]> git.saurik.com Git - apple/javascriptcore.git/blob - dfg/DFGJITCompiler.cpp
JavaScriptCore-903.5.tar.gz
[apple/javascriptcore.git] / dfg / DFGJITCompiler.cpp
1 /*
2 * Copyright (C) 2011 Apple Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
16 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
17 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
18 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
19 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
20 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
21 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */
25
26 #include "config.h"
27 #include "DFGJITCompiler.h"
28
29 #if ENABLE(DFG_JIT)
30
31 #include "CodeBlock.h"
32 #include "DFGJITCodeGenerator.h"
33 #include "DFGNonSpeculativeJIT.h"
34 #include "DFGOperations.h"
35 #include "DFGRegisterBank.h"
36 #include "DFGSpeculativeJIT.h"
37 #include "JSGlobalData.h"
38 #include "LinkBuffer.h"
39
40 namespace JSC { namespace DFG {
41
42 // This method used to fill a numeric value to a FPR when linking speculative -> non-speculative.
43 void JITCompiler::fillNumericToDouble(NodeIndex nodeIndex, FPRReg fpr, GPRReg temporary)
44 {
45 Node& node = graph()[nodeIndex];
46
47 if (node.isConstant()) {
48 ASSERT(node.op == DoubleConstant);
49 move(MacroAssembler::ImmPtr(reinterpret_cast<void*>(reinterpretDoubleToIntptr(valueOfDoubleConstant(nodeIndex)))), temporary);
50 movePtrToDouble(temporary, fpr);
51 } else {
52 loadPtr(addressFor(node.virtualRegister()), temporary);
53 Jump isInteger = branchPtr(MacroAssembler::AboveOrEqual, temporary, GPRInfo::tagTypeNumberRegister);
54 jitAssertIsJSDouble(temporary);
55 addPtr(GPRInfo::tagTypeNumberRegister, temporary);
56 movePtrToDouble(temporary, fpr);
57 Jump hasUnboxedDouble = jump();
58 isInteger.link(this);
59 convertInt32ToDouble(temporary, fpr);
60 hasUnboxedDouble.link(this);
61 }
62 }
63
64 // This method used to fill an integer value to a GPR when linking speculative -> non-speculative.
65 void JITCompiler::fillInt32ToInteger(NodeIndex nodeIndex, GPRReg gpr)
66 {
67 Node& node = graph()[nodeIndex];
68
69 if (node.isConstant()) {
70 ASSERT(node.op == Int32Constant);
71 move(MacroAssembler::Imm32(valueOfInt32Constant(nodeIndex)), gpr);
72 } else {
73 #if DFG_JIT_ASSERT
74 // Redundant load, just so we can check the tag!
75 loadPtr(addressFor(node.virtualRegister()), gpr);
76 jitAssertIsJSInt32(gpr);
77 #endif
78 load32(addressFor(node.virtualRegister()), gpr);
79 }
80 }
81
82 // This method used to fill a JSValue to a GPR when linking speculative -> non-speculative.
83 void JITCompiler::fillToJS(NodeIndex nodeIndex, GPRReg gpr)
84 {
85 Node& node = graph()[nodeIndex];
86
87 if (node.isConstant()) {
88 if (isInt32Constant(nodeIndex)) {
89 JSValue jsValue = jsNumber(valueOfInt32Constant(nodeIndex));
90 move(MacroAssembler::ImmPtr(JSValue::encode(jsValue)), gpr);
91 } else if (isDoubleConstant(nodeIndex)) {
92 JSValue jsValue(JSValue::EncodeAsDouble, valueOfDoubleConstant(nodeIndex));
93 move(MacroAssembler::ImmPtr(JSValue::encode(jsValue)), gpr);
94 } else {
95 ASSERT(isJSConstant(nodeIndex));
96 JSValue jsValue = valueOfJSConstant(nodeIndex);
97 move(MacroAssembler::ImmPtr(JSValue::encode(jsValue)), gpr);
98 }
99 return;
100 }
101
102 loadPtr(addressFor(node.virtualRegister()), gpr);
103 }
104
105 void JITCompiler::jumpFromSpeculativeToNonSpeculative(const SpeculationCheck& check, const EntryLocation& entry, SpeculationRecovery* recovery)
106 {
107 ASSERT(check.m_nodeIndex == entry.m_nodeIndex);
108
109 // Link the jump from the Speculative path to here.
110 check.m_check.link(this);
111
112 // Does this speculation check require any additional recovery to be performed,
113 // to restore any state that has been overwritten before we enter back in to the
114 // non-speculative path.
115 if (recovery) {
116 // The only additional recovery we currently support is for integer add operation
117 ASSERT(recovery->type() == SpeculativeAdd);
118 // Revert the add.
119 sub32(recovery->src(), recovery->dest());
120 }
121
122 // FIXME: - This is hideously inefficient!
123 // Where a value is live in a register in the speculative path, and is required in a register
124 // on the non-speculative path, we should not need to be spilling it and reloading (we may
125 // need to spill anyway, if the value is marked as spilled on the non-speculative path).
126 // This may also be spilling values that don't need spilling, e.g. are already spilled,
127 // are constants, or are arguments.
128
129 // Spill all GPRs in use by the speculative path.
130 for (unsigned index = 0; index < GPRInfo::numberOfRegisters; ++index) {
131 NodeIndex nodeIndex = check.m_gprInfo[index].nodeIndex;
132 if (nodeIndex == NoNode)
133 continue;
134
135 DataFormat dataFormat = check.m_gprInfo[index].format;
136 VirtualRegister virtualRegister = graph()[nodeIndex].virtualRegister();
137
138 ASSERT(dataFormat == DataFormatInteger || DataFormatCell || dataFormat & DataFormatJS);
139 if (dataFormat == DataFormatInteger)
140 orPtr(GPRInfo::tagTypeNumberRegister, GPRInfo::toRegister(index));
141 storePtr(GPRInfo::toRegister(index), addressFor(virtualRegister));
142 }
143
144 // Spill all FPRs in use by the speculative path.
145 for (unsigned index = 0; index < FPRInfo::numberOfRegisters; ++index) {
146 NodeIndex nodeIndex = check.m_fprInfo[index];
147 if (nodeIndex == NoNode)
148 continue;
149
150 VirtualRegister virtualRegister = graph()[nodeIndex].virtualRegister();
151
152 moveDoubleToPtr(FPRInfo::toRegister(index), GPRInfo::regT0);
153 subPtr(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0);
154 storePtr(GPRInfo::regT0, addressFor(virtualRegister));
155 }
156
157 // Fill all FPRs in use by the non-speculative path.
158 for (unsigned index = 0; index < FPRInfo::numberOfRegisters; ++index) {
159 NodeIndex nodeIndex = entry.m_fprInfo[index];
160 if (nodeIndex == NoNode)
161 continue;
162
163 fillNumericToDouble(nodeIndex, FPRInfo::toRegister(index), GPRInfo::regT0);
164 }
165
166 // Fill all GPRs in use by the non-speculative path.
167 for (unsigned index = 0; index < GPRInfo::numberOfRegisters; ++index) {
168 NodeIndex nodeIndex = entry.m_gprInfo[index].nodeIndex;
169 if (nodeIndex == NoNode)
170 continue;
171
172 DataFormat dataFormat = entry.m_gprInfo[index].format;
173 if (dataFormat == DataFormatInteger)
174 fillInt32ToInteger(nodeIndex, GPRInfo::toRegister(index));
175 else {
176 ASSERT(dataFormat & DataFormatJS || dataFormat == DataFormatCell); // Treat cell as JSValue for now!
177 fillToJS(nodeIndex, GPRInfo::toRegister(index));
178 // FIXME: For subtypes of DataFormatJS, should jitAssert the subtype?
179 }
180 }
181
182 // Jump into the non-speculative path.
183 jump(entry.m_entry);
184 }
185
186 void JITCompiler::linkSpeculationChecks(SpeculativeJIT& speculative, NonSpeculativeJIT& nonSpeculative)
187 {
188 // Iterators to walk over the set of bail outs & corresponding entry points.
189 SpeculationCheckVector::Iterator checksIter = speculative.speculationChecks().begin();
190 SpeculationCheckVector::Iterator checksEnd = speculative.speculationChecks().end();
191 NonSpeculativeJIT::EntryLocationVector::Iterator entriesIter = nonSpeculative.entryLocations().begin();
192 NonSpeculativeJIT::EntryLocationVector::Iterator entriesEnd = nonSpeculative.entryLocations().end();
193
194 // Iterate over the speculation checks.
195 while (checksIter != checksEnd) {
196 // For every bail out from the speculative path, we must have provided an entry point
197 // into the non-speculative one.
198 ASSERT(checksIter->m_nodeIndex == entriesIter->m_nodeIndex);
199
200 // There may be multiple bail outs that map to the same entry point!
201 do {
202 ASSERT(checksIter != checksEnd);
203 ASSERT(entriesIter != entriesEnd);
204
205 // Plant code to link this speculation failure.
206 const SpeculationCheck& check = *checksIter;
207 const EntryLocation& entry = *entriesIter;
208 jumpFromSpeculativeToNonSpeculative(check, entry, speculative.speculationRecovery(check.m_recoveryIndex));
209 ++checksIter;
210 } while (checksIter != checksEnd && checksIter->m_nodeIndex == entriesIter->m_nodeIndex);
211 ++entriesIter;
212 }
213
214 // FIXME: https://bugs.webkit.org/show_bug.cgi?id=56289
215 ASSERT(!(checksIter != checksEnd));
216 ASSERT(!(entriesIter != entriesEnd));
217 }
218
219 void JITCompiler::compileFunction(JITCode& entry, MacroAssemblerCodePtr& entryWithArityCheck)
220 {
221 // === Stage 1 - Function header code generation ===
222 //
223 // This code currently matches the old JIT. In the function header we need to
224 // pop the return address (since we do not allow any recursion on the machine
225 // stack), and perform a fast register file check.
226
227 // This is the main entry point, without performing an arity check.
228 // FIXME: https://bugs.webkit.org/show_bug.cgi?id=56292
229 // We'll need to convert the remaining cti_ style calls (specifically the register file
230 // check) which will be dependent on stack layout. (We'd need to account for this in
231 // both normal return code and when jumping to an exception handler).
232 preserveReturnAddressAfterCall(GPRInfo::regT2);
233 emitPutToCallFrameHeader(GPRInfo::regT2, RegisterFile::ReturnPC);
234 // If we needed to perform an arity check we will already have moved the return address,
235 // so enter after this.
236 Label fromArityCheck(this);
237
238 // Setup a pointer to the codeblock in the CallFrameHeader.
239 emitPutImmediateToCallFrameHeader(m_codeBlock, RegisterFile::CodeBlock);
240
241 // Plant a check that sufficient space is available in the RegisterFile.
242 // FIXME: https://bugs.webkit.org/show_bug.cgi?id=56291
243 addPtr(Imm32(m_codeBlock->m_numCalleeRegisters * sizeof(Register)), GPRInfo::callFrameRegister, GPRInfo::regT1);
244 Jump registerFileCheck = branchPtr(Below, AbsoluteAddress(m_globalData->interpreter->registerFile().addressOfEnd()), GPRInfo::regT1);
245 // Return here after register file check.
246 Label fromRegisterFileCheck = label();
247
248
249 // === Stage 2 - Function body code generation ===
250 //
251 // We generate the speculative code path, followed by the non-speculative
252 // code for the function. Next we need to link the two together, making
253 // bail-outs from the speculative path jump to the corresponding point on
254 // the non-speculative one (and generating any code necessary to juggle
255 // register values around, rebox values, and ensure spilled, to match the
256 // non-speculative path's requirements).
257
258 #if DFG_JIT_BREAK_ON_EVERY_FUNCTION
259 // Handy debug tool!
260 breakpoint();
261 #endif
262
263 // First generate the speculative path.
264 Label speculativePathBegin = label();
265 SpeculativeJIT speculative(*this);
266 #if !DFG_DEBUG_LOCAL_DISBALE_SPECULATIVE
267 bool compiledSpeculative = speculative.compile();
268 #else
269 bool compiledSpeculative = false;
270 #endif
271
272 // Next, generate the non-speculative path. We pass this a SpeculationCheckIndexIterator
273 // to allow it to check which nodes in the graph may bail out, and may need to reenter the
274 // non-speculative path.
275 if (compiledSpeculative) {
276 SpeculationCheckIndexIterator checkIterator(speculative.speculationChecks());
277 NonSpeculativeJIT nonSpeculative(*this);
278 nonSpeculative.compile(checkIterator);
279
280 // Link the bail-outs from the speculative path to the corresponding entry points into the non-speculative one.
281 linkSpeculationChecks(speculative, nonSpeculative);
282 } else {
283 // If compilation through the SpeculativeJIT failed, throw away the code we generated.
284 m_calls.clear();
285 rewindToLabel(speculativePathBegin);
286
287 SpeculationCheckVector noChecks;
288 SpeculationCheckIndexIterator checkIterator(noChecks);
289 NonSpeculativeJIT nonSpeculative(*this);
290 nonSpeculative.compile(checkIterator);
291 }
292
293 // === Stage 3 - Function footer code generation ===
294 //
295 // Generate code to lookup and jump to exception handlers, to perform the slow
296 // register file check (if the fast one in the function header fails), and
297 // generate the entry point with arity check.
298
299 // Iterate over the m_calls vector, checking for exception checks,
300 // and linking them to here.
301 unsigned exceptionCheckCount = 0;
302 for (unsigned i = 0; i < m_calls.size(); ++i) {
303 Jump& exceptionCheck = m_calls[i].m_exceptionCheck;
304 if (exceptionCheck.isSet()) {
305 exceptionCheck.link(this);
306 ++exceptionCheckCount;
307 }
308 }
309 // If any exception checks were linked, generate code to lookup a handler.
310 if (exceptionCheckCount) {
311 // lookupExceptionHandler is passed two arguments, exec (the CallFrame*), and
312 // an identifier for the operation that threw the exception, which we can use
313 // to look up handler information. The identifier we use is the return address
314 // of the call out from JIT code that threw the exception; this is still
315 // available on the stack, just below the stack pointer!
316 move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
317 peek(GPRInfo::argumentGPR1, -1);
318 m_calls.append(CallRecord(call(), lookupExceptionHandler));
319 // lookupExceptionHandler leaves the handler CallFrame* in the returnValueGPR,
320 // and the address of the handler in returnValueGPR2.
321 jump(GPRInfo::returnValueGPR2);
322 }
323
324 // Generate the register file check; if the fast check in the function head fails,
325 // we need to call out to a helper function to check whether more space is available.
326 // FIXME: change this from a cti call to a DFG style operation (normal C calling conventions).
327 registerFileCheck.link(this);
328 move(stackPointerRegister, GPRInfo::argumentGPR0);
329 poke(GPRInfo::callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*));
330 Call callRegisterFileCheck = call();
331 jump(fromRegisterFileCheck);
332
333 // The fast entry point into a function does not check the correct number of arguments
334 // have been passed to the call (we only use the fast entry point where we can statically
335 // determine the correct number of arguments have been passed, or have already checked).
336 // In cases where an arity check is necessary, we enter here.
337 // FIXME: change this from a cti call to a DFG style operation (normal C calling conventions).
338 Label arityCheck = label();
339 preserveReturnAddressAfterCall(GPRInfo::regT2);
340 emitPutToCallFrameHeader(GPRInfo::regT2, RegisterFile::ReturnPC);
341 branch32(Equal, GPRInfo::regT1, Imm32(m_codeBlock->m_numParameters)).linkTo(fromArityCheck, this);
342 move(stackPointerRegister, GPRInfo::argumentGPR0);
343 poke(GPRInfo::callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*));
344 Call callArityCheck = call();
345 move(GPRInfo::regT0, GPRInfo::callFrameRegister);
346 jump(fromArityCheck);
347
348
349 // === Stage 4 - Link ===
350 //
351 // Link the code, populate data in CodeBlock data structures.
352
353 LinkBuffer linkBuffer(*m_globalData, this, m_globalData->executableAllocator);
354
355 #if DFG_DEBUG_VERBOSE
356 fprintf(stderr, "JIT code start at %p\n", linkBuffer.debugAddress());
357 #endif
358
359 // Link all calls out from the JIT code to their respective functions.
360 for (unsigned i = 0; i < m_calls.size(); ++i)
361 linkBuffer.link(m_calls[i].m_call, m_calls[i].m_function);
362
363 if (m_codeBlock->needsCallReturnIndices()) {
364 m_codeBlock->callReturnIndexVector().reserveCapacity(exceptionCheckCount);
365 for (unsigned i = 0; i < m_calls.size(); ++i) {
366 if (m_calls[i].m_exceptionCheck.isSet()) {
367 unsigned returnAddressOffset = linkBuffer.returnAddressOffset(m_calls[i].m_call);
368 unsigned exceptionInfo = m_calls[i].m_exceptionInfo;
369 m_codeBlock->callReturnIndexVector().append(CallReturnOffsetToBytecodeOffset(returnAddressOffset, exceptionInfo));
370 }
371 }
372 }
373
374 // FIXME: switch the register file check & arity check over to DFGOpertaion style calls, not JIT stubs.
375 linkBuffer.link(callRegisterFileCheck, cti_register_file_check);
376 linkBuffer.link(callArityCheck, m_codeBlock->m_isConstructor ? cti_op_construct_arityCheck : cti_op_call_arityCheck);
377
378 entryWithArityCheck = linkBuffer.locationOf(arityCheck);
379 entry = linkBuffer.finalizeCode();
380 }
381
382 #if DFG_JIT_ASSERT
383 void JITCompiler::jitAssertIsInt32(GPRReg gpr)
384 {
385 #if CPU(X86_64)
386 Jump checkInt32 = branchPtr(BelowOrEqual, gpr, TrustedImmPtr(reinterpret_cast<void*>(static_cast<uintptr_t>(0xFFFFFFFFu))));
387 breakpoint();
388 checkInt32.link(this);
389 #else
390 UNUSED_PARAM(gpr);
391 #endif
392 }
393
394 void JITCompiler::jitAssertIsJSInt32(GPRReg gpr)
395 {
396 Jump checkJSInt32 = branchPtr(AboveOrEqual, gpr, GPRInfo::tagTypeNumberRegister);
397 breakpoint();
398 checkJSInt32.link(this);
399 }
400
401 void JITCompiler::jitAssertIsJSNumber(GPRReg gpr)
402 {
403 Jump checkJSNumber = branchTestPtr(MacroAssembler::NonZero, gpr, GPRInfo::tagTypeNumberRegister);
404 breakpoint();
405 checkJSNumber.link(this);
406 }
407
408 void JITCompiler::jitAssertIsJSDouble(GPRReg gpr)
409 {
410 Jump checkJSInt32 = branchPtr(AboveOrEqual, gpr, GPRInfo::tagTypeNumberRegister);
411 Jump checkJSNumber = branchTestPtr(MacroAssembler::NonZero, gpr, GPRInfo::tagTypeNumberRegister);
412 checkJSInt32.link(this);
413 breakpoint();
414 checkJSNumber.link(this);
415 }
416 #endif
417
418 #if ENABLE(SAMPLING_COUNTERS) && CPU(X86_64) // Or any other 64-bit platform!
419 void JITCompiler::emitCount(AbstractSamplingCounter& counter, uint32_t increment)
420 {
421 addPtr(TrustedImm32(increment), AbsoluteAddress(counter.addressOfCounter()));
422 }
423 #endif
424
425 #if ENABLE(SAMPLING_COUNTERS) && CPU(X86) // Or any other little-endian 32-bit platform!
426 void JITCompiler::emitCount(AbstractSamplingCounter& counter, uint32_t increment)
427 {
428 intptr_t hiWord = reinterpret_cast<intptr_t>(counter.addressOfCounter()) + sizeof(int32_t);
429 add32(TrustedImm32(increment), AbsoluteAddress(counter.addressOfCounter()));
430 addWithCarry32(TrustedImm32(0), AbsoluteAddress(reinterpret_cast<void*>(hiWord)));
431 }
432 #endif
433
434 #if ENABLE(SAMPLING_FLAGS)
435 void JITCompiler::setSamplingFlag(int32_t flag)
436 {
437 ASSERT(flag >= 1);
438 ASSERT(flag <= 32);
439 or32(TrustedImm32(1u << (flag - 1)), AbsoluteAddress(SamplingFlags::addressOfFlags()));
440 }
441
442 void JITCompiler::clearSamplingFlag(int32_t flag)
443 {
444 ASSERT(flag >= 1);
445 ASSERT(flag <= 32);
446 and32(TrustedImm32(~(1u << (flag - 1))), AbsoluteAddress(SamplingFlags::addressOfFlags()));
447 }
448 #endif
449
450 } } // namespace JSC::DFG
451
452 #endif