/*
**********************************************************************
-* Copyright (c) 2003-2006, International Business Machines
+* Copyright (c) 2003-2009, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* Author: Alan Liu
#include "gregoimp.h"
#include "cmemory.h"
#include "uassert.h"
+#include "uvector.h"
#include <float.h> // DBL_MAX
#ifdef U_DEBUG_TZ
* Default constructor. Creates a time zone with an empty ID and
* a fixed GMT offset of zero.
*/
-OlsonTimeZone::OlsonTimeZone() : finalYear(INT32_MAX), finalMillis(DBL_MAX), finalZone(0) {
+/*OlsonTimeZone::OlsonTimeZone() : finalYear(INT32_MAX), finalMillis(DBL_MAX), finalZone(0), transitionRulesInitialized(FALSE) {
+ clearTransitionRules();
constructEmpty();
-}
+}*/
/**
* Construct a GMT+0 zone with no transitions. This is done when a
OlsonTimeZone::OlsonTimeZone(const UResourceBundle* top,
const UResourceBundle* res,
UErrorCode& ec) :
- finalYear(INT32_MAX), finalMillis(DBL_MAX), finalZone(0)
+ finalYear(INT32_MAX), finalMillis(DBL_MAX), finalZone(0), transitionRulesInitialized(FALSE)
{
+ clearTransitionRules();
U_DEBUG_TZ_MSG(("OlsonTimeZone(%s)\n", ures_getKey((UResourceBundle*)res)));
if ((top == NULL || res == NULL) && U_SUCCESS(ec)) {
ec = U_ILLEGAL_ARGUMENT_ERROR;
data[8] * U_MILLIS_PER_SECOND,
(SimpleTimeZone::TimeMode) data[9],
data[10] * U_MILLIS_PER_SECOND, ec);
+ // Make sure finalZone was created
+ if (finalZone == NULL) {
+ ec = U_MEMORY_ALLOCATION_ERROR;
+ }
} else {
ec = U_INVALID_FORMAT_ERROR;
}
* Copy constructor
*/
OlsonTimeZone::OlsonTimeZone(const OlsonTimeZone& other) :
- TimeZone(other), finalZone(0) {
+ BasicTimeZone(other), finalZone(0) {
*this = other;
}
delete finalZone;
finalZone = (other.finalZone != 0) ?
(SimpleTimeZone*) other.finalZone->clone() : 0;
+ clearTransitionRules();
return *this;
}
* Destructor
*/
OlsonTimeZone::~OlsonTimeZone() {
+ deleteTransitionRules();
delete finalZone;
}
* Returns true if the two TimeZone objects are equal.
*/
UBool OlsonTimeZone::operator==(const TimeZone& other) const {
- const OlsonTimeZone* z = (const OlsonTimeZone*) &other;
-
- return TimeZone::operator==(other) &&
- // [sic] pointer comparison: typeData points into
- // memory-mapped or DLL space, so if two zones have the same
- // pointer, they are equal.
- (typeData == z->typeData ||
- // If the pointers are not equal, the zones may still
- // be equal if their rules and transitions are equal
- (finalYear == z->finalYear &&
- // Don't compare finalMillis; if finalYear is ==, so is finalMillis
- ((finalZone == 0 && z->finalZone == 0) ||
- (finalZone != 0 && z->finalZone != 0 &&
- *finalZone == *z->finalZone)) &&
- transitionCount == z->transitionCount &&
- typeCount == z->typeCount &&
- uprv_memcmp(transitionTimes, z->transitionTimes,
- sizeof(transitionTimes[0]) * transitionCount) == 0 &&
- uprv_memcmp(typeOffsets, z->typeOffsets,
- (sizeof(typeOffsets[0]) * typeCount) << 1) == 0 &&
- uprv_memcmp(typeData, z->typeData,
- (sizeof(typeData[0]) * typeCount)) == 0
- ));
+ return ((this == &other) ||
+ (getDynamicClassID() == other.getDynamicClassID() &&
+ TimeZone::operator==(other) &&
+ hasSameRules(other)));
}
/**
millis, monthLength, ec);
}
- // Compute local epoch seconds from input fields
- double time = Grego::fieldsToDay(year, month, dom) * SECONDS_PER_DAY +
- uprv_floor(millis / (double) U_MILLIS_PER_SECOND);
-
- return zoneOffset(findTransition(time, TRUE)) * U_MILLIS_PER_SECOND;
+ // Compute local epoch millis from input fields
+ UDate date = (UDate)(Grego::fieldsToDay(year, month, dom) * U_MILLIS_PER_DAY + millis);
+ int32_t rawoff, dstoff;
+ getHistoricalOffset(date, TRUE, kDaylight, kStandard, rawoff, dstoff);
+ return rawoff + dstoff;
}
/**
if (U_FAILURE(ec)) {
return;
}
-
// The check against finalMillis will suffice most of the time, except
// for the case in which finalMillis == DBL_MAX, date == DBL_MAX,
// and finalZone == 0. For this case we add "&& finalZone != 0".
if (date >= finalMillis && finalZone != 0) {
- int32_t year, month, dom, dow;
- double millis;
- double days = Math::floorDivide(date, (double)U_MILLIS_PER_DAY, millis);
-
- Grego::dayToFields(days, year, month, dom, dow);
-
- rawoff = finalZone->getRawOffset();
-
- if (!local) {
- // Adjust from GMT to local
- date += rawoff;
- double days2 = Math::floorDivide(date, (double)U_MILLIS_PER_DAY, millis);
- if (days2 != days) {
- Grego::dayToFields(days2, year, month, dom, dow);
- }
- }
+ finalZone->getOffset(date, local, rawoff, dstoff, ec);
+ } else {
+ getHistoricalOffset(date, local, kFormer, kLatter, rawoff, dstoff);
+ }
+}
- dstoff = finalZone->getOffset(
- GregorianCalendar::AD, year, month,
- dom, (uint8_t) dow, (int32_t) millis, ec) - rawoff;
+void
+OlsonTimeZone::getOffsetFromLocal(UDate date, int32_t nonExistingTimeOpt, int32_t duplicatedTimeOpt,
+ int32_t& rawoff, int32_t& dstoff, UErrorCode& ec) /*const*/ {
+ if (U_FAILURE(ec)) {
return;
}
-
- double secs = uprv_floor(date / U_MILLIS_PER_SECOND);
- int16_t i = findTransition(secs, local);
- rawoff = rawOffset(i) * U_MILLIS_PER_SECOND;
- dstoff = dstOffset(i) * U_MILLIS_PER_SECOND;
+ if (date >= finalMillis && finalZone != 0) {
+ finalZone->getOffsetFromLocal(date, nonExistingTimeOpt, duplicatedTimeOpt, rawoff, dstoff, ec);
+ } else {
+ getHistoricalOffset(date, TRUE, nonExistingTimeOpt, duplicatedTimeOpt, rawoff, dstoff);
+ }
}
+
/**
* TimeZone API.
*/
double days = Math::floorDivide(((double)ms), (double)U_MILLIS_PER_DAY, millis);
Grego::dayToFields(days, year, month, dom, dow);
- U_DEBUG_TZ_MSG((" findTransition: time %.1f (%04d.%02d.%02d+%.1fh)\n", ms,
+ U_DEBUG_TZ_MSG((" getHistoricalOffset: time %.1f (%04d.%02d.%02d+%.1fh)\n", ms,
year, month+1, dom, (millis/kOneHour)));
}
#endif
-/**
- * Find the smallest i (in 0..transitionCount-1) such that time >=
- * transition(i), where transition(i) is either the GMT or the local
- * transition time, as specified by `local'.
- * @param time epoch seconds, either GMT or local wall
- * @param local if TRUE, `time' is in local wall units, otherwise it
- * is GMT
- * @return an index i, where 0 <= i < transitionCount, and
- * transition(i) <= time < transition(i+1), or i == 0 if
- * transitionCount == 0 or time < transition(0).
- */
-int16_t OlsonTimeZone::findTransition(double time, UBool local) const {
- int16_t i = 0;
- U_DEBUG_TZ_MSG(("findTransition(%.1f, %s)\n", time, local?"T":"F"));
+void
+OlsonTimeZone::getHistoricalOffset(UDate date, UBool local,
+ int32_t NonExistingTimeOpt, int32_t DuplicatedTimeOpt,
+ int32_t& rawoff, int32_t& dstoff) const {
+ U_DEBUG_TZ_MSG(("getHistoricalOffset(%.1f, %s, %d, %d, raw, dst)\n",
+ date, local?"T":"F", NonExistingTimeOpt, DuplicatedTimeOpt));
#if defined U_DEBUG_TZ
- printTime(time*1000.0);
+ printTime(date*1000.0);
#endif
-
if (transitionCount != 0) {
+ double sec = uprv_floor(date / U_MILLIS_PER_SECOND);
// Linear search from the end is the fastest approach, since
// most lookups will happen at/near the end.
+ int16_t i;
for (i = transitionCount - 1; i > 0; --i) {
int32_t transition = transitionTimes[i];
+
if (local) {
- int32_t zoneOffsetPrev = zoneOffset(typeData[i-1]);
- int32_t zoneOffsetCurr = zoneOffset(typeData[i]);
+ int32_t offsetBefore = zoneOffset(typeData[i-1]);
+ UBool dstBefore = dstOffset(typeData[i-1]) != 0;
+
+ int32_t offsetAfter = zoneOffset(typeData[i]);
+ UBool dstAfter = dstOffset(typeData[i]) != 0;
+
+ UBool dstToStd = dstBefore && !dstAfter;
+ UBool stdToDst = !dstBefore && dstAfter;
- // use the lowest offset ( == standard time ). as per tzregts.cpp which says:
-
- /**
- * @bug 4084933
- * The expected behavior of TimeZone around the boundaries is:
- * (Assume transition time of 2:00 AM)
- * day of onset 1:59 AM STD = display name 1:59 AM ST
- * 2:00 AM STD = display name 3:00 AM DT
- * day of end 0:59 AM STD = display name 1:59 AM DT
- * 1:00 AM STD = display name 1:00 AM ST
- */
- if(zoneOffsetPrev<zoneOffsetCurr) {
- transition += zoneOffsetPrev;
+ if (offsetAfter - offsetBefore >= 0) {
+ // Positive transition, which makes a non-existing local time range
+ if (((NonExistingTimeOpt & kStdDstMask) == kStandard && dstToStd)
+ || ((NonExistingTimeOpt & kStdDstMask) == kDaylight && stdToDst)) {
+ transition += offsetBefore;
+ } else if (((NonExistingTimeOpt & kStdDstMask) == kStandard && stdToDst)
+ || ((NonExistingTimeOpt & kStdDstMask) == kDaylight && dstToStd)) {
+ transition += offsetAfter;
+ } else if ((NonExistingTimeOpt & kFormerLatterMask) == kLatter) {
+ transition += offsetBefore;
+ } else {
+ // Interprets the time with rule before the transition,
+ // default for non-existing time range
+ transition += offsetAfter;
+ }
} else {
- transition += zoneOffsetCurr;
+ // Negative transition, which makes a duplicated local time range
+ if (((DuplicatedTimeOpt & kStdDstMask) == kStandard && dstToStd)
+ || ((DuplicatedTimeOpt & kStdDstMask) == kDaylight && stdToDst)) {
+ transition += offsetAfter;
+ } else if (((DuplicatedTimeOpt & kStdDstMask) == kStandard && stdToDst)
+ || ((DuplicatedTimeOpt & kStdDstMask) == kDaylight && dstToStd)) {
+ transition += offsetBefore;
+ } else if ((DuplicatedTimeOpt & kFormerLatterMask) == kFormer) {
+ transition += offsetBefore;
+ } else {
+ // Interprets the time with rule after the transition,
+ // default for duplicated local time range
+ transition += offsetAfter;
+ }
}
}
- if (time >= transition) {
- U_DEBUG_TZ_MSG(("Found@%d: time=%.1f, localtransition=%d (orig %d) dz %d\n", i, time, transition, transitionTimes[i],
+ if (sec >= transition) {
+ U_DEBUG_TZ_MSG(("Found@%d: time=%.1f, localtransition=%d (orig %d) dz %d\n", i, sec, transition, transitionTimes[i],
zoneOffset(typeData[i-1])));
#if defined U_DEBUG_TZ
- printTime(transition*1000.0);
- printTime(transitionTimes[i]*1000.0);
+ printTime(transition*1000.0);
+ printTime(transitionTimes[i]*1000.0);
#endif
break;
} else {
- U_DEBUG_TZ_MSG(("miss@%d: time=%.1f, localtransition=%d (orig %d) dz %d\n", i, time, transition, transitionTimes[i],
+ U_DEBUG_TZ_MSG(("miss@%d: time=%.1f, localtransition=%d (orig %d) dz %d\n", i, sec, transition, transitionTimes[i],
zoneOffset(typeData[i-1])));
#if defined U_DEBUG_TZ
- printTime(transition*1000.0);
- printTime(transitionTimes[i]*1000.0);
+ printTime(transition*1000.0);
+ printTime(transitionTimes[i]*1000.0);
#endif
}
}
// Check invariants for GMT times; if these pass for GMT times
// the local logic should be working too.
- U_ASSERT(local || time < transitionTimes[0] || time >= transitionTimes[i]);
- U_ASSERT(local || i == transitionCount-1 || time < transitionTimes[i+1]);
-
- U_DEBUG_TZ_MSG(("findTransition(%.1f, %s)= trans %d\n", time, local?"T":"F", i));
- i = typeData[i];
+ U_ASSERT(local || sec < transitionTimes[0] || sec >= transitionTimes[i]);
+ U_ASSERT(local || i == transitionCount-1 || sec < transitionTimes[i+1]);
+
+ U_DEBUG_TZ_MSG(("getHistoricalOffset(%.1f, %s, %d, %d, raw, dst) - trans %d\n",
+ date, local?"T":"F", NonExistingTimeOpt, DuplicatedTimeOpt, i));
+
+ // Since ICU tzdata 2007c, the first transition data is actually not a
+ // transition, but used for representing the initial offset. So the code
+ // below works even if i == 0.
+ int16_t index = typeData[i];
+ rawoff = rawOffset(index) * U_MILLIS_PER_SECOND;
+ dstoff = dstOffset(index) * U_MILLIS_PER_SECOND;
+ } else {
+ // No transitions, single pair of offsets only
+ rawoff = rawOffset(0) * U_MILLIS_PER_SECOND;
+ dstoff = dstOffset(0) * U_MILLIS_PER_SECOND;
}
-
- U_ASSERT(i>=0 && i<typeCount);
-
- U_DEBUG_TZ_MSG(("findTransition(%.1f, %s)=%d, offset %d\n", time, local?"T":"F", i, zoneOffset(i)));
- return i;
+ U_DEBUG_TZ_MSG(("getHistoricalOffset(%.1f, %s, %d, %d, raw, dst) - raw=%d, dst=%d\n",
+ date, local?"T":"F", NonExistingTimeOpt, DuplicatedTimeOpt, rawoff, dstoff));
}
/**
if (transitionTimes[i] >= limit) {
break;
}
- if (transitionTimes[i] >= start &&
- dstOffset(typeData[i]) != 0) {
+ if ((transitionTimes[i] >= start && dstOffset(typeData[i]) != 0)
+ || (transitionTimes[i] > start && i > 0 && dstOffset(typeData[i - 1]) != 0)) {
return TRUE;
}
}
return dst != 0;
}
+UBool
+OlsonTimeZone::hasSameRules(const TimeZone &other) const {
+ if (this == &other) {
+ return TRUE;
+ }
+ if (other.getDynamicClassID() != OlsonTimeZone::getStaticClassID()) {
+ return FALSE;
+ }
+ const OlsonTimeZone* z = (const OlsonTimeZone*) &other;
+
+ // [sic] pointer comparison: typeData points into
+ // memory-mapped or DLL space, so if two zones have the same
+ // pointer, they are equal.
+ if (typeData == z->typeData) {
+ return TRUE;
+ }
+
+ // If the pointers are not equal, the zones may still
+ // be equal if their rules and transitions are equal
+ return
+ (finalYear == z->finalYear &&
+ // Don't compare finalMillis; if finalYear is ==, so is finalMillis
+ ((finalZone == 0 && z->finalZone == 0) ||
+ (finalZone != 0 && z->finalZone != 0 && *finalZone == *z->finalZone)) &&
+
+ transitionCount == z->transitionCount &&
+ typeCount == z->typeCount &&
+ uprv_memcmp(transitionTimes, z->transitionTimes,
+ sizeof(transitionTimes[0]) * transitionCount) == 0 &&
+ uprv_memcmp(typeOffsets, z->typeOffsets,
+ (sizeof(typeOffsets[0]) * typeCount) << 1) == 0 &&
+ uprv_memcmp(typeData, z->typeData,
+ (sizeof(typeData[0]) * typeCount)) == 0);
+}
+
+void
+OlsonTimeZone::clearTransitionRules(void) {
+ initialRule = NULL;
+ firstTZTransition = NULL;
+ firstFinalTZTransition = NULL;
+ historicRules = NULL;
+ historicRuleCount = 0;
+ finalZoneWithStartYear = NULL;
+ firstTZTransitionIdx = 0;
+ transitionRulesInitialized = FALSE;
+}
+
+void
+OlsonTimeZone::deleteTransitionRules(void) {
+ if (initialRule != NULL) {
+ delete initialRule;
+ }
+ if (firstTZTransition != NULL) {
+ delete firstTZTransition;
+ }
+ if (firstFinalTZTransition != NULL) {
+ delete firstFinalTZTransition;
+ }
+ if (finalZoneWithStartYear != NULL) {
+ delete finalZoneWithStartYear;
+ }
+ if (historicRules != NULL) {
+ for (int i = 0; i < historicRuleCount; i++) {
+ if (historicRules[i] != NULL) {
+ delete historicRules[i];
+ }
+ }
+ uprv_free(historicRules);
+ }
+ clearTransitionRules();
+}
+
+void
+OlsonTimeZone::initTransitionRules(UErrorCode& status) {
+ if(U_FAILURE(status)) {
+ return;
+ }
+ if (transitionRulesInitialized) {
+ return;
+ }
+ deleteTransitionRules();
+ UnicodeString tzid;
+ getID(tzid);
+
+ UnicodeString stdName = tzid + UNICODE_STRING_SIMPLE("(STD)");
+ UnicodeString dstName = tzid + UNICODE_STRING_SIMPLE("(DST)");
+
+ int32_t raw, dst;
+ if (transitionCount > 0) {
+ int16_t transitionIdx, typeIdx;
+
+ // Note: Since 2007c, the very first transition data is a dummy entry
+ // added for resolving a offset calculation problem.
+
+ // Create initial rule
+ typeIdx = (int16_t)typeData[0]; // initial type
+ raw = rawOffset(typeIdx) * U_MILLIS_PER_SECOND;
+ dst = dstOffset(typeIdx) * U_MILLIS_PER_SECOND;
+ initialRule = new InitialTimeZoneRule((dst == 0 ? stdName : dstName), raw, dst);
+ // Check to make sure initialRule was created
+ if (initialRule == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ deleteTransitionRules();
+ return;
+ }
+
+ firstTZTransitionIdx = 0;
+ for (transitionIdx = 1; transitionIdx < transitionCount; transitionIdx++) {
+ firstTZTransitionIdx++;
+ if (typeIdx != (int16_t)typeData[transitionIdx]) {
+ break;
+ }
+ }
+ if (transitionIdx == transitionCount) {
+ // Actually no transitions...
+ } else {
+ // Build historic rule array
+ UDate* times = (UDate*)uprv_malloc(sizeof(UDate)*transitionCount); /* large enough to store all transition times */
+ if (times == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ deleteTransitionRules();
+ return;
+ }
+ for (typeIdx = 0; typeIdx < typeCount; typeIdx++) {
+ // Gather all start times for each pair of offsets
+ int32_t nTimes = 0;
+ for (transitionIdx = firstTZTransitionIdx; transitionIdx < transitionCount; transitionIdx++) {
+ if (typeIdx == (int16_t)typeData[transitionIdx]) {
+ UDate tt = ((UDate)transitionTimes[transitionIdx]) * U_MILLIS_PER_SECOND;
+ if (tt < finalMillis) {
+ // Exclude transitions after finalMillis
+ times[nTimes++] = tt;
+ }
+ }
+ }
+ if (nTimes > 0) {
+ // Create a TimeArrayTimeZoneRule
+ raw = rawOffset(typeIdx) * U_MILLIS_PER_SECOND;
+ dst = dstOffset(typeIdx) * U_MILLIS_PER_SECOND;
+ if (historicRules == NULL) {
+ historicRuleCount = typeCount;
+ historicRules = (TimeArrayTimeZoneRule**)uprv_malloc(sizeof(TimeArrayTimeZoneRule*)*historicRuleCount);
+ if (historicRules == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ deleteTransitionRules();
+ uprv_free(times);
+ return;
+ }
+ for (int i = 0; i < historicRuleCount; i++) {
+ // Initialize TimeArrayTimeZoneRule pointers as NULL
+ historicRules[i] = NULL;
+ }
+ }
+ historicRules[typeIdx] = new TimeArrayTimeZoneRule((dst == 0 ? stdName : dstName),
+ raw, dst, times, nTimes, DateTimeRule::UTC_TIME);
+ // Check for memory allocation error
+ if (historicRules[typeIdx] == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ deleteTransitionRules();
+ return;
+ }
+ }
+ }
+ uprv_free(times);
+
+ // Create initial transition
+ typeIdx = (int16_t)typeData[firstTZTransitionIdx];
+ firstTZTransition = new TimeZoneTransition(((UDate)transitionTimes[firstTZTransitionIdx]) * U_MILLIS_PER_SECOND,
+ *initialRule, *historicRules[typeIdx]);
+ // Check to make sure firstTZTransition was created.
+ if (firstTZTransition == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ deleteTransitionRules();
+ return;
+ }
+ }
+ }
+ if (initialRule == NULL) {
+ // No historic transitions
+ raw = rawOffset(0) * U_MILLIS_PER_SECOND;
+ dst = dstOffset(0) * U_MILLIS_PER_SECOND;
+ initialRule = new InitialTimeZoneRule((dst == 0 ? stdName : dstName), raw, dst);
+ // Check to make sure initialRule was created.
+ if (initialRule == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ deleteTransitionRules();
+ return;
+ }
+ }
+ if (finalZone != NULL) {
+ // Get the first occurence of final rule starts
+ UDate startTime = (UDate)finalMillis;
+ TimeZoneRule *firstFinalRule = NULL;
+ if (finalZone->useDaylightTime()) {
+ /*
+ * Note: When an OlsonTimeZone is constructed, we should set the final year
+ * as the start year of finalZone. However, the bounday condition used for
+ * getting offset from finalZone has some problems. So setting the start year
+ * in the finalZone will cause a problem. For now, we do not set the valid
+ * start year when the construction time and create a clone and set the
+ * start year when extracting rules.
+ */
+ finalZoneWithStartYear = (SimpleTimeZone*)finalZone->clone();
+ // Check to make sure finalZone was actually cloned.
+ if (finalZoneWithStartYear == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ deleteTransitionRules();
+ return;
+ }
+ // finalYear is 1 year before the actual final year.
+ // See the comment in the construction method.
+ finalZoneWithStartYear->setStartYear(finalYear + 1);
+
+ TimeZoneTransition tzt;
+ finalZoneWithStartYear->getNextTransition(startTime, false, tzt);
+ firstFinalRule = tzt.getTo()->clone();
+ // Check to make sure firstFinalRule received proper clone.
+ if (firstFinalRule == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ deleteTransitionRules();
+ return;
+ }
+ startTime = tzt.getTime();
+ } else {
+ finalZoneWithStartYear = (SimpleTimeZone*)finalZone->clone();
+ // Check to make sure finalZoneWithStartYear received proper clone before dereference.
+ if (finalZoneWithStartYear == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ deleteTransitionRules();
+ return;
+ }
+ finalZone->getID(tzid);
+ firstFinalRule = new TimeArrayTimeZoneRule(tzid,
+ finalZone->getRawOffset(), 0, &startTime, 1, DateTimeRule::UTC_TIME);
+ // Check firstFinalRule was properly created.
+ if (firstFinalRule == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ deleteTransitionRules();
+ return;
+ }
+ }
+ TimeZoneRule *prevRule = NULL;
+ if (transitionCount > 0) {
+ prevRule = historicRules[typeData[transitionCount - 1]];
+ }
+ if (prevRule == NULL) {
+ // No historic transitions, but only finalZone available
+ prevRule = initialRule;
+ }
+ firstFinalTZTransition = new TimeZoneTransition();
+ // Check to make sure firstFinalTZTransition was created before dereferencing
+ if (firstFinalTZTransition == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ deleteTransitionRules();
+ return;
+ }
+ firstFinalTZTransition->setTime(startTime);
+ firstFinalTZTransition->adoptFrom(prevRule->clone());
+ firstFinalTZTransition->adoptTo(firstFinalRule);
+ }
+ transitionRulesInitialized = TRUE;
+}
+
+UBool
+OlsonTimeZone::getNextTransition(UDate base, UBool inclusive, TimeZoneTransition& result) /*const*/ {
+ UErrorCode status = U_ZERO_ERROR;
+ initTransitionRules(status);
+ if (U_FAILURE(status)) {
+ return FALSE;
+ }
+
+ if (finalZone != NULL) {
+ if (inclusive && base == firstFinalTZTransition->getTime()) {
+ result = *firstFinalTZTransition;
+ return TRUE;
+ } else if (base >= firstFinalTZTransition->getTime()) {
+ if (finalZone->useDaylightTime()) {
+ //return finalZone->getNextTransition(base, inclusive, result);
+ return finalZoneWithStartYear->getNextTransition(base, inclusive, result);
+ } else {
+ // No more transitions
+ return FALSE;
+ }
+ }
+ }
+ if (historicRules != NULL) {
+ // Find a historical transition
+ int16_t ttidx = transitionCount - 1;
+ for (; ttidx >= firstTZTransitionIdx; ttidx--) {
+ UDate t = ((UDate)transitionTimes[ttidx]) * U_MILLIS_PER_SECOND;
+ if (base > t || (!inclusive && base == t)) {
+ break;
+ }
+ }
+ if (ttidx == transitionCount - 1) {
+ if (firstFinalTZTransition != NULL) {
+ result = *firstFinalTZTransition;
+ return TRUE;
+ } else {
+ return FALSE;
+ }
+ } else if (ttidx < firstTZTransitionIdx) {
+ result = *firstTZTransition;
+ return TRUE;
+ } else {
+ // Create a TimeZoneTransition
+ TimeZoneRule *to = historicRules[typeData[ttidx + 1]];
+ TimeZoneRule *from = historicRules[typeData[ttidx]];
+ UDate startTime = ((UDate)transitionTimes[ttidx+1]) * U_MILLIS_PER_SECOND;
+
+ // The transitions loaded from zoneinfo.res may contain non-transition data
+ UnicodeString fromName, toName;
+ from->getName(fromName);
+ to->getName(toName);
+ if (fromName == toName && from->getRawOffset() == to->getRawOffset()
+ && from->getDSTSavings() == to->getDSTSavings()) {
+ return getNextTransition(startTime, false, result);
+ }
+ result.setTime(startTime);
+ result.adoptFrom(from->clone());
+ result.adoptTo(to->clone());
+ return TRUE;
+ }
+ }
+ return FALSE;
+}
+
+UBool
+OlsonTimeZone::getPreviousTransition(UDate base, UBool inclusive, TimeZoneTransition& result) /*const*/ {
+ UErrorCode status = U_ZERO_ERROR;
+ initTransitionRules(status);
+ if (U_FAILURE(status)) {
+ return FALSE;
+ }
+
+ if (finalZone != NULL) {
+ if (inclusive && base == firstFinalTZTransition->getTime()) {
+ result = *firstFinalTZTransition;
+ return TRUE;
+ } else if (base > firstFinalTZTransition->getTime()) {
+ if (finalZone->useDaylightTime()) {
+ //return finalZone->getPreviousTransition(base, inclusive, result);
+ return finalZoneWithStartYear->getPreviousTransition(base, inclusive, result);
+ } else {
+ result = *firstFinalTZTransition;
+ return TRUE;
+ }
+ }
+ }
+
+ if (historicRules != NULL) {
+ // Find a historical transition
+ int16_t ttidx = transitionCount - 1;
+ for (; ttidx >= firstTZTransitionIdx; ttidx--) {
+ UDate t = ((UDate)transitionTimes[ttidx]) * U_MILLIS_PER_SECOND;
+ if (base > t || (inclusive && base == t)) {
+ break;
+ }
+ }
+ if (ttidx < firstTZTransitionIdx) {
+ // No more transitions
+ return FALSE;
+ } else if (ttidx == firstTZTransitionIdx) {
+ result = *firstTZTransition;
+ return TRUE;
+ } else {
+ // Create a TimeZoneTransition
+ TimeZoneRule *to = historicRules[typeData[ttidx]];
+ TimeZoneRule *from = historicRules[typeData[ttidx-1]];
+ UDate startTime = ((UDate)transitionTimes[ttidx]) * U_MILLIS_PER_SECOND;
+
+ // The transitions loaded from zoneinfo.res may contain non-transition data
+ UnicodeString fromName, toName;
+ from->getName(fromName);
+ to->getName(toName);
+ if (fromName == toName && from->getRawOffset() == to->getRawOffset()
+ && from->getDSTSavings() == to->getDSTSavings()) {
+ return getPreviousTransition(startTime, false, result);
+ }
+ result.setTime(startTime);
+ result.adoptFrom(from->clone());
+ result.adoptTo(to->clone());
+ return TRUE;
+ }
+ }
+ return FALSE;
+}
+
+int32_t
+OlsonTimeZone::countTransitionRules(UErrorCode& status) /*const*/ {
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+ initTransitionRules(status);
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+
+ int32_t count = 0;
+ if (historicRules != NULL) {
+ // historicRules may contain null entries when original zoneinfo data
+ // includes non transition data.
+ for (int32_t i = 0; i < historicRuleCount; i++) {
+ if (historicRules[i] != NULL) {
+ count++;
+ }
+ }
+ }
+ if (finalZone != NULL) {
+ if (finalZone->useDaylightTime()) {
+ count += 2;
+ } else {
+ count++;
+ }
+ }
+ return count;
+}
+
+void
+OlsonTimeZone::getTimeZoneRules(const InitialTimeZoneRule*& initial,
+ const TimeZoneRule* trsrules[],
+ int32_t& trscount,
+ UErrorCode& status) /*const*/ {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ initTransitionRules(status);
+ if (U_FAILURE(status)) {
+ return;
+ }
+
+ // Initial rule
+ initial = initialRule;
+
+ // Transition rules
+ int32_t cnt = 0;
+ if (historicRules != NULL && trscount > cnt) {
+ // historicRules may contain null entries when original zoneinfo data
+ // includes non transition data.
+ for (int32_t i = 0; i < historicRuleCount; i++) {
+ if (historicRules[i] != NULL) {
+ trsrules[cnt++] = historicRules[i];
+ if (cnt >= trscount) {
+ break;
+ }
+ }
+ }
+ }
+ if (finalZoneWithStartYear != NULL && trscount > cnt) {
+ const InitialTimeZoneRule *tmpini;
+ int32_t tmpcnt = trscount - cnt;
+ finalZoneWithStartYear->getTimeZoneRules(tmpini, &trsrules[cnt], tmpcnt, status);
+ if (U_FAILURE(status)) {
+ return;
+ }
+ cnt += tmpcnt;
+ }
+ // Set the result length
+ trscount = cnt;
+}
+
U_NAMESPACE_END
#endif // !UCONFIG_NO_FORMATTING