]>
Commit | Line | Data |
---|---|---|
6fe7ccc8 A |
1 | /* |
2 | * Copyright (C) 2011 Apple Inc. All rights reserved. | |
3 | * | |
4 | * Redistribution and use in source and binary forms, with or without | |
5 | * modification, are permitted provided that the following conditions | |
6 | * are met: | |
7 | * 1. Redistributions of source code must retain the above copyright | |
8 | * notice, this list of conditions and the following disclaimer. | |
9 | * 2. Redistributions in binary form must reproduce the above copyright | |
10 | * notice, this list of conditions and the following disclaimer in the | |
11 | * documentation and/or other materials provided with the distribution. | |
12 | * | |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR | |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
24 | */ | |
25 | ||
26 | #include "config.h" | |
27 | #include "DFGOSRExitCompiler.h" | |
28 | ||
29 | #if ENABLE(DFG_JIT) && USE(JSVALUE64) | |
30 | ||
31 | #include "DFGOperations.h" | |
32 | ||
33 | namespace JSC { namespace DFG { | |
34 | ||
35 | void OSRExitCompiler::compileExit(const OSRExit& exit, SpeculationRecovery* recovery) | |
36 | { | |
37 | // 1) Pro-forma stuff. | |
38 | #if DFG_ENABLE(DEBUG_VERBOSE) | |
39 | dataLog("OSR exit for Node @%d (", (int)exit.m_nodeIndex); | |
40 | for (CodeOrigin codeOrigin = exit.m_codeOrigin; ; codeOrigin = codeOrigin.inlineCallFrame->caller) { | |
41 | dataLog("bc#%u", codeOrigin.bytecodeIndex); | |
42 | if (!codeOrigin.inlineCallFrame) | |
43 | break; | |
44 | dataLog(" -> %p ", codeOrigin.inlineCallFrame->executable.get()); | |
45 | } | |
46 | dataLog(") "); | |
47 | exit.dump(WTF::dataFile()); | |
48 | #endif | |
49 | #if DFG_ENABLE(VERBOSE_SPECULATION_FAILURE) | |
50 | SpeculationFailureDebugInfo* debugInfo = new SpeculationFailureDebugInfo; | |
51 | debugInfo->codeBlock = m_jit.codeBlock(); | |
52 | debugInfo->nodeIndex = exit.m_nodeIndex; | |
53 | ||
54 | m_jit.debugCall(debugOperationPrintSpeculationFailure, debugInfo); | |
55 | #endif | |
56 | ||
57 | #if DFG_ENABLE(JIT_BREAK_ON_SPECULATION_FAILURE) | |
58 | m_jit.breakpoint(); | |
59 | #endif | |
60 | ||
61 | #if DFG_ENABLE(SUCCESS_STATS) | |
62 | static SamplingCounter counter("SpeculationFailure"); | |
63 | m_jit.emitCount(counter); | |
64 | #endif | |
65 | ||
66 | // 2) Perform speculation recovery. This only comes into play when an operation | |
67 | // starts mutating state before verifying the speculation it has already made. | |
68 | ||
69 | GPRReg alreadyBoxed = InvalidGPRReg; | |
70 | ||
71 | if (recovery) { | |
72 | switch (recovery->type()) { | |
73 | case SpeculativeAdd: | |
74 | m_jit.sub32(recovery->src(), recovery->dest()); | |
75 | m_jit.orPtr(GPRInfo::tagTypeNumberRegister, recovery->dest()); | |
76 | alreadyBoxed = recovery->dest(); | |
77 | break; | |
78 | ||
79 | case BooleanSpeculationCheck: | |
80 | m_jit.xorPtr(AssemblyHelpers::TrustedImm32(static_cast<int32_t>(ValueFalse)), recovery->dest()); | |
81 | break; | |
82 | ||
83 | default: | |
84 | break; | |
85 | } | |
86 | } | |
87 | ||
88 | // 3) Refine some value profile, if appropriate. | |
89 | ||
90 | if (!!exit.m_jsValueSource && !!exit.m_valueProfile) { | |
91 | EncodedJSValue* bucket = exit.m_valueProfile.getSpecFailBucket(0); | |
92 | ||
93 | #if DFG_ENABLE(VERBOSE_SPECULATION_FAILURE) | |
94 | dataLog(" (have exit profile, bucket %p) ", bucket); | |
95 | #endif | |
96 | ||
97 | if (exit.m_jsValueSource.isAddress()) { | |
98 | // We can't be sure that we have a spare register. So use the tagTypeNumberRegister, | |
99 | // since we know how to restore it. | |
100 | m_jit.loadPtr(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), GPRInfo::tagTypeNumberRegister); | |
101 | m_jit.storePtr(GPRInfo::tagTypeNumberRegister, bucket); | |
102 | m_jit.move(AssemblyHelpers::TrustedImmPtr(bitwise_cast<void*>(TagTypeNumber)), GPRInfo::tagTypeNumberRegister); | |
103 | } else | |
104 | m_jit.storePtr(exit.m_jsValueSource.gpr(), bucket); | |
105 | } | |
106 | ||
107 | // 4) Figure out how many scratch slots we'll need. We need one for every GPR/FPR | |
108 | // whose destination is now occupied by a DFG virtual register, and we need | |
109 | // one for every displaced virtual register if there are more than | |
110 | // GPRInfo::numberOfRegisters of them. Also see if there are any constants, | |
111 | // any undefined slots, any FPR slots, and any unboxed ints. | |
112 | ||
113 | Vector<bool> poisonedVirtualRegisters(exit.m_variables.size()); | |
114 | for (unsigned i = 0; i < poisonedVirtualRegisters.size(); ++i) | |
115 | poisonedVirtualRegisters[i] = false; | |
116 | ||
117 | unsigned numberOfPoisonedVirtualRegisters = 0; | |
118 | unsigned numberOfDisplacedVirtualRegisters = 0; | |
119 | ||
120 | // Booleans for fast checks. We expect that most OSR exits do not have to rebox | |
121 | // Int32s, have no FPRs, and have no constants. If there are constants, we | |
122 | // expect most of them to be jsUndefined(); if that's true then we handle that | |
123 | // specially to minimize code size and execution time. | |
124 | bool haveUnboxedInt32s = false; | |
125 | bool haveUnboxedDoubles = false; | |
126 | bool haveFPRs = false; | |
127 | bool haveConstants = false; | |
128 | bool haveUndefined = false; | |
129 | bool haveUInt32s = false; | |
130 | ||
131 | for (int index = 0; index < exit.numberOfRecoveries(); ++index) { | |
132 | const ValueRecovery& recovery = exit.valueRecovery(index); | |
133 | switch (recovery.technique()) { | |
134 | case Int32DisplacedInRegisterFile: | |
135 | case DoubleDisplacedInRegisterFile: | |
136 | case DisplacedInRegisterFile: | |
137 | numberOfDisplacedVirtualRegisters++; | |
138 | ASSERT((int)recovery.virtualRegister() >= 0); | |
139 | ||
140 | // See if we might like to store to this virtual register before doing | |
141 | // virtual register shuffling. If so, we say that the virtual register | |
142 | // is poisoned: it cannot be stored to until after displaced virtual | |
143 | // registers are handled. We track poisoned virtual register carefully | |
144 | // to ensure this happens efficiently. Note that we expect this case | |
145 | // to be rare, so the handling of it is optimized for the cases in | |
146 | // which it does not happen. | |
147 | if (recovery.virtualRegister() < (int)exit.m_variables.size()) { | |
148 | switch (exit.m_variables[recovery.virtualRegister()].technique()) { | |
149 | case InGPR: | |
150 | case UnboxedInt32InGPR: | |
151 | case UInt32InGPR: | |
152 | case InFPR: | |
153 | if (!poisonedVirtualRegisters[recovery.virtualRegister()]) { | |
154 | poisonedVirtualRegisters[recovery.virtualRegister()] = true; | |
155 | numberOfPoisonedVirtualRegisters++; | |
156 | } | |
157 | break; | |
158 | default: | |
159 | break; | |
160 | } | |
161 | } | |
162 | break; | |
163 | ||
164 | case UnboxedInt32InGPR: | |
165 | case AlreadyInRegisterFileAsUnboxedInt32: | |
166 | haveUnboxedInt32s = true; | |
167 | break; | |
168 | ||
169 | case AlreadyInRegisterFileAsUnboxedDouble: | |
170 | haveUnboxedDoubles = true; | |
171 | break; | |
172 | ||
173 | case UInt32InGPR: | |
174 | haveUInt32s = true; | |
175 | break; | |
176 | ||
177 | case InFPR: | |
178 | haveFPRs = true; | |
179 | break; | |
180 | ||
181 | case Constant: | |
182 | haveConstants = true; | |
183 | if (recovery.constant().isUndefined()) | |
184 | haveUndefined = true; | |
185 | break; | |
186 | ||
187 | default: | |
188 | break; | |
189 | } | |
190 | } | |
191 | ||
192 | #if DFG_ENABLE(DEBUG_VERBOSE) | |
193 | dataLog(" "); | |
194 | if (numberOfPoisonedVirtualRegisters) | |
195 | dataLog("Poisoned=%u ", numberOfPoisonedVirtualRegisters); | |
196 | if (numberOfDisplacedVirtualRegisters) | |
197 | dataLog("Displaced=%u ", numberOfDisplacedVirtualRegisters); | |
198 | if (haveUnboxedInt32s) | |
199 | dataLog("UnboxedInt32 "); | |
200 | if (haveUnboxedDoubles) | |
201 | dataLog("UnboxedDoubles "); | |
202 | if (haveUInt32s) | |
203 | dataLog("UInt32 "); | |
204 | if (haveFPRs) | |
205 | dataLog("FPR "); | |
206 | if (haveConstants) | |
207 | dataLog("Constants "); | |
208 | if (haveUndefined) | |
209 | dataLog("Undefined "); | |
210 | dataLog(" "); | |
211 | #endif | |
212 | ||
213 | ScratchBuffer* scratchBuffer = m_jit.globalData()->scratchBufferForSize(sizeof(EncodedJSValue) * std::max(haveUInt32s ? 2u : 0u, numberOfPoisonedVirtualRegisters + (numberOfDisplacedVirtualRegisters <= GPRInfo::numberOfRegisters ? 0 : numberOfDisplacedVirtualRegisters))); | |
214 | EncodedJSValue* scratchDataBuffer = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0; | |
215 | ||
216 | // From here on, the code assumes that it is profitable to maximize the distance | |
217 | // between when something is computed and when it is stored. | |
218 | ||
219 | // 5) Perform all reboxing of integers. | |
220 | ||
221 | if (haveUnboxedInt32s || haveUInt32s) { | |
222 | for (int index = 0; index < exit.numberOfRecoveries(); ++index) { | |
223 | const ValueRecovery& recovery = exit.valueRecovery(index); | |
224 | switch (recovery.technique()) { | |
225 | case UnboxedInt32InGPR: | |
226 | if (recovery.gpr() != alreadyBoxed) | |
227 | m_jit.orPtr(GPRInfo::tagTypeNumberRegister, recovery.gpr()); | |
228 | break; | |
229 | ||
230 | case AlreadyInRegisterFileAsUnboxedInt32: | |
231 | m_jit.store32(AssemblyHelpers::TrustedImm32(static_cast<uint32_t>(TagTypeNumber >> 32)), AssemblyHelpers::tagFor(static_cast<VirtualRegister>(exit.operandForIndex(index)))); | |
232 | break; | |
233 | ||
234 | case UInt32InGPR: { | |
235 | // This occurs when the speculative JIT left an unsigned 32-bit integer | |
236 | // in a GPR. If it's positive, we can just box the int. Otherwise we | |
237 | // need to turn it into a boxed double. | |
238 | ||
239 | // We don't try to be clever with register allocation here; we assume | |
240 | // that the program is using FPRs and we don't try to figure out which | |
241 | // ones it is using. Instead just temporarily save fpRegT0 and then | |
242 | // restore it. This makes sense because this path is not cheap to begin | |
243 | // with, and should happen very rarely. | |
244 | ||
245 | GPRReg addressGPR = GPRInfo::regT0; | |
246 | if (addressGPR == recovery.gpr()) | |
247 | addressGPR = GPRInfo::regT1; | |
248 | ||
249 | m_jit.storePtr(addressGPR, scratchDataBuffer); | |
250 | m_jit.move(AssemblyHelpers::TrustedImmPtr(scratchDataBuffer + 1), addressGPR); | |
251 | m_jit.storeDouble(FPRInfo::fpRegT0, addressGPR); | |
252 | ||
253 | AssemblyHelpers::Jump positive = m_jit.branch32(AssemblyHelpers::GreaterThanOrEqual, recovery.gpr(), AssemblyHelpers::TrustedImm32(0)); | |
254 | ||
255 | m_jit.convertInt32ToDouble(recovery.gpr(), FPRInfo::fpRegT0); | |
256 | m_jit.addDouble(AssemblyHelpers::AbsoluteAddress(&AssemblyHelpers::twoToThe32), FPRInfo::fpRegT0); | |
257 | m_jit.boxDouble(FPRInfo::fpRegT0, recovery.gpr()); | |
258 | ||
259 | AssemblyHelpers::Jump done = m_jit.jump(); | |
260 | ||
261 | positive.link(&m_jit); | |
262 | ||
263 | m_jit.orPtr(GPRInfo::tagTypeNumberRegister, recovery.gpr()); | |
264 | ||
265 | done.link(&m_jit); | |
266 | ||
267 | m_jit.loadDouble(addressGPR, FPRInfo::fpRegT0); | |
268 | m_jit.loadPtr(scratchDataBuffer, addressGPR); | |
269 | break; | |
270 | } | |
271 | ||
272 | default: | |
273 | break; | |
274 | } | |
275 | } | |
276 | } | |
277 | ||
278 | // 6) Dump all non-poisoned GPRs. For poisoned GPRs, save them into the scratch storage. | |
279 | // Note that GPRs do not have a fast change (like haveFPRs) because we expect that | |
280 | // most OSR failure points will have at least one GPR that needs to be dumped. | |
281 | ||
282 | initializePoisoned(exit.m_variables.size()); | |
283 | unsigned currentPoisonIndex = 0; | |
284 | ||
285 | for (int index = 0; index < exit.numberOfRecoveries(); ++index) { | |
286 | const ValueRecovery& recovery = exit.valueRecovery(index); | |
287 | int operand = exit.operandForIndex(index); | |
288 | switch (recovery.technique()) { | |
289 | case InGPR: | |
290 | case UnboxedInt32InGPR: | |
291 | case UInt32InGPR: | |
292 | if (exit.isVariable(index) && poisonedVirtualRegisters[exit.variableForIndex(index)]) { | |
293 | m_jit.storePtr(recovery.gpr(), scratchDataBuffer + currentPoisonIndex); | |
294 | m_poisonScratchIndices[exit.variableForIndex(index)] = currentPoisonIndex; | |
295 | currentPoisonIndex++; | |
296 | } else | |
297 | m_jit.storePtr(recovery.gpr(), AssemblyHelpers::addressFor((VirtualRegister)operand)); | |
298 | break; | |
299 | default: | |
300 | break; | |
301 | } | |
302 | } | |
303 | ||
304 | // At this point all GPRs are available for scratch use. | |
305 | ||
306 | if (haveFPRs) { | |
307 | // 7) Box all doubles (relies on there being more GPRs than FPRs) | |
308 | ||
309 | for (int index = 0; index < exit.numberOfRecoveries(); ++index) { | |
310 | const ValueRecovery& recovery = exit.valueRecovery(index); | |
311 | if (recovery.technique() != InFPR) | |
312 | continue; | |
313 | FPRReg fpr = recovery.fpr(); | |
314 | GPRReg gpr = GPRInfo::toRegister(FPRInfo::toIndex(fpr)); | |
315 | m_jit.boxDouble(fpr, gpr); | |
316 | } | |
317 | ||
318 | // 8) Dump all doubles into the register file, or to the scratch storage if | |
319 | // the destination virtual register is poisoned. | |
320 | ||
321 | for (int index = 0; index < exit.numberOfRecoveries(); ++index) { | |
322 | const ValueRecovery& recovery = exit.valueRecovery(index); | |
323 | if (recovery.technique() != InFPR) | |
324 | continue; | |
325 | GPRReg gpr = GPRInfo::toRegister(FPRInfo::toIndex(recovery.fpr())); | |
326 | if (exit.isVariable(index) && poisonedVirtualRegisters[exit.variableForIndex(index)]) { | |
327 | m_jit.storePtr(gpr, scratchDataBuffer + currentPoisonIndex); | |
328 | m_poisonScratchIndices[exit.variableForIndex(index)] = currentPoisonIndex; | |
329 | currentPoisonIndex++; | |
330 | } else | |
331 | m_jit.storePtr(gpr, AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index))); | |
332 | } | |
333 | } | |
334 | ||
335 | // At this point all GPRs and FPRs are available for scratch use. | |
336 | ||
337 | // 9) Box all unboxed doubles in the register file. | |
338 | if (haveUnboxedDoubles) { | |
339 | for (int index = 0; index < exit.numberOfRecoveries(); ++index) { | |
340 | const ValueRecovery& recovery = exit.valueRecovery(index); | |
341 | if (recovery.technique() != AlreadyInRegisterFileAsUnboxedDouble) | |
342 | continue; | |
343 | m_jit.loadDouble(AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)), FPRInfo::fpRegT0); | |
344 | m_jit.boxDouble(FPRInfo::fpRegT0, GPRInfo::regT0); | |
345 | m_jit.storePtr(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index))); | |
346 | } | |
347 | } | |
348 | ||
349 | ASSERT(currentPoisonIndex == numberOfPoisonedVirtualRegisters); | |
350 | ||
351 | // 10) Reshuffle displaced virtual registers. Optimize for the case that | |
352 | // the number of displaced virtual registers is not more than the number | |
353 | // of available physical registers. | |
354 | ||
355 | if (numberOfDisplacedVirtualRegisters) { | |
356 | if (numberOfDisplacedVirtualRegisters <= GPRInfo::numberOfRegisters) { | |
357 | // So far this appears to be the case that triggers all the time, but | |
358 | // that is far from guaranteed. | |
359 | ||
360 | unsigned displacementIndex = 0; | |
361 | for (int index = 0; index < exit.numberOfRecoveries(); ++index) { | |
362 | const ValueRecovery& recovery = exit.valueRecovery(index); | |
363 | switch (recovery.technique()) { | |
364 | case DisplacedInRegisterFile: | |
365 | m_jit.loadPtr(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::toRegister(displacementIndex++)); | |
366 | break; | |
367 | ||
368 | case Int32DisplacedInRegisterFile: { | |
369 | GPRReg gpr = GPRInfo::toRegister(displacementIndex++); | |
370 | m_jit.load32(AssemblyHelpers::addressFor(recovery.virtualRegister()), gpr); | |
371 | m_jit.orPtr(GPRInfo::tagTypeNumberRegister, gpr); | |
372 | break; | |
373 | } | |
374 | ||
375 | case DoubleDisplacedInRegisterFile: { | |
376 | GPRReg gpr = GPRInfo::toRegister(displacementIndex++); | |
377 | m_jit.loadPtr(AssemblyHelpers::addressFor(recovery.virtualRegister()), gpr); | |
378 | m_jit.subPtr(GPRInfo::tagTypeNumberRegister, gpr); | |
379 | break; | |
380 | } | |
381 | ||
382 | default: | |
383 | break; | |
384 | } | |
385 | } | |
386 | ||
387 | displacementIndex = 0; | |
388 | for (int index = 0; index < exit.numberOfRecoveries(); ++index) { | |
389 | const ValueRecovery& recovery = exit.valueRecovery(index); | |
390 | switch (recovery.technique()) { | |
391 | case DisplacedInRegisterFile: | |
392 | case Int32DisplacedInRegisterFile: | |
393 | case DoubleDisplacedInRegisterFile: | |
394 | m_jit.storePtr(GPRInfo::toRegister(displacementIndex++), AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index))); | |
395 | break; | |
396 | ||
397 | default: | |
398 | break; | |
399 | } | |
400 | } | |
401 | } else { | |
402 | // FIXME: This should use the shuffling algorithm that we use | |
403 | // for speculative->non-speculative jumps, if we ever discover that | |
404 | // some hot code with lots of live values that get displaced and | |
405 | // spilled really enjoys frequently failing speculation. | |
406 | ||
407 | // For now this code is engineered to be correct but probably not | |
408 | // super. In particular, it correctly handles cases where for example | |
409 | // the displacements are a permutation of the destination values, like | |
410 | // | |
411 | // 1 -> 2 | |
412 | // 2 -> 1 | |
413 | // | |
414 | // It accomplishes this by simply lifting all of the virtual registers | |
415 | // from their old (DFG JIT) locations and dropping them in a scratch | |
416 | // location in memory, and then transferring from that scratch location | |
417 | // to their new (old JIT) locations. | |
418 | ||
419 | unsigned scratchIndex = numberOfPoisonedVirtualRegisters; | |
420 | for (int index = 0; index < exit.numberOfRecoveries(); ++index) { | |
421 | const ValueRecovery& recovery = exit.valueRecovery(index); | |
422 | ||
423 | switch (recovery.technique()) { | |
424 | case DisplacedInRegisterFile: | |
425 | m_jit.loadPtr(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0); | |
426 | m_jit.storePtr(GPRInfo::regT0, scratchDataBuffer + scratchIndex++); | |
427 | break; | |
428 | ||
429 | case Int32DisplacedInRegisterFile: { | |
430 | m_jit.load32(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0); | |
431 | m_jit.orPtr(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0); | |
432 | m_jit.storePtr(GPRInfo::regT0, scratchDataBuffer + scratchIndex++); | |
433 | break; | |
434 | } | |
435 | ||
436 | case DoubleDisplacedInRegisterFile: { | |
437 | m_jit.loadPtr(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0); | |
438 | m_jit.subPtr(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0); | |
439 | m_jit.storePtr(GPRInfo::regT0, scratchDataBuffer + scratchIndex++); | |
440 | break; | |
441 | } | |
442 | ||
443 | default: | |
444 | break; | |
445 | } | |
446 | } | |
447 | ||
448 | scratchIndex = numberOfPoisonedVirtualRegisters; | |
449 | for (int index = 0; index < exit.numberOfRecoveries(); ++index) { | |
450 | const ValueRecovery& recovery = exit.valueRecovery(index); | |
451 | switch (recovery.technique()) { | |
452 | case DisplacedInRegisterFile: | |
453 | case Int32DisplacedInRegisterFile: | |
454 | case DoubleDisplacedInRegisterFile: | |
455 | m_jit.loadPtr(scratchDataBuffer + scratchIndex++, GPRInfo::regT0); | |
456 | m_jit.storePtr(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index))); | |
457 | break; | |
458 | ||
459 | default: | |
460 | break; | |
461 | } | |
462 | } | |
463 | ||
464 | ASSERT(scratchIndex == numberOfPoisonedVirtualRegisters + numberOfDisplacedVirtualRegisters); | |
465 | } | |
466 | } | |
467 | ||
468 | // 11) Dump all poisoned virtual registers. | |
469 | ||
470 | if (numberOfPoisonedVirtualRegisters) { | |
471 | for (int virtualRegister = 0; virtualRegister < (int)exit.m_variables.size(); ++virtualRegister) { | |
472 | if (!poisonedVirtualRegisters[virtualRegister]) | |
473 | continue; | |
474 | ||
475 | const ValueRecovery& recovery = exit.m_variables[virtualRegister]; | |
476 | switch (recovery.technique()) { | |
477 | case InGPR: | |
478 | case UnboxedInt32InGPR: | |
479 | case UInt32InGPR: | |
480 | case InFPR: | |
481 | m_jit.loadPtr(scratchDataBuffer + poisonIndex(virtualRegister), GPRInfo::regT0); | |
482 | m_jit.storePtr(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)virtualRegister)); | |
483 | break; | |
484 | ||
485 | default: | |
486 | break; | |
487 | } | |
488 | } | |
489 | } | |
490 | ||
491 | // 12) Dump all constants. Optimize for Undefined, since that's a constant we see | |
492 | // often. | |
493 | ||
494 | if (haveConstants) { | |
495 | if (haveUndefined) | |
496 | m_jit.move(AssemblyHelpers::TrustedImmPtr(JSValue::encode(jsUndefined())), GPRInfo::regT0); | |
497 | ||
498 | for (int index = 0; index < exit.numberOfRecoveries(); ++index) { | |
499 | const ValueRecovery& recovery = exit.valueRecovery(index); | |
500 | if (recovery.technique() != Constant) | |
501 | continue; | |
502 | if (recovery.constant().isUndefined()) | |
503 | m_jit.storePtr(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index))); | |
504 | else | |
505 | m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(JSValue::encode(recovery.constant())), AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index))); | |
506 | } | |
507 | } | |
508 | ||
509 | // 13) Adjust the old JIT's execute counter. Since we are exiting OSR, we know | |
510 | // that all new calls into this code will go to the new JIT, so the execute | |
511 | // counter only affects call frames that performed OSR exit and call frames | |
512 | // that were still executing the old JIT at the time of another call frame's | |
513 | // OSR exit. We want to ensure that the following is true: | |
514 | // | |
515 | // (a) Code the performs an OSR exit gets a chance to reenter optimized | |
516 | // code eventually, since optimized code is faster. But we don't | |
517 | // want to do such reentery too aggressively (see (c) below). | |
518 | // | |
519 | // (b) If there is code on the call stack that is still running the old | |
520 | // JIT's code and has never OSR'd, then it should get a chance to | |
521 | // perform OSR entry despite the fact that we've exited. | |
522 | // | |
523 | // (c) Code the performs an OSR exit should not immediately retry OSR | |
524 | // entry, since both forms of OSR are expensive. OSR entry is | |
525 | // particularly expensive. | |
526 | // | |
527 | // (d) Frequent OSR failures, even those that do not result in the code | |
528 | // running in a hot loop, result in recompilation getting triggered. | |
529 | // | |
530 | // To ensure (c), we'd like to set the execute counter to | |
531 | // counterValueForOptimizeAfterWarmUp(). This seems like it would endanger | |
532 | // (a) and (b), since then every OSR exit would delay the opportunity for | |
533 | // every call frame to perform OSR entry. Essentially, if OSR exit happens | |
534 | // frequently and the function has few loops, then the counter will never | |
535 | // become non-negative and OSR entry will never be triggered. OSR entry | |
536 | // will only happen if a loop gets hot in the old JIT, which does a pretty | |
537 | // good job of ensuring (a) and (b). But that doesn't take care of (d), | |
538 | // since each speculation failure would reset the execute counter. | |
539 | // So we check here if the number of speculation failures is significantly | |
540 | // larger than the number of successes (we want 90% success rate), and if | |
541 | // there have been a large enough number of failures. If so, we set the | |
542 | // counter to 0; otherwise we set the counter to | |
543 | // counterValueForOptimizeAfterWarmUp(). | |
544 | ||
545 | handleExitCounts(exit); | |
546 | ||
547 | // 14) Load the result of the last bytecode operation into regT0. | |
548 | ||
549 | if (exit.m_lastSetOperand != std::numeric_limits<int>::max()) | |
550 | m_jit.loadPtr(AssemblyHelpers::addressFor((VirtualRegister)exit.m_lastSetOperand), GPRInfo::cachedResultRegister); | |
551 | ||
552 | // 15) Fix call frame(s). | |
553 | ||
554 | ASSERT(m_jit.baselineCodeBlock()->getJITType() == JITCode::BaselineJIT); | |
555 | m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(m_jit.baselineCodeBlock()), AssemblyHelpers::addressFor((VirtualRegister)RegisterFile::CodeBlock)); | |
556 | ||
557 | for (CodeOrigin codeOrigin = exit.m_codeOrigin; codeOrigin.inlineCallFrame; codeOrigin = codeOrigin.inlineCallFrame->caller) { | |
558 | InlineCallFrame* inlineCallFrame = codeOrigin.inlineCallFrame; | |
559 | CodeBlock* baselineCodeBlock = m_jit.baselineCodeBlockFor(codeOrigin); | |
560 | CodeBlock* baselineCodeBlockForCaller = m_jit.baselineCodeBlockFor(inlineCallFrame->caller); | |
561 | Vector<BytecodeAndMachineOffset>& decodedCodeMap = m_jit.decodedCodeMapFor(baselineCodeBlockForCaller); | |
562 | unsigned returnBytecodeIndex = inlineCallFrame->caller.bytecodeIndex + OPCODE_LENGTH(op_call); | |
563 | BytecodeAndMachineOffset* mapping = binarySearch<BytecodeAndMachineOffset, unsigned, BytecodeAndMachineOffset::getBytecodeIndex>(decodedCodeMap.begin(), decodedCodeMap.size(), returnBytecodeIndex); | |
564 | ||
565 | ASSERT(mapping); | |
566 | ASSERT(mapping->m_bytecodeIndex == returnBytecodeIndex); | |
567 | ||
568 | void* jumpTarget = baselineCodeBlockForCaller->getJITCode().executableAddressAtOffset(mapping->m_machineCodeOffset); | |
569 | ||
570 | GPRReg callerFrameGPR; | |
571 | if (inlineCallFrame->caller.inlineCallFrame) { | |
572 | m_jit.addPtr(AssemblyHelpers::TrustedImm32(inlineCallFrame->caller.inlineCallFrame->stackOffset * sizeof(EncodedJSValue)), GPRInfo::callFrameRegister, GPRInfo::regT3); | |
573 | callerFrameGPR = GPRInfo::regT3; | |
574 | } else | |
575 | callerFrameGPR = GPRInfo::callFrameRegister; | |
576 | ||
577 | m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(baselineCodeBlock), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::CodeBlock))); | |
578 | m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(inlineCallFrame->callee->scope()), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::ScopeChain))); | |
579 | m_jit.storePtr(callerFrameGPR, AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::CallerFrame))); | |
580 | m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(jumpTarget), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::ReturnPC))); | |
581 | m_jit.store32(AssemblyHelpers::TrustedImm32(inlineCallFrame->arguments.size()), AssemblyHelpers::payloadFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::ArgumentCount))); | |
582 | m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(inlineCallFrame->callee.get()), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::Callee))); | |
583 | } | |
584 | ||
585 | if (exit.m_codeOrigin.inlineCallFrame) | |
586 | m_jit.addPtr(AssemblyHelpers::TrustedImm32(exit.m_codeOrigin.inlineCallFrame->stackOffset * sizeof(EncodedJSValue)), GPRInfo::callFrameRegister); | |
587 | ||
588 | // 16) Jump into the corresponding baseline JIT code. | |
589 | ||
590 | CodeBlock* baselineCodeBlock = m_jit.baselineCodeBlockFor(exit.m_codeOrigin); | |
591 | Vector<BytecodeAndMachineOffset>& decodedCodeMap = m_jit.decodedCodeMapFor(baselineCodeBlock); | |
592 | ||
593 | BytecodeAndMachineOffset* mapping = binarySearch<BytecodeAndMachineOffset, unsigned, BytecodeAndMachineOffset::getBytecodeIndex>(decodedCodeMap.begin(), decodedCodeMap.size(), exit.m_codeOrigin.bytecodeIndex); | |
594 | ||
595 | ASSERT(mapping); | |
596 | ASSERT(mapping->m_bytecodeIndex == exit.m_codeOrigin.bytecodeIndex); | |
597 | ||
598 | void* jumpTarget = baselineCodeBlock->getJITCode().executableAddressAtOffset(mapping->m_machineCodeOffset); | |
599 | ||
600 | ASSERT(GPRInfo::regT1 != GPRInfo::cachedResultRegister); | |
601 | ||
602 | m_jit.move(AssemblyHelpers::TrustedImmPtr(jumpTarget), GPRInfo::regT1); | |
603 | ||
604 | m_jit.jump(GPRInfo::regT1); | |
605 | ||
606 | #if DFG_ENABLE(DEBUG_VERBOSE) | |
607 | dataLog("-> %p\n", jumpTarget); | |
608 | #endif | |
609 | } | |
610 | ||
611 | } } // namespace JSC::DFG | |
612 | ||
613 | #endif // ENABLE(DFG_JIT) && USE(JSVALUE64) |