X-Git-Url: https://git.saurik.com/apple/icu.git/blobdiff_plain/a01113dcd0f39d5da295ef82785beff9ed86fe38..340931cb2e044a2141d11567dd0f782524e32994:/icuSources/i18n/double-conversion-strtod.cpp diff --git a/icuSources/i18n/double-conversion-strtod.cpp b/icuSources/i18n/double-conversion-strtod.cpp index be9b0b3b..9cf48544 100644 --- a/icuSources/i18n/double-conversion-strtod.cpp +++ b/icuSources/i18n/double-conversion-strtod.cpp @@ -34,16 +34,15 @@ #include "unicode/utypes.h" #if !UCONFIG_NO_FORMATTING -#include -#include +#include +#include // ICU PATCH: Customize header file paths for ICU. -// The file fixed-dtoa.h is not needed. -#include "double-conversion-strtod.h" #include "double-conversion-bignum.h" #include "double-conversion-cached-powers.h" #include "double-conversion-ieee.h" +#include "double-conversion-strtod.h" // ICU PATCH: Wrap in ICU namespace U_NAMESPACE_BEGIN @@ -67,7 +66,7 @@ static const int kMaxDecimalPower = 309; static const int kMinDecimalPower = -324; // 2^64 = 18446744073709551616 -static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF); +static const uint64_t kMaxUint64 = DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF); static const double exact_powers_of_ten[] = { @@ -96,7 +95,7 @@ static const double exact_powers_of_ten[] = { // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22 10000000000000000000000.0 }; -static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten); +static const int kExactPowersOfTenSize = DOUBLE_CONVERSION_ARRAY_SIZE(exact_powers_of_ten); // Maximum number of significant digits in the decimal representation. // In fact the value is 772 (see conversions.cc), but to give us some margin @@ -132,7 +131,7 @@ static void CutToMaxSignificantDigits(Vector buffer, } // The input buffer has been trimmed. Therefore the last digit must be // different from '0'. - ASSERT(buffer[buffer.length() - 1] != '0'); + DOUBLE_CONVERSION_ASSERT(buffer[buffer.length() - 1] != '0'); // Set the last digit to be non-zero. This is sufficient to guarantee // correct rounding. significant_buffer[kMaxSignificantDecimalDigits - 1] = '1'; @@ -153,7 +152,7 @@ static void TrimAndCut(Vector buffer, int exponent, exponent += left_trimmed.length() - right_trimmed.length(); if (right_trimmed.length() > kMaxSignificantDecimalDigits) { (void) space_size; // Mark variable as used. - ASSERT(space_size >= kMaxSignificantDecimalDigits); + DOUBLE_CONVERSION_ASSERT(space_size >= kMaxSignificantDecimalDigits); CutToMaxSignificantDigits(right_trimmed, exponent, buffer_copy_space, updated_exponent); *trimmed = Vector(buffer_copy_space, @@ -176,7 +175,7 @@ static uint64_t ReadUint64(Vector buffer, int i = 0; while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { int digit = buffer[i++] - '0'; - ASSERT(0 <= digit && digit <= 9); + DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9); result = 10 * result + digit; } *number_of_read_digits = i; @@ -220,7 +219,7 @@ static bool DoubleStrtod(Vector trimmed, // Note that the ARM simulator is compiled for 32bits. It therefore exhibits // the same problem. return false; -#endif +#else if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { int read_digits; // The trimmed input fits into a double. @@ -232,14 +231,14 @@ static bool DoubleStrtod(Vector trimmed, if (exponent < 0 && -exponent < kExactPowersOfTenSize) { // 10^-exponent fits into a double. *result = static_cast(ReadUint64(trimmed, &read_digits)); - ASSERT(read_digits == trimmed.length()); + DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length()); *result /= exact_powers_of_ten[-exponent]; return true; } if (0 <= exponent && exponent < kExactPowersOfTenSize) { // 10^exponent fits into a double. *result = static_cast(ReadUint64(trimmed, &read_digits)); - ASSERT(read_digits == trimmed.length()); + DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length()); *result *= exact_powers_of_ten[exponent]; return true; } @@ -251,34 +250,35 @@ static bool DoubleStrtod(Vector trimmed, // 10^remaining_digits. As a result the remaining exponent now fits // into a double too. *result = static_cast(ReadUint64(trimmed, &read_digits)); - ASSERT(read_digits == trimmed.length()); + DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length()); *result *= exact_powers_of_ten[remaining_digits]; *result *= exact_powers_of_ten[exponent - remaining_digits]; return true; } } return false; +#endif } // Returns 10^exponent as an exact DiyFp. // The given exponent must be in the range [1; kDecimalExponentDistance[. static DiyFp AdjustmentPowerOfTen(int exponent) { - ASSERT(0 < exponent); - ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); + DOUBLE_CONVERSION_ASSERT(0 < exponent); + DOUBLE_CONVERSION_ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); // Simply hardcode the remaining powers for the given decimal exponent // distance. - ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); + DOUBLE_CONVERSION_ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); switch (exponent) { - case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60); - case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57); - case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54); - case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50); - case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47); - case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44); - case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40); + case 1: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xa0000000, 00000000), -60); + case 2: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc8000000, 00000000), -57); + case 3: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xfa000000, 00000000), -54); + case 4: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x9c400000, 00000000), -50); + case 5: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc3500000, 00000000), -47); + case 6: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xf4240000, 00000000), -44); + case 7: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x98968000, 00000000), -40); default: - UNREACHABLE(); + DOUBLE_CONVERSION_UNREACHABLE(); } } @@ -307,7 +307,7 @@ static bool DiyFpStrtod(Vector buffer, input.Normalize(); error <<= old_e - input.e(); - ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); + DOUBLE_CONVERSION_ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); if (exponent < PowersOfTenCache::kMinDecimalExponent) { *result = 0.0; return true; @@ -325,7 +325,7 @@ static bool DiyFpStrtod(Vector buffer, if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { // The product of input with the adjustment power fits into a 64 bit // integer. - ASSERT(DiyFp::kSignificandSize == 64); + DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64); } else { // The adjustment power is exact. There is hence only an error of 0.5. error += kDenominator / 2; @@ -367,8 +367,8 @@ static bool DiyFpStrtod(Vector buffer, precision_digits_count -= shift_amount; } // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too. - ASSERT(DiyFp::kSignificandSize == 64); - ASSERT(precision_digits_count < 64); + DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64); + DOUBLE_CONVERSION_ASSERT(precision_digits_count < 64); uint64_t one64 = 1; uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; uint64_t precision_bits = input.f() & precision_bits_mask; @@ -407,14 +407,14 @@ static bool DiyFpStrtod(Vector buffer, static int CompareBufferWithDiyFp(Vector buffer, int exponent, DiyFp diy_fp) { - ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1); - ASSERT(buffer.length() + exponent > kMinDecimalPower); - ASSERT(buffer.length() <= kMaxSignificantDecimalDigits); + DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1); + DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent > kMinDecimalPower); + DOUBLE_CONVERSION_ASSERT(buffer.length() <= kMaxSignificantDecimalDigits); // Make sure that the Bignum will be able to hold all our numbers. // Our Bignum implementation has a separate field for exponents. Shifts will // consume at most one bigit (< 64 bits). // ln(10) == 3.3219... - ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits); + DOUBLE_CONVERSION_ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits); Bignum buffer_bignum; Bignum diy_fp_bignum; buffer_bignum.AssignDecimalString(buffer); @@ -460,18 +460,33 @@ static bool ComputeGuess(Vector trimmed, int exponent, return false; } -double Strtod(Vector buffer, int exponent) { - char copy_buffer[kMaxSignificantDecimalDigits]; - Vector trimmed; - int updated_exponent; - TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits, - &trimmed, &updated_exponent); - exponent = updated_exponent; +#if U_DEBUG // needed for ICU only in debug mode +static bool IsDigit(const char d) { + return ('0' <= d) && (d <= '9'); +} - double guess; - bool is_correct = ComputeGuess(trimmed, exponent, &guess); - if (is_correct) return guess; +static bool IsNonZeroDigit(const char d) { + return ('1' <= d) && (d <= '9'); +} + +static bool AssertTrimmedDigits(const Vector& buffer) { + for(int i = 0; i < buffer.length(); ++i) { + if(!IsDigit(buffer[i])) { + return false; + } + } + return (buffer.length() == 0) || (IsNonZeroDigit(buffer[0]) && IsNonZeroDigit(buffer[buffer.length()-1])); +} +#endif // needed for ICU only in debug mode +double StrtodTrimmed(Vector trimmed, int exponent) { + DOUBLE_CONVERSION_ASSERT(trimmed.length() <= kMaxSignificantDecimalDigits); + DOUBLE_CONVERSION_ASSERT(AssertTrimmedDigits(trimmed)); + double guess; + const bool is_correct = ComputeGuess(trimmed, exponent, &guess); + if (is_correct) { + return guess; + } DiyFp upper_boundary = Double(guess).UpperBoundary(); int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary); if (comparison < 0) { @@ -486,6 +501,39 @@ double Strtod(Vector buffer, int exponent) { } } +double Strtod(Vector buffer, int exponent) { + char copy_buffer[kMaxSignificantDecimalDigits]; + Vector trimmed; + int updated_exponent; + TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits, + &trimmed, &updated_exponent); + return StrtodTrimmed(trimmed, updated_exponent); +} + +static float SanitizedDoubletof(double d) { + DOUBLE_CONVERSION_ASSERT(d >= 0.0); + // ASAN has a sanitize check that disallows casting doubles to floats if + // they are too big. + // https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks + // The behavior should be covered by IEEE 754, but some projects use this + // flag, so work around it. + float max_finite = 3.4028234663852885981170418348451692544e+38; + // The half-way point between the max-finite and infinity value. + // Since infinity has an even significand everything equal or greater than + // this value should become infinity. + double half_max_finite_infinity = + 3.40282356779733661637539395458142568448e+38; + if (d >= max_finite) { + if (d >= half_max_finite_infinity) { + return Single::Infinity(); + } else { + return max_finite; + } + } else { + return static_cast(d); + } +} + float Strtof(Vector buffer, int exponent) { char copy_buffer[kMaxSignificantDecimalDigits]; Vector trimmed; @@ -497,7 +545,7 @@ float Strtof(Vector buffer, int exponent) { double double_guess; bool is_correct = ComputeGuess(trimmed, exponent, &double_guess); - float float_guess = static_cast(double_guess); + float float_guess = SanitizedDoubletof(double_guess); if (float_guess == double_guess) { // This shortcut triggers for integer values. return float_guess; @@ -520,18 +568,18 @@ float Strtof(Vector buffer, int exponent) { double double_next = Double(double_guess).NextDouble(); double double_previous = Double(double_guess).PreviousDouble(); - float f1 = static_cast(double_previous); + float f1 = SanitizedDoubletof(double_previous); float f2 = float_guess; - float f3 = static_cast(double_next); + float f3 = SanitizedDoubletof(double_next); float f4; if (is_correct) { f4 = f3; } else { double double_next2 = Double(double_next).NextDouble(); - f4 = static_cast(double_next2); + f4 = SanitizedDoubletof(double_next2); } (void) f2; // Mark variable as used. - ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4); + DOUBLE_CONVERSION_ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4); // If the guess doesn't lie near a single-precision boundary we can simply // return its float-value. @@ -539,11 +587,11 @@ float Strtof(Vector buffer, int exponent) { return float_guess; } - ASSERT((f1 != f2 && f2 == f3 && f3 == f4) || + DOUBLE_CONVERSION_ASSERT((f1 != f2 && f2 == f3 && f3 == f4) || (f1 == f2 && f2 != f3 && f3 == f4) || (f1 == f2 && f2 == f3 && f3 != f4)); - // guess and next are the two possible canditates (in the same way that + // guess and next are the two possible candidates (in the same way that // double_guess was the lower candidate for a double-precision guess). float guess = f1; float next = f4;