]>
Commit | Line | Data |
---|---|---|
14957cd0 A |
1 | /* |
2 | * Copyright (C) 2011 Apple Inc. All rights reserved. | |
3 | * | |
4 | * Redistribution and use in source and binary forms, with or without | |
5 | * modification, are permitted provided that the following conditions | |
6 | * are met: | |
7 | * 1. Redistributions of source code must retain the above copyright | |
8 | * notice, this list of conditions and the following disclaimer. | |
9 | * 2. Redistributions in binary form must reproduce the above copyright | |
10 | * notice, this list of conditions and the following disclaimer in the | |
11 | * documentation and/or other materials provided with the distribution. | |
12 | * | |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR | |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
24 | */ | |
25 | ||
26 | #ifndef DFGRegisterBank_h | |
27 | #define DFGRegisterBank_h | |
28 | ||
29 | #if ENABLE(DFG_JIT) | |
30 | ||
31 | #include <dfg/DFGNode.h> | |
32 | ||
33 | namespace JSC { namespace DFG { | |
34 | ||
35 | // === RegisterBank === | |
36 | // | |
37 | // This class is used to implement the GPR and FPR register banks. | |
38 | // All registers have two pieces of state associated with them: | |
39 | // a lock count (used to indicate this register is already in use | |
40 | // in code generation of the current node, and cannot be spilled or | |
41 | // allocated as a temporary), and VirtualRegister 'name', recording | |
42 | // which value (if any) a machine register currently holds. | |
43 | // Either or both of these pieces of information may be valid for a | |
44 | // given register. A register may be: | |
45 | // | |
46 | // - unlocked, and unnamed: Available for allocation. | |
47 | // - locked, but unnamed: Already allocated as a temporary or | |
48 | // result for the current node. | |
49 | // - unlocked, but named: Contains the result of a prior operation, | |
50 | // not yet in use for this node, | |
51 | // - locked, but named: Contains the result of a prior operation, | |
52 | // already allocated as a operand to the | |
53 | // current operation. | |
54 | // | |
55 | // For every named register we also record a hint value indicating | |
56 | // the order in which registers should be selected to be spilled; | |
57 | // registers that can be more cheaply spilled and/or filled should | |
58 | // be selected first. | |
59 | // | |
60 | // Locking register is a strong retention mechanism; a locked register | |
61 | // will never be reallocated (this is used to ensure the operands to | |
62 | // the current node are in registers). Naming, conversely, in a weak | |
63 | // retention mechanism - allocating a register may force a named value | |
64 | // to be spilled. | |
65 | // | |
66 | // All named values must be given a hint that is greater than Min and | |
67 | // less than Max. | |
68 | template<class BankInfo> | |
69 | class RegisterBank { | |
70 | typedef typename BankInfo::RegisterType RegID; | |
71 | static const size_t NUM_REGS = BankInfo::numberOfRegisters; | |
72 | ||
73 | typedef uint32_t SpillHint; | |
74 | static const SpillHint SpillHintInvalid = 0xffffffff; | |
75 | ||
76 | public: | |
77 | RegisterBank() | |
78 | : m_lastAllocated(NUM_REGS - 1) | |
79 | { | |
80 | } | |
81 | ||
82 | // Allocate a register - this function finds an unlocked register, | |
83 | // locks it, and returns it. If any named registers exist, one | |
84 | // of these should be selected to be allocated. If all unlocked | |
85 | // registers are named, then one of the named registers will need | |
86 | // to be spilled. In this case the register selected to be spilled | |
87 | // will be one of the registers that has the lowest 'spillOrder' | |
88 | // cost associated with it. | |
89 | // | |
90 | // This method select the register to be allocated, and calls the | |
91 | // private 'allocateInternal' method to update internal data | |
92 | // structures accordingly. | |
93 | RegID allocate(VirtualRegister &spillMe) | |
94 | { | |
95 | uint32_t currentLowest = NUM_REGS; | |
96 | SpillHint currentSpillOrder = SpillHintInvalid; | |
97 | ||
98 | // Scan through all register, starting at the last allocated & looping around. | |
99 | ASSERT(m_lastAllocated < NUM_REGS); | |
100 | ||
101 | // This loop is broken into two halves, looping from the last allocated | |
102 | // register (the register returned last time this method was called) to | |
103 | // the maximum register value, then from 0 to the last allocated. | |
104 | // This implements a simple round-robin like approach to try to reduce | |
105 | // thrash, and minimize time spent scanning locked registers in allocation. | |
106 | // If a unlocked and unnamed register is found return it immediately. | |
107 | // Otherwise, find the first unlocked register with the lowest spillOrder. | |
108 | for (uint32_t i = m_lastAllocated + 1; i < NUM_REGS; ++i) { | |
109 | // (1) If the current register is locked, it is not a candidate. | |
110 | if (m_data[i].lockCount) | |
111 | continue; | |
112 | // (2) If the current register's spill order is 0, pick this! – unassigned registers have spill order 0. | |
113 | SpillHint spillOrder = m_data[i].spillOrder; | |
114 | if (spillOrder == SpillHintInvalid) | |
115 | return allocateInternal(i, spillMe); | |
116 | // If this register is better (has a lower spill order value) than any prior | |
117 | // candidate, then record it. | |
118 | if (spillOrder < currentSpillOrder) { | |
119 | currentSpillOrder = spillOrder; | |
120 | currentLowest = i; | |
121 | } | |
122 | } | |
123 | // Loop over the remaining entries. | |
124 | for (uint32_t i = 0; i <= m_lastAllocated; ++i) { | |
125 | if (m_data[i].lockCount) | |
126 | continue; | |
127 | SpillHint spillOrder = m_data[i].spillOrder; | |
128 | if (spillOrder == SpillHintInvalid) | |
129 | return allocateInternal(i, spillMe); | |
130 | if (spillOrder < currentSpillOrder) { | |
131 | currentSpillOrder = spillOrder; | |
132 | currentLowest = i; | |
133 | } | |
134 | } | |
135 | ||
136 | // Deadlock check - this could only occur is all registers are locked! | |
137 | ASSERT(currentLowest != NUM_REGS && currentSpillOrder != SpillHintInvalid); | |
138 | // There were no available registers; currentLowest will need to be spilled. | |
139 | return allocateInternal(currentLowest, spillMe); | |
140 | } | |
141 | ||
142 | // retain/release - these methods are used to associate/disassociate names | |
143 | // with values in registers. retain should only be called on locked registers. | |
144 | void retain(RegID reg, VirtualRegister name, SpillHint spillOrder) | |
145 | { | |
146 | unsigned index = BankInfo::toIndex(reg); | |
147 | ||
148 | // SpillHint must be valid. | |
149 | ASSERT(spillOrder != SpillHintInvalid); | |
150 | // 'index' must be a valid, locked register. | |
151 | ASSERT(index < NUM_REGS); | |
152 | ASSERT(m_data[index].lockCount); | |
153 | // 'index' should not currently be named, the new name must be valid. | |
154 | ASSERT(m_data[index].name == InvalidVirtualRegister); | |
155 | ASSERT(name != InvalidVirtualRegister); | |
156 | // 'index' should not currently have a spillOrder. | |
157 | ASSERT(m_data[index].spillOrder == SpillHintInvalid); | |
158 | ||
159 | m_data[index].name = name; | |
160 | m_data[index].spillOrder = spillOrder; | |
161 | } | |
162 | void release(RegID reg) | |
163 | { | |
164 | releaseAtIndex(BankInfo::toIndex(reg)); | |
165 | } | |
166 | ||
167 | // lock/unlock register, ensures that they are not spilled. | |
168 | void lock(RegID reg) | |
169 | { | |
170 | unsigned index = BankInfo::toIndex(reg); | |
171 | ||
172 | ASSERT(index < NUM_REGS); | |
173 | ++m_data[index].lockCount; | |
174 | ASSERT(m_data[index].lockCount); | |
175 | } | |
176 | void unlock(RegID reg) | |
177 | { | |
178 | unsigned index = BankInfo::toIndex(reg); | |
179 | ||
180 | ASSERT(index < NUM_REGS); | |
181 | ASSERT(m_data[index].lockCount); | |
182 | --m_data[index].lockCount; | |
183 | } | |
184 | bool isLocked(RegID reg) const | |
185 | { | |
186 | return isLockedAtIndex(BankInfo::toIndex(reg)); | |
187 | } | |
188 | ||
189 | // Get the name (VirtualRegister) associated with the | |
190 | // given register (or InvalidVirtualRegister for none). | |
191 | VirtualRegister name(RegID reg) const | |
192 | { | |
193 | return nameAtIndex(BankInfo::toIndex(reg)); | |
194 | } | |
195 | ||
196 | #ifndef NDEBUG | |
197 | void dump() | |
198 | { | |
199 | // For each register, print the VirtualRegister 'name'. | |
200 | for (uint32_t i =0; i < NUM_REGS; ++i) { | |
201 | if (m_data[i].name != InvalidVirtualRegister) | |
202 | fprintf(stderr, "[%02d]", m_data[i].name); | |
203 | else | |
204 | fprintf(stderr, "[--]"); | |
205 | } | |
206 | fprintf(stderr, "\n"); | |
207 | } | |
208 | #endif | |
209 | ||
210 | class iterator { | |
211 | friend class RegisterBank<BankInfo>; | |
212 | public: | |
213 | VirtualRegister name() const | |
214 | { | |
215 | return m_bank->nameAtIndex(m_index); | |
216 | } | |
217 | ||
218 | bool isLocked() const | |
219 | { | |
220 | return m_bank->isLockedAtIndex(m_index); | |
221 | } | |
222 | ||
223 | void release() const | |
224 | { | |
225 | m_bank->releaseAtIndex(m_index); | |
226 | } | |
227 | ||
228 | RegID regID() const | |
229 | { | |
230 | return BankInfo::toRegister(m_index); | |
231 | } | |
232 | ||
233 | #ifndef NDEBUG | |
234 | const char* debugName() const | |
235 | { | |
236 | return BankInfo::debugName(regID()); | |
237 | } | |
238 | #endif | |
239 | ||
240 | iterator& operator++() | |
241 | { | |
242 | ++m_index; | |
243 | return *this; | |
244 | } | |
245 | ||
246 | bool operator!=(const iterator& other) const | |
247 | { | |
248 | ASSERT(m_bank == other.m_bank); | |
249 | return m_index != other.m_index; | |
250 | } | |
251 | ||
252 | unsigned index() const | |
253 | { | |
254 | return m_index; | |
255 | } | |
256 | ||
257 | private: | |
258 | iterator(RegisterBank<BankInfo>* bank, unsigned index) | |
259 | : m_bank(bank) | |
260 | , m_index(index) | |
261 | { | |
262 | } | |
263 | ||
264 | RegisterBank<BankInfo>* m_bank; | |
265 | unsigned m_index; | |
266 | }; | |
267 | ||
268 | iterator begin() | |
269 | { | |
270 | return iterator(this, 0); | |
271 | } | |
272 | ||
273 | iterator end() | |
274 | { | |
275 | return iterator(this, NUM_REGS); | |
276 | } | |
277 | ||
278 | private: | |
279 | bool isLockedAtIndex(unsigned index) const | |
280 | { | |
281 | ASSERT(index < NUM_REGS); | |
282 | return m_data[index].lockCount; | |
283 | } | |
284 | ||
285 | VirtualRegister nameAtIndex(unsigned index) const | |
286 | { | |
287 | ASSERT(index < NUM_REGS); | |
288 | return m_data[index].name; | |
289 | } | |
290 | ||
291 | void releaseAtIndex(unsigned index) | |
292 | { | |
293 | // 'index' must be a valid register. | |
294 | ASSERT(index < NUM_REGS); | |
295 | // 'index' should currently be named. | |
296 | ASSERT(m_data[index].name != InvalidVirtualRegister); | |
297 | // 'index' should currently have a valid spill order. | |
298 | ASSERT(m_data[index].spillOrder != SpillHintInvalid); | |
299 | ||
300 | m_data[index].name = InvalidVirtualRegister; | |
301 | m_data[index].spillOrder = SpillHintInvalid; | |
302 | } | |
303 | ||
304 | // Used by 'allocate', above, to update inforamtion in the map. | |
305 | RegID allocateInternal(uint32_t i, VirtualRegister &spillMe) | |
306 | { | |
307 | // 'i' must be a valid, unlocked register. | |
308 | ASSERT(i < NUM_REGS && !m_data[i].lockCount); | |
309 | ||
310 | // Return the VirtualRegister of the named value currently stored in | |
311 | // the register being returned - or InvalidVirtualRegister if none. | |
312 | spillMe = m_data[i].name; | |
313 | ||
314 | // Clear any name/spillOrder currently associated with the register, | |
315 | m_data[i] = MapEntry(); | |
316 | // Mark the register as locked (with a lock count of 1). | |
317 | m_data[i].lockCount = 1; | |
318 | ||
319 | m_lastAllocated = i; | |
320 | return BankInfo::toRegister(i); | |
321 | } | |
322 | ||
323 | // === MapEntry === | |
324 | // | |
325 | // This structure provides information for an individual machine register | |
326 | // being managed by the RegisterBank. For each register we track a lock | |
327 | // count, name and spillOrder hint. | |
328 | struct MapEntry { | |
329 | MapEntry() | |
330 | : name(InvalidVirtualRegister) | |
331 | , spillOrder(SpillHintInvalid) | |
332 | , lockCount(0) | |
333 | { | |
334 | } | |
335 | ||
336 | VirtualRegister name; | |
337 | SpillHint spillOrder; | |
338 | uint32_t lockCount; | |
339 | }; | |
340 | ||
341 | // Holds the current status of all registers. | |
342 | MapEntry m_data[NUM_REGS]; | |
343 | // Used to to implement a simple round-robin like allocation scheme. | |
344 | uint32_t m_lastAllocated; | |
345 | }; | |
346 | ||
347 | } } // namespace JSC::DFG | |
348 | ||
349 | #endif | |
350 | #endif |