]>
Commit | Line | Data |
---|---|---|
9dae56ea A |
1 | /* |
2 | * Copyright (C) 2008 Apple Inc. All rights reserved. | |
3 | * | |
4 | * Redistribution and use in source and binary forms, with or without | |
5 | * modification, are permitted provided that the following conditions | |
6 | * are met: | |
7 | * 1. Redistributions of source code must retain the above copyright | |
8 | * notice, this list of conditions and the following disclaimer. | |
9 | * 2. Redistributions in binary form must reproduce the above copyright | |
10 | * notice, this list of conditions and the following disclaimer in the | |
11 | * documentation and/or other materials provided with the distribution. | |
12 | * | |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR | |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
24 | */ | |
25 | ||
26 | #ifndef MacroAssembler_h | |
27 | #define MacroAssembler_h | |
28 | ||
29 | #include <wtf/Platform.h> | |
30 | ||
31 | #if ENABLE(ASSEMBLER) | |
32 | ||
33 | #include "X86Assembler.h" | |
34 | ||
35 | namespace JSC { | |
36 | ||
37 | class MacroAssembler { | |
38 | protected: | |
39 | X86Assembler m_assembler; | |
40 | ||
41 | #if PLATFORM(X86_64) | |
42 | static const X86::RegisterID scratchRegister = X86::r11; | |
43 | #endif | |
44 | ||
45 | public: | |
46 | typedef X86::RegisterID RegisterID; | |
47 | ||
48 | // Note: do not rely on values in this enum, these will change (to 0..3). | |
49 | enum Scale { | |
50 | TimesOne = 1, | |
51 | TimesTwo = 2, | |
52 | TimesFour = 4, | |
53 | TimesEight = 8, | |
54 | #if PLATFORM(X86) | |
55 | ScalePtr = TimesFour | |
56 | #endif | |
57 | #if PLATFORM(X86_64) | |
58 | ScalePtr = TimesEight | |
59 | #endif | |
60 | }; | |
61 | ||
62 | MacroAssembler() | |
63 | { | |
64 | } | |
65 | ||
66 | size_t size() { return m_assembler.size(); } | |
67 | void* copyCode(ExecutablePool* allocator) | |
68 | { | |
69 | return m_assembler.executableCopy(allocator); | |
70 | } | |
71 | ||
72 | ||
73 | // Address: | |
74 | // | |
75 | // Describes a simple base-offset address. | |
76 | struct Address { | |
77 | explicit Address(RegisterID base, int32_t offset = 0) | |
78 | : base(base) | |
79 | , offset(offset) | |
80 | { | |
81 | } | |
82 | ||
83 | RegisterID base; | |
84 | int32_t offset; | |
85 | }; | |
86 | ||
87 | // ImplicitAddress: | |
88 | // | |
89 | // This class is used for explicit 'load' and 'store' operations | |
90 | // (as opposed to situations in which a memory operand is provided | |
91 | // to a generic operation, such as an integer arithmetic instruction). | |
92 | // | |
93 | // In the case of a load (or store) operation we want to permit | |
94 | // addresses to be implicitly constructed, e.g. the two calls: | |
95 | // | |
96 | // load32(Address(addrReg), destReg); | |
97 | // load32(addrReg, destReg); | |
98 | // | |
99 | // Are equivalent, and the explicit wrapping of the Address in the former | |
100 | // is unnecessary. | |
101 | struct ImplicitAddress { | |
102 | ImplicitAddress(RegisterID base) | |
103 | : base(base) | |
104 | , offset(0) | |
105 | { | |
106 | } | |
107 | ||
108 | ImplicitAddress(Address address) | |
109 | : base(address.base) | |
110 | , offset(address.offset) | |
111 | { | |
112 | } | |
113 | ||
114 | RegisterID base; | |
115 | int32_t offset; | |
116 | }; | |
117 | ||
118 | // BaseIndex: | |
119 | // | |
120 | // Describes a complex addressing mode. | |
121 | struct BaseIndex { | |
122 | BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0) | |
123 | : base(base) | |
124 | , index(index) | |
125 | , scale(scale) | |
126 | , offset(offset) | |
127 | { | |
128 | } | |
129 | ||
130 | RegisterID base; | |
131 | RegisterID index; | |
132 | Scale scale; | |
133 | int32_t offset; | |
134 | }; | |
135 | ||
136 | // AbsoluteAddress: | |
137 | // | |
138 | // Describes an memory operand given by a pointer. For regular load & store | |
139 | // operations an unwrapped void* will be used, rather than using this. | |
140 | struct AbsoluteAddress { | |
141 | explicit AbsoluteAddress(void* ptr) | |
142 | : m_ptr(ptr) | |
143 | { | |
144 | } | |
145 | ||
146 | void* m_ptr; | |
147 | }; | |
148 | ||
149 | ||
150 | class Jump; | |
151 | class PatchBuffer; | |
152 | ||
153 | // DataLabelPtr: | |
154 | // | |
155 | // A DataLabelPtr is used to refer to a location in the code containing a pointer to be | |
156 | // patched after the code has been generated. | |
157 | class DataLabelPtr { | |
158 | friend class MacroAssembler; | |
159 | friend class PatchBuffer; | |
160 | ||
161 | public: | |
162 | DataLabelPtr() | |
163 | { | |
164 | } | |
165 | ||
166 | DataLabelPtr(MacroAssembler* masm) | |
167 | : m_label(masm->m_assembler.label()) | |
168 | { | |
169 | } | |
170 | ||
171 | static void patch(void* address, void* value) | |
172 | { | |
173 | X86Assembler::patchPointer(reinterpret_cast<intptr_t>(address), reinterpret_cast<intptr_t>(value)); | |
174 | } | |
175 | ||
176 | private: | |
177 | X86Assembler::JmpDst m_label; | |
178 | }; | |
179 | ||
180 | // DataLabel32: | |
181 | // | |
182 | // A DataLabelPtr is used to refer to a location in the code containing a pointer to be | |
183 | // patched after the code has been generated. | |
184 | class DataLabel32 { | |
185 | friend class MacroAssembler; | |
186 | friend class PatchBuffer; | |
187 | ||
188 | public: | |
189 | DataLabel32() | |
190 | { | |
191 | } | |
192 | ||
193 | DataLabel32(MacroAssembler* masm) | |
194 | : m_label(masm->m_assembler.label()) | |
195 | { | |
196 | } | |
197 | ||
198 | static void patch(void* address, int32_t value) | |
199 | { | |
200 | X86Assembler::patchImmediate(reinterpret_cast<intptr_t>(address), value); | |
201 | } | |
202 | ||
203 | private: | |
204 | X86Assembler::JmpDst m_label; | |
205 | }; | |
206 | ||
207 | // Label: | |
208 | // | |
209 | // A Label records a point in the generated instruction stream, typically such that | |
210 | // it may be used as a destination for a jump. | |
211 | class Label { | |
212 | friend class Jump; | |
213 | friend class MacroAssembler; | |
214 | friend class PatchBuffer; | |
215 | ||
216 | public: | |
217 | Label() | |
218 | { | |
219 | } | |
220 | ||
221 | Label(MacroAssembler* masm) | |
222 | : m_label(masm->m_assembler.label()) | |
223 | { | |
224 | } | |
225 | ||
226 | // FIXME: transitionary method, while we replace JmpSrces with Jumps. | |
227 | operator X86Assembler::JmpDst() | |
228 | { | |
229 | return m_label; | |
230 | } | |
231 | ||
232 | private: | |
233 | X86Assembler::JmpDst m_label; | |
234 | }; | |
235 | ||
236 | ||
237 | // Jump: | |
238 | // | |
239 | // A jump object is a reference to a jump instruction that has been planted | |
240 | // into the code buffer - it is typically used to link the jump, setting the | |
241 | // relative offset such that when executed it will jump to the desired | |
242 | // destination. | |
243 | // | |
244 | // Jump objects retain a pointer to the assembler for syntactic purposes - | |
245 | // to allow the jump object to be able to link itself, e.g.: | |
246 | // | |
247 | // Jump forwardsBranch = jne32(Imm32(0), reg1); | |
248 | // // ... | |
249 | // forwardsBranch.link(); | |
250 | // | |
251 | // Jumps may also be linked to a Label. | |
252 | class Jump { | |
253 | friend class PatchBuffer; | |
254 | friend class MacroAssembler; | |
255 | ||
256 | public: | |
257 | Jump() | |
258 | { | |
259 | } | |
260 | ||
261 | // FIXME: transitionary method, while we replace JmpSrces with Jumps. | |
262 | Jump(X86Assembler::JmpSrc jmp) | |
263 | : m_jmp(jmp) | |
264 | { | |
265 | } | |
266 | ||
267 | void link(MacroAssembler* masm) | |
268 | { | |
269 | masm->m_assembler.link(m_jmp, masm->m_assembler.label()); | |
270 | } | |
271 | ||
272 | void linkTo(Label label, MacroAssembler* masm) | |
273 | { | |
274 | masm->m_assembler.link(m_jmp, label.m_label); | |
275 | } | |
276 | ||
277 | // FIXME: transitionary method, while we replace JmpSrces with Jumps. | |
278 | operator X86Assembler::JmpSrc() | |
279 | { | |
280 | return m_jmp; | |
281 | } | |
282 | ||
283 | static void patch(void* address, void* destination) | |
284 | { | |
285 | X86Assembler::patchBranchOffset(reinterpret_cast<intptr_t>(address), destination); | |
286 | } | |
287 | ||
288 | private: | |
289 | X86Assembler::JmpSrc m_jmp; | |
290 | }; | |
291 | ||
292 | // JumpList: | |
293 | // | |
294 | // A JumpList is a set of Jump objects. | |
295 | // All jumps in the set will be linked to the same destination. | |
296 | class JumpList { | |
297 | friend class PatchBuffer; | |
298 | ||
299 | public: | |
300 | void link(MacroAssembler* masm) | |
301 | { | |
302 | size_t size = m_jumps.size(); | |
303 | for (size_t i = 0; i < size; ++i) | |
304 | m_jumps[i].link(masm); | |
305 | m_jumps.clear(); | |
306 | } | |
307 | ||
308 | void linkTo(Label label, MacroAssembler* masm) | |
309 | { | |
310 | size_t size = m_jumps.size(); | |
311 | for (size_t i = 0; i < size; ++i) | |
312 | m_jumps[i].linkTo(label, masm); | |
313 | m_jumps.clear(); | |
314 | } | |
315 | ||
316 | void append(Jump jump) | |
317 | { | |
318 | m_jumps.append(jump); | |
319 | } | |
320 | ||
321 | void append(JumpList& other) | |
322 | { | |
323 | m_jumps.append(other.m_jumps.begin(), other.m_jumps.size()); | |
324 | } | |
325 | ||
326 | bool empty() | |
327 | { | |
328 | return !m_jumps.size(); | |
329 | } | |
330 | ||
331 | private: | |
332 | Vector<Jump, 16> m_jumps; | |
333 | }; | |
334 | ||
335 | ||
336 | // PatchBuffer: | |
337 | // | |
338 | // This class assists in linking code generated by the macro assembler, once code generation | |
339 | // has been completed, and the code has been copied to is final location in memory. At this | |
340 | // time pointers to labels within the code may be resolved, and relative offsets to external | |
341 | // addresses may be fixed. | |
342 | // | |
343 | // Specifically: | |
344 | // * Jump objects may be linked to external targets, | |
345 | // * The address of Jump objects may taken, such that it can later be relinked. | |
346 | // * The return address of a Jump object representing a call may be acquired. | |
347 | // * The address of a Label pointing into the code may be resolved. | |
348 | // * The value referenced by a DataLabel may be fixed. | |
349 | // | |
350 | // FIXME: distinguish between Calls & Jumps (make a specific call to obtain the return | |
351 | // address of calls, as opposed to a point that can be used to later relink a Jump - | |
352 | // possibly wrap the later up in an object that can do just that). | |
353 | class PatchBuffer { | |
354 | public: | |
355 | PatchBuffer(void* code) | |
356 | : m_code(code) | |
357 | { | |
358 | } | |
359 | ||
360 | void link(Jump jump, void* target) | |
361 | { | |
362 | X86Assembler::link(m_code, jump.m_jmp, target); | |
363 | } | |
364 | ||
365 | void link(JumpList list, void* target) | |
366 | { | |
367 | for (unsigned i = 0; i < list.m_jumps.size(); ++i) | |
368 | X86Assembler::link(m_code, list.m_jumps[i], target); | |
369 | } | |
370 | ||
371 | void* addressOf(Jump jump) | |
372 | { | |
373 | return X86Assembler::getRelocatedAddress(m_code, jump.m_jmp); | |
374 | } | |
375 | ||
376 | void* addressOf(Label label) | |
377 | { | |
378 | return X86Assembler::getRelocatedAddress(m_code, label.m_label); | |
379 | } | |
380 | ||
381 | void* addressOf(DataLabelPtr label) | |
382 | { | |
383 | return X86Assembler::getRelocatedAddress(m_code, label.m_label); | |
384 | } | |
385 | ||
386 | void* addressOf(DataLabel32 label) | |
387 | { | |
388 | return X86Assembler::getRelocatedAddress(m_code, label.m_label); | |
389 | } | |
390 | ||
391 | void setPtr(DataLabelPtr label, void* value) | |
392 | { | |
393 | X86Assembler::patchAddress(m_code, label.m_label, value); | |
394 | } | |
395 | ||
396 | private: | |
397 | void* m_code; | |
398 | }; | |
399 | ||
400 | ||
401 | // ImmPtr: | |
402 | // | |
403 | // A pointer sized immediate operand to an instruction - this is wrapped | |
404 | // in a class requiring explicit construction in order to differentiate | |
405 | // from pointers used as absolute addresses to memory operations | |
406 | struct ImmPtr { | |
407 | explicit ImmPtr(void* value) | |
408 | : m_value(value) | |
409 | { | |
410 | } | |
411 | ||
412 | intptr_t asIntptr() | |
413 | { | |
414 | return reinterpret_cast<intptr_t>(m_value); | |
415 | } | |
416 | ||
417 | void* m_value; | |
418 | }; | |
419 | ||
420 | ||
421 | // Imm32: | |
422 | // | |
423 | // A 32bit immediate operand to an instruction - this is wrapped in a | |
424 | // class requiring explicit construction in order to prevent RegisterIDs | |
425 | // (which are implemented as an enum) from accidentally being passed as | |
426 | // immediate values. | |
427 | struct Imm32 { | |
428 | explicit Imm32(int32_t value) | |
429 | : m_value(value) | |
430 | { | |
431 | } | |
432 | ||
433 | #if PLATFORM(X86) | |
434 | explicit Imm32(ImmPtr ptr) | |
435 | : m_value(ptr.asIntptr()) | |
436 | { | |
437 | } | |
438 | #endif | |
439 | ||
440 | int32_t m_value; | |
441 | }; | |
442 | ||
443 | // Integer arithmetic operations: | |
444 | // | |
445 | // Operations are typically two operand - operation(source, srcDst) | |
446 | // For many operations the source may be an Imm32, the srcDst operand | |
447 | // may often be a memory location (explictly described using an Address | |
448 | // object). | |
449 | ||
450 | void addPtr(RegisterID src, RegisterID dest) | |
451 | { | |
452 | #if PLATFORM(X86_64) | |
453 | m_assembler.addq_rr(src, dest); | |
454 | #else | |
455 | add32(src, dest); | |
456 | #endif | |
457 | } | |
458 | ||
459 | void addPtr(Imm32 imm, RegisterID srcDest) | |
460 | { | |
461 | #if PLATFORM(X86_64) | |
462 | m_assembler.addq_ir(imm.m_value, srcDest); | |
463 | #else | |
464 | add32(imm, srcDest); | |
465 | #endif | |
466 | } | |
467 | ||
468 | void addPtr(ImmPtr imm, RegisterID dest) | |
469 | { | |
470 | #if PLATFORM(X86_64) | |
471 | move(imm, scratchRegister); | |
472 | m_assembler.addq_rr(scratchRegister, dest); | |
473 | #else | |
474 | add32(Imm32(imm), dest); | |
475 | #endif | |
476 | } | |
477 | ||
478 | void addPtr(Imm32 imm, RegisterID src, RegisterID dest) | |
479 | { | |
480 | m_assembler.leal_mr(imm.m_value, src, dest); | |
481 | } | |
482 | ||
483 | void add32(RegisterID src, RegisterID dest) | |
484 | { | |
485 | m_assembler.addl_rr(src, dest); | |
486 | } | |
487 | ||
488 | void add32(Imm32 imm, Address address) | |
489 | { | |
490 | m_assembler.addl_im(imm.m_value, address.offset, address.base); | |
491 | } | |
492 | ||
493 | void add32(Imm32 imm, RegisterID dest) | |
494 | { | |
495 | m_assembler.addl_ir(imm.m_value, dest); | |
496 | } | |
497 | ||
498 | void add32(Imm32 imm, AbsoluteAddress address) | |
499 | { | |
500 | #if PLATFORM(X86_64) | |
501 | move(ImmPtr(address.m_ptr), scratchRegister); | |
502 | add32(imm, Address(scratchRegister)); | |
503 | #else | |
504 | m_assembler.addl_im(imm.m_value, address.m_ptr); | |
505 | #endif | |
506 | } | |
507 | ||
508 | void add32(Address src, RegisterID dest) | |
509 | { | |
510 | m_assembler.addl_mr(src.offset, src.base, dest); | |
511 | } | |
512 | ||
513 | void andPtr(RegisterID src, RegisterID dest) | |
514 | { | |
515 | #if PLATFORM(X86_64) | |
516 | m_assembler.andq_rr(src, dest); | |
517 | #else | |
518 | and32(src, dest); | |
519 | #endif | |
520 | } | |
521 | ||
522 | void andPtr(Imm32 imm, RegisterID srcDest) | |
523 | { | |
524 | #if PLATFORM(X86_64) | |
525 | m_assembler.andq_ir(imm.m_value, srcDest); | |
526 | #else | |
527 | and32(imm, srcDest); | |
528 | #endif | |
529 | } | |
530 | ||
531 | void and32(RegisterID src, RegisterID dest) | |
532 | { | |
533 | m_assembler.andl_rr(src, dest); | |
534 | } | |
535 | ||
536 | void and32(Imm32 imm, RegisterID dest) | |
537 | { | |
538 | m_assembler.andl_ir(imm.m_value, dest); | |
539 | } | |
540 | ||
541 | void lshift32(Imm32 imm, RegisterID dest) | |
542 | { | |
543 | m_assembler.shll_i8r(imm.m_value, dest); | |
544 | } | |
545 | ||
546 | void lshift32(RegisterID shift_amount, RegisterID dest) | |
547 | { | |
548 | // On x86 we can only shift by ecx; if asked to shift by another register we'll | |
549 | // need rejig the shift amount into ecx first, and restore the registers afterwards. | |
550 | if (shift_amount != X86::ecx) { | |
551 | swap(shift_amount, X86::ecx); | |
552 | ||
553 | // E.g. transform "shll %eax, %eax" -> "xchgl %eax, %ecx; shll %ecx, %ecx; xchgl %eax, %ecx" | |
554 | if (dest == shift_amount) | |
555 | m_assembler.shll_CLr(X86::ecx); | |
556 | // E.g. transform "shll %eax, %ecx" -> "xchgl %eax, %ecx; shll %ecx, %eax; xchgl %eax, %ecx" | |
557 | else if (dest == X86::ecx) | |
558 | m_assembler.shll_CLr(shift_amount); | |
559 | // E.g. transform "shll %eax, %ebx" -> "xchgl %eax, %ecx; shll %ecx, %ebx; xchgl %eax, %ecx" | |
560 | else | |
561 | m_assembler.shll_CLr(dest); | |
562 | ||
563 | swap(shift_amount, X86::ecx); | |
564 | } else | |
565 | m_assembler.shll_CLr(dest); | |
566 | } | |
567 | ||
568 | // Take the value from dividend, divide it by divisor, and put the remainder in remainder. | |
569 | // For now, this operation has specific register requirements, and the three register must | |
570 | // be unique. It is unfortunate to expose this in the MacroAssembler interface, however | |
571 | // given the complexity to fix, the fact that it is not uncommmon for processors to have | |
572 | // specific register requirements on this operation (e.g. Mips result in 'hi'), or to not | |
573 | // support a hardware divide at all, it may not be | |
574 | void mod32(RegisterID divisor, RegisterID dividend, RegisterID remainder) | |
575 | { | |
576 | #ifdef NDEBUG | |
577 | #pragma unused(dividend,remainder) | |
578 | #else | |
579 | ASSERT((dividend == X86::eax) && (remainder == X86::edx)); | |
580 | ASSERT((dividend != divisor) && (remainder != divisor)); | |
581 | #endif | |
582 | ||
583 | m_assembler.cdq(); | |
584 | m_assembler.idivl_r(divisor); | |
585 | } | |
586 | ||
587 | void mul32(RegisterID src, RegisterID dest) | |
588 | { | |
589 | m_assembler.imull_rr(src, dest); | |
590 | } | |
591 | ||
592 | void mul32(Imm32 imm, RegisterID src, RegisterID dest) | |
593 | { | |
594 | m_assembler.imull_i32r(src, imm.m_value, dest); | |
595 | } | |
596 | ||
597 | void not32(RegisterID srcDest) | |
598 | { | |
599 | m_assembler.notl_r(srcDest); | |
600 | } | |
601 | ||
602 | void orPtr(RegisterID src, RegisterID dest) | |
603 | { | |
604 | #if PLATFORM(X86_64) | |
605 | m_assembler.orq_rr(src, dest); | |
606 | #else | |
607 | or32(src, dest); | |
608 | #endif | |
609 | } | |
610 | ||
611 | void orPtr(ImmPtr imm, RegisterID dest) | |
612 | { | |
613 | #if PLATFORM(X86_64) | |
614 | move(imm, scratchRegister); | |
615 | m_assembler.orq_rr(scratchRegister, dest); | |
616 | #else | |
617 | or32(Imm32(imm), dest); | |
618 | #endif | |
619 | } | |
620 | ||
621 | void orPtr(Imm32 imm, RegisterID dest) | |
622 | { | |
623 | #if PLATFORM(X86_64) | |
624 | m_assembler.orq_ir(imm.m_value, dest); | |
625 | #else | |
626 | or32(imm, dest); | |
627 | #endif | |
628 | } | |
629 | ||
630 | void or32(RegisterID src, RegisterID dest) | |
631 | { | |
632 | m_assembler.orl_rr(src, dest); | |
633 | } | |
634 | ||
635 | void or32(Imm32 imm, RegisterID dest) | |
636 | { | |
637 | m_assembler.orl_ir(imm.m_value, dest); | |
638 | } | |
639 | ||
640 | void rshiftPtr(RegisterID shift_amount, RegisterID dest) | |
641 | { | |
642 | #if PLATFORM(X86_64) | |
643 | // On x86 we can only shift by ecx; if asked to shift by another register we'll | |
644 | // need rejig the shift amount into ecx first, and restore the registers afterwards. | |
645 | if (shift_amount != X86::ecx) { | |
646 | swap(shift_amount, X86::ecx); | |
647 | ||
648 | // E.g. transform "shll %eax, %eax" -> "xchgl %eax, %ecx; shll %ecx, %ecx; xchgl %eax, %ecx" | |
649 | if (dest == shift_amount) | |
650 | m_assembler.sarq_CLr(X86::ecx); | |
651 | // E.g. transform "shll %eax, %ecx" -> "xchgl %eax, %ecx; shll %ecx, %eax; xchgl %eax, %ecx" | |
652 | else if (dest == X86::ecx) | |
653 | m_assembler.sarq_CLr(shift_amount); | |
654 | // E.g. transform "shll %eax, %ebx" -> "xchgl %eax, %ecx; shll %ecx, %ebx; xchgl %eax, %ecx" | |
655 | else | |
656 | m_assembler.sarq_CLr(dest); | |
657 | ||
658 | swap(shift_amount, X86::ecx); | |
659 | } else | |
660 | m_assembler.sarq_CLr(dest); | |
661 | #else | |
662 | rshift32(shift_amount, dest); | |
663 | #endif | |
664 | } | |
665 | ||
666 | void rshiftPtr(Imm32 imm, RegisterID dest) | |
667 | { | |
668 | #if PLATFORM(X86_64) | |
669 | m_assembler.sarq_i8r(imm.m_value, dest); | |
670 | #else | |
671 | rshift32(imm, dest); | |
672 | #endif | |
673 | } | |
674 | ||
675 | void rshift32(RegisterID shift_amount, RegisterID dest) | |
676 | { | |
677 | // On x86 we can only shift by ecx; if asked to shift by another register we'll | |
678 | // need rejig the shift amount into ecx first, and restore the registers afterwards. | |
679 | if (shift_amount != X86::ecx) { | |
680 | swap(shift_amount, X86::ecx); | |
681 | ||
682 | // E.g. transform "shll %eax, %eax" -> "xchgl %eax, %ecx; shll %ecx, %ecx; xchgl %eax, %ecx" | |
683 | if (dest == shift_amount) | |
684 | m_assembler.sarl_CLr(X86::ecx); | |
685 | // E.g. transform "shll %eax, %ecx" -> "xchgl %eax, %ecx; shll %ecx, %eax; xchgl %eax, %ecx" | |
686 | else if (dest == X86::ecx) | |
687 | m_assembler.sarl_CLr(shift_amount); | |
688 | // E.g. transform "shll %eax, %ebx" -> "xchgl %eax, %ecx; shll %ecx, %ebx; xchgl %eax, %ecx" | |
689 | else | |
690 | m_assembler.sarl_CLr(dest); | |
691 | ||
692 | swap(shift_amount, X86::ecx); | |
693 | } else | |
694 | m_assembler.sarl_CLr(dest); | |
695 | } | |
696 | ||
697 | void rshift32(Imm32 imm, RegisterID dest) | |
698 | { | |
699 | m_assembler.sarl_i8r(imm.m_value, dest); | |
700 | } | |
701 | ||
702 | void subPtr(RegisterID src, RegisterID dest) | |
703 | { | |
704 | #if PLATFORM(X86_64) | |
705 | m_assembler.subq_rr(src, dest); | |
706 | #else | |
707 | sub32(src, dest); | |
708 | #endif | |
709 | } | |
710 | ||
711 | void subPtr(Imm32 imm, RegisterID dest) | |
712 | { | |
713 | #if PLATFORM(X86_64) | |
714 | m_assembler.subq_ir(imm.m_value, dest); | |
715 | #else | |
716 | sub32(imm, dest); | |
717 | #endif | |
718 | } | |
719 | ||
720 | void subPtr(ImmPtr imm, RegisterID dest) | |
721 | { | |
722 | #if PLATFORM(X86_64) | |
723 | move(imm, scratchRegister); | |
724 | m_assembler.subq_rr(scratchRegister, dest); | |
725 | #else | |
726 | sub32(Imm32(imm), dest); | |
727 | #endif | |
728 | } | |
729 | ||
730 | void sub32(RegisterID src, RegisterID dest) | |
731 | { | |
732 | m_assembler.subl_rr(src, dest); | |
733 | } | |
734 | ||
735 | void sub32(Imm32 imm, RegisterID dest) | |
736 | { | |
737 | m_assembler.subl_ir(imm.m_value, dest); | |
738 | } | |
739 | ||
740 | void sub32(Imm32 imm, Address address) | |
741 | { | |
742 | m_assembler.subl_im(imm.m_value, address.offset, address.base); | |
743 | } | |
744 | ||
745 | void sub32(Imm32 imm, AbsoluteAddress address) | |
746 | { | |
747 | #if PLATFORM(X86_64) | |
748 | move(ImmPtr(address.m_ptr), scratchRegister); | |
749 | sub32(imm, Address(scratchRegister)); | |
750 | #else | |
751 | m_assembler.subl_im(imm.m_value, address.m_ptr); | |
752 | #endif | |
753 | } | |
754 | ||
755 | void sub32(Address src, RegisterID dest) | |
756 | { | |
757 | m_assembler.subl_mr(src.offset, src.base, dest); | |
758 | } | |
759 | ||
760 | void xorPtr(RegisterID src, RegisterID dest) | |
761 | { | |
762 | #if PLATFORM(X86_64) | |
763 | m_assembler.xorq_rr(src, dest); | |
764 | #else | |
765 | xor32(src, dest); | |
766 | #endif | |
767 | } | |
768 | ||
769 | void xorPtr(Imm32 imm, RegisterID srcDest) | |
770 | { | |
771 | #if PLATFORM(X86_64) | |
772 | m_assembler.xorq_ir(imm.m_value, srcDest); | |
773 | #else | |
774 | xor32(imm, srcDest); | |
775 | #endif | |
776 | } | |
777 | ||
778 | void xor32(RegisterID src, RegisterID dest) | |
779 | { | |
780 | m_assembler.xorl_rr(src, dest); | |
781 | } | |
782 | ||
783 | void xor32(Imm32 imm, RegisterID srcDest) | |
784 | { | |
785 | m_assembler.xorl_ir(imm.m_value, srcDest); | |
786 | } | |
787 | ||
788 | ||
789 | // Memory access operations: | |
790 | // | |
791 | // Loads are of the form load(address, destination) and stores of the form | |
792 | // store(source, address). The source for a store may be an Imm32. Address | |
793 | // operand objects to loads and store will be implicitly constructed if a | |
794 | // register is passed. | |
795 | ||
796 | void loadPtr(ImplicitAddress address, RegisterID dest) | |
797 | { | |
798 | #if PLATFORM(X86_64) | |
799 | m_assembler.movq_mr(address.offset, address.base, dest); | |
800 | #else | |
801 | load32(address, dest); | |
802 | #endif | |
803 | } | |
804 | ||
805 | DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest) | |
806 | { | |
807 | #if PLATFORM(X86_64) | |
808 | m_assembler.movq_mr_disp32(address.offset, address.base, dest); | |
809 | return DataLabel32(this); | |
810 | #else | |
811 | m_assembler.movl_mr_disp32(address.offset, address.base, dest); | |
812 | return DataLabel32(this); | |
813 | #endif | |
814 | } | |
815 | ||
816 | void loadPtr(BaseIndex address, RegisterID dest) | |
817 | { | |
818 | #if PLATFORM(X86_64) | |
819 | m_assembler.movq_mr(address.offset, address.base, address.index, address.scale, dest); | |
820 | #else | |
821 | load32(address, dest); | |
822 | #endif | |
823 | } | |
824 | ||
825 | void loadPtr(void* address, RegisterID dest) | |
826 | { | |
827 | #if PLATFORM(X86_64) | |
828 | if (dest == X86::eax) | |
829 | m_assembler.movq_mEAX(address); | |
830 | else { | |
831 | move(X86::eax, dest); | |
832 | m_assembler.movq_mEAX(address); | |
833 | swap(X86::eax, dest); | |
834 | } | |
835 | #else | |
836 | load32(address, dest); | |
837 | #endif | |
838 | } | |
839 | ||
840 | void load32(ImplicitAddress address, RegisterID dest) | |
841 | { | |
842 | m_assembler.movl_mr(address.offset, address.base, dest); | |
843 | } | |
844 | ||
845 | void load32(BaseIndex address, RegisterID dest) | |
846 | { | |
847 | m_assembler.movl_mr(address.offset, address.base, address.index, address.scale, dest); | |
848 | } | |
849 | ||
850 | void load32(void* address, RegisterID dest) | |
851 | { | |
852 | #if PLATFORM(X86_64) | |
853 | if (dest == X86::eax) | |
854 | m_assembler.movl_mEAX(address); | |
855 | else { | |
856 | move(X86::eax, dest); | |
857 | m_assembler.movl_mEAX(address); | |
858 | swap(X86::eax, dest); | |
859 | } | |
860 | #else | |
861 | m_assembler.movl_mr(address, dest); | |
862 | #endif | |
863 | } | |
864 | ||
865 | void load16(BaseIndex address, RegisterID dest) | |
866 | { | |
867 | m_assembler.movzwl_mr(address.offset, address.base, address.index, address.scale, dest); | |
868 | } | |
869 | ||
870 | void storePtr(RegisterID src, ImplicitAddress address) | |
871 | { | |
872 | #if PLATFORM(X86_64) | |
873 | m_assembler.movq_rm(src, address.offset, address.base); | |
874 | #else | |
875 | store32(src, address); | |
876 | #endif | |
877 | } | |
878 | ||
879 | DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address) | |
880 | { | |
881 | #if PLATFORM(X86_64) | |
882 | m_assembler.movq_rm_disp32(src, address.offset, address.base); | |
883 | return DataLabel32(this); | |
884 | #else | |
885 | m_assembler.movl_rm_disp32(src, address.offset, address.base); | |
886 | return DataLabel32(this); | |
887 | #endif | |
888 | } | |
889 | ||
890 | void storePtr(RegisterID src, BaseIndex address) | |
891 | { | |
892 | #if PLATFORM(X86_64) | |
893 | m_assembler.movq_rm(src, address.offset, address.base, address.index, address.scale); | |
894 | #else | |
895 | store32(src, address); | |
896 | #endif | |
897 | } | |
898 | ||
899 | void storePtr(ImmPtr imm, ImplicitAddress address) | |
900 | { | |
901 | #if PLATFORM(X86_64) | |
902 | move(imm, scratchRegister); | |
903 | storePtr(scratchRegister, address); | |
904 | #else | |
905 | m_assembler.movl_i32m(imm.asIntptr(), address.offset, address.base); | |
906 | #endif | |
907 | } | |
908 | ||
909 | #if !PLATFORM(X86_64) | |
910 | void storePtr(ImmPtr imm, void* address) | |
911 | { | |
912 | store32(Imm32(imm), address); | |
913 | } | |
914 | #endif | |
915 | ||
916 | DataLabelPtr storePtrWithPatch(Address address) | |
917 | { | |
918 | #if PLATFORM(X86_64) | |
919 | m_assembler.movq_i64r(0, scratchRegister); | |
920 | DataLabelPtr label(this); | |
921 | storePtr(scratchRegister, address); | |
922 | return label; | |
923 | #else | |
924 | m_assembler.movl_i32m(0, address.offset, address.base); | |
925 | return DataLabelPtr(this); | |
926 | #endif | |
927 | } | |
928 | ||
929 | void store32(RegisterID src, ImplicitAddress address) | |
930 | { | |
931 | m_assembler.movl_rm(src, address.offset, address.base); | |
932 | } | |
933 | ||
934 | void store32(RegisterID src, BaseIndex address) | |
935 | { | |
936 | m_assembler.movl_rm(src, address.offset, address.base, address.index, address.scale); | |
937 | } | |
938 | ||
939 | void store32(Imm32 imm, ImplicitAddress address) | |
940 | { | |
941 | m_assembler.movl_i32m(imm.m_value, address.offset, address.base); | |
942 | } | |
943 | ||
944 | void store32(Imm32 imm, void* address) | |
945 | { | |
946 | #if PLATFORM(X86_64) | |
947 | move(X86::eax, scratchRegister); | |
948 | move(imm, X86::eax); | |
949 | m_assembler.movl_EAXm(address); | |
950 | move(scratchRegister, X86::eax); | |
951 | #else | |
952 | m_assembler.movl_i32m(imm.m_value, address); | |
953 | #endif | |
954 | } | |
955 | ||
956 | ||
957 | // Stack manipulation operations: | |
958 | // | |
959 | // The ABI is assumed to provide a stack abstraction to memory, | |
960 | // containing machine word sized units of data. Push and pop | |
961 | // operations add and remove a single register sized unit of data | |
962 | // to or from the stack. Peek and poke operations read or write | |
963 | // values on the stack, without moving the current stack position. | |
964 | ||
965 | void pop(RegisterID dest) | |
966 | { | |
967 | m_assembler.pop_r(dest); | |
968 | } | |
969 | ||
970 | void push(RegisterID src) | |
971 | { | |
972 | m_assembler.push_r(src); | |
973 | } | |
974 | ||
975 | void push(Address address) | |
976 | { | |
977 | m_assembler.push_m(address.offset, address.base); | |
978 | } | |
979 | ||
980 | void push(Imm32 imm) | |
981 | { | |
982 | m_assembler.push_i32(imm.m_value); | |
983 | } | |
984 | ||
985 | void pop() | |
986 | { | |
987 | addPtr(Imm32(sizeof(void*)), X86::esp); | |
988 | } | |
989 | ||
990 | void peek(RegisterID dest, int index = 0) | |
991 | { | |
992 | loadPtr(Address(X86::esp, (index * sizeof(void *))), dest); | |
993 | } | |
994 | ||
995 | void poke(RegisterID src, int index = 0) | |
996 | { | |
997 | storePtr(src, Address(X86::esp, (index * sizeof(void *)))); | |
998 | } | |
999 | ||
1000 | void poke(Imm32 value, int index = 0) | |
1001 | { | |
1002 | store32(value, Address(X86::esp, (index * sizeof(void *)))); | |
1003 | } | |
1004 | ||
1005 | void poke(ImmPtr imm, int index = 0) | |
1006 | { | |
1007 | storePtr(imm, Address(X86::esp, (index * sizeof(void *)))); | |
1008 | } | |
1009 | ||
1010 | // Register move operations: | |
1011 | // | |
1012 | // Move values in registers. | |
1013 | ||
1014 | void move(Imm32 imm, RegisterID dest) | |
1015 | { | |
1016 | // Note: on 64-bit the Imm32 value is zero extended into the register, it | |
1017 | // may be useful to have a separate version that sign extends the value? | |
1018 | if (!imm.m_value) | |
1019 | m_assembler.xorl_rr(dest, dest); | |
1020 | else | |
1021 | m_assembler.movl_i32r(imm.m_value, dest); | |
1022 | } | |
1023 | ||
1024 | void move(RegisterID src, RegisterID dest) | |
1025 | { | |
1026 | // Note: on 64-bit this is is a full register move; perhaps it would be | |
1027 | // useful to have separate move32 & movePtr, with move32 zero extending? | |
1028 | #if PLATFORM(X86_64) | |
1029 | m_assembler.movq_rr(src, dest); | |
1030 | #else | |
1031 | m_assembler.movl_rr(src, dest); | |
1032 | #endif | |
1033 | } | |
1034 | ||
1035 | void move(ImmPtr imm, RegisterID dest) | |
1036 | { | |
1037 | #if PLATFORM(X86_64) | |
1038 | if (CAN_SIGN_EXTEND_U32_64(imm.asIntptr())) | |
1039 | m_assembler.movl_i32r(static_cast<int32_t>(imm.asIntptr()), dest); | |
1040 | else | |
1041 | m_assembler.movq_i64r(imm.asIntptr(), dest); | |
1042 | #else | |
1043 | m_assembler.movl_i32r(imm.asIntptr(), dest); | |
1044 | #endif | |
1045 | } | |
1046 | ||
1047 | void swap(RegisterID reg1, RegisterID reg2) | |
1048 | { | |
1049 | #if PLATFORM(X86_64) | |
1050 | m_assembler.xchgq_rr(reg1, reg2); | |
1051 | #else | |
1052 | m_assembler.xchgl_rr(reg1, reg2); | |
1053 | #endif | |
1054 | } | |
1055 | ||
1056 | void signExtend32ToPtr(RegisterID src, RegisterID dest) | |
1057 | { | |
1058 | #if PLATFORM(X86_64) | |
1059 | m_assembler.movsxd_rr(src, dest); | |
1060 | #else | |
1061 | if (src != dest) | |
1062 | move(src, dest); | |
1063 | #endif | |
1064 | } | |
1065 | ||
1066 | void zeroExtend32ToPtr(RegisterID src, RegisterID dest) | |
1067 | { | |
1068 | #if PLATFORM(X86_64) | |
1069 | m_assembler.movl_rr(src, dest); | |
1070 | #else | |
1071 | if (src != dest) | |
1072 | move(src, dest); | |
1073 | #endif | |
1074 | } | |
1075 | ||
1076 | ||
1077 | // Forwards / external control flow operations: | |
1078 | // | |
1079 | // This set of jump and conditional branch operations return a Jump | |
1080 | // object which may linked at a later point, allow forwards jump, | |
1081 | // or jumps that will require external linkage (after the code has been | |
1082 | // relocated). | |
1083 | // | |
1084 | // For branches, signed <, >, <= and >= are denoted as l, g, le, and ge | |
1085 | // respecitvely, for unsigned comparisons the names b, a, be, and ae are | |
1086 | // used (representing the names 'below' and 'above'). | |
1087 | // | |
1088 | // Operands to the comparision are provided in the expected order, e.g. | |
1089 | // jle32(reg1, Imm32(5)) will branch if the value held in reg1, when | |
1090 | // treated as a signed 32bit value, is less than or equal to 5. | |
1091 | // | |
1092 | // jz and jnz test whether the first operand is equal to zero, and take | |
1093 | // an optional second operand of a mask under which to perform the test. | |
1094 | ||
1095 | private: | |
1096 | void compareImm32ForBranch(RegisterID left, int32_t right) | |
1097 | { | |
1098 | m_assembler.cmpl_ir(right, left); | |
1099 | } | |
1100 | ||
1101 | void compareImm32ForBranchEquality(RegisterID reg, int32_t imm) | |
1102 | { | |
1103 | if (!imm) | |
1104 | m_assembler.testl_rr(reg, reg); | |
1105 | else | |
1106 | m_assembler.cmpl_ir(imm, reg); | |
1107 | } | |
1108 | ||
1109 | void compareImm32ForBranchEquality(Address address, int32_t imm) | |
1110 | { | |
1111 | m_assembler.cmpl_im(imm, address.offset, address.base); | |
1112 | } | |
1113 | ||
1114 | void testImm32(RegisterID reg, Imm32 mask) | |
1115 | { | |
1116 | // if we are only interested in the low seven bits, this can be tested with a testb | |
1117 | if (mask.m_value == -1) | |
1118 | m_assembler.testl_rr(reg, reg); | |
1119 | else if ((mask.m_value & ~0x7f) == 0) | |
1120 | m_assembler.testb_i8r(mask.m_value, reg); | |
1121 | else | |
1122 | m_assembler.testl_i32r(mask.m_value, reg); | |
1123 | } | |
1124 | ||
1125 | void testImm32(Address address, Imm32 mask) | |
1126 | { | |
1127 | if (mask.m_value == -1) | |
1128 | m_assembler.cmpl_im(0, address.offset, address.base); | |
1129 | else | |
1130 | m_assembler.testl_i32m(mask.m_value, address.offset, address.base); | |
1131 | } | |
1132 | ||
1133 | void testImm32(BaseIndex address, Imm32 mask) | |
1134 | { | |
1135 | if (mask.m_value == -1) | |
1136 | m_assembler.cmpl_im(0, address.offset, address.base, address.index, address.scale); | |
1137 | else | |
1138 | m_assembler.testl_i32m(mask.m_value, address.offset, address.base, address.index, address.scale); | |
1139 | } | |
1140 | ||
1141 | #if PLATFORM(X86_64) | |
1142 | void compareImm64ForBranch(RegisterID left, int32_t right) | |
1143 | { | |
1144 | m_assembler.cmpq_ir(right, left); | |
1145 | } | |
1146 | ||
1147 | void compareImm64ForBranchEquality(RegisterID reg, int32_t imm) | |
1148 | { | |
1149 | if (!imm) | |
1150 | m_assembler.testq_rr(reg, reg); | |
1151 | else | |
1152 | m_assembler.cmpq_ir(imm, reg); | |
1153 | } | |
1154 | ||
1155 | void testImm64(RegisterID reg, Imm32 mask) | |
1156 | { | |
1157 | // if we are only interested in the low seven bits, this can be tested with a testb | |
1158 | if (mask.m_value == -1) | |
1159 | m_assembler.testq_rr(reg, reg); | |
1160 | else if ((mask.m_value & ~0x7f) == 0) | |
1161 | m_assembler.testb_i8r(mask.m_value, reg); | |
1162 | else | |
1163 | m_assembler.testq_i32r(mask.m_value, reg); | |
1164 | } | |
1165 | ||
1166 | void testImm64(Address address, Imm32 mask) | |
1167 | { | |
1168 | if (mask.m_value == -1) | |
1169 | m_assembler.cmpq_im(0, address.offset, address.base); | |
1170 | else | |
1171 | m_assembler.testq_i32m(mask.m_value, address.offset, address.base); | |
1172 | } | |
1173 | ||
1174 | void testImm64(BaseIndex address, Imm32 mask) | |
1175 | { | |
1176 | if (mask.m_value == -1) | |
1177 | m_assembler.cmpq_im(0, address.offset, address.base, address.index, address.scale); | |
1178 | else | |
1179 | m_assembler.testq_i32m(mask.m_value, address.offset, address.base, address.index, address.scale); | |
1180 | } | |
1181 | #endif | |
1182 | ||
1183 | public: | |
1184 | Jump ja32(RegisterID left, Imm32 right) | |
1185 | { | |
1186 | compareImm32ForBranch(left, right.m_value); | |
1187 | return Jump(m_assembler.ja()); | |
1188 | } | |
1189 | ||
1190 | Jump jaePtr(RegisterID left, RegisterID right) | |
1191 | { | |
1192 | #if PLATFORM(X86_64) | |
1193 | m_assembler.cmpq_rr(right, left); | |
1194 | return Jump(m_assembler.jae()); | |
1195 | #else | |
1196 | return jae32(left, right); | |
1197 | #endif | |
1198 | } | |
1199 | ||
1200 | Jump jaePtr(RegisterID reg, ImmPtr ptr) | |
1201 | { | |
1202 | #if PLATFORM(X86_64) | |
1203 | intptr_t imm = ptr.asIntptr(); | |
1204 | if (CAN_SIGN_EXTEND_32_64(imm)) { | |
1205 | compareImm64ForBranch(reg, imm); | |
1206 | return Jump(m_assembler.jae()); | |
1207 | } else { | |
1208 | move(ptr, scratchRegister); | |
1209 | return jaePtr(reg, scratchRegister); | |
1210 | } | |
1211 | #else | |
1212 | return jae32(reg, Imm32(ptr)); | |
1213 | #endif | |
1214 | } | |
1215 | ||
1216 | Jump jae32(RegisterID left, RegisterID right) | |
1217 | { | |
1218 | m_assembler.cmpl_rr(right, left); | |
1219 | return Jump(m_assembler.jae()); | |
1220 | } | |
1221 | ||
1222 | Jump jae32(RegisterID left, Imm32 right) | |
1223 | { | |
1224 | compareImm32ForBranch(left, right.m_value); | |
1225 | return Jump(m_assembler.jae()); | |
1226 | } | |
1227 | ||
1228 | Jump jae32(RegisterID left, Address right) | |
1229 | { | |
1230 | m_assembler.cmpl_mr(right.offset, right.base, left); | |
1231 | return Jump(m_assembler.jae()); | |
1232 | } | |
1233 | ||
1234 | Jump jae32(Address left, RegisterID right) | |
1235 | { | |
1236 | m_assembler.cmpl_rm(right, left.offset, left.base); | |
1237 | return Jump(m_assembler.jae()); | |
1238 | } | |
1239 | ||
1240 | Jump jbPtr(RegisterID left, RegisterID right) | |
1241 | { | |
1242 | #if PLATFORM(X86_64) | |
1243 | m_assembler.cmpq_rr(right, left); | |
1244 | return Jump(m_assembler.jb()); | |
1245 | #else | |
1246 | return jb32(left, right); | |
1247 | #endif | |
1248 | } | |
1249 | ||
1250 | Jump jbPtr(RegisterID reg, ImmPtr ptr) | |
1251 | { | |
1252 | #if PLATFORM(X86_64) | |
1253 | intptr_t imm = ptr.asIntptr(); | |
1254 | if (CAN_SIGN_EXTEND_32_64(imm)) { | |
1255 | compareImm64ForBranch(reg, imm); | |
1256 | return Jump(m_assembler.jb()); | |
1257 | } else { | |
1258 | move(ptr, scratchRegister); | |
1259 | return jbPtr(reg, scratchRegister); | |
1260 | } | |
1261 | #else | |
1262 | return jb32(reg, Imm32(ptr)); | |
1263 | #endif | |
1264 | } | |
1265 | ||
1266 | Jump jb32(RegisterID left, RegisterID right) | |
1267 | { | |
1268 | m_assembler.cmpl_rr(right, left); | |
1269 | return Jump(m_assembler.jb()); | |
1270 | } | |
1271 | ||
1272 | Jump jb32(RegisterID left, Imm32 right) | |
1273 | { | |
1274 | compareImm32ForBranch(left, right.m_value); | |
1275 | return Jump(m_assembler.jb()); | |
1276 | } | |
1277 | ||
1278 | Jump jb32(RegisterID left, Address right) | |
1279 | { | |
1280 | m_assembler.cmpl_mr(right.offset, right.base, left); | |
1281 | return Jump(m_assembler.jb()); | |
1282 | } | |
1283 | ||
1284 | Jump jePtr(RegisterID op1, RegisterID op2) | |
1285 | { | |
1286 | #if PLATFORM(X86_64) | |
1287 | m_assembler.cmpq_rr(op1, op2); | |
1288 | return Jump(m_assembler.je()); | |
1289 | #else | |
1290 | return je32(op1, op2); | |
1291 | #endif | |
1292 | } | |
1293 | ||
1294 | Jump jePtr(RegisterID reg, Address address) | |
1295 | { | |
1296 | #if PLATFORM(X86_64) | |
1297 | m_assembler.cmpq_rm(reg, address.offset, address.base); | |
1298 | #else | |
1299 | m_assembler.cmpl_rm(reg, address.offset, address.base); | |
1300 | #endif | |
1301 | return Jump(m_assembler.je()); | |
1302 | } | |
1303 | ||
1304 | Jump jePtr(RegisterID reg, ImmPtr ptr) | |
1305 | { | |
1306 | #if PLATFORM(X86_64) | |
1307 | intptr_t imm = ptr.asIntptr(); | |
1308 | if (CAN_SIGN_EXTEND_32_64(imm)) { | |
1309 | compareImm64ForBranchEquality(reg, imm); | |
1310 | return Jump(m_assembler.je()); | |
1311 | } else { | |
1312 | move(ptr, scratchRegister); | |
1313 | return jePtr(scratchRegister, reg); | |
1314 | } | |
1315 | #else | |
1316 | return je32(reg, Imm32(ptr)); | |
1317 | #endif | |
1318 | } | |
1319 | ||
1320 | Jump jePtr(Address address, ImmPtr imm) | |
1321 | { | |
1322 | #if PLATFORM(X86_64) | |
1323 | move(imm, scratchRegister); | |
1324 | return jePtr(scratchRegister, address); | |
1325 | #else | |
1326 | return je32(address, Imm32(imm)); | |
1327 | #endif | |
1328 | } | |
1329 | ||
1330 | Jump je32(RegisterID op1, RegisterID op2) | |
1331 | { | |
1332 | m_assembler.cmpl_rr(op1, op2); | |
1333 | return Jump(m_assembler.je()); | |
1334 | } | |
1335 | ||
1336 | Jump je32(Address op1, RegisterID op2) | |
1337 | { | |
1338 | m_assembler.cmpl_mr(op1.offset, op1.base, op2); | |
1339 | return Jump(m_assembler.je()); | |
1340 | } | |
1341 | ||
1342 | Jump je32(RegisterID reg, Imm32 imm) | |
1343 | { | |
1344 | compareImm32ForBranchEquality(reg, imm.m_value); | |
1345 | return Jump(m_assembler.je()); | |
1346 | } | |
1347 | ||
1348 | Jump je32(Address address, Imm32 imm) | |
1349 | { | |
1350 | compareImm32ForBranchEquality(address, imm.m_value); | |
1351 | return Jump(m_assembler.je()); | |
1352 | } | |
1353 | ||
1354 | Jump je16(RegisterID op1, BaseIndex op2) | |
1355 | { | |
1356 | m_assembler.cmpw_rm(op1, op2.offset, op2.base, op2.index, op2.scale); | |
1357 | return Jump(m_assembler.je()); | |
1358 | } | |
1359 | ||
1360 | Jump jg32(RegisterID left, RegisterID right) | |
1361 | { | |
1362 | m_assembler.cmpl_rr(right, left); | |
1363 | return Jump(m_assembler.jg()); | |
1364 | } | |
1365 | ||
1366 | Jump jg32(RegisterID reg, Address address) | |
1367 | { | |
1368 | m_assembler.cmpl_mr(address.offset, address.base, reg); | |
1369 | return Jump(m_assembler.jg()); | |
1370 | } | |
1371 | ||
1372 | Jump jgePtr(RegisterID left, RegisterID right) | |
1373 | { | |
1374 | #if PLATFORM(X86_64) | |
1375 | m_assembler.cmpq_rr(right, left); | |
1376 | return Jump(m_assembler.jge()); | |
1377 | #else | |
1378 | return jge32(left, right); | |
1379 | #endif | |
1380 | } | |
1381 | ||
1382 | Jump jgePtr(RegisterID reg, ImmPtr ptr) | |
1383 | { | |
1384 | #if PLATFORM(X86_64) | |
1385 | intptr_t imm = ptr.asIntptr(); | |
1386 | if (CAN_SIGN_EXTEND_32_64(imm)) { | |
1387 | compareImm64ForBranch(reg, imm); | |
1388 | return Jump(m_assembler.jge()); | |
1389 | } else { | |
1390 | move(ptr, scratchRegister); | |
1391 | return jgePtr(reg, scratchRegister); | |
1392 | } | |
1393 | #else | |
1394 | return jge32(reg, Imm32(ptr)); | |
1395 | #endif | |
1396 | } | |
1397 | ||
1398 | Jump jge32(RegisterID left, RegisterID right) | |
1399 | { | |
1400 | m_assembler.cmpl_rr(right, left); | |
1401 | return Jump(m_assembler.jge()); | |
1402 | } | |
1403 | ||
1404 | Jump jge32(RegisterID left, Imm32 right) | |
1405 | { | |
1406 | compareImm32ForBranch(left, right.m_value); | |
1407 | return Jump(m_assembler.jge()); | |
1408 | } | |
1409 | ||
1410 | Jump jlPtr(RegisterID left, RegisterID right) | |
1411 | { | |
1412 | #if PLATFORM(X86_64) | |
1413 | m_assembler.cmpq_rr(right, left); | |
1414 | return Jump(m_assembler.jl()); | |
1415 | #else | |
1416 | return jl32(left, right); | |
1417 | #endif | |
1418 | } | |
1419 | ||
1420 | Jump jlPtr(RegisterID reg, ImmPtr ptr) | |
1421 | { | |
1422 | #if PLATFORM(X86_64) | |
1423 | intptr_t imm = ptr.asIntptr(); | |
1424 | if (CAN_SIGN_EXTEND_32_64(imm)) { | |
1425 | compareImm64ForBranch(reg, imm); | |
1426 | return Jump(m_assembler.jl()); | |
1427 | } else { | |
1428 | move(ptr, scratchRegister); | |
1429 | return jlPtr(reg, scratchRegister); | |
1430 | } | |
1431 | #else | |
1432 | return jl32(reg, Imm32(ptr)); | |
1433 | #endif | |
1434 | } | |
1435 | ||
1436 | Jump jl32(RegisterID left, RegisterID right) | |
1437 | { | |
1438 | m_assembler.cmpl_rr(right, left); | |
1439 | return Jump(m_assembler.jl()); | |
1440 | } | |
1441 | ||
1442 | Jump jl32(RegisterID left, Imm32 right) | |
1443 | { | |
1444 | compareImm32ForBranch(left, right.m_value); | |
1445 | return Jump(m_assembler.jl()); | |
1446 | } | |
1447 | ||
1448 | Jump jlePtr(RegisterID left, RegisterID right) | |
1449 | { | |
1450 | #if PLATFORM(X86_64) | |
1451 | m_assembler.cmpq_rr(right, left); | |
1452 | return Jump(m_assembler.jle()); | |
1453 | #else | |
1454 | return jle32(left, right); | |
1455 | #endif | |
1456 | } | |
1457 | ||
1458 | Jump jlePtr(RegisterID reg, ImmPtr ptr) | |
1459 | { | |
1460 | #if PLATFORM(X86_64) | |
1461 | intptr_t imm = ptr.asIntptr(); | |
1462 | if (CAN_SIGN_EXTEND_32_64(imm)) { | |
1463 | compareImm64ForBranch(reg, imm); | |
1464 | return Jump(m_assembler.jle()); | |
1465 | } else { | |
1466 | move(ptr, scratchRegister); | |
1467 | return jlePtr(reg, scratchRegister); | |
1468 | } | |
1469 | #else | |
1470 | return jle32(reg, Imm32(ptr)); | |
1471 | #endif | |
1472 | } | |
1473 | ||
1474 | Jump jle32(RegisterID left, RegisterID right) | |
1475 | { | |
1476 | m_assembler.cmpl_rr(right, left); | |
1477 | return Jump(m_assembler.jle()); | |
1478 | } | |
1479 | ||
1480 | Jump jle32(RegisterID left, Imm32 right) | |
1481 | { | |
1482 | compareImm32ForBranch(left, right.m_value); | |
1483 | return Jump(m_assembler.jle()); | |
1484 | } | |
1485 | ||
1486 | Jump jnePtr(RegisterID op1, RegisterID op2) | |
1487 | { | |
1488 | #if PLATFORM(X86_64) | |
1489 | m_assembler.cmpq_rr(op1, op2); | |
1490 | return Jump(m_assembler.jne()); | |
1491 | #else | |
1492 | return jne32(op1, op2); | |
1493 | #endif | |
1494 | } | |
1495 | ||
1496 | Jump jnePtr(RegisterID reg, Address address) | |
1497 | { | |
1498 | #if PLATFORM(X86_64) | |
1499 | m_assembler.cmpq_rm(reg, address.offset, address.base); | |
1500 | #else | |
1501 | m_assembler.cmpl_rm(reg, address.offset, address.base); | |
1502 | #endif | |
1503 | return Jump(m_assembler.jne()); | |
1504 | } | |
1505 | ||
1506 | Jump jnePtr(RegisterID reg, AbsoluteAddress address) | |
1507 | { | |
1508 | #if PLATFORM(X86_64) | |
1509 | move(ImmPtr(address.m_ptr), scratchRegister); | |
1510 | return jnePtr(reg, Address(scratchRegister)); | |
1511 | #else | |
1512 | m_assembler.cmpl_rm(reg, address.m_ptr); | |
1513 | return Jump(m_assembler.jne()); | |
1514 | #endif | |
1515 | } | |
1516 | ||
1517 | Jump jnePtr(RegisterID reg, ImmPtr ptr) | |
1518 | { | |
1519 | #if PLATFORM(X86_64) | |
1520 | intptr_t imm = ptr.asIntptr(); | |
1521 | if (CAN_SIGN_EXTEND_32_64(imm)) { | |
1522 | compareImm64ForBranchEquality(reg, imm); | |
1523 | return Jump(m_assembler.jne()); | |
1524 | } else { | |
1525 | move(ptr, scratchRegister); | |
1526 | return jnePtr(scratchRegister, reg); | |
1527 | } | |
1528 | #else | |
1529 | return jne32(reg, Imm32(ptr)); | |
1530 | #endif | |
1531 | } | |
1532 | ||
1533 | Jump jnePtr(Address address, ImmPtr imm) | |
1534 | { | |
1535 | #if PLATFORM(X86_64) | |
1536 | move(imm, scratchRegister); | |
1537 | return jnePtr(scratchRegister, address); | |
1538 | #else | |
1539 | return jne32(address, Imm32(imm)); | |
1540 | #endif | |
1541 | } | |
1542 | ||
1543 | #if !PLATFORM(X86_64) | |
1544 | Jump jnePtr(AbsoluteAddress address, ImmPtr imm) | |
1545 | { | |
1546 | m_assembler.cmpl_im(imm.asIntptr(), address.m_ptr); | |
1547 | return Jump(m_assembler.jne()); | |
1548 | } | |
1549 | #endif | |
1550 | ||
1551 | Jump jnePtrWithPatch(RegisterID reg, DataLabelPtr& dataLabel, ImmPtr initialValue = ImmPtr(0)) | |
1552 | { | |
1553 | #if PLATFORM(X86_64) | |
1554 | m_assembler.movq_i64r(initialValue.asIntptr(), scratchRegister); | |
1555 | dataLabel = DataLabelPtr(this); | |
1556 | return jnePtr(scratchRegister, reg); | |
1557 | #else | |
1558 | m_assembler.cmpl_ir_force32(initialValue.asIntptr(), reg); | |
1559 | dataLabel = DataLabelPtr(this); | |
1560 | return Jump(m_assembler.jne()); | |
1561 | #endif | |
1562 | } | |
1563 | ||
1564 | Jump jnePtrWithPatch(Address address, DataLabelPtr& dataLabel, ImmPtr initialValue = ImmPtr(0)) | |
1565 | { | |
1566 | #if PLATFORM(X86_64) | |
1567 | m_assembler.movq_i64r(initialValue.asIntptr(), scratchRegister); | |
1568 | dataLabel = DataLabelPtr(this); | |
1569 | return jnePtr(scratchRegister, address); | |
1570 | #else | |
1571 | m_assembler.cmpl_im_force32(initialValue.asIntptr(), address.offset, address.base); | |
1572 | dataLabel = DataLabelPtr(this); | |
1573 | return Jump(m_assembler.jne()); | |
1574 | #endif | |
1575 | } | |
1576 | ||
1577 | Jump jne32(RegisterID op1, RegisterID op2) | |
1578 | { | |
1579 | m_assembler.cmpl_rr(op1, op2); | |
1580 | return Jump(m_assembler.jne()); | |
1581 | } | |
1582 | ||
1583 | Jump jne32(RegisterID reg, Imm32 imm) | |
1584 | { | |
1585 | compareImm32ForBranchEquality(reg, imm.m_value); | |
1586 | return Jump(m_assembler.jne()); | |
1587 | } | |
1588 | ||
1589 | Jump jne32(Address address, Imm32 imm) | |
1590 | { | |
1591 | compareImm32ForBranchEquality(address, imm.m_value); | |
1592 | return Jump(m_assembler.jne()); | |
1593 | } | |
1594 | ||
1595 | Jump jne32(Address address, RegisterID reg) | |
1596 | { | |
1597 | m_assembler.cmpl_rm(reg, address.offset, address.base); | |
1598 | return Jump(m_assembler.jne()); | |
1599 | } | |
1600 | ||
1601 | Jump jnzPtr(RegisterID reg, RegisterID mask) | |
1602 | { | |
1603 | #if PLATFORM(X86_64) | |
1604 | m_assembler.testq_rr(reg, mask); | |
1605 | return Jump(m_assembler.jne()); | |
1606 | #else | |
1607 | return jnz32(reg, mask); | |
1608 | #endif | |
1609 | } | |
1610 | ||
1611 | Jump jnzPtr(RegisterID reg, Imm32 mask = Imm32(-1)) | |
1612 | { | |
1613 | #if PLATFORM(X86_64) | |
1614 | testImm64(reg, mask); | |
1615 | return Jump(m_assembler.jne()); | |
1616 | #else | |
1617 | return jnz32(reg, mask); | |
1618 | #endif | |
1619 | } | |
1620 | ||
1621 | Jump jnzPtr(RegisterID reg, ImmPtr mask) | |
1622 | { | |
1623 | #if PLATFORM(X86_64) | |
1624 | move(mask, scratchRegister); | |
1625 | m_assembler.testq_rr(scratchRegister, reg); | |
1626 | return Jump(m_assembler.jne()); | |
1627 | #else | |
1628 | return jnz32(reg, Imm32(mask)); | |
1629 | #endif | |
1630 | } | |
1631 | ||
1632 | Jump jnzPtr(Address address, Imm32 mask = Imm32(-1)) | |
1633 | { | |
1634 | #if PLATFORM(X86_64) | |
1635 | testImm64(address, mask); | |
1636 | return Jump(m_assembler.jne()); | |
1637 | #else | |
1638 | return jnz32(address, mask); | |
1639 | #endif | |
1640 | } | |
1641 | ||
1642 | Jump jnz32(RegisterID reg, RegisterID mask) | |
1643 | { | |
1644 | m_assembler.testl_rr(reg, mask); | |
1645 | return Jump(m_assembler.jne()); | |
1646 | } | |
1647 | ||
1648 | Jump jnz32(RegisterID reg, Imm32 mask = Imm32(-1)) | |
1649 | { | |
1650 | testImm32(reg, mask); | |
1651 | return Jump(m_assembler.jne()); | |
1652 | } | |
1653 | ||
1654 | Jump jnz32(Address address, Imm32 mask = Imm32(-1)) | |
1655 | { | |
1656 | testImm32(address, mask); | |
1657 | return Jump(m_assembler.jne()); | |
1658 | } | |
1659 | ||
1660 | Jump jzPtr(RegisterID reg, RegisterID mask) | |
1661 | { | |
1662 | #if PLATFORM(X86_64) | |
1663 | m_assembler.testq_rr(reg, mask); | |
1664 | return Jump(m_assembler.je()); | |
1665 | #else | |
1666 | return jz32(reg, mask); | |
1667 | #endif | |
1668 | } | |
1669 | ||
1670 | Jump jzPtr(RegisterID reg, Imm32 mask = Imm32(-1)) | |
1671 | { | |
1672 | #if PLATFORM(X86_64) | |
1673 | testImm64(reg, mask); | |
1674 | return Jump(m_assembler.je()); | |
1675 | #else | |
1676 | return jz32(reg, mask); | |
1677 | #endif | |
1678 | } | |
1679 | ||
1680 | Jump jzPtr(RegisterID reg, ImmPtr mask) | |
1681 | { | |
1682 | #if PLATFORM(X86_64) | |
1683 | move(mask, scratchRegister); | |
1684 | m_assembler.testq_rr(scratchRegister, reg); | |
1685 | return Jump(m_assembler.je()); | |
1686 | #else | |
1687 | return jz32(reg, Imm32(mask)); | |
1688 | #endif | |
1689 | } | |
1690 | ||
1691 | Jump jzPtr(Address address, Imm32 mask = Imm32(-1)) | |
1692 | { | |
1693 | #if PLATFORM(X86_64) | |
1694 | testImm64(address, mask); | |
1695 | return Jump(m_assembler.je()); | |
1696 | #else | |
1697 | return jz32(address, mask); | |
1698 | #endif | |
1699 | } | |
1700 | ||
1701 | Jump jzPtr(BaseIndex address, Imm32 mask = Imm32(-1)) | |
1702 | { | |
1703 | #if PLATFORM(X86_64) | |
1704 | testImm64(address, mask); | |
1705 | return Jump(m_assembler.je()); | |
1706 | #else | |
1707 | return jz32(address, mask); | |
1708 | #endif | |
1709 | } | |
1710 | ||
1711 | Jump jz32(RegisterID reg, RegisterID mask) | |
1712 | { | |
1713 | m_assembler.testl_rr(reg, mask); | |
1714 | return Jump(m_assembler.je()); | |
1715 | } | |
1716 | ||
1717 | Jump jz32(RegisterID reg, Imm32 mask = Imm32(-1)) | |
1718 | { | |
1719 | testImm32(reg, mask); | |
1720 | return Jump(m_assembler.je()); | |
1721 | } | |
1722 | ||
1723 | Jump jz32(Address address, Imm32 mask = Imm32(-1)) | |
1724 | { | |
1725 | testImm32(address, mask); | |
1726 | return Jump(m_assembler.je()); | |
1727 | } | |
1728 | ||
1729 | Jump jz32(BaseIndex address, Imm32 mask = Imm32(-1)) | |
1730 | { | |
1731 | testImm32(address, mask); | |
1732 | return Jump(m_assembler.je()); | |
1733 | } | |
1734 | ||
1735 | Jump jump() | |
1736 | { | |
1737 | return Jump(m_assembler.jmp()); | |
1738 | } | |
1739 | ||
1740 | ||
1741 | // Backwards, local control flow operations: | |
1742 | // | |
1743 | // These operations provide a shorter notation for local | |
1744 | // backwards branches, which may be both more convenient | |
1745 | // for the user, and for the programmer, and for the | |
1746 | // assembler (allowing shorter values to be used in | |
1747 | // relative offsets). | |
1748 | // | |
1749 | // The code sequence: | |
1750 | // | |
1751 | // Label topOfLoop(this); | |
1752 | // // ... | |
1753 | // jne32(reg1, reg2, topOfLoop); | |
1754 | // | |
1755 | // Is equivalent to the longer, potentially less efficient form: | |
1756 | // | |
1757 | // Label topOfLoop(this); | |
1758 | // // ... | |
1759 | // jne32(reg1, reg2).linkTo(topOfLoop); | |
1760 | ||
1761 | void jae32(RegisterID left, Address right, Label target) | |
1762 | { | |
1763 | jae32(left, right).linkTo(target, this); | |
1764 | } | |
1765 | ||
1766 | void je32(RegisterID op1, Imm32 imm, Label target) | |
1767 | { | |
1768 | je32(op1, imm).linkTo(target, this); | |
1769 | } | |
1770 | ||
1771 | void je16(RegisterID op1, BaseIndex op2, Label target) | |
1772 | { | |
1773 | je16(op1, op2).linkTo(target, this); | |
1774 | } | |
1775 | ||
1776 | void jl32(RegisterID left, Imm32 right, Label target) | |
1777 | { | |
1778 | jl32(left, right).linkTo(target, this); | |
1779 | } | |
1780 | ||
1781 | void jle32(RegisterID left, RegisterID right, Label target) | |
1782 | { | |
1783 | jle32(left, right).linkTo(target, this); | |
1784 | } | |
1785 | ||
1786 | void jnePtr(RegisterID op1, ImmPtr imm, Label target) | |
1787 | { | |
1788 | jnePtr(op1, imm).linkTo(target, this); | |
1789 | } | |
1790 | ||
1791 | void jne32(RegisterID op1, RegisterID op2, Label target) | |
1792 | { | |
1793 | jne32(op1, op2).linkTo(target, this); | |
1794 | } | |
1795 | ||
1796 | void jne32(RegisterID op1, Imm32 imm, Label target) | |
1797 | { | |
1798 | jne32(op1, imm).linkTo(target, this); | |
1799 | } | |
1800 | ||
1801 | void jzPtr(RegisterID reg, Label target) | |
1802 | { | |
1803 | jzPtr(reg).linkTo(target, this); | |
1804 | } | |
1805 | ||
1806 | void jump(Label target) | |
1807 | { | |
1808 | m_assembler.link(m_assembler.jmp(), target.m_label); | |
1809 | } | |
1810 | ||
1811 | void jump(RegisterID target) | |
1812 | { | |
1813 | m_assembler.jmp_r(target); | |
1814 | } | |
1815 | ||
1816 | // Address is a memory location containing the address to jump to | |
1817 | void jump(Address address) | |
1818 | { | |
1819 | m_assembler.jmp_m(address.offset, address.base); | |
1820 | } | |
1821 | ||
1822 | ||
1823 | // Arithmetic control flow operations: | |
1824 | // | |
1825 | // This set of conditional branch operations branch based | |
1826 | // on the result of an arithmetic operation. The operation | |
1827 | // is performed as normal, storing the result. | |
1828 | // | |
1829 | // * jz operations branch if the result is zero. | |
1830 | // * jo operations branch if the (signed) arithmetic | |
1831 | // operation caused an overflow to occur. | |
1832 | ||
1833 | Jump jnzSubPtr(Imm32 imm, RegisterID dest) | |
1834 | { | |
1835 | subPtr(imm, dest); | |
1836 | return Jump(m_assembler.jne()); | |
1837 | } | |
1838 | ||
1839 | Jump jnzSub32(Imm32 imm, RegisterID dest) | |
1840 | { | |
1841 | sub32(imm, dest); | |
1842 | return Jump(m_assembler.jne()); | |
1843 | } | |
1844 | ||
1845 | Jump joAddPtr(RegisterID src, RegisterID dest) | |
1846 | { | |
1847 | addPtr(src, dest); | |
1848 | return Jump(m_assembler.jo()); | |
1849 | } | |
1850 | ||
1851 | Jump joAdd32(RegisterID src, RegisterID dest) | |
1852 | { | |
1853 | add32(src, dest); | |
1854 | return Jump(m_assembler.jo()); | |
1855 | } | |
1856 | ||
1857 | Jump joAdd32(Imm32 imm, RegisterID dest) | |
1858 | { | |
1859 | add32(imm, dest); | |
1860 | return Jump(m_assembler.jo()); | |
1861 | } | |
1862 | ||
1863 | Jump joMul32(RegisterID src, RegisterID dest) | |
1864 | { | |
1865 | mul32(src, dest); | |
1866 | return Jump(m_assembler.jo()); | |
1867 | } | |
1868 | ||
1869 | Jump joMul32(Imm32 imm, RegisterID src, RegisterID dest) | |
1870 | { | |
1871 | mul32(imm, src, dest); | |
1872 | return Jump(m_assembler.jo()); | |
1873 | } | |
1874 | ||
1875 | Jump joSub32(RegisterID src, RegisterID dest) | |
1876 | { | |
1877 | sub32(src, dest); | |
1878 | return Jump(m_assembler.jo()); | |
1879 | } | |
1880 | ||
1881 | Jump joSub32(Imm32 imm, RegisterID dest) | |
1882 | { | |
1883 | sub32(imm, dest); | |
1884 | return Jump(m_assembler.jo()); | |
1885 | } | |
1886 | ||
1887 | Jump jzSubPtr(Imm32 imm, RegisterID dest) | |
1888 | { | |
1889 | subPtr(imm, dest); | |
1890 | return Jump(m_assembler.je()); | |
1891 | } | |
1892 | ||
1893 | Jump jzSub32(Imm32 imm, RegisterID dest) | |
1894 | { | |
1895 | sub32(imm, dest); | |
1896 | return Jump(m_assembler.je()); | |
1897 | } | |
1898 | ||
1899 | ||
1900 | // Miscellaneous operations: | |
1901 | ||
1902 | void breakpoint() | |
1903 | { | |
1904 | m_assembler.int3(); | |
1905 | } | |
1906 | ||
1907 | Jump call() | |
1908 | { | |
1909 | return Jump(m_assembler.call()); | |
1910 | } | |
1911 | ||
1912 | // FIXME: why does this return a Jump object? - it can't be linked. | |
1913 | // This may be to get a reference to the return address of the call. | |
1914 | // | |
1915 | // This should probably be handled by a separate label type to a regular | |
1916 | // jump. Todo: add a CallLabel type, for the regular call - can be linked | |
1917 | // like a jump (possibly a subclass of jump?, or possibly casts to a Jump). | |
1918 | // Also add a CallReturnLabel type for this to return (just a more JmpDsty | |
1919 | // form of label, can get the void* after the code has been linked, but can't | |
1920 | // try to link it like a Jump object), and let the CallLabel be cast into a | |
1921 | // CallReturnLabel. | |
1922 | Jump call(RegisterID target) | |
1923 | { | |
1924 | return Jump(m_assembler.call(target)); | |
1925 | } | |
1926 | ||
1927 | Label label() | |
1928 | { | |
1929 | return Label(this); | |
1930 | } | |
1931 | ||
1932 | Label align() | |
1933 | { | |
1934 | m_assembler.align(16); | |
1935 | return Label(this); | |
1936 | } | |
1937 | ||
1938 | ptrdiff_t differenceBetween(Label from, Jump to) | |
1939 | { | |
1940 | return X86Assembler::getDifferenceBetweenLabels(from.m_label, to.m_jmp); | |
1941 | } | |
1942 | ||
1943 | ptrdiff_t differenceBetween(Label from, Label to) | |
1944 | { | |
1945 | return X86Assembler::getDifferenceBetweenLabels(from.m_label, to.m_label); | |
1946 | } | |
1947 | ||
1948 | ptrdiff_t differenceBetween(Label from, DataLabelPtr to) | |
1949 | { | |
1950 | return X86Assembler::getDifferenceBetweenLabels(from.m_label, to.m_label); | |
1951 | } | |
1952 | ||
1953 | ptrdiff_t differenceBetween(Label from, DataLabel32 to) | |
1954 | { | |
1955 | return X86Assembler::getDifferenceBetweenLabels(from.m_label, to.m_label); | |
1956 | } | |
1957 | ||
1958 | ptrdiff_t differenceBetween(DataLabelPtr from, Jump to) | |
1959 | { | |
1960 | return X86Assembler::getDifferenceBetweenLabels(from.m_label, to.m_jmp); | |
1961 | } | |
1962 | ||
1963 | void ret() | |
1964 | { | |
1965 | m_assembler.ret(); | |
1966 | } | |
1967 | ||
1968 | void sete32(RegisterID src, RegisterID srcDest) | |
1969 | { | |
1970 | m_assembler.cmpl_rr(srcDest, src); | |
1971 | m_assembler.sete_r(srcDest); | |
1972 | m_assembler.movzbl_rr(srcDest, srcDest); | |
1973 | } | |
1974 | ||
1975 | void sete32(Imm32 imm, RegisterID srcDest) | |
1976 | { | |
1977 | compareImm32ForBranchEquality(srcDest, imm.m_value); | |
1978 | m_assembler.sete_r(srcDest); | |
1979 | m_assembler.movzbl_rr(srcDest, srcDest); | |
1980 | } | |
1981 | ||
1982 | void setne32(RegisterID src, RegisterID srcDest) | |
1983 | { | |
1984 | m_assembler.cmpl_rr(srcDest, src); | |
1985 | m_assembler.setne_r(srcDest); | |
1986 | m_assembler.movzbl_rr(srcDest, srcDest); | |
1987 | } | |
1988 | ||
1989 | void setne32(Imm32 imm, RegisterID srcDest) | |
1990 | { | |
1991 | compareImm32ForBranchEquality(srcDest, imm.m_value); | |
1992 | m_assembler.setne_r(srcDest); | |
1993 | m_assembler.movzbl_rr(srcDest, srcDest); | |
1994 | } | |
1995 | ||
1996 | // FIXME: | |
1997 | // The mask should be optional... paerhaps the argument order should be | |
1998 | // dest-src, operations always have a dest? ... possibly not true, considering | |
1999 | // asm ops like test, or pseudo ops like pop(). | |
2000 | void setnz32(Address address, Imm32 mask, RegisterID dest) | |
2001 | { | |
2002 | testImm32(address, mask); | |
2003 | m_assembler.setnz_r(dest); | |
2004 | m_assembler.movzbl_rr(dest, dest); | |
2005 | } | |
2006 | ||
2007 | void setz32(Address address, Imm32 mask, RegisterID dest) | |
2008 | { | |
2009 | testImm32(address, mask); | |
2010 | m_assembler.setz_r(dest); | |
2011 | m_assembler.movzbl_rr(dest, dest); | |
2012 | } | |
2013 | }; | |
2014 | ||
2015 | } // namespace JSC | |
2016 | ||
2017 | #endif // ENABLE(ASSEMBLER) | |
2018 | ||
2019 | #endif // MacroAssembler_h |