#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
-#include <stdarg.h>
-#include <limits.h>
+#include <climits>
+#include <cstdarg>
// ICU PATCH: Customize header file paths for ICU.
-// The file fixed-dtoa.h is not needed.
-#include "double-conversion-strtod.h"
#include "double-conversion-bignum.h"
#include "double-conversion-cached-powers.h"
#include "double-conversion-ieee.h"
+#include "double-conversion-strtod.h"
// ICU PATCH: Wrap in ICU namespace
U_NAMESPACE_BEGIN
static const int kMinDecimalPower = -324;
// 2^64 = 18446744073709551616
-static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
+static const uint64_t kMaxUint64 = DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
static const double exact_powers_of_ten[] = {
// 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
10000000000000000000000.0
};
-static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
+static const int kExactPowersOfTenSize = DOUBLE_CONVERSION_ARRAY_SIZE(exact_powers_of_ten);
// Maximum number of significant digits in the decimal representation.
// In fact the value is 772 (see conversions.cc), but to give us some margin
}
// The input buffer has been trimmed. Therefore the last digit must be
// different from '0'.
- ASSERT(buffer[buffer.length() - 1] != '0');
+ DOUBLE_CONVERSION_ASSERT(buffer[buffer.length() - 1] != '0');
// Set the last digit to be non-zero. This is sufficient to guarantee
// correct rounding.
significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
exponent += left_trimmed.length() - right_trimmed.length();
if (right_trimmed.length() > kMaxSignificantDecimalDigits) {
(void) space_size; // Mark variable as used.
- ASSERT(space_size >= kMaxSignificantDecimalDigits);
+ DOUBLE_CONVERSION_ASSERT(space_size >= kMaxSignificantDecimalDigits);
CutToMaxSignificantDigits(right_trimmed, exponent,
buffer_copy_space, updated_exponent);
*trimmed = Vector<const char>(buffer_copy_space,
int i = 0;
while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
int digit = buffer[i++] - '0';
- ASSERT(0 <= digit && digit <= 9);
+ DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9);
result = 10 * result + digit;
}
*number_of_read_digits = i;
// Note that the ARM simulator is compiled for 32bits. It therefore exhibits
// the same problem.
return false;
-#endif
+#else
if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
int read_digits;
// The trimmed input fits into a double.
if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
// 10^-exponent fits into a double.
*result = static_cast<double>(ReadUint64(trimmed, &read_digits));
- ASSERT(read_digits == trimmed.length());
+ DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
*result /= exact_powers_of_ten[-exponent];
return true;
}
if (0 <= exponent && exponent < kExactPowersOfTenSize) {
// 10^exponent fits into a double.
*result = static_cast<double>(ReadUint64(trimmed, &read_digits));
- ASSERT(read_digits == trimmed.length());
+ DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
*result *= exact_powers_of_ten[exponent];
return true;
}
// 10^remaining_digits. As a result the remaining exponent now fits
// into a double too.
*result = static_cast<double>(ReadUint64(trimmed, &read_digits));
- ASSERT(read_digits == trimmed.length());
+ DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
*result *= exact_powers_of_ten[remaining_digits];
*result *= exact_powers_of_ten[exponent - remaining_digits];
return true;
}
}
return false;
+#endif
}
// Returns 10^exponent as an exact DiyFp.
// The given exponent must be in the range [1; kDecimalExponentDistance[.
static DiyFp AdjustmentPowerOfTen(int exponent) {
- ASSERT(0 < exponent);
- ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
+ DOUBLE_CONVERSION_ASSERT(0 < exponent);
+ DOUBLE_CONVERSION_ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
// Simply hardcode the remaining powers for the given decimal exponent
// distance.
- ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
+ DOUBLE_CONVERSION_ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
switch (exponent) {
- case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
- case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
- case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
- case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
- case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
- case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
- case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
+ case 1: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xa0000000, 00000000), -60);
+ case 2: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc8000000, 00000000), -57);
+ case 3: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xfa000000, 00000000), -54);
+ case 4: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x9c400000, 00000000), -50);
+ case 5: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc3500000, 00000000), -47);
+ case 6: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xf4240000, 00000000), -44);
+ case 7: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x98968000, 00000000), -40);
default:
- UNREACHABLE();
+ DOUBLE_CONVERSION_UNREACHABLE();
}
}
input.Normalize();
error <<= old_e - input.e();
- ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
+ DOUBLE_CONVERSION_ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
if (exponent < PowersOfTenCache::kMinDecimalExponent) {
*result = 0.0;
return true;
if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
// The product of input with the adjustment power fits into a 64 bit
// integer.
- ASSERT(DiyFp::kSignificandSize == 64);
+ DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64);
} else {
// The adjustment power is exact. There is hence only an error of 0.5.
error += kDenominator / 2;
precision_digits_count -= shift_amount;
}
// We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
- ASSERT(DiyFp::kSignificandSize == 64);
- ASSERT(precision_digits_count < 64);
+ DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64);
+ DOUBLE_CONVERSION_ASSERT(precision_digits_count < 64);
uint64_t one64 = 1;
uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
uint64_t precision_bits = input.f() & precision_bits_mask;
static int CompareBufferWithDiyFp(Vector<const char> buffer,
int exponent,
DiyFp diy_fp) {
- ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
- ASSERT(buffer.length() + exponent > kMinDecimalPower);
- ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
+ DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
+ DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent > kMinDecimalPower);
+ DOUBLE_CONVERSION_ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
// Make sure that the Bignum will be able to hold all our numbers.
// Our Bignum implementation has a separate field for exponents. Shifts will
// consume at most one bigit (< 64 bits).
// ln(10) == 3.3219...
- ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
+ DOUBLE_CONVERSION_ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
Bignum buffer_bignum;
Bignum diy_fp_bignum;
buffer_bignum.AssignDecimalString(buffer);
return false;
}
-double Strtod(Vector<const char> buffer, int exponent) {
- char copy_buffer[kMaxSignificantDecimalDigits];
- Vector<const char> trimmed;
- int updated_exponent;
- TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
- &trimmed, &updated_exponent);
- exponent = updated_exponent;
+#if U_DEBUG // needed for ICU only in debug mode
+static bool IsDigit(const char d) {
+ return ('0' <= d) && (d <= '9');
+}
- double guess;
- bool is_correct = ComputeGuess(trimmed, exponent, &guess);
- if (is_correct) return guess;
+static bool IsNonZeroDigit(const char d) {
+ return ('1' <= d) && (d <= '9');
+}
+
+static bool AssertTrimmedDigits(const Vector<const char>& buffer) {
+ for(int i = 0; i < buffer.length(); ++i) {
+ if(!IsDigit(buffer[i])) {
+ return false;
+ }
+ }
+ return (buffer.length() == 0) || (IsNonZeroDigit(buffer[0]) && IsNonZeroDigit(buffer[buffer.length()-1]));
+}
+#endif // needed for ICU only in debug mode
+double StrtodTrimmed(Vector<const char> trimmed, int exponent) {
+ DOUBLE_CONVERSION_ASSERT(trimmed.length() <= kMaxSignificantDecimalDigits);
+ DOUBLE_CONVERSION_ASSERT(AssertTrimmedDigits(trimmed));
+ double guess;
+ const bool is_correct = ComputeGuess(trimmed, exponent, &guess);
+ if (is_correct) {
+ return guess;
+ }
DiyFp upper_boundary = Double(guess).UpperBoundary();
int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
if (comparison < 0) {
}
}
+double Strtod(Vector<const char> buffer, int exponent) {
+ char copy_buffer[kMaxSignificantDecimalDigits];
+ Vector<const char> trimmed;
+ int updated_exponent;
+ TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
+ &trimmed, &updated_exponent);
+ return StrtodTrimmed(trimmed, updated_exponent);
+}
+
+static float SanitizedDoubletof(double d) {
+ DOUBLE_CONVERSION_ASSERT(d >= 0.0);
+ // ASAN has a sanitize check that disallows casting doubles to floats if
+ // they are too big.
+ // https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks
+ // The behavior should be covered by IEEE 754, but some projects use this
+ // flag, so work around it.
+ float max_finite = 3.4028234663852885981170418348451692544e+38;
+ // The half-way point between the max-finite and infinity value.
+ // Since infinity has an even significand everything equal or greater than
+ // this value should become infinity.
+ double half_max_finite_infinity =
+ 3.40282356779733661637539395458142568448e+38;
+ if (d >= max_finite) {
+ if (d >= half_max_finite_infinity) {
+ return Single::Infinity();
+ } else {
+ return max_finite;
+ }
+ } else {
+ return static_cast<float>(d);
+ }
+}
+
float Strtof(Vector<const char> buffer, int exponent) {
char copy_buffer[kMaxSignificantDecimalDigits];
Vector<const char> trimmed;
double double_guess;
bool is_correct = ComputeGuess(trimmed, exponent, &double_guess);
- float float_guess = static_cast<float>(double_guess);
+ float float_guess = SanitizedDoubletof(double_guess);
if (float_guess == double_guess) {
// This shortcut triggers for integer values.
return float_guess;
double double_next = Double(double_guess).NextDouble();
double double_previous = Double(double_guess).PreviousDouble();
- float f1 = static_cast<float>(double_previous);
+ float f1 = SanitizedDoubletof(double_previous);
float f2 = float_guess;
- float f3 = static_cast<float>(double_next);
+ float f3 = SanitizedDoubletof(double_next);
float f4;
if (is_correct) {
f4 = f3;
} else {
double double_next2 = Double(double_next).NextDouble();
- f4 = static_cast<float>(double_next2);
+ f4 = SanitizedDoubletof(double_next2);
}
(void) f2; // Mark variable as used.
- ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
+ DOUBLE_CONVERSION_ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
// If the guess doesn't lie near a single-precision boundary we can simply
// return its float-value.
return float_guess;
}
- ASSERT((f1 != f2 && f2 == f3 && f3 == f4) ||
+ DOUBLE_CONVERSION_ASSERT((f1 != f2 && f2 == f3 && f3 == f4) ||
(f1 == f2 && f2 != f3 && f3 == f4) ||
(f1 == f2 && f2 == f3 && f3 != f4));
- // guess and next are the two possible canditates (in the same way that
+ // guess and next are the two possible candidates (in the same way that
// double_guess was the lower candidate for a double-precision guess).
float guess = f1;
float next = f4;