]> git.saurik.com Git - apple/icu.git/blob - icuSources/tools/tzcode/localtime.c
ICU-8.11.4.tar.gz
[apple/icu.git] / icuSources / tools / tzcode / localtime.c
1 /*
2 ** This file is in the public domain, so clarified as of
3 ** 1996-06-05 by Arthur David Olson.
4 */
5
6 #ifndef lint
7 #ifndef NOID
8 static char elsieid[] = "@(#)localtime.c 8.9";
9 #endif /* !defined NOID */
10 #endif /* !defined lint */
11
12 /*
13 ** Leap second handling from Bradley White.
14 ** POSIX-style TZ environment variable handling from Guy Harris.
15 */
16
17 /*LINTLIBRARY*/
18
19 #include "private.h"
20 #include "tzfile.h"
21 #include "fcntl.h"
22 #include "float.h" /* for FLT_MAX and DBL_MAX */
23
24 #ifndef TZ_ABBR_MAX_LEN
25 #define TZ_ABBR_MAX_LEN 16
26 #endif /* !defined TZ_ABBR_MAX_LEN */
27
28 #ifndef TZ_ABBR_CHAR_SET
29 #define TZ_ABBR_CHAR_SET \
30 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
31 #endif /* !defined TZ_ABBR_CHAR_SET */
32
33 #ifndef TZ_ABBR_ERR_CHAR
34 #define TZ_ABBR_ERR_CHAR '_'
35 #endif /* !defined TZ_ABBR_ERR_CHAR */
36
37 /*
38 ** SunOS 4.1.1 headers lack O_BINARY.
39 */
40
41 #ifdef O_BINARY
42 #define OPEN_MODE (O_RDONLY | O_BINARY)
43 #endif /* defined O_BINARY */
44 #ifndef O_BINARY
45 #define OPEN_MODE O_RDONLY
46 #endif /* !defined O_BINARY */
47
48 #ifndef WILDABBR
49 /*
50 ** Someone might make incorrect use of a time zone abbreviation:
51 ** 1. They might reference tzname[0] before calling tzset (explicitly
52 ** or implicitly).
53 ** 2. They might reference tzname[1] before calling tzset (explicitly
54 ** or implicitly).
55 ** 3. They might reference tzname[1] after setting to a time zone
56 ** in which Daylight Saving Time is never observed.
57 ** 4. They might reference tzname[0] after setting to a time zone
58 ** in which Standard Time is never observed.
59 ** 5. They might reference tm.TM_ZONE after calling offtime.
60 ** What's best to do in the above cases is open to debate;
61 ** for now, we just set things up so that in any of the five cases
62 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
63 ** string "tzname[0] used before set", and similarly for the other cases.
64 ** And another: initialize tzname[0] to "ERA", with an explanation in the
65 ** manual page of what this "time zone abbreviation" means (doing this so
66 ** that tzname[0] has the "normal" length of three characters).
67 */
68 #define WILDABBR " "
69 #endif /* !defined WILDABBR */
70
71 static char wildabbr[] = WILDABBR;
72
73 static const char gmt[] = "GMT";
74
75 /*
76 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
77 ** We default to US rules as of 1999-08-17.
78 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
79 ** implementation dependent; for historical reasons, US rules are a
80 ** common default.
81 */
82 #ifndef TZDEFRULESTRING
83 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
84 #endif /* !defined TZDEFDST */
85
86 struct ttinfo { /* time type information */
87 long tt_gmtoff; /* UTC offset in seconds */
88 int tt_isdst; /* used to set tm_isdst */
89 int tt_abbrind; /* abbreviation list index */
90 int tt_ttisstd; /* TRUE if transition is std time */
91 int tt_ttisgmt; /* TRUE if transition is UTC */
92 };
93
94 struct lsinfo { /* leap second information */
95 time_t ls_trans; /* transition time */
96 long ls_corr; /* correction to apply */
97 };
98
99 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
100
101 #ifdef TZNAME_MAX
102 #define MY_TZNAME_MAX TZNAME_MAX
103 #endif /* defined TZNAME_MAX */
104 #ifndef TZNAME_MAX
105 #define MY_TZNAME_MAX 255
106 #endif /* !defined TZNAME_MAX */
107
108 struct state {
109 int leapcnt;
110 int timecnt;
111 int typecnt;
112 int charcnt;
113 int goback;
114 int goahead;
115 time_t ats[TZ_MAX_TIMES];
116 unsigned char types[TZ_MAX_TIMES];
117 struct ttinfo ttis[TZ_MAX_TYPES];
118 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
119 (2 * (MY_TZNAME_MAX + 1)))];
120 struct lsinfo lsis[TZ_MAX_LEAPS];
121 };
122
123 struct rule {
124 int r_type; /* type of rule--see below */
125 int r_day; /* day number of rule */
126 int r_week; /* week number of rule */
127 int r_mon; /* month number of rule */
128 long r_time; /* transition time of rule */
129 };
130
131 #define JULIAN_DAY 0 /* Jn - Julian day */
132 #define DAY_OF_YEAR 1 /* n - day of year */
133 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
134
135 /*
136 ** Prototypes for static functions.
137 */
138
139 static long detzcode(const char * codep);
140 static time_t detzcode64(const char * codep);
141 static int differ_by_repeat(time_t t1, time_t t0);
142 static const char * getzname(const char * strp);
143 static const char * getqzname(const char * strp, const int delim);
144 static const char * getnum(const char * strp, int * nump, int min,
145 int max);
146 static const char * getsecs(const char * strp, long * secsp);
147 static const char * getoffset(const char * strp, long * offsetp);
148 static const char * getrule(const char * strp, struct rule * rulep);
149 static void gmtload(struct state * sp);
150 static struct tm * gmtsub(const time_t * timep, long offset,
151 struct tm * tmp);
152 static struct tm * localsub(const time_t * timep, long offset,
153 struct tm * tmp);
154 static int increment_overflow(int * number, int delta);
155 static int leaps_thru_end_of(int y);
156 static int long_increment_overflow(long * number, int delta);
157 static int long_normalize_overflow(long * tensptr,
158 int * unitsptr, int base);
159 static int normalize_overflow(int * tensptr, int * unitsptr,
160 int base);
161 static void settzname(void);
162 static time_t time1(struct tm * tmp,
163 struct tm * (*funcp)(const time_t *,
164 long, struct tm *),
165 long offset);
166 static time_t time2(struct tm *tmp,
167 struct tm * (*funcp)(const time_t *,
168 long, struct tm*),
169 long offset, int * okayp);
170 static time_t time2sub(struct tm *tmp,
171 struct tm * (*funcp)(const time_t *,
172 long, struct tm*),
173 long offset, int * okayp, int do_norm_secs);
174 static struct tm * timesub(const time_t * timep, long offset,
175 const struct state * sp, struct tm * tmp);
176 static int tmcomp(const struct tm * atmp,
177 const struct tm * btmp);
178 static time_t transtime(time_t janfirst, int year,
179 const struct rule * rulep, long offset);
180 static int typesequiv(const struct state * sp, int a, int b);
181 static int tzload(const char * name, struct state * sp,
182 int doextend);
183 static int tzparse(const char * name, struct state * sp,
184 int lastditch);
185
186 #ifdef ALL_STATE
187 static struct state * lclptr;
188 static struct state * gmtptr;
189 #endif /* defined ALL_STATE */
190
191 #ifndef ALL_STATE
192 static struct state lclmem;
193 static struct state gmtmem;
194 #define lclptr (&lclmem)
195 #define gmtptr (&gmtmem)
196 #endif /* State Farm */
197
198 #ifndef TZ_STRLEN_MAX
199 #define TZ_STRLEN_MAX 255
200 #endif /* !defined TZ_STRLEN_MAX */
201
202 static char lcl_TZname[TZ_STRLEN_MAX + 1];
203 static int lcl_is_set;
204 static int gmt_is_set;
205
206 char * tzname[2] = {
207 wildabbr,
208 wildabbr
209 };
210
211 /*
212 ** Section 4.12.3 of X3.159-1989 requires that
213 ** Except for the strftime function, these functions [asctime,
214 ** ctime, gmtime, localtime] return values in one of two static
215 ** objects: a broken-down time structure and an array of char.
216 ** Thanks to Paul Eggert for noting this.
217 */
218
219 static struct tm tm;
220
221 #ifdef USG_COMPAT
222 time_t timezone = 0;
223 int daylight = 0;
224 #endif /* defined USG_COMPAT */
225
226 #ifdef ALTZONE
227 time_t altzone = 0;
228 #endif /* defined ALTZONE */
229
230 static long
231 detzcode(codep)
232 const char * const codep;
233 {
234 register long result;
235 register int i;
236
237 result = (codep[0] & 0x80) ? ~0L : 0;
238 for (i = 0; i < 4; ++i)
239 result = (result << 8) | (codep[i] & 0xff);
240 return result;
241 }
242
243 static time_t
244 detzcode64(codep)
245 const char * const codep;
246 {
247 register time_t result;
248 register int i;
249
250 result = (codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0;
251 for (i = 0; i < 8; ++i)
252 result = result * 256 + (codep[i] & 0xff);
253 return result;
254 }
255
256 static void
257 settzname(void)
258 {
259 register struct state * const sp = lclptr;
260 register int i;
261
262 tzname[0] = wildabbr;
263 tzname[1] = wildabbr;
264 #ifdef USG_COMPAT
265 daylight = 0;
266 timezone = 0;
267 #endif /* defined USG_COMPAT */
268 #ifdef ALTZONE
269 altzone = 0;
270 #endif /* defined ALTZONE */
271 #ifdef ALL_STATE
272 if (sp == NULL) {
273 tzname[0] = tzname[1] = gmt;
274 return;
275 }
276 #endif /* defined ALL_STATE */
277 for (i = 0; i < sp->typecnt; ++i) {
278 register const struct ttinfo * const ttisp = &sp->ttis[i];
279
280 tzname[ttisp->tt_isdst] =
281 &sp->chars[ttisp->tt_abbrind];
282 #ifdef USG_COMPAT
283 if (ttisp->tt_isdst)
284 daylight = 1;
285 if (i == 0 || !ttisp->tt_isdst)
286 timezone = -(ttisp->tt_gmtoff);
287 #endif /* defined USG_COMPAT */
288 #ifdef ALTZONE
289 if (i == 0 || ttisp->tt_isdst)
290 altzone = -(ttisp->tt_gmtoff);
291 #endif /* defined ALTZONE */
292 }
293 /*
294 ** And to get the latest zone names into tzname. . .
295 */
296 for (i = 0; i < sp->timecnt; ++i) {
297 register const struct ttinfo * const ttisp =
298 &sp->ttis[
299 sp->types[i]];
300
301 tzname[ttisp->tt_isdst] =
302 &sp->chars[ttisp->tt_abbrind];
303 }
304 /*
305 ** Finally, scrub the abbreviations.
306 ** First, replace bogus characters.
307 */
308 for (i = 0; i < sp->charcnt; ++i)
309 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
310 sp->chars[i] = TZ_ABBR_ERR_CHAR;
311 /*
312 ** Second, truncate long abbreviations.
313 */
314 for (i = 0; i < sp->typecnt; ++i) {
315 register const struct ttinfo * const ttisp = &sp->ttis[i];
316 register char * cp = &sp->chars[ttisp->tt_abbrind];
317
318 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
319 strcmp(cp, GRANDPARENTED) != 0)
320 *(cp + TZ_ABBR_MAX_LEN) = '\0';
321 }
322 }
323
324 static int
325 differ_by_repeat(t1, t0)
326 const time_t t1;
327 const time_t t0;
328 {
329 if (TYPE_INTEGRAL(time_t) &&
330 TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
331 return 0;
332 return t1 - t0 == SECSPERREPEAT;
333 }
334
335 static int
336 tzload(name, sp, doextend)
337 register const char * name;
338 register struct state * const sp;
339 register const int doextend;
340 {
341 register const char * p;
342 register int i;
343 register int fid;
344 register int stored;
345 register int nread;
346 union {
347 struct tzhead tzhead;
348 char buf[2 * sizeof(struct tzhead) +
349 2 * sizeof *sp +
350 4 * TZ_MAX_TIMES];
351 } u;
352
353 if (name == NULL && (name = TZDEFAULT) == NULL)
354 return -1;
355 {
356 register int doaccess;
357 /*
358 ** Section 4.9.1 of the C standard says that
359 ** "FILENAME_MAX expands to an integral constant expression
360 ** that is the size needed for an array of char large enough
361 ** to hold the longest file name string that the implementation
362 ** guarantees can be opened."
363 */
364 char fullname[FILENAME_MAX + 1];
365
366 if (name[0] == ':')
367 ++name;
368 doaccess = name[0] == '/';
369 if (!doaccess) {
370 if ((p = TZDIR) == NULL)
371 return -1;
372 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
373 return -1;
374 (void) strcpy(fullname, p);
375 (void) strcat(fullname, "/");
376 (void) strcat(fullname, name);
377 /*
378 ** Set doaccess if '.' (as in "../") shows up in name.
379 */
380 if (strchr(name, '.') != NULL)
381 doaccess = TRUE;
382 name = fullname;
383 }
384 if (doaccess && access(name, R_OK) != 0)
385 return -1;
386 if ((fid = open(name, OPEN_MODE)) == -1)
387 return -1;
388 }
389 nread = read(fid, u.buf, sizeof u.buf);
390 if (close(fid) < 0 || nread <= 0)
391 return -1;
392 for (stored = 4; stored <= 8; stored *= 2) {
393 int ttisstdcnt;
394 int ttisgmtcnt;
395
396 ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
397 ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
398 sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
399 sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
400 sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
401 sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
402 p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
403 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
404 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
405 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
406 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
407 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
408 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
409 return -1;
410 if (nread - (p - u.buf) <
411 sp->timecnt * stored + /* ats */
412 sp->timecnt + /* types */
413 sp->typecnt * 6 + /* ttinfos */
414 sp->charcnt + /* chars */
415 sp->leapcnt * (stored + 4) + /* lsinfos */
416 ttisstdcnt + /* ttisstds */
417 ttisgmtcnt) /* ttisgmts */
418 return -1;
419 for (i = 0; i < sp->timecnt; ++i) {
420 sp->ats[i] = (stored == 4) ?
421 detzcode(p) : detzcode64(p);
422 p += stored;
423 }
424 for (i = 0; i < sp->timecnt; ++i) {
425 sp->types[i] = (unsigned char) *p++;
426 if (sp->types[i] >= sp->typecnt)
427 return -1;
428 }
429 for (i = 0; i < sp->typecnt; ++i) {
430 register struct ttinfo * ttisp;
431
432 ttisp = &sp->ttis[i];
433 ttisp->tt_gmtoff = detzcode(p);
434 p += 4;
435 ttisp->tt_isdst = (unsigned char) *p++;
436 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
437 return -1;
438 ttisp->tt_abbrind = (unsigned char) *p++;
439 if (ttisp->tt_abbrind < 0 ||
440 ttisp->tt_abbrind > sp->charcnt)
441 return -1;
442 }
443 for (i = 0; i < sp->charcnt; ++i)
444 sp->chars[i] = *p++;
445 sp->chars[i] = '\0'; /* ensure '\0' at end */
446 for (i = 0; i < sp->leapcnt; ++i) {
447 register struct lsinfo * lsisp;
448
449 lsisp = &sp->lsis[i];
450 lsisp->ls_trans = (stored == 4) ?
451 detzcode(p) : detzcode64(p);
452 p += stored;
453 lsisp->ls_corr = detzcode(p);
454 p += 4;
455 }
456 for (i = 0; i < sp->typecnt; ++i) {
457 register struct ttinfo * ttisp;
458
459 ttisp = &sp->ttis[i];
460 if (ttisstdcnt == 0)
461 ttisp->tt_ttisstd = FALSE;
462 else {
463 ttisp->tt_ttisstd = *p++;
464 if (ttisp->tt_ttisstd != TRUE &&
465 ttisp->tt_ttisstd != FALSE)
466 return -1;
467 }
468 }
469 for (i = 0; i < sp->typecnt; ++i) {
470 register struct ttinfo * ttisp;
471
472 ttisp = &sp->ttis[i];
473 if (ttisgmtcnt == 0)
474 ttisp->tt_ttisgmt = FALSE;
475 else {
476 ttisp->tt_ttisgmt = *p++;
477 if (ttisp->tt_ttisgmt != TRUE &&
478 ttisp->tt_ttisgmt != FALSE)
479 return -1;
480 }
481 }
482 /*
483 ** Out-of-sort ats should mean we're running on a
484 ** signed time_t system but using a data file with
485 ** unsigned values (or vice versa).
486 */
487 for (i = 0; i < sp->timecnt - 2; ++i)
488 if (sp->ats[i] > sp->ats[i + 1]) {
489 ++i;
490 if (TYPE_SIGNED(time_t)) {
491 /*
492 ** Ignore the end (easy).
493 */
494 sp->timecnt = i;
495 } else {
496 /*
497 ** Ignore the beginning (harder).
498 */
499 register int j;
500
501 for (j = 0; j + i < sp->timecnt; ++j) {
502 sp->ats[j] = sp->ats[j + i];
503 sp->types[j] = sp->types[j + i];
504 }
505 sp->timecnt = j;
506 }
507 break;
508 }
509 /*
510 ** If this is an old file, we're done.
511 */
512 if (u.tzhead.tzh_version[0] == '\0')
513 break;
514 nread -= p - u.buf;
515 for (i = 0; i < nread; ++i)
516 u.buf[i] = p[i];
517 /*
518 ** If this is a narrow integer time_t system, we're done.
519 */
520 if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
521 break;
522 }
523 if (doextend && nread > 2 &&
524 u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
525 sp->typecnt + 2 <= TZ_MAX_TYPES) {
526 struct state ts;
527 register int result;
528
529 u.buf[nread - 1] = '\0';
530 result = tzparse(&u.buf[1], &ts, FALSE);
531 if (result == 0 && ts.typecnt == 2 &&
532 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
533 for (i = 0; i < 2; ++i)
534 ts.ttis[i].tt_abbrind +=
535 sp->charcnt;
536 for (i = 0; i < ts.charcnt; ++i)
537 sp->chars[sp->charcnt++] =
538 ts.chars[i];
539 i = 0;
540 while (i < ts.timecnt &&
541 ts.ats[i] <=
542 sp->ats[sp->timecnt - 1])
543 ++i;
544 while (i < ts.timecnt &&
545 sp->timecnt < TZ_MAX_TIMES) {
546 sp->ats[sp->timecnt] =
547 ts.ats[i];
548 sp->types[sp->timecnt] =
549 sp->typecnt +
550 ts.types[i];
551 ++sp->timecnt;
552 ++i;
553 }
554 sp->ttis[sp->typecnt++] = ts.ttis[0];
555 sp->ttis[sp->typecnt++] = ts.ttis[1];
556 }
557 }
558 sp->goback = sp->goahead = FALSE;
559 if (sp->timecnt > 1) {
560 for (i = 1; i < sp->timecnt; ++i)
561 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
562 differ_by_repeat(sp->ats[i], sp->ats[0])) {
563 sp->goback = TRUE;
564 break;
565 }
566 for (i = sp->timecnt - 2; i >= 0; --i)
567 if (typesequiv(sp, sp->types[sp->timecnt - 1],
568 sp->types[i]) &&
569 differ_by_repeat(sp->ats[sp->timecnt - 1],
570 sp->ats[i])) {
571 sp->goahead = TRUE;
572 break;
573 }
574 }
575 return 0;
576 }
577
578 static int
579 typesequiv(sp, a, b)
580 const struct state * const sp;
581 const int a;
582 const int b;
583 {
584 register int result;
585
586 if (sp == NULL ||
587 a < 0 || a >= sp->typecnt ||
588 b < 0 || b >= sp->typecnt)
589 result = FALSE;
590 else {
591 register const struct ttinfo * ap = &sp->ttis[a];
592 register const struct ttinfo * bp = &sp->ttis[b];
593 result = ap->tt_gmtoff == bp->tt_gmtoff &&
594 ap->tt_isdst == bp->tt_isdst &&
595 ap->tt_ttisstd == bp->tt_ttisstd &&
596 ap->tt_ttisgmt == bp->tt_ttisgmt &&
597 strcmp(&sp->chars[ap->tt_abbrind],
598 &sp->chars[bp->tt_abbrind]) == 0;
599 }
600 return result;
601 }
602
603 static const int mon_lengths[2][MONSPERYEAR] = {
604 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
605 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
606 };
607
608 static const int year_lengths[2] = {
609 DAYSPERNYEAR, DAYSPERLYEAR
610 };
611
612 /*
613 ** Given a pointer into a time zone string, scan until a character that is not
614 ** a valid character in a zone name is found. Return a pointer to that
615 ** character.
616 */
617
618 static const char *
619 getzname(strp)
620 register const char * strp;
621 {
622 register char c;
623
624 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
625 c != '+')
626 ++strp;
627 return strp;
628 }
629
630 /*
631 ** Given a pointer into an extended time zone string, scan until the ending
632 ** delimiter of the zone name is located. Return a pointer to the delimiter.
633 **
634 ** As with getzname above, the legal character set is actually quite
635 ** restricted, with other characters producing undefined results.
636 ** We don't do any checking here; checking is done later in common-case code.
637 */
638
639 static const char *
640 getqzname(register const char *strp, const int delim)
641 {
642 register int c;
643
644 while ((c = *strp) != '\0' && c != delim)
645 ++strp;
646 return strp;
647 }
648
649 /*
650 ** Given a pointer into a time zone string, extract a number from that string.
651 ** Check that the number is within a specified range; if it is not, return
652 ** NULL.
653 ** Otherwise, return a pointer to the first character not part of the number.
654 */
655
656 static const char *
657 getnum(strp, nump, min, max)
658 register const char * strp;
659 int * const nump;
660 const int min;
661 const int max;
662 {
663 register char c;
664 register int num;
665
666 if (strp == NULL || !is_digit(c = *strp))
667 return NULL;
668 num = 0;
669 do {
670 num = num * 10 + (c - '0');
671 if (num > max)
672 return NULL; /* illegal value */
673 c = *++strp;
674 } while (is_digit(c));
675 if (num < min)
676 return NULL; /* illegal value */
677 *nump = num;
678 return strp;
679 }
680
681 /*
682 ** Given a pointer into a time zone string, extract a number of seconds,
683 ** in hh[:mm[:ss]] form, from the string.
684 ** If any error occurs, return NULL.
685 ** Otherwise, return a pointer to the first character not part of the number
686 ** of seconds.
687 */
688
689 static const char *
690 getsecs(strp, secsp)
691 register const char * strp;
692 long * const secsp;
693 {
694 int num;
695
696 /*
697 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
698 ** "M10.4.6/26", which does not conform to Posix,
699 ** but which specifies the equivalent of
700 ** ``02:00 on the first Sunday on or after 23 Oct''.
701 */
702 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
703 if (strp == NULL)
704 return NULL;
705 *secsp = num * (long) SECSPERHOUR;
706 if (*strp == ':') {
707 ++strp;
708 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
709 if (strp == NULL)
710 return NULL;
711 *secsp += num * SECSPERMIN;
712 if (*strp == ':') {
713 ++strp;
714 /* `SECSPERMIN' allows for leap seconds. */
715 strp = getnum(strp, &num, 0, SECSPERMIN);
716 if (strp == NULL)
717 return NULL;
718 *secsp += num;
719 }
720 }
721 return strp;
722 }
723
724 /*
725 ** Given a pointer into a time zone string, extract an offset, in
726 ** [+-]hh[:mm[:ss]] form, from the string.
727 ** If any error occurs, return NULL.
728 ** Otherwise, return a pointer to the first character not part of the time.
729 */
730
731 static const char *
732 getoffset(strp, offsetp)
733 register const char * strp;
734 long * const offsetp;
735 {
736 register int neg = 0;
737
738 if (*strp == '-') {
739 neg = 1;
740 ++strp;
741 } else if (*strp == '+')
742 ++strp;
743 strp = getsecs(strp, offsetp);
744 if (strp == NULL)
745 return NULL; /* illegal time */
746 if (neg)
747 *offsetp = -*offsetp;
748 return strp;
749 }
750
751 /*
752 ** Given a pointer into a time zone string, extract a rule in the form
753 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
754 ** If a valid rule is not found, return NULL.
755 ** Otherwise, return a pointer to the first character not part of the rule.
756 */
757
758 static const char *
759 getrule(strp, rulep)
760 const char * strp;
761 register struct rule * const rulep;
762 {
763 if (*strp == 'J') {
764 /*
765 ** Julian day.
766 */
767 rulep->r_type = JULIAN_DAY;
768 ++strp;
769 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
770 } else if (*strp == 'M') {
771 /*
772 ** Month, week, day.
773 */
774 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
775 ++strp;
776 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
777 if (strp == NULL)
778 return NULL;
779 if (*strp++ != '.')
780 return NULL;
781 strp = getnum(strp, &rulep->r_week, 1, 5);
782 if (strp == NULL)
783 return NULL;
784 if (*strp++ != '.')
785 return NULL;
786 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
787 } else if (is_digit(*strp)) {
788 /*
789 ** Day of year.
790 */
791 rulep->r_type = DAY_OF_YEAR;
792 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
793 } else return NULL; /* invalid format */
794 if (strp == NULL)
795 return NULL;
796 if (*strp == '/') {
797 /*
798 ** Time specified.
799 */
800 ++strp;
801 strp = getsecs(strp, &rulep->r_time);
802 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
803 return strp;
804 }
805
806 /*
807 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
808 ** year, a rule, and the offset from UTC at the time that rule takes effect,
809 ** calculate the Epoch-relative time that rule takes effect.
810 */
811
812 static time_t
813 transtime(janfirst, year, rulep, offset)
814 const time_t janfirst;
815 const int year;
816 register const struct rule * const rulep;
817 const long offset;
818 {
819 register int leapyear;
820 register time_t value;
821 register int i;
822 int d, m1, yy0, yy1, yy2, dow;
823
824 INITIALIZE(value);
825 leapyear = isleap(year);
826 switch (rulep->r_type) {
827
828 case JULIAN_DAY:
829 /*
830 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
831 ** years.
832 ** In non-leap years, or if the day number is 59 or less, just
833 ** add SECSPERDAY times the day number-1 to the time of
834 ** January 1, midnight, to get the day.
835 */
836 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
837 if (leapyear && rulep->r_day >= 60)
838 value += SECSPERDAY;
839 break;
840
841 case DAY_OF_YEAR:
842 /*
843 ** n - day of year.
844 ** Just add SECSPERDAY times the day number to the time of
845 ** January 1, midnight, to get the day.
846 */
847 value = janfirst + rulep->r_day * SECSPERDAY;
848 break;
849
850 case MONTH_NTH_DAY_OF_WEEK:
851 /*
852 ** Mm.n.d - nth "dth day" of month m.
853 */
854 value = janfirst;
855 for (i = 0; i < rulep->r_mon - 1; ++i)
856 value += mon_lengths[leapyear][i] * SECSPERDAY;
857
858 /*
859 ** Use Zeller's Congruence to get day-of-week of first day of
860 ** month.
861 */
862 m1 = (rulep->r_mon + 9) % 12 + 1;
863 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
864 yy1 = yy0 / 100;
865 yy2 = yy0 % 100;
866 dow = ((26 * m1 - 2) / 10 +
867 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
868 if (dow < 0)
869 dow += DAYSPERWEEK;
870
871 /*
872 ** "dow" is the day-of-week of the first day of the month. Get
873 ** the day-of-month (zero-origin) of the first "dow" day of the
874 ** month.
875 */
876 d = rulep->r_day - dow;
877 if (d < 0)
878 d += DAYSPERWEEK;
879 for (i = 1; i < rulep->r_week; ++i) {
880 if (d + DAYSPERWEEK >=
881 mon_lengths[leapyear][rulep->r_mon - 1])
882 break;
883 d += DAYSPERWEEK;
884 }
885
886 /*
887 ** "d" is the day-of-month (zero-origin) of the day we want.
888 */
889 value += d * SECSPERDAY;
890 break;
891 }
892
893 /*
894 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
895 ** question. To get the Epoch-relative time of the specified local
896 ** time on that day, add the transition time and the current offset
897 ** from UTC.
898 */
899 return value + rulep->r_time + offset;
900 }
901
902 /*
903 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
904 ** appropriate.
905 */
906
907 static int
908 tzparse(name, sp, lastditch)
909 const char * name;
910 register struct state * const sp;
911 const int lastditch;
912 {
913 const char * stdname;
914 const char * dstname;
915 size_t stdlen;
916 size_t dstlen;
917 long stdoffset;
918 long dstoffset;
919 register time_t * atp;
920 register unsigned char * typep;
921 register char * cp;
922 register int load_result;
923
924 INITIALIZE(dstname);
925 stdname = name;
926 if (lastditch) {
927 stdlen = strlen(name); /* length of standard zone name */
928 name += stdlen;
929 if (stdlen >= sizeof sp->chars)
930 stdlen = (sizeof sp->chars) - 1;
931 stdoffset = 0;
932 } else {
933 if (*name == '<') {
934 name++;
935 stdname = name;
936 name = getqzname(name, '>');
937 if (*name != '>')
938 return (-1);
939 stdlen = name - stdname;
940 name++;
941 } else {
942 name = getzname(name);
943 stdlen = name - stdname;
944 }
945 if (*name == '\0')
946 return -1;
947 name = getoffset(name, &stdoffset);
948 if (name == NULL)
949 return -1;
950 }
951 load_result = tzload(TZDEFRULES, sp, FALSE);
952 if (load_result != 0)
953 sp->leapcnt = 0; /* so, we're off a little */
954 if (*name != '\0') {
955 if (*name == '<') {
956 dstname = ++name;
957 name = getqzname(name, '>');
958 if (*name != '>')
959 return -1;
960 dstlen = name - dstname;
961 name++;
962 } else {
963 dstname = name;
964 name = getzname(name);
965 dstlen = name - dstname; /* length of DST zone name */
966 }
967 if (*name != '\0' && *name != ',' && *name != ';') {
968 name = getoffset(name, &dstoffset);
969 if (name == NULL)
970 return -1;
971 } else dstoffset = stdoffset - SECSPERHOUR;
972 if (*name == '\0' && load_result != 0)
973 name = TZDEFRULESTRING;
974 if (*name == ',' || *name == ';') {
975 struct rule start;
976 struct rule end;
977 register int year;
978 register time_t janfirst;
979 time_t starttime;
980 time_t endtime;
981
982 ++name;
983 if ((name = getrule(name, &start)) == NULL)
984 return -1;
985 if (*name++ != ',')
986 return -1;
987 if ((name = getrule(name, &end)) == NULL)
988 return -1;
989 if (*name != '\0')
990 return -1;
991 sp->typecnt = 2; /* standard time and DST */
992 /*
993 ** Two transitions per year, from EPOCH_YEAR forward.
994 */
995 sp->ttis[0].tt_gmtoff = -dstoffset;
996 sp->ttis[0].tt_isdst = 1;
997 sp->ttis[0].tt_abbrind = stdlen + 1;
998 sp->ttis[1].tt_gmtoff = -stdoffset;
999 sp->ttis[1].tt_isdst = 0;
1000 sp->ttis[1].tt_abbrind = 0;
1001 atp = sp->ats;
1002 typep = sp->types;
1003 janfirst = 0;
1004 sp->timecnt = 0;
1005 for (year = EPOCH_YEAR;
1006 sp->timecnt + 2 <= TZ_MAX_TIMES;
1007 ++year) {
1008 time_t newfirst;
1009
1010 starttime = transtime(janfirst, year, &start,
1011 stdoffset);
1012 endtime = transtime(janfirst, year, &end,
1013 dstoffset);
1014 if (starttime > endtime) {
1015 *atp++ = endtime;
1016 *typep++ = 1; /* DST ends */
1017 *atp++ = starttime;
1018 *typep++ = 0; /* DST begins */
1019 } else {
1020 *atp++ = starttime;
1021 *typep++ = 0; /* DST begins */
1022 *atp++ = endtime;
1023 *typep++ = 1; /* DST ends */
1024 }
1025 sp->timecnt += 2;
1026 newfirst = janfirst;
1027 newfirst += year_lengths[isleap(year)] *
1028 SECSPERDAY;
1029 if (newfirst <= janfirst)
1030 break;
1031 janfirst = newfirst;
1032 }
1033 } else {
1034 register long theirstdoffset;
1035 register long theirdstoffset;
1036 register long theiroffset;
1037 register int isdst;
1038 register int i;
1039 register int j;
1040
1041 if (*name != '\0')
1042 return -1;
1043 /*
1044 ** Initial values of theirstdoffset and theirdstoffset.
1045 */
1046 theirstdoffset = 0;
1047 for (i = 0; i < sp->timecnt; ++i) {
1048 j = sp->types[i];
1049 if (!sp->ttis[j].tt_isdst) {
1050 theirstdoffset =
1051 -sp->ttis[j].tt_gmtoff;
1052 break;
1053 }
1054 }
1055 theirdstoffset = 0;
1056 for (i = 0; i < sp->timecnt; ++i) {
1057 j = sp->types[i];
1058 if (sp->ttis[j].tt_isdst) {
1059 theirdstoffset =
1060 -sp->ttis[j].tt_gmtoff;
1061 break;
1062 }
1063 }
1064 /*
1065 ** Initially we're assumed to be in standard time.
1066 */
1067 isdst = FALSE;
1068 theiroffset = theirstdoffset;
1069 /*
1070 ** Now juggle transition times and types
1071 ** tracking offsets as you do.
1072 */
1073 for (i = 0; i < sp->timecnt; ++i) {
1074 j = sp->types[i];
1075 sp->types[i] = sp->ttis[j].tt_isdst;
1076 if (sp->ttis[j].tt_ttisgmt) {
1077 /* No adjustment to transition time */
1078 } else {
1079 /*
1080 ** If summer time is in effect, and the
1081 ** transition time was not specified as
1082 ** standard time, add the summer time
1083 ** offset to the transition time;
1084 ** otherwise, add the standard time
1085 ** offset to the transition time.
1086 */
1087 /*
1088 ** Transitions from DST to DDST
1089 ** will effectively disappear since
1090 ** POSIX provides for only one DST
1091 ** offset.
1092 */
1093 if (isdst && !sp->ttis[j].tt_ttisstd) {
1094 sp->ats[i] += dstoffset -
1095 theirdstoffset;
1096 } else {
1097 sp->ats[i] += stdoffset -
1098 theirstdoffset;
1099 }
1100 }
1101 theiroffset = -sp->ttis[j].tt_gmtoff;
1102 if (sp->ttis[j].tt_isdst)
1103 theirdstoffset = theiroffset;
1104 else theirstdoffset = theiroffset;
1105 }
1106 /*
1107 ** Finally, fill in ttis.
1108 ** ttisstd and ttisgmt need not be handled.
1109 */
1110 sp->ttis[0].tt_gmtoff = -stdoffset;
1111 sp->ttis[0].tt_isdst = FALSE;
1112 sp->ttis[0].tt_abbrind = 0;
1113 sp->ttis[1].tt_gmtoff = -dstoffset;
1114 sp->ttis[1].tt_isdst = TRUE;
1115 sp->ttis[1].tt_abbrind = stdlen + 1;
1116 sp->typecnt = 2;
1117 }
1118 } else {
1119 dstlen = 0;
1120 sp->typecnt = 1; /* only standard time */
1121 sp->timecnt = 0;
1122 sp->ttis[0].tt_gmtoff = -stdoffset;
1123 sp->ttis[0].tt_isdst = 0;
1124 sp->ttis[0].tt_abbrind = 0;
1125 }
1126 sp->charcnt = stdlen + 1;
1127 if (dstlen != 0)
1128 sp->charcnt += dstlen + 1;
1129 if ((size_t) sp->charcnt > sizeof sp->chars)
1130 return -1;
1131 cp = sp->chars;
1132 (void) strncpy(cp, stdname, stdlen);
1133 cp += stdlen;
1134 *cp++ = '\0';
1135 if (dstlen != 0) {
1136 (void) strncpy(cp, dstname, dstlen);
1137 *(cp + dstlen) = '\0';
1138 }
1139 return 0;
1140 }
1141
1142 static void
1143 gmtload(sp)
1144 struct state * const sp;
1145 {
1146 if (tzload(gmt, sp, TRUE) != 0)
1147 (void) tzparse(gmt, sp, TRUE);
1148 }
1149
1150 #ifndef STD_INSPIRED
1151 /*
1152 ** A non-static declaration of tzsetwall in a system header file
1153 ** may cause a warning about this upcoming static declaration...
1154 */
1155 static
1156 #endif /* !defined STD_INSPIRED */
1157 void
1158 tzsetwall(void)
1159 {
1160 if (lcl_is_set < 0)
1161 return;
1162 lcl_is_set = -1;
1163
1164 #ifdef ALL_STATE
1165 if (lclptr == NULL) {
1166 lclptr = (struct state *) malloc(sizeof *lclptr);
1167 if (lclptr == NULL) {
1168 settzname(); /* all we can do */
1169 return;
1170 }
1171 }
1172 #endif /* defined ALL_STATE */
1173 if (tzload((char *) NULL, lclptr, TRUE) != 0)
1174 gmtload(lclptr);
1175 settzname();
1176 }
1177
1178 void
1179 tzset(void)
1180 {
1181 register const char * name;
1182
1183 name = getenv("TZ");
1184 if (name == NULL) {
1185 tzsetwall();
1186 return;
1187 }
1188
1189 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1190 return;
1191 lcl_is_set = strlen(name) < sizeof lcl_TZname;
1192 if (lcl_is_set)
1193 (void) strcpy(lcl_TZname, name);
1194
1195 #ifdef ALL_STATE
1196 if (lclptr == NULL) {
1197 lclptr = (struct state *) malloc(sizeof *lclptr);
1198 if (lclptr == NULL) {
1199 settzname(); /* all we can do */
1200 return;
1201 }
1202 }
1203 #endif /* defined ALL_STATE */
1204 if (*name == '\0') {
1205 /*
1206 ** User wants it fast rather than right.
1207 */
1208 lclptr->leapcnt = 0; /* so, we're off a little */
1209 lclptr->timecnt = 0;
1210 lclptr->typecnt = 0;
1211 lclptr->ttis[0].tt_isdst = 0;
1212 lclptr->ttis[0].tt_gmtoff = 0;
1213 lclptr->ttis[0].tt_abbrind = 0;
1214 (void) strcpy(lclptr->chars, gmt);
1215 } else if (tzload(name, lclptr, TRUE) != 0)
1216 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1217 (void) gmtload(lclptr);
1218 settzname();
1219 }
1220
1221 /*
1222 ** The easy way to behave "as if no library function calls" localtime
1223 ** is to not call it--so we drop its guts into "localsub", which can be
1224 ** freely called. (And no, the PANS doesn't require the above behavior--
1225 ** but it *is* desirable.)
1226 **
1227 ** The unused offset argument is for the benefit of mktime variants.
1228 */
1229
1230 /*ARGSUSED*/
1231 static struct tm *
1232 localsub(timep, offset, tmp)
1233 const time_t * const timep;
1234 const long offset;
1235 struct tm * const tmp;
1236 {
1237 register struct state * sp;
1238 register const struct ttinfo * ttisp;
1239 register int i;
1240 register struct tm * result;
1241 const time_t t = *timep;
1242
1243 sp = lclptr;
1244 #ifdef ALL_STATE
1245 if (sp == NULL)
1246 return gmtsub(timep, offset, tmp);
1247 #endif /* defined ALL_STATE */
1248 if ((sp->goback && t < sp->ats[0]) ||
1249 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1250 time_t newt = t;
1251 register time_t seconds;
1252 register time_t tcycles;
1253 register int_fast64_t icycles;
1254
1255 if (t < sp->ats[0])
1256 seconds = sp->ats[0] - t;
1257 else seconds = t - sp->ats[sp->timecnt - 1];
1258 --seconds;
1259 tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1260 ++tcycles;
1261 icycles = tcycles;
1262 if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1263 return NULL;
1264 seconds = icycles;
1265 seconds *= YEARSPERREPEAT;
1266 seconds *= AVGSECSPERYEAR;
1267 if (t < sp->ats[0])
1268 newt += seconds;
1269 else newt -= seconds;
1270 if (newt < sp->ats[0] ||
1271 newt > sp->ats[sp->timecnt - 1])
1272 return NULL; /* "cannot happen" */
1273 result = localsub(&newt, offset, tmp);
1274 if (result == tmp) {
1275 register time_t newy;
1276
1277 newy = tmp->tm_year;
1278 if (t < sp->ats[0])
1279 newy -= icycles * YEARSPERREPEAT;
1280 else newy += icycles * YEARSPERREPEAT;
1281 tmp->tm_year = newy;
1282 if (tmp->tm_year != newy)
1283 return NULL;
1284 }
1285 return result;
1286 }
1287 if (sp->timecnt == 0 || t < sp->ats[0]) {
1288 i = 0;
1289 while (sp->ttis[i].tt_isdst)
1290 if (++i >= sp->typecnt) {
1291 i = 0;
1292 break;
1293 }
1294 } else {
1295 register int lo = 1;
1296 register int hi = sp->timecnt;
1297
1298 while (lo < hi) {
1299 register int mid = (lo + hi) >> 1;
1300
1301 if (t < sp->ats[mid])
1302 hi = mid;
1303 else lo = mid + 1;
1304 }
1305 i = (int) sp->types[lo - 1];
1306 }
1307 ttisp = &sp->ttis[i];
1308 /*
1309 ** To get (wrong) behavior that's compatible with System V Release 2.0
1310 ** you'd replace the statement below with
1311 ** t += ttisp->tt_gmtoff;
1312 ** timesub(&t, 0L, sp, tmp);
1313 */
1314 result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1315 tmp->tm_isdst = ttisp->tt_isdst;
1316 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1317 #ifdef TM_ZONE
1318 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1319 #endif /* defined TM_ZONE */
1320 return result;
1321 }
1322
1323 struct tm *
1324 localtime(timep)
1325 const time_t * const timep;
1326 {
1327 tzset();
1328 return localsub(timep, 0L, &tm);
1329 }
1330
1331 /*
1332 ** Re-entrant version of localtime.
1333 */
1334
1335 struct tm *
1336 localtime_r(timep, tmp)
1337 const time_t * const timep;
1338 struct tm * tmp;
1339 {
1340 return localsub(timep, 0L, tmp);
1341 }
1342
1343 /*
1344 ** gmtsub is to gmtime as localsub is to localtime.
1345 */
1346
1347 static struct tm *
1348 gmtsub(timep, offset, tmp)
1349 const time_t * const timep;
1350 const long offset;
1351 struct tm * const tmp;
1352 {
1353 register struct tm * result;
1354
1355 if (!gmt_is_set) {
1356 gmt_is_set = TRUE;
1357 #ifdef ALL_STATE
1358 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1359 if (gmtptr != NULL)
1360 #endif /* defined ALL_STATE */
1361 gmtload(gmtptr);
1362 }
1363 result = timesub(timep, offset, gmtptr, tmp);
1364 #ifdef TM_ZONE
1365 /*
1366 ** Could get fancy here and deliver something such as
1367 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1368 ** but this is no time for a treasure hunt.
1369 */
1370 if (offset != 0)
1371 tmp->TM_ZONE = wildabbr;
1372 else {
1373 #ifdef ALL_STATE
1374 if (gmtptr == NULL)
1375 tmp->TM_ZONE = gmt;
1376 else tmp->TM_ZONE = gmtptr->chars;
1377 #endif /* defined ALL_STATE */
1378 #ifndef ALL_STATE
1379 tmp->TM_ZONE = gmtptr->chars;
1380 #endif /* State Farm */
1381 }
1382 #endif /* defined TM_ZONE */
1383 return result;
1384 }
1385
1386 struct tm *
1387 gmtime(timep)
1388 const time_t * const timep;
1389 {
1390 return gmtsub(timep, 0L, &tm);
1391 }
1392
1393 /*
1394 * Re-entrant version of gmtime.
1395 */
1396
1397 struct tm *
1398 gmtime_r(timep, tmp)
1399 const time_t * const timep;
1400 struct tm * tmp;
1401 {
1402 return gmtsub(timep, 0L, tmp);
1403 }
1404
1405 #ifdef STD_INSPIRED
1406
1407 struct tm *
1408 offtime(timep, offset)
1409 const time_t * const timep;
1410 const long offset;
1411 {
1412 return gmtsub(timep, offset, &tm);
1413 }
1414
1415 #endif /* defined STD_INSPIRED */
1416
1417 /*
1418 ** Return the number of leap years through the end of the given year
1419 ** where, to make the math easy, the answer for year zero is defined as zero.
1420 */
1421
1422 static int
1423 leaps_thru_end_of(y)
1424 register const int y;
1425 {
1426 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1427 -(leaps_thru_end_of(-(y + 1)) + 1);
1428 }
1429
1430 static struct tm *
1431 timesub(timep, offset, sp, tmp)
1432 const time_t * const timep;
1433 const long offset;
1434 register const struct state * const sp;
1435 register struct tm * const tmp;
1436 {
1437 register const struct lsinfo * lp;
1438 register time_t tdays;
1439 register int idays; /* unsigned would be so 2003 */
1440 register long rem;
1441 int y;
1442 register const int * ip;
1443 register long corr;
1444 register int hit;
1445 register int i;
1446
1447 corr = 0;
1448 hit = 0;
1449 #ifdef ALL_STATE
1450 i = (sp == NULL) ? 0 : sp->leapcnt;
1451 #endif /* defined ALL_STATE */
1452 #ifndef ALL_STATE
1453 i = sp->leapcnt;
1454 #endif /* State Farm */
1455 while (--i >= 0) {
1456 lp = &sp->lsis[i];
1457 if (*timep >= lp->ls_trans) {
1458 if (*timep == lp->ls_trans) {
1459 hit = ((i == 0 && lp->ls_corr > 0) ||
1460 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1461 if (hit)
1462 while (i > 0 &&
1463 sp->lsis[i].ls_trans ==
1464 sp->lsis[i - 1].ls_trans + 1 &&
1465 sp->lsis[i].ls_corr ==
1466 sp->lsis[i - 1].ls_corr + 1) {
1467 ++hit;
1468 --i;
1469 }
1470 }
1471 corr = lp->ls_corr;
1472 break;
1473 }
1474 }
1475 y = EPOCH_YEAR;
1476 tdays = *timep / SECSPERDAY;
1477 rem = *timep - tdays * SECSPERDAY;
1478 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1479 int newy;
1480 register time_t tdelta;
1481 register int idelta;
1482 register int leapdays;
1483
1484 tdelta = tdays / DAYSPERLYEAR;
1485 idelta = tdelta;
1486 if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1487 return NULL;
1488 if (idelta == 0)
1489 idelta = (tdays < 0) ? -1 : 1;
1490 newy = y;
1491 if (increment_overflow(&newy, idelta))
1492 return NULL;
1493 leapdays = leaps_thru_end_of(newy - 1) -
1494 leaps_thru_end_of(y - 1);
1495 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1496 tdays -= leapdays;
1497 y = newy;
1498 }
1499 {
1500 register long seconds;
1501
1502 seconds = tdays * SECSPERDAY + 0.5;
1503 tdays = seconds / SECSPERDAY;
1504 rem += seconds - tdays * SECSPERDAY;
1505 }
1506 /*
1507 ** Given the range, we can now fearlessly cast...
1508 */
1509 idays = tdays;
1510 rem += offset - corr;
1511 while (rem < 0) {
1512 rem += SECSPERDAY;
1513 --idays;
1514 }
1515 while (rem >= SECSPERDAY) {
1516 rem -= SECSPERDAY;
1517 ++idays;
1518 }
1519 while (idays < 0) {
1520 if (increment_overflow(&y, -1))
1521 return NULL;
1522 idays += year_lengths[isleap(y)];
1523 }
1524 while (idays >= year_lengths[isleap(y)]) {
1525 idays -= year_lengths[isleap(y)];
1526 if (increment_overflow(&y, 1))
1527 return NULL;
1528 }
1529 tmp->tm_year = y;
1530 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1531 return NULL;
1532 tmp->tm_yday = idays;
1533 /*
1534 ** The "extra" mods below avoid overflow problems.
1535 */
1536 tmp->tm_wday = EPOCH_WDAY +
1537 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1538 (DAYSPERNYEAR % DAYSPERWEEK) +
1539 leaps_thru_end_of(y - 1) -
1540 leaps_thru_end_of(EPOCH_YEAR - 1) +
1541 idays;
1542 tmp->tm_wday %= DAYSPERWEEK;
1543 if (tmp->tm_wday < 0)
1544 tmp->tm_wday += DAYSPERWEEK;
1545 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1546 rem %= SECSPERHOUR;
1547 tmp->tm_min = (int) (rem / SECSPERMIN);
1548 /*
1549 ** A positive leap second requires a special
1550 ** representation. This uses "... ??:59:60" et seq.
1551 */
1552 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1553 ip = mon_lengths[isleap(y)];
1554 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1555 idays -= ip[tmp->tm_mon];
1556 tmp->tm_mday = (int) (idays + 1);
1557 tmp->tm_isdst = 0;
1558 #ifdef TM_GMTOFF
1559 tmp->TM_GMTOFF = offset;
1560 #endif /* defined TM_GMTOFF */
1561 return tmp;
1562 }
1563
1564 char *
1565 ctime(timep)
1566 const time_t * const timep;
1567 {
1568 /*
1569 ** Section 4.12.3.2 of X3.159-1989 requires that
1570 ** The ctime function converts the calendar time pointed to by timer
1571 ** to local time in the form of a string. It is equivalent to
1572 ** asctime(localtime(timer))
1573 */
1574 return asctime(localtime(timep));
1575 }
1576
1577 char *
1578 ctime_r(timep, buf)
1579 const time_t * const timep;
1580 char * buf;
1581 {
1582 struct tm mytm;
1583
1584 return asctime_r(localtime_r(timep, &mytm), buf);
1585 }
1586
1587 /*
1588 ** Adapted from code provided by Robert Elz, who writes:
1589 ** The "best" way to do mktime I think is based on an idea of Bob
1590 ** Kridle's (so its said...) from a long time ago.
1591 ** It does a binary search of the time_t space. Since time_t's are
1592 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1593 ** would still be very reasonable).
1594 */
1595
1596 #ifndef WRONG
1597 #define WRONG (-1)
1598 #endif /* !defined WRONG */
1599
1600 /*
1601 ** Simplified normalize logic courtesy Paul Eggert.
1602 */
1603
1604 static int
1605 increment_overflow(number, delta)
1606 int * number;
1607 int delta;
1608 {
1609 int number0;
1610
1611 number0 = *number;
1612 *number += delta;
1613 return (*number < number0) != (delta < 0);
1614 }
1615
1616 static int
1617 long_increment_overflow(number, delta)
1618 long * number;
1619 int delta;
1620 {
1621 long number0;
1622
1623 number0 = *number;
1624 *number += delta;
1625 return (*number < number0) != (delta < 0);
1626 }
1627
1628 static int
1629 normalize_overflow(tensptr, unitsptr, base)
1630 int * const tensptr;
1631 int * const unitsptr;
1632 const int base;
1633 {
1634 register int tensdelta;
1635
1636 tensdelta = (*unitsptr >= 0) ?
1637 (*unitsptr / base) :
1638 (-1 - (-1 - *unitsptr) / base);
1639 *unitsptr -= tensdelta * base;
1640 return increment_overflow(tensptr, tensdelta);
1641 }
1642
1643 static int
1644 long_normalize_overflow(tensptr, unitsptr, base)
1645 long * const tensptr;
1646 int * const unitsptr;
1647 const int base;
1648 {
1649 register int tensdelta;
1650
1651 tensdelta = (*unitsptr >= 0) ?
1652 (*unitsptr / base) :
1653 (-1 - (-1 - *unitsptr) / base);
1654 *unitsptr -= tensdelta * base;
1655 return long_increment_overflow(tensptr, tensdelta);
1656 }
1657
1658 static int
1659 tmcomp(atmp, btmp)
1660 register const struct tm * const atmp;
1661 register const struct tm * const btmp;
1662 {
1663 register int result;
1664
1665 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1666 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1667 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1668 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1669 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1670 result = atmp->tm_sec - btmp->tm_sec;
1671 return result;
1672 }
1673
1674 static time_t
1675 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1676 struct tm * const tmp;
1677 struct tm * (* const funcp)(const time_t*, long, struct tm*);
1678 const long offset;
1679 int * const okayp;
1680 const int do_norm_secs;
1681 {
1682 register const struct state * sp;
1683 register int dir;
1684 register int i, j;
1685 register int saved_seconds;
1686 register long li;
1687 register time_t lo;
1688 register time_t hi;
1689 long y;
1690 time_t newt;
1691 time_t t;
1692 struct tm yourtm, mytm;
1693
1694 *okayp = FALSE;
1695 yourtm = *tmp;
1696 if (do_norm_secs) {
1697 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1698 SECSPERMIN))
1699 return WRONG;
1700 }
1701 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1702 return WRONG;
1703 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1704 return WRONG;
1705 y = yourtm.tm_year;
1706 if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1707 return WRONG;
1708 /*
1709 ** Turn y into an actual year number for now.
1710 ** It is converted back to an offset from TM_YEAR_BASE later.
1711 */
1712 if (long_increment_overflow(&y, TM_YEAR_BASE))
1713 return WRONG;
1714 while (yourtm.tm_mday <= 0) {
1715 if (long_increment_overflow(&y, -1))
1716 return WRONG;
1717 li = y + (1 < yourtm.tm_mon);
1718 yourtm.tm_mday += year_lengths[isleap(li)];
1719 }
1720 while (yourtm.tm_mday > DAYSPERLYEAR) {
1721 li = y + (1 < yourtm.tm_mon);
1722 yourtm.tm_mday -= year_lengths[isleap(li)];
1723 if (long_increment_overflow(&y, 1))
1724 return WRONG;
1725 }
1726 for ( ; ; ) {
1727 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1728 if (yourtm.tm_mday <= i)
1729 break;
1730 yourtm.tm_mday -= i;
1731 if (++yourtm.tm_mon >= MONSPERYEAR) {
1732 yourtm.tm_mon = 0;
1733 if (long_increment_overflow(&y, 1))
1734 return WRONG;
1735 }
1736 }
1737 if (long_increment_overflow(&y, -TM_YEAR_BASE))
1738 return WRONG;
1739 yourtm.tm_year = y;
1740 if (yourtm.tm_year != y)
1741 return WRONG;
1742 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1743 saved_seconds = 0;
1744 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1745 /*
1746 ** We can't set tm_sec to 0, because that might push the
1747 ** time below the minimum representable time.
1748 ** Set tm_sec to 59 instead.
1749 ** This assumes that the minimum representable time is
1750 ** not in the same minute that a leap second was deleted from,
1751 ** which is a safer assumption than using 58 would be.
1752 */
1753 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1754 return WRONG;
1755 saved_seconds = yourtm.tm_sec;
1756 yourtm.tm_sec = SECSPERMIN - 1;
1757 } else {
1758 saved_seconds = yourtm.tm_sec;
1759 yourtm.tm_sec = 0;
1760 }
1761 /*
1762 ** Do a binary search (this works whatever time_t's type is).
1763 */
1764 if (!TYPE_SIGNED(time_t)) {
1765 lo = 0;
1766 hi = lo - 1;
1767 } else if (!TYPE_INTEGRAL(time_t)) {
1768 if (sizeof(time_t) > sizeof(float))
1769 hi = (time_t) DBL_MAX;
1770 else hi = (time_t) FLT_MAX;
1771 lo = -hi;
1772 } else {
1773 lo = 1;
1774 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1775 lo *= 2;
1776 hi = -(lo + 1);
1777 }
1778 for ( ; ; ) {
1779 t = lo / 2 + hi / 2;
1780 if (t < lo)
1781 t = lo;
1782 else if (t > hi)
1783 t = hi;
1784 if ((*funcp)(&t, offset, &mytm) == NULL) {
1785 /*
1786 ** Assume that t is too extreme to be represented in
1787 ** a struct tm; arrange things so that it is less
1788 ** extreme on the next pass.
1789 */
1790 dir = (t > 0) ? 1 : -1;
1791 } else dir = tmcomp(&mytm, &yourtm);
1792 if (dir != 0) {
1793 if (t == lo) {
1794 ++t;
1795 if (t <= lo)
1796 return WRONG;
1797 ++lo;
1798 } else if (t == hi) {
1799 --t;
1800 if (t >= hi)
1801 return WRONG;
1802 --hi;
1803 }
1804 if (lo > hi)
1805 return WRONG;
1806 if (dir > 0)
1807 hi = t;
1808 else lo = t;
1809 continue;
1810 }
1811 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1812 break;
1813 /*
1814 ** Right time, wrong type.
1815 ** Hunt for right time, right type.
1816 ** It's okay to guess wrong since the guess
1817 ** gets checked.
1818 */
1819 sp = (const struct state *)
1820 ((funcp == localsub) ? lclptr : gmtptr);
1821 #ifdef ALL_STATE
1822 if (sp == NULL)
1823 return WRONG;
1824 #endif /* defined ALL_STATE */
1825 for (i = sp->typecnt - 1; i >= 0; --i) {
1826 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1827 continue;
1828 for (j = sp->typecnt - 1; j >= 0; --j) {
1829 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1830 continue;
1831 newt = t + sp->ttis[j].tt_gmtoff -
1832 sp->ttis[i].tt_gmtoff;
1833 if ((*funcp)(&newt, offset, &mytm) == NULL)
1834 continue;
1835 if (tmcomp(&mytm, &yourtm) != 0)
1836 continue;
1837 if (mytm.tm_isdst != yourtm.tm_isdst)
1838 continue;
1839 /*
1840 ** We have a match.
1841 */
1842 t = newt;
1843 goto label;
1844 }
1845 }
1846 return WRONG;
1847 }
1848 label:
1849 newt = t + saved_seconds;
1850 if ((newt < t) != (saved_seconds < 0))
1851 return WRONG;
1852 t = newt;
1853 if ((*funcp)(&t, offset, tmp))
1854 *okayp = TRUE;
1855 return t;
1856 }
1857
1858 static time_t
1859 time2(tmp, funcp, offset, okayp)
1860 struct tm * const tmp;
1861 struct tm * (* const funcp)(const time_t*, long, struct tm*);
1862 const long offset;
1863 int * const okayp;
1864 {
1865 time_t t;
1866
1867 /*
1868 ** First try without normalization of seconds
1869 ** (in case tm_sec contains a value associated with a leap second).
1870 ** If that fails, try with normalization of seconds.
1871 */
1872 t = time2sub(tmp, funcp, offset, okayp, FALSE);
1873 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1874 }
1875
1876 static time_t
1877 time1(tmp, funcp, offset)
1878 struct tm * const tmp;
1879 struct tm * (* const funcp)(const time_t *, long, struct tm *);
1880 const long offset;
1881 {
1882 register time_t t;
1883 register const struct state * sp;
1884 register int samei, otheri;
1885 register int sameind, otherind;
1886 register int i;
1887 register int nseen;
1888 int seen[TZ_MAX_TYPES];
1889 int types[TZ_MAX_TYPES];
1890 int okay;
1891
1892 if (tmp->tm_isdst > 1)
1893 tmp->tm_isdst = 1;
1894 t = time2(tmp, funcp, offset, &okay);
1895 #ifdef PCTS
1896 /*
1897 ** PCTS code courtesy Grant Sullivan.
1898 */
1899 if (okay)
1900 return t;
1901 if (tmp->tm_isdst < 0)
1902 tmp->tm_isdst = 0; /* reset to std and try again */
1903 #endif /* defined PCTS */
1904 #ifndef PCTS
1905 if (okay || tmp->tm_isdst < 0)
1906 return t;
1907 #endif /* !defined PCTS */
1908 /*
1909 ** We're supposed to assume that somebody took a time of one type
1910 ** and did some math on it that yielded a "struct tm" that's bad.
1911 ** We try to divine the type they started from and adjust to the
1912 ** type they need.
1913 */
1914 sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr);
1915 #ifdef ALL_STATE
1916 if (sp == NULL)
1917 return WRONG;
1918 #endif /* defined ALL_STATE */
1919 for (i = 0; i < sp->typecnt; ++i)
1920 seen[i] = FALSE;
1921 nseen = 0;
1922 for (i = sp->timecnt - 1; i >= 0; --i)
1923 if (!seen[sp->types[i]]) {
1924 seen[sp->types[i]] = TRUE;
1925 types[nseen++] = sp->types[i];
1926 }
1927 for (sameind = 0; sameind < nseen; ++sameind) {
1928 samei = types[sameind];
1929 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1930 continue;
1931 for (otherind = 0; otherind < nseen; ++otherind) {
1932 otheri = types[otherind];
1933 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1934 continue;
1935 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1936 sp->ttis[samei].tt_gmtoff;
1937 tmp->tm_isdst = !tmp->tm_isdst;
1938 t = time2(tmp, funcp, offset, &okay);
1939 if (okay)
1940 return t;
1941 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1942 sp->ttis[samei].tt_gmtoff;
1943 tmp->tm_isdst = !tmp->tm_isdst;
1944 }
1945 }
1946 return WRONG;
1947 }
1948
1949 time_t
1950 mktime(tmp)
1951 struct tm * const tmp;
1952 {
1953 tzset();
1954 return time1(tmp, localsub, 0L);
1955 }
1956
1957 #ifdef STD_INSPIRED
1958
1959 time_t
1960 timelocal(tmp)
1961 struct tm * const tmp;
1962 {
1963 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1964 return mktime(tmp);
1965 }
1966
1967 time_t
1968 timegm(tmp)
1969 struct tm * const tmp;
1970 {
1971 tmp->tm_isdst = 0;
1972 return time1(tmp, gmtsub, 0L);
1973 }
1974
1975 time_t
1976 timeoff(tmp, offset)
1977 struct tm * const tmp;
1978 const long offset;
1979 {
1980 tmp->tm_isdst = 0;
1981 return time1(tmp, gmtsub, offset);
1982 }
1983
1984 #endif /* defined STD_INSPIRED */
1985
1986 #ifdef CMUCS
1987
1988 /*
1989 ** The following is supplied for compatibility with
1990 ** previous versions of the CMUCS runtime library.
1991 */
1992
1993 long
1994 gtime(tmp)
1995 struct tm * const tmp;
1996 {
1997 const time_t t = mktime(tmp);
1998
1999 if (t == WRONG)
2000 return -1;
2001 return t;
2002 }
2003
2004 #endif /* defined CMUCS */
2005
2006 /*
2007 ** XXX--is the below the right way to conditionalize??
2008 */
2009
2010 #ifdef STD_INSPIRED
2011
2012 /*
2013 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2014 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2015 ** is not the case if we are accounting for leap seconds.
2016 ** So, we provide the following conversion routines for use
2017 ** when exchanging timestamps with POSIX conforming systems.
2018 */
2019
2020 static long
2021 leapcorr(timep)
2022 time_t * timep;
2023 {
2024 register struct state * sp;
2025 register struct lsinfo * lp;
2026 register int i;
2027
2028 sp = lclptr;
2029 i = sp->leapcnt;
2030 while (--i >= 0) {
2031 lp = &sp->lsis[i];
2032 if (*timep >= lp->ls_trans)
2033 return lp->ls_corr;
2034 }
2035 return 0;
2036 }
2037
2038 time_t
2039 time2posix(t)
2040 time_t t;
2041 {
2042 tzset();
2043 return t - leapcorr(&t);
2044 }
2045
2046 time_t
2047 posix2time(t)
2048 time_t t;
2049 {
2050 time_t x;
2051 time_t y;
2052
2053 tzset();
2054 /*
2055 ** For a positive leap second hit, the result
2056 ** is not unique. For a negative leap second
2057 ** hit, the corresponding time doesn't exist,
2058 ** so we return an adjacent second.
2059 */
2060 x = t + leapcorr(&t);
2061 y = x - leapcorr(&x);
2062 if (y < t) {
2063 do {
2064 x++;
2065 y = x - leapcorr(&x);
2066 } while (y < t);
2067 if (t != y)
2068 return x - 1;
2069 } else if (y > t) {
2070 do {
2071 --x;
2072 y = x - leapcorr(&x);
2073 } while (y > t);
2074 if (t != y)
2075 return x + 1;
2076 }
2077 return x;
2078 }
2079
2080 #endif /* defined STD_INSPIRED */