end; current += page)
1062 linuxPageFlush(current, current + page);
1063
1064 linuxPageFlush(current, end);
1065 #elif OS(WINCE)
1066 CacheRangeFlush(code, size, CACHE_SYNC_ALL);
1067 #elif OS(QNX) && ENABLE(ASSEMBLER_WX_EXCLUSIVE)
1068 UNUSED_PARAM(code);
1069 UNUSED_PARAM(size);
1070 #elif OS(QNX)
1071 msync(code, size, MS_INVALIDATE_ICACHE);
1072 #else
1073 #error "The cacheFlush support is missing on this platform."
1074 #endif
1075 }
1076 #endif
1077
1078 private:
1079 static ARMWord RM(int reg)
1080 {
1081 ASSERT(reg <= ARMRegisters::pc);
1082 return reg;
1083 }
1084
1085 static ARMWord RS(int reg)
1086 {
1087 ASSERT(reg <= ARMRegisters::pc);
1088 return reg << 8;
1089 }
1090
1091 static ARMWord RD(int reg)
1092 {
1093 ASSERT(reg <= ARMRegisters::pc);
1094 return reg << 12;
1095 }
1096
1097 static ARMWord RN(int reg)
1098 {
1099 ASSERT(reg <= ARMRegisters::pc);
1100 return reg << 16;
1101 }
1102
1103 static ARMWord getConditionalField(ARMWord i)
1104 {
1105 return i & ConditionalFieldMask;
1106 }
1107
1108 static ARMWord toARMWord(Condition cc)
1109 {
1110 return static_cast<ARMWord>(cc);
1111 }
1112
1113 static ARMWord toARMWord(uint32_t u)
1114 {
1115 return static_cast<ARMWord>(u);
1116 }
1117
1118 int genInt(int reg, ARMWord imm, bool positive);
1119
1120 ARMBuffer m_buffer;
1121 Jumps m_jumps;
1122 uint32_t m_indexOfTailOfLastWatchpoint;
1123 };
1124
1125 } // namespace JSC
1126
1127 #endif // ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)
1128
1129 #endif // ARMAssembler_h