1 // © 2018 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
4 // From the double-conversion library. Original license:
6 // Copyright 2010 the V8 project authors. All rights reserved.
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions are
11 // * Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 // * Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following
15 // disclaimer in the documentation and/or other materials provided
16 // with the distribution.
17 // * Neither the name of Google Inc. nor the names of its
18 // contributors may be used to endorse or promote products derived
19 // from this software without specific prior written permission.
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34 #include "unicode/utypes.h"
35 #if !UCONFIG_NO_FORMATTING
40 // ICU PATCH: Customize header file paths for ICU.
42 #include "double-conversion-bignum.h"
43 #include "double-conversion-cached-powers.h"
44 #include "double-conversion-ieee.h"
45 #include "double-conversion-strtod.h"
47 // ICU PATCH: Wrap in ICU namespace
50 namespace double_conversion
{
52 // 2^53 = 9007199254740992.
53 // Any integer with at most 15 decimal digits will hence fit into a double
54 // (which has a 53bit significand) without loss of precision.
55 static const int kMaxExactDoubleIntegerDecimalDigits
= 15;
56 // 2^64 = 18446744073709551616 > 10^19
57 static const int kMaxUint64DecimalDigits
= 19;
59 // Max double: 1.7976931348623157 x 10^308
60 // Min non-zero double: 4.9406564584124654 x 10^-324
61 // Any x >= 10^309 is interpreted as +infinity.
62 // Any x <= 10^-324 is interpreted as 0.
63 // Note that 2.5e-324 (despite being smaller than the min double) will be read
64 // as non-zero (equal to the min non-zero double).
65 static const int kMaxDecimalPower
= 309;
66 static const int kMinDecimalPower
= -324;
68 // 2^64 = 18446744073709551616
69 static const uint64_t kMaxUint64
= DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF
);
72 static const double exact_powers_of_ten
[] = {
83 10000000000.0, // 10^10
91 1000000000000000000.0,
92 10000000000000000000.0,
93 100000000000000000000.0, // 10^20
94 1000000000000000000000.0,
95 // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
96 10000000000000000000000.0
98 static const int kExactPowersOfTenSize
= DOUBLE_CONVERSION_ARRAY_SIZE(exact_powers_of_ten
);
100 // Maximum number of significant digits in the decimal representation.
101 // In fact the value is 772 (see conversions.cc), but to give us some margin
102 // we round up to 780.
103 static const int kMaxSignificantDecimalDigits
= 780;
105 static Vector
<const char> TrimLeadingZeros(Vector
<const char> buffer
) {
106 for (int i
= 0; i
< buffer
.length(); i
++) {
107 if (buffer
[i
] != '0') {
108 return buffer
.SubVector(i
, buffer
.length());
111 return Vector
<const char>(buffer
.start(), 0);
115 static Vector
<const char> TrimTrailingZeros(Vector
<const char> buffer
) {
116 for (int i
= buffer
.length() - 1; i
>= 0; --i
) {
117 if (buffer
[i
] != '0') {
118 return buffer
.SubVector(0, i
+ 1);
121 return Vector
<const char>(buffer
.start(), 0);
125 static void CutToMaxSignificantDigits(Vector
<const char> buffer
,
127 char* significant_buffer
,
128 int* significant_exponent
) {
129 for (int i
= 0; i
< kMaxSignificantDecimalDigits
- 1; ++i
) {
130 significant_buffer
[i
] = buffer
[i
];
132 // The input buffer has been trimmed. Therefore the last digit must be
133 // different from '0'.
134 DOUBLE_CONVERSION_ASSERT(buffer
[buffer
.length() - 1] != '0');
135 // Set the last digit to be non-zero. This is sufficient to guarantee
137 significant_buffer
[kMaxSignificantDecimalDigits
- 1] = '1';
138 *significant_exponent
=
139 exponent
+ (buffer
.length() - kMaxSignificantDecimalDigits
);
143 // Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits.
144 // If possible the input-buffer is reused, but if the buffer needs to be
145 // modified (due to cutting), then the input needs to be copied into the
146 // buffer_copy_space.
147 static void TrimAndCut(Vector
<const char> buffer
, int exponent
,
148 char* buffer_copy_space
, int space_size
,
149 Vector
<const char>* trimmed
, int* updated_exponent
) {
150 Vector
<const char> left_trimmed
= TrimLeadingZeros(buffer
);
151 Vector
<const char> right_trimmed
= TrimTrailingZeros(left_trimmed
);
152 exponent
+= left_trimmed
.length() - right_trimmed
.length();
153 if (right_trimmed
.length() > kMaxSignificantDecimalDigits
) {
154 (void) space_size
; // Mark variable as used.
155 DOUBLE_CONVERSION_ASSERT(space_size
>= kMaxSignificantDecimalDigits
);
156 CutToMaxSignificantDigits(right_trimmed
, exponent
,
157 buffer_copy_space
, updated_exponent
);
158 *trimmed
= Vector
<const char>(buffer_copy_space
,
159 kMaxSignificantDecimalDigits
);
161 *trimmed
= right_trimmed
;
162 *updated_exponent
= exponent
;
167 // Reads digits from the buffer and converts them to a uint64.
168 // Reads in as many digits as fit into a uint64.
169 // When the string starts with "1844674407370955161" no further digit is read.
170 // Since 2^64 = 18446744073709551616 it would still be possible read another
171 // digit if it was less or equal than 6, but this would complicate the code.
172 static uint64_t ReadUint64(Vector
<const char> buffer
,
173 int* number_of_read_digits
) {
176 while (i
< buffer
.length() && result
<= (kMaxUint64
/ 10 - 1)) {
177 int digit
= buffer
[i
++] - '0';
178 DOUBLE_CONVERSION_ASSERT(0 <= digit
&& digit
<= 9);
179 result
= 10 * result
+ digit
;
181 *number_of_read_digits
= i
;
186 // Reads a DiyFp from the buffer.
187 // The returned DiyFp is not necessarily normalized.
188 // If remaining_decimals is zero then the returned DiyFp is accurate.
189 // Otherwise it has been rounded and has error of at most 1/2 ulp.
190 static void ReadDiyFp(Vector
<const char> buffer
,
192 int* remaining_decimals
) {
194 uint64_t significand
= ReadUint64(buffer
, &read_digits
);
195 if (buffer
.length() == read_digits
) {
196 *result
= DiyFp(significand
, 0);
197 *remaining_decimals
= 0;
199 // Round the significand.
200 if (buffer
[read_digits
] >= '5') {
203 // Compute the binary exponent.
205 *result
= DiyFp(significand
, exponent
);
206 *remaining_decimals
= buffer
.length() - read_digits
;
211 static bool DoubleStrtod(Vector
<const char> trimmed
,
214 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
215 // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
216 // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
217 // result is not accurate.
218 // We know that Windows32 uses 64 bits and is therefore accurate.
219 // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
223 if (trimmed
.length() <= kMaxExactDoubleIntegerDecimalDigits
) {
225 // The trimmed input fits into a double.
226 // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
227 // can compute the result-double simply by multiplying (resp. dividing) the
229 // This is possible because IEEE guarantees that floating-point operations
230 // return the best possible approximation.
231 if (exponent
< 0 && -exponent
< kExactPowersOfTenSize
) {
232 // 10^-exponent fits into a double.
233 *result
= static_cast<double>(ReadUint64(trimmed
, &read_digits
));
234 DOUBLE_CONVERSION_ASSERT(read_digits
== trimmed
.length());
235 *result
/= exact_powers_of_ten
[-exponent
];
238 if (0 <= exponent
&& exponent
< kExactPowersOfTenSize
) {
239 // 10^exponent fits into a double.
240 *result
= static_cast<double>(ReadUint64(trimmed
, &read_digits
));
241 DOUBLE_CONVERSION_ASSERT(read_digits
== trimmed
.length());
242 *result
*= exact_powers_of_ten
[exponent
];
245 int remaining_digits
=
246 kMaxExactDoubleIntegerDecimalDigits
- trimmed
.length();
247 if ((0 <= exponent
) &&
248 (exponent
- remaining_digits
< kExactPowersOfTenSize
)) {
249 // The trimmed string was short and we can multiply it with
250 // 10^remaining_digits. As a result the remaining exponent now fits
251 // into a double too.
252 *result
= static_cast<double>(ReadUint64(trimmed
, &read_digits
));
253 DOUBLE_CONVERSION_ASSERT(read_digits
== trimmed
.length());
254 *result
*= exact_powers_of_ten
[remaining_digits
];
255 *result
*= exact_powers_of_ten
[exponent
- remaining_digits
];
264 // Returns 10^exponent as an exact DiyFp.
265 // The given exponent must be in the range [1; kDecimalExponentDistance[.
266 static DiyFp
AdjustmentPowerOfTen(int exponent
) {
267 DOUBLE_CONVERSION_ASSERT(0 < exponent
);
268 DOUBLE_CONVERSION_ASSERT(exponent
< PowersOfTenCache::kDecimalExponentDistance
);
269 // Simply hardcode the remaining powers for the given decimal exponent
271 DOUBLE_CONVERSION_ASSERT(PowersOfTenCache::kDecimalExponentDistance
== 8);
273 case 1: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xa0000000, 00000000), -60);
274 case 2: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc8000000, 00000000), -57);
275 case 3: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xfa000000, 00000000), -54);
276 case 4: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x9c400000, 00000000), -50);
277 case 5: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc3500000, 00000000), -47);
278 case 6: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xf4240000, 00000000), -44);
279 case 7: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x98968000, 00000000), -40);
281 DOUBLE_CONVERSION_UNREACHABLE();
286 // If the function returns true then the result is the correct double.
287 // Otherwise it is either the correct double or the double that is just below
288 // the correct double.
289 static bool DiyFpStrtod(Vector
<const char> buffer
,
293 int remaining_decimals
;
294 ReadDiyFp(buffer
, &input
, &remaining_decimals
);
295 // Since we may have dropped some digits the input is not accurate.
296 // If remaining_decimals is different than 0 than the error is at most
297 // .5 ulp (unit in the last place).
298 // We don't want to deal with fractions and therefore keep a common
300 const int kDenominatorLog
= 3;
301 const int kDenominator
= 1 << kDenominatorLog
;
302 // Move the remaining decimals into the exponent.
303 exponent
+= remaining_decimals
;
304 uint64_t error
= (remaining_decimals
== 0 ? 0 : kDenominator
/ 2);
306 int old_e
= input
.e();
308 error
<<= old_e
- input
.e();
310 DOUBLE_CONVERSION_ASSERT(exponent
<= PowersOfTenCache::kMaxDecimalExponent
);
311 if (exponent
< PowersOfTenCache::kMinDecimalExponent
) {
316 int cached_decimal_exponent
;
317 PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent
,
319 &cached_decimal_exponent
);
321 if (cached_decimal_exponent
!= exponent
) {
322 int adjustment_exponent
= exponent
- cached_decimal_exponent
;
323 DiyFp adjustment_power
= AdjustmentPowerOfTen(adjustment_exponent
);
324 input
.Multiply(adjustment_power
);
325 if (kMaxUint64DecimalDigits
- buffer
.length() >= adjustment_exponent
) {
326 // The product of input with the adjustment power fits into a 64 bit
328 DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize
== 64);
330 // The adjustment power is exact. There is hence only an error of 0.5.
331 error
+= kDenominator
/ 2;
335 input
.Multiply(cached_power
);
336 // The error introduced by a multiplication of a*b equals
337 // error_a + error_b + error_a*error_b/2^64 + 0.5
338 // Substituting a with 'input' and b with 'cached_power' we have
339 // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp),
340 // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
341 int error_b
= kDenominator
/ 2;
342 int error_ab
= (error
== 0 ? 0 : 1); // We round up to 1.
343 int fixed_error
= kDenominator
/ 2;
344 error
+= error_b
+ error_ab
+ fixed_error
;
348 error
<<= old_e
- input
.e();
350 // See if the double's significand changes if we add/subtract the error.
351 int order_of_magnitude
= DiyFp::kSignificandSize
+ input
.e();
352 int effective_significand_size
=
353 Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude
);
354 int precision_digits_count
=
355 DiyFp::kSignificandSize
- effective_significand_size
;
356 if (precision_digits_count
+ kDenominatorLog
>= DiyFp::kSignificandSize
) {
357 // This can only happen for very small denormals. In this case the
358 // half-way multiplied by the denominator exceeds the range of an uint64.
359 // Simply shift everything to the right.
360 int shift_amount
= (precision_digits_count
+ kDenominatorLog
) -
361 DiyFp::kSignificandSize
+ 1;
362 input
.set_f(input
.f() >> shift_amount
);
363 input
.set_e(input
.e() + shift_amount
);
364 // We add 1 for the lost precision of error, and kDenominator for
365 // the lost precision of input.f().
366 error
= (error
>> shift_amount
) + 1 + kDenominator
;
367 precision_digits_count
-= shift_amount
;
369 // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
370 DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize
== 64);
371 DOUBLE_CONVERSION_ASSERT(precision_digits_count
< 64);
373 uint64_t precision_bits_mask
= (one64
<< precision_digits_count
) - 1;
374 uint64_t precision_bits
= input
.f() & precision_bits_mask
;
375 uint64_t half_way
= one64
<< (precision_digits_count
- 1);
376 precision_bits
*= kDenominator
;
377 half_way
*= kDenominator
;
378 DiyFp
rounded_input(input
.f() >> precision_digits_count
,
379 input
.e() + precision_digits_count
);
380 if (precision_bits
>= half_way
+ error
) {
381 rounded_input
.set_f(rounded_input
.f() + 1);
383 // If the last_bits are too close to the half-way case than we are too
384 // inaccurate and round down. In this case we return false so that we can
385 // fall back to a more precise algorithm.
387 *result
= Double(rounded_input
).value();
388 if (half_way
- error
< precision_bits
&& precision_bits
< half_way
+ error
) {
389 // Too imprecise. The caller will have to fall back to a slower version.
390 // However the returned number is guaranteed to be either the correct
391 // double, or the next-lower double.
400 // - -1 if buffer*10^exponent < diy_fp.
401 // - 0 if buffer*10^exponent == diy_fp.
402 // - +1 if buffer*10^exponent > diy_fp.
404 // buffer.length() + exponent <= kMaxDecimalPower + 1
405 // buffer.length() + exponent > kMinDecimalPower
406 // buffer.length() <= kMaxDecimalSignificantDigits
407 static int CompareBufferWithDiyFp(Vector
<const char> buffer
,
410 DOUBLE_CONVERSION_ASSERT(buffer
.length() + exponent
<= kMaxDecimalPower
+ 1);
411 DOUBLE_CONVERSION_ASSERT(buffer
.length() + exponent
> kMinDecimalPower
);
412 DOUBLE_CONVERSION_ASSERT(buffer
.length() <= kMaxSignificantDecimalDigits
);
413 // Make sure that the Bignum will be able to hold all our numbers.
414 // Our Bignum implementation has a separate field for exponents. Shifts will
415 // consume at most one bigit (< 64 bits).
416 // ln(10) == 3.3219...
417 DOUBLE_CONVERSION_ASSERT(((kMaxDecimalPower
+ 1) * 333 / 100) < Bignum::kMaxSignificantBits
);
418 Bignum buffer_bignum
;
419 Bignum diy_fp_bignum
;
420 buffer_bignum
.AssignDecimalString(buffer
);
421 diy_fp_bignum
.AssignUInt64(diy_fp
.f());
423 buffer_bignum
.MultiplyByPowerOfTen(exponent
);
425 diy_fp_bignum
.MultiplyByPowerOfTen(-exponent
);
427 if (diy_fp
.e() > 0) {
428 diy_fp_bignum
.ShiftLeft(diy_fp
.e());
430 buffer_bignum
.ShiftLeft(-diy_fp
.e());
432 return Bignum::Compare(buffer_bignum
, diy_fp_bignum
);
436 // Returns true if the guess is the correct double.
437 // Returns false, when guess is either correct or the next-lower double.
438 static bool ComputeGuess(Vector
<const char> trimmed
, int exponent
,
440 if (trimmed
.length() == 0) {
444 if (exponent
+ trimmed
.length() - 1 >= kMaxDecimalPower
) {
445 *guess
= Double::Infinity();
448 if (exponent
+ trimmed
.length() <= kMinDecimalPower
) {
453 if (DoubleStrtod(trimmed
, exponent
, guess
) ||
454 DiyFpStrtod(trimmed
, exponent
, guess
)) {
457 if (*guess
== Double::Infinity()) {
463 #if U_DEBUG // needed for ICU only in debug mode
464 static bool IsDigit(const char d
) {
465 return ('0' <= d
) && (d
<= '9');
468 static bool IsNonZeroDigit(const char d
) {
469 return ('1' <= d
) && (d
<= '9');
472 static bool AssertTrimmedDigits(const Vector
<const char>& buffer
) {
473 for(int i
= 0; i
< buffer
.length(); ++i
) {
474 if(!IsDigit(buffer
[i
])) {
478 return (buffer
.length() == 0) || (IsNonZeroDigit(buffer
[0]) && IsNonZeroDigit(buffer
[buffer
.length()-1]));
480 #endif // needed for ICU only in debug mode
482 double StrtodTrimmed(Vector
<const char> trimmed
, int exponent
) {
483 DOUBLE_CONVERSION_ASSERT(trimmed
.length() <= kMaxSignificantDecimalDigits
);
484 DOUBLE_CONVERSION_ASSERT(AssertTrimmedDigits(trimmed
));
486 const bool is_correct
= ComputeGuess(trimmed
, exponent
, &guess
);
490 DiyFp upper_boundary
= Double(guess
).UpperBoundary();
491 int comparison
= CompareBufferWithDiyFp(trimmed
, exponent
, upper_boundary
);
492 if (comparison
< 0) {
494 } else if (comparison
> 0) {
495 return Double(guess
).NextDouble();
496 } else if ((Double(guess
).Significand() & 1) == 0) {
497 // Round towards even.
500 return Double(guess
).NextDouble();
504 double Strtod(Vector
<const char> buffer
, int exponent
) {
505 char copy_buffer
[kMaxSignificantDecimalDigits
];
506 Vector
<const char> trimmed
;
507 int updated_exponent
;
508 TrimAndCut(buffer
, exponent
, copy_buffer
, kMaxSignificantDecimalDigits
,
509 &trimmed
, &updated_exponent
);
510 return StrtodTrimmed(trimmed
, updated_exponent
);
513 static float SanitizedDoubletof(double d
) {
514 DOUBLE_CONVERSION_ASSERT(d
>= 0.0);
515 // ASAN has a sanitize check that disallows casting doubles to floats if
517 // https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks
518 // The behavior should be covered by IEEE 754, but some projects use this
519 // flag, so work around it.
520 float max_finite
= 3.4028234663852885981170418348451692544e+38;
521 // The half-way point between the max-finite and infinity value.
522 // Since infinity has an even significand everything equal or greater than
523 // this value should become infinity.
524 double half_max_finite_infinity
=
525 3.40282356779733661637539395458142568448e+38;
526 if (d
>= max_finite
) {
527 if (d
>= half_max_finite_infinity
) {
528 return Single::Infinity();
533 return static_cast<float>(d
);
537 float Strtof(Vector
<const char> buffer
, int exponent
) {
538 char copy_buffer
[kMaxSignificantDecimalDigits
];
539 Vector
<const char> trimmed
;
540 int updated_exponent
;
541 TrimAndCut(buffer
, exponent
, copy_buffer
, kMaxSignificantDecimalDigits
,
542 &trimmed
, &updated_exponent
);
543 exponent
= updated_exponent
;
546 bool is_correct
= ComputeGuess(trimmed
, exponent
, &double_guess
);
548 float float_guess
= SanitizedDoubletof(double_guess
);
549 if (float_guess
== double_guess
) {
550 // This shortcut triggers for integer values.
554 // We must catch double-rounding. Say the double has been rounded up, and is
555 // now a boundary of a float, and rounds up again. This is why we have to
556 // look at previous too.
557 // Example (in decimal numbers):
559 // high-precision (4 digits): 1235
560 // low-precision (3 digits):
561 // when read from input: 123
562 // when rounded from high precision: 124.
563 // To do this we simply look at the neigbors of the correct result and see
564 // if they would round to the same float. If the guess is not correct we have
565 // to look at four values (since two different doubles could be the correct
568 double double_next
= Double(double_guess
).NextDouble();
569 double double_previous
= Double(double_guess
).PreviousDouble();
571 float f1
= SanitizedDoubletof(double_previous
);
572 float f2
= float_guess
;
573 float f3
= SanitizedDoubletof(double_next
);
578 double double_next2
= Double(double_next
).NextDouble();
579 f4
= SanitizedDoubletof(double_next2
);
581 (void) f2
; // Mark variable as used.
582 DOUBLE_CONVERSION_ASSERT(f1
<= f2
&& f2
<= f3
&& f3
<= f4
);
584 // If the guess doesn't lie near a single-precision boundary we can simply
585 // return its float-value.
590 DOUBLE_CONVERSION_ASSERT((f1
!= f2
&& f2
== f3
&& f3
== f4
) ||
591 (f1
== f2
&& f2
!= f3
&& f3
== f4
) ||
592 (f1
== f2
&& f2
== f3
&& f3
!= f4
));
594 // guess and next are the two possible candidates (in the same way that
595 // double_guess was the lower candidate for a double-precision guess).
598 DiyFp upper_boundary
;
600 float min_float
= 1e-45f
;
601 upper_boundary
= Double(static_cast<double>(min_float
) / 2).AsDiyFp();
603 upper_boundary
= Single(guess
).UpperBoundary();
605 int comparison
= CompareBufferWithDiyFp(trimmed
, exponent
, upper_boundary
);
606 if (comparison
< 0) {
608 } else if (comparison
> 0) {
610 } else if ((Single(guess
).Significand() & 1) == 0) {
611 // Round towards even.
618 } // namespace double_conversion
620 // ICU PATCH: Close ICU namespace
622 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING