]> git.saurik.com Git - apple/icu.git/blob - icuSources/common/uhash.c
ICU-57166.0.1.tar.gz
[apple/icu.git] / icuSources / common / uhash.c
1 /*
2 ******************************************************************************
3 * Copyright (C) 1997-2016, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 ******************************************************************************
6 * Date Name Description
7 * 03/22/00 aliu Adapted from original C++ ICU Hashtable.
8 * 07/06/01 aliu Modified to support int32_t keys on
9 * platforms with sizeof(void*) < 32.
10 ******************************************************************************
11 */
12
13 #include "uhash.h"
14 #include "unicode/ustring.h"
15 #include "cstring.h"
16 #include "cmemory.h"
17 #include "uassert.h"
18 #include "ustr_imp.h"
19
20 /* This hashtable is implemented as a double hash. All elements are
21 * stored in a single array with no secondary storage for collision
22 * resolution (no linked list, etc.). When there is a hash collision
23 * (when two unequal keys have the same hashcode) we resolve this by
24 * using a secondary hash. The secondary hash is an increment
25 * computed as a hash function (a different one) of the primary
26 * hashcode. This increment is added to the initial hash value to
27 * obtain further slots assigned to the same hash code. For this to
28 * work, the length of the array and the increment must be relatively
29 * prime. The easiest way to achieve this is to have the length of
30 * the array be prime, and the increment be any value from
31 * 1..length-1.
32 *
33 * Hashcodes are 32-bit integers. We make sure all hashcodes are
34 * non-negative by masking off the top bit. This has two effects: (1)
35 * modulo arithmetic is simplified. If we allowed negative hashcodes,
36 * then when we computed hashcode % length, we could get a negative
37 * result, which we would then have to adjust back into range. It's
38 * simpler to just make hashcodes non-negative. (2) It makes it easy
39 * to check for empty vs. occupied slots in the table. We just mark
40 * empty or deleted slots with a negative hashcode.
41 *
42 * The central function is _uhash_find(). This function looks for a
43 * slot matching the given key and hashcode. If one is found, it
44 * returns a pointer to that slot. If the table is full, and no match
45 * is found, it returns NULL -- in theory. This would make the code
46 * more complicated, since all callers of _uhash_find() would then
47 * have to check for a NULL result. To keep this from happening, we
48 * don't allow the table to fill. When there is only one
49 * empty/deleted slot left, uhash_put() will refuse to increase the
50 * count, and fail. This simplifies the code. In practice, one will
51 * seldom encounter this using default UHashtables. However, if a
52 * hashtable is set to a U_FIXED resize policy, or if memory is
53 * exhausted, then the table may fill.
54 *
55 * High and low water ratios control rehashing. They establish levels
56 * of fullness (from 0 to 1) outside of which the data array is
57 * reallocated and repopulated. Setting the low water ratio to zero
58 * means the table will never shrink. Setting the high water ratio to
59 * one means the table will never grow. The ratios should be
60 * coordinated with the ratio between successive elements of the
61 * PRIMES table, so that when the primeIndex is incremented or
62 * decremented during rehashing, it brings the ratio of count / length
63 * back into the desired range (between low and high water ratios).
64 */
65
66 /********************************************************************
67 * PRIVATE Constants, Macros
68 ********************************************************************/
69
70 /* This is a list of non-consecutive primes chosen such that
71 * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81
72 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this
73 * ratio is changed, the low and high water ratios should also be
74 * adjusted to suit.
75 *
76 * These prime numbers were also chosen so that they are the largest
77 * prime number while being less than a power of two.
78 */
79 static const int32_t PRIMES[] = {
80 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,
81 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593,
82 16777213, 33554393, 67108859, 134217689, 268435399, 536870909,
83 1073741789, 2147483647 /*, 4294967291 */
84 };
85
86 #define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES)
87 #define DEFAULT_PRIME_INDEX 4
88
89 /* These ratios are tuned to the PRIMES array such that a resize
90 * places the table back into the zone of non-resizing. That is,
91 * after a call to _uhash_rehash(), a subsequent call to
92 * _uhash_rehash() should do nothing (should not churn). This is only
93 * a potential problem with U_GROW_AND_SHRINK.
94 */
95 static const float RESIZE_POLICY_RATIO_TABLE[6] = {
96 /* low, high water ratio */
97 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */
98 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
99 0.0F, 1.0F /* U_FIXED: Never change size */
100 };
101
102 /*
103 Invariants for hashcode values:
104
105 * DELETED < 0
106 * EMPTY < 0
107 * Real hashes >= 0
108
109 Hashcodes may not start out this way, but internally they are
110 adjusted so that they are always positive. We assume 32-bit
111 hashcodes; adjust these constants for other hashcode sizes.
112 */
113 #define HASH_DELETED ((int32_t) 0x80000000)
114 #define HASH_EMPTY ((int32_t) HASH_DELETED + 1)
115
116 #define IS_EMPTY_OR_DELETED(x) ((x) < 0)
117
118 /* This macro expects a UHashTok.pointer as its keypointer and
119 valuepointer parameters */
120 #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \
121 if (hash->keyDeleter != NULL && keypointer != NULL) { \
122 (*hash->keyDeleter)(keypointer); \
123 } \
124 if (hash->valueDeleter != NULL && valuepointer != NULL) { \
125 (*hash->valueDeleter)(valuepointer); \
126 }
127
128 /*
129 * Constants for hinting whether a key or value is an integer
130 * or a pointer. If a hint bit is zero, then the associated
131 * token is assumed to be an integer.
132 */
133 #define HINT_KEY_POINTER (1)
134 #define HINT_VALUE_POINTER (2)
135
136 /********************************************************************
137 * PRIVATE Implementation
138 ********************************************************************/
139
140 static UHashTok
141 _uhash_setElement(UHashtable *hash, UHashElement* e,
142 int32_t hashcode,
143 UHashTok key, UHashTok value, int8_t hint) {
144
145 UHashTok oldValue = e->value;
146 if (hash->keyDeleter != NULL && e->key.pointer != NULL &&
147 e->key.pointer != key.pointer) { /* Avoid double deletion */
148 (*hash->keyDeleter)(e->key.pointer);
149 }
150 if (hash->valueDeleter != NULL) {
151 if (oldValue.pointer != NULL &&
152 oldValue.pointer != value.pointer) { /* Avoid double deletion */
153 (*hash->valueDeleter)(oldValue.pointer);
154 }
155 oldValue.pointer = NULL;
156 }
157 /* Compilers should copy the UHashTok union correctly, but even if
158 * they do, memory heap tools (e.g. BoundsChecker) can get
159 * confused when a pointer is cloaked in a union and then copied.
160 * TO ALLEVIATE THIS, we use hints (based on what API the user is
161 * calling) to copy pointers when we know the user thinks
162 * something is a pointer. */
163 if (hint & HINT_KEY_POINTER) {
164 e->key.pointer = key.pointer;
165 } else {
166 e->key = key;
167 }
168 if (hint & HINT_VALUE_POINTER) {
169 e->value.pointer = value.pointer;
170 } else {
171 e->value = value;
172 }
173 e->hashcode = hashcode;
174 return oldValue;
175 }
176
177 /**
178 * Assumes that the given element is not empty or deleted.
179 */
180 static UHashTok
181 _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) {
182 UHashTok empty;
183 U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode));
184 --hash->count;
185 empty.pointer = NULL; empty.integer = 0;
186 return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0);
187 }
188
189 static void
190 _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
191 U_ASSERT(hash != NULL);
192 U_ASSERT(((int32_t)policy) >= 0);
193 U_ASSERT(((int32_t)policy) < 3);
194 hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2];
195 hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1];
196 }
197
198 /**
199 * Allocate internal data array of a size determined by the given
200 * prime index. If the index is out of range it is pinned into range.
201 * If the allocation fails the status is set to
202 * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In
203 * either case the previous array pointer is overwritten.
204 *
205 * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
206 */
207 static void
208 _uhash_allocate(UHashtable *hash,
209 int32_t primeIndex,
210 UErrorCode *status) {
211
212 UHashElement *p, *limit;
213 UHashTok emptytok;
214
215 if (U_FAILURE(*status)) return;
216
217 U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH);
218
219 hash->primeIndex = primeIndex;
220 hash->length = PRIMES[primeIndex];
221
222 p = hash->elements = (UHashElement*)
223 uprv_malloc(sizeof(UHashElement) * hash->length);
224
225 if (hash->elements == NULL) {
226 *status = U_MEMORY_ALLOCATION_ERROR;
227 return;
228 }
229
230 emptytok.pointer = NULL; /* Only one of these two is needed */
231 emptytok.integer = 0; /* but we don't know which one. */
232
233 limit = p + hash->length;
234 while (p < limit) {
235 p->key = emptytok;
236 p->value = emptytok;
237 p->hashcode = HASH_EMPTY;
238 ++p;
239 }
240
241 hash->count = 0;
242 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
243 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
244 }
245
246 static UHashtable*
247 _uhash_init(UHashtable *result,
248 UHashFunction *keyHash,
249 UKeyComparator *keyComp,
250 UValueComparator *valueComp,
251 int32_t primeIndex,
252 UErrorCode *status)
253 {
254 if (U_FAILURE(*status)) return NULL;
255 U_ASSERT(keyHash != NULL);
256 U_ASSERT(keyComp != NULL);
257
258 result->keyHasher = keyHash;
259 result->keyComparator = keyComp;
260 result->valueComparator = valueComp;
261 result->keyDeleter = NULL;
262 result->valueDeleter = NULL;
263 result->allocated = FALSE;
264 _uhash_internalSetResizePolicy(result, U_GROW);
265
266 _uhash_allocate(result, primeIndex, status);
267
268 if (U_FAILURE(*status)) {
269 return NULL;
270 }
271
272 return result;
273 }
274
275 static UHashtable*
276 _uhash_create(UHashFunction *keyHash,
277 UKeyComparator *keyComp,
278 UValueComparator *valueComp,
279 int32_t primeIndex,
280 UErrorCode *status) {
281 UHashtable *result;
282
283 if (U_FAILURE(*status)) return NULL;
284
285 result = (UHashtable*) uprv_malloc(sizeof(UHashtable));
286 if (result == NULL) {
287 *status = U_MEMORY_ALLOCATION_ERROR;
288 return NULL;
289 }
290
291 _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status);
292 result->allocated = TRUE;
293
294 if (U_FAILURE(*status)) {
295 uprv_free(result);
296 return NULL;
297 }
298
299 return result;
300 }
301
302 /**
303 * Look for a key in the table, or if no such key exists, the first
304 * empty slot matching the given hashcode. Keys are compared using
305 * the keyComparator function.
306 *
307 * First find the start position, which is the hashcode modulo
308 * the length. Test it to see if it is:
309 *
310 * a. identical: First check the hash values for a quick check,
311 * then compare keys for equality using keyComparator.
312 * b. deleted
313 * c. empty
314 *
315 * Stop if it is identical or empty, otherwise continue by adding a
316 * "jump" value (moduloing by the length again to keep it within
317 * range) and retesting. For efficiency, there need enough empty
318 * values so that the searchs stop within a reasonable amount of time.
319 * This can be changed by changing the high/low water marks.
320 *
321 * In theory, this function can return NULL, if it is full (no empty
322 * or deleted slots) and if no matching key is found. In practice, we
323 * prevent this elsewhere (in uhash_put) by making sure the last slot
324 * in the table is never filled.
325 *
326 * The size of the table should be prime for this algorithm to work;
327 * otherwise we are not guaranteed that the jump value (the secondary
328 * hash) is relatively prime to the table length.
329 */
330 static UHashElement*
331 _uhash_find(const UHashtable *hash, UHashTok key,
332 int32_t hashcode) {
333
334 int32_t firstDeleted = -1; /* assume invalid index */
335 int32_t theIndex, startIndex;
336 int32_t jump = 0; /* lazy evaluate */
337 int32_t tableHash;
338 UHashElement *elements = hash->elements;
339
340 hashcode &= 0x7FFFFFFF; /* must be positive */
341 startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length;
342
343 do {
344 tableHash = elements[theIndex].hashcode;
345 if (tableHash == hashcode) { /* quick check */
346 if ((*hash->keyComparator)(key, elements[theIndex].key)) {
347 return &(elements[theIndex]);
348 }
349 } else if (!IS_EMPTY_OR_DELETED(tableHash)) {
350 /* We have hit a slot which contains a key-value pair,
351 * but for which the hash code does not match. Keep
352 * looking.
353 */
354 } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */
355 break;
356 } else if (firstDeleted < 0) { /* remember first deleted */
357 firstDeleted = theIndex;
358 }
359 if (jump == 0) { /* lazy compute jump */
360 /* The jump value must be relatively prime to the table
361 * length. As long as the length is prime, then any value
362 * 1..length-1 will be relatively prime to it.
363 */
364 jump = (hashcode % (hash->length - 1)) + 1;
365 }
366 theIndex = (theIndex + jump) % hash->length;
367 } while (theIndex != startIndex);
368
369 if (firstDeleted >= 0) {
370 theIndex = firstDeleted; /* reset if had deleted slot */
371 } else if (tableHash != HASH_EMPTY) {
372 /* We get to this point if the hashtable is full (no empty or
373 * deleted slots), and we've failed to find a match. THIS
374 * WILL NEVER HAPPEN as long as uhash_put() makes sure that
375 * count is always < length.
376 */
377 U_ASSERT(FALSE);
378 return NULL; /* Never happens if uhash_put() behaves */
379 }
380 return &(elements[theIndex]);
381 }
382
383 /**
384 * Attempt to grow or shrink the data arrays in order to make the
385 * count fit between the high and low water marks. hash_put() and
386 * hash_remove() call this method when the count exceeds the high or
387 * low water marks. This method may do nothing, if memory allocation
388 * fails, or if the count is already in range, or if the length is
389 * already at the low or high limit. In any case, upon return the
390 * arrays will be valid.
391 */
392 static void
393 _uhash_rehash(UHashtable *hash, UErrorCode *status) {
394
395 UHashElement *old = hash->elements;
396 int32_t oldLength = hash->length;
397 int32_t newPrimeIndex = hash->primeIndex;
398 int32_t i;
399
400 if (hash->count > hash->highWaterMark) {
401 if (++newPrimeIndex >= PRIMES_LENGTH) {
402 return;
403 }
404 } else if (hash->count < hash->lowWaterMark) {
405 if (--newPrimeIndex < 0) {
406 return;
407 }
408 } else {
409 return;
410 }
411
412 _uhash_allocate(hash, newPrimeIndex, status);
413
414 if (U_FAILURE(*status)) {
415 hash->elements = old;
416 hash->length = oldLength;
417 return;
418 }
419
420 for (i = oldLength - 1; i >= 0; --i) {
421 if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) {
422 UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode);
423 U_ASSERT(e != NULL);
424 U_ASSERT(e->hashcode == HASH_EMPTY);
425 e->key = old[i].key;
426 e->value = old[i].value;
427 e->hashcode = old[i].hashcode;
428 ++hash->count;
429 }
430 }
431
432 uprv_free(old);
433 }
434
435 static UHashTok
436 _uhash_remove(UHashtable *hash,
437 UHashTok key) {
438 /* First find the position of the key in the table. If the object
439 * has not been removed already, remove it. If the user wanted
440 * keys deleted, then delete it also. We have to put a special
441 * hashcode in that position that means that something has been
442 * deleted, since when we do a find, we have to continue PAST any
443 * deleted values.
444 */
445 UHashTok result;
446 UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key));
447 U_ASSERT(e != NULL);
448 result.pointer = NULL;
449 result.integer = 0;
450 if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
451 result = _uhash_internalRemoveElement(hash, e);
452 if (hash->count < hash->lowWaterMark) {
453 UErrorCode status = U_ZERO_ERROR;
454 _uhash_rehash(hash, &status);
455 }
456 }
457 return result;
458 }
459
460 static UHashTok
461 _uhash_put(UHashtable *hash,
462 UHashTok key,
463 UHashTok value,
464 int8_t hint,
465 UErrorCode *status) {
466
467 /* Put finds the position in the table for the new value. If the
468 * key is already in the table, it is deleted, if there is a
469 * non-NULL keyDeleter. Then the key, the hash and the value are
470 * all put at the position in their respective arrays.
471 */
472 int32_t hashcode;
473 UHashElement* e;
474 UHashTok emptytok;
475
476 if (U_FAILURE(*status)) {
477 goto err;
478 }
479 U_ASSERT(hash != NULL);
480 /* Cannot always check pointer here or iSeries sees NULL every time. */
481 if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) {
482 /* Disallow storage of NULL values, since NULL is returned by
483 * get() to indicate an absent key. Storing NULL == removing.
484 */
485 return _uhash_remove(hash, key);
486 }
487 if (hash->count > hash->highWaterMark) {
488 _uhash_rehash(hash, status);
489 if (U_FAILURE(*status)) {
490 goto err;
491 }
492 }
493
494 hashcode = (*hash->keyHasher)(key);
495 e = _uhash_find(hash, key, hashcode);
496 U_ASSERT(e != NULL);
497
498 if (IS_EMPTY_OR_DELETED(e->hashcode)) {
499 /* Important: We must never actually fill the table up. If we
500 * do so, then _uhash_find() will return NULL, and we'll have
501 * to check for NULL after every call to _uhash_find(). To
502 * avoid this we make sure there is always at least one empty
503 * or deleted slot in the table. This only is a problem if we
504 * are out of memory and rehash isn't working.
505 */
506 ++hash->count;
507 if (hash->count == hash->length) {
508 /* Don't allow count to reach length */
509 --hash->count;
510 *status = U_MEMORY_ALLOCATION_ERROR;
511 goto err;
512 }
513 }
514
515 /* We must in all cases handle storage properly. If there was an
516 * old key, then it must be deleted (if the deleter != NULL).
517 * Make hashcodes stored in table positive.
518 */
519 return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint);
520
521 err:
522 /* If the deleters are non-NULL, this method adopts its key and/or
523 * value arguments, and we must be sure to delete the key and/or
524 * value in all cases, even upon failure.
525 */
526 HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer);
527 emptytok.pointer = NULL; emptytok.integer = 0;
528 return emptytok;
529 }
530
531
532 /********************************************************************
533 * PUBLIC API
534 ********************************************************************/
535
536 U_CAPI UHashtable* U_EXPORT2
537 uhash_open(UHashFunction *keyHash,
538 UKeyComparator *keyComp,
539 UValueComparator *valueComp,
540 UErrorCode *status) {
541
542 return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
543 }
544
545 U_CAPI UHashtable* U_EXPORT2
546 uhash_openSize(UHashFunction *keyHash,
547 UKeyComparator *keyComp,
548 UValueComparator *valueComp,
549 int32_t size,
550 UErrorCode *status) {
551
552 /* Find the smallest index i for which PRIMES[i] >= size. */
553 int32_t i = 0;
554 while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
555 ++i;
556 }
557
558 return _uhash_create(keyHash, keyComp, valueComp, i, status);
559 }
560
561 U_CAPI UHashtable* U_EXPORT2
562 uhash_init(UHashtable *fillinResult,
563 UHashFunction *keyHash,
564 UKeyComparator *keyComp,
565 UValueComparator *valueComp,
566 UErrorCode *status) {
567
568 return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
569 }
570
571 U_CAPI UHashtable* U_EXPORT2
572 uhash_initSize(UHashtable *fillinResult,
573 UHashFunction *keyHash,
574 UKeyComparator *keyComp,
575 UValueComparator *valueComp,
576 int32_t size,
577 UErrorCode *status) {
578
579 /* Find the smallest index i for which PRIMES[i] >= size. */
580 int32_t i = 0;
581 while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
582 ++i;
583 }
584
585 return _uhash_init(fillinResult, keyHash, keyComp, valueComp, i, status);
586 }
587
588 U_CAPI void U_EXPORT2
589 uhash_close(UHashtable *hash) {
590 if (hash == NULL) {
591 return;
592 }
593 if (hash->elements != NULL) {
594 if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) {
595 int32_t pos=UHASH_FIRST;
596 UHashElement *e;
597 while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) {
598 HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer);
599 }
600 }
601 uprv_free(hash->elements);
602 hash->elements = NULL;
603 }
604 if (hash->allocated) {
605 uprv_free(hash);
606 }
607 }
608
609 U_CAPI UHashFunction *U_EXPORT2
610 uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) {
611 UHashFunction *result = hash->keyHasher;
612 hash->keyHasher = fn;
613 return result;
614 }
615
616 U_CAPI UKeyComparator *U_EXPORT2
617 uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) {
618 UKeyComparator *result = hash->keyComparator;
619 hash->keyComparator = fn;
620 return result;
621 }
622 U_CAPI UValueComparator *U_EXPORT2
623 uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){
624 UValueComparator *result = hash->valueComparator;
625 hash->valueComparator = fn;
626 return result;
627 }
628
629 U_CAPI UObjectDeleter *U_EXPORT2
630 uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) {
631 UObjectDeleter *result = hash->keyDeleter;
632 hash->keyDeleter = fn;
633 return result;
634 }
635
636 U_CAPI UObjectDeleter *U_EXPORT2
637 uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) {
638 UObjectDeleter *result = hash->valueDeleter;
639 hash->valueDeleter = fn;
640 return result;
641 }
642
643 U_CAPI void U_EXPORT2
644 uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
645 UErrorCode status = U_ZERO_ERROR;
646 _uhash_internalSetResizePolicy(hash, policy);
647 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
648 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
649 _uhash_rehash(hash, &status);
650 }
651
652 U_CAPI int32_t U_EXPORT2
653 uhash_count(const UHashtable *hash) {
654 return hash->count;
655 }
656
657 U_CAPI void* U_EXPORT2
658 uhash_get(const UHashtable *hash,
659 const void* key) {
660 UHashTok keyholder;
661 keyholder.pointer = (void*) key;
662 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
663 }
664
665 U_CAPI void* U_EXPORT2
666 uhash_iget(const UHashtable *hash,
667 int32_t key) {
668 UHashTok keyholder;
669 keyholder.integer = key;
670 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
671 }
672
673 U_CAPI int32_t U_EXPORT2
674 uhash_geti(const UHashtable *hash,
675 const void* key) {
676 UHashTok keyholder;
677 keyholder.pointer = (void*) key;
678 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
679 }
680
681 U_CAPI int32_t U_EXPORT2
682 uhash_igeti(const UHashtable *hash,
683 int32_t key) {
684 UHashTok keyholder;
685 keyholder.integer = key;
686 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
687 }
688
689 U_CAPI void* U_EXPORT2
690 uhash_put(UHashtable *hash,
691 void* key,
692 void* value,
693 UErrorCode *status) {
694 UHashTok keyholder, valueholder;
695 keyholder.pointer = key;
696 valueholder.pointer = value;
697 return _uhash_put(hash, keyholder, valueholder,
698 HINT_KEY_POINTER | HINT_VALUE_POINTER,
699 status).pointer;
700 }
701
702 U_CAPI void* U_EXPORT2
703 uhash_iput(UHashtable *hash,
704 int32_t key,
705 void* value,
706 UErrorCode *status) {
707 UHashTok keyholder, valueholder;
708 keyholder.integer = key;
709 valueholder.pointer = value;
710 return _uhash_put(hash, keyholder, valueholder,
711 HINT_VALUE_POINTER,
712 status).pointer;
713 }
714
715 U_CAPI int32_t U_EXPORT2
716 uhash_puti(UHashtable *hash,
717 void* key,
718 int32_t value,
719 UErrorCode *status) {
720 UHashTok keyholder, valueholder;
721 keyholder.pointer = key;
722 valueholder.integer = value;
723 return _uhash_put(hash, keyholder, valueholder,
724 HINT_KEY_POINTER,
725 status).integer;
726 }
727
728
729 U_CAPI int32_t U_EXPORT2
730 uhash_iputi(UHashtable *hash,
731 int32_t key,
732 int32_t value,
733 UErrorCode *status) {
734 UHashTok keyholder, valueholder;
735 keyholder.integer = key;
736 valueholder.integer = value;
737 return _uhash_put(hash, keyholder, valueholder,
738 0, /* neither is a ptr */
739 status).integer;
740 }
741
742 U_CAPI void* U_EXPORT2
743 uhash_remove(UHashtable *hash,
744 const void* key) {
745 UHashTok keyholder;
746 keyholder.pointer = (void*) key;
747 return _uhash_remove(hash, keyholder).pointer;
748 }
749
750 U_CAPI void* U_EXPORT2
751 uhash_iremove(UHashtable *hash,
752 int32_t key) {
753 UHashTok keyholder;
754 keyholder.integer = key;
755 return _uhash_remove(hash, keyholder).pointer;
756 }
757
758 U_CAPI int32_t U_EXPORT2
759 uhash_removei(UHashtable *hash,
760 const void* key) {
761 UHashTok keyholder;
762 keyholder.pointer = (void*) key;
763 return _uhash_remove(hash, keyholder).integer;
764 }
765
766 U_CAPI int32_t U_EXPORT2
767 uhash_iremovei(UHashtable *hash,
768 int32_t key) {
769 UHashTok keyholder;
770 keyholder.integer = key;
771 return _uhash_remove(hash, keyholder).integer;
772 }
773
774 U_CAPI void U_EXPORT2
775 uhash_removeAll(UHashtable *hash) {
776 int32_t pos = UHASH_FIRST;
777 const UHashElement *e;
778 U_ASSERT(hash != NULL);
779 if (hash->count != 0) {
780 while ((e = uhash_nextElement(hash, &pos)) != NULL) {
781 uhash_removeElement(hash, e);
782 }
783 }
784 U_ASSERT(hash->count == 0);
785 }
786
787 U_CAPI const UHashElement* U_EXPORT2
788 uhash_find(const UHashtable *hash, const void* key) {
789 UHashTok keyholder;
790 const UHashElement *e;
791 keyholder.pointer = (void*) key;
792 e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
793 return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e;
794 }
795
796 U_CAPI const UHashElement* U_EXPORT2
797 uhash_nextElement(const UHashtable *hash, int32_t *pos) {
798 /* Walk through the array until we find an element that is not
799 * EMPTY and not DELETED.
800 */
801 int32_t i;
802 U_ASSERT(hash != NULL);
803 for (i = *pos + 1; i < hash->length; ++i) {
804 if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) {
805 *pos = i;
806 return &(hash->elements[i]);
807 }
808 }
809
810 /* No more elements */
811 return NULL;
812 }
813
814 U_CAPI void* U_EXPORT2
815 uhash_removeElement(UHashtable *hash, const UHashElement* e) {
816 U_ASSERT(hash != NULL);
817 U_ASSERT(e != NULL);
818 if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
819 UHashElement *nce = (UHashElement *)e;
820 return _uhash_internalRemoveElement(hash, nce).pointer;
821 }
822 return NULL;
823 }
824
825 /********************************************************************
826 * UHashTok convenience
827 ********************************************************************/
828
829 /**
830 * Return a UHashTok for an integer.
831 */
832 /*U_CAPI UHashTok U_EXPORT2
833 uhash_toki(int32_t i) {
834 UHashTok tok;
835 tok.integer = i;
836 return tok;
837 }*/
838
839 /**
840 * Return a UHashTok for a pointer.
841 */
842 /*U_CAPI UHashTok U_EXPORT2
843 uhash_tokp(void* p) {
844 UHashTok tok;
845 tok.pointer = p;
846 return tok;
847 }*/
848
849 /********************************************************************
850 * PUBLIC Key Hash Functions
851 ********************************************************************/
852
853 U_CAPI int32_t U_EXPORT2
854 uhash_hashUChars(const UHashTok key) {
855 const UChar *s = (const UChar *)key.pointer;
856 return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s));
857 }
858
859 U_CAPI int32_t U_EXPORT2
860 uhash_hashChars(const UHashTok key) {
861 const char *s = (const char *)key.pointer;
862 return s == NULL ? 0 : ustr_hashCharsN(s, uprv_strlen(s));
863 }
864
865 U_CAPI int32_t U_EXPORT2
866 uhash_hashIChars(const UHashTok key) {
867 const char *s = (const char *)key.pointer;
868 return s == NULL ? 0 : ustr_hashICharsN(s, uprv_strlen(s));
869 }
870
871 U_CAPI UBool U_EXPORT2
872 uhash_equals(const UHashtable* hash1, const UHashtable* hash2){
873 int32_t count1, count2, pos, i;
874
875 if(hash1==hash2){
876 return TRUE;
877 }
878
879 /*
880 * Make sure that we are comparing 2 valid hashes of the same type
881 * with valid comparison functions.
882 * Without valid comparison functions, a binary comparison
883 * of the hash values will yield random results on machines
884 * with 64-bit pointers and 32-bit integer hashes.
885 * A valueComparator is normally optional.
886 */
887 if (hash1==NULL || hash2==NULL ||
888 hash1->keyComparator != hash2->keyComparator ||
889 hash1->valueComparator != hash2->valueComparator ||
890 hash1->valueComparator == NULL)
891 {
892 /*
893 Normally we would return an error here about incompatible hash tables,
894 but we return FALSE instead.
895 */
896 return FALSE;
897 }
898
899 count1 = uhash_count(hash1);
900 count2 = uhash_count(hash2);
901 if(count1!=count2){
902 return FALSE;
903 }
904
905 pos=UHASH_FIRST;
906 for(i=0; i<count1; i++){
907 const UHashElement* elem1 = uhash_nextElement(hash1, &pos);
908 const UHashTok key1 = elem1->key;
909 const UHashTok val1 = elem1->value;
910 /* here the keys are not compared, instead the key form hash1 is used to fetch
911 * value from hash2. If the hashes are equal then then both hashes should
912 * contain equal values for the same key!
913 */
914 const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1));
915 const UHashTok val2 = elem2->value;
916 if(hash1->valueComparator(val1, val2)==FALSE){
917 return FALSE;
918 }
919 }
920 return TRUE;
921 }
922
923 /********************************************************************
924 * PUBLIC Comparator Functions
925 ********************************************************************/
926
927 U_CAPI UBool U_EXPORT2
928 uhash_compareUChars(const UHashTok key1, const UHashTok key2) {
929 const UChar *p1 = (const UChar*) key1.pointer;
930 const UChar *p2 = (const UChar*) key2.pointer;
931 if (p1 == p2) {
932 return TRUE;
933 }
934 if (p1 == NULL || p2 == NULL) {
935 return FALSE;
936 }
937 while (*p1 != 0 && *p1 == *p2) {
938 ++p1;
939 ++p2;
940 }
941 return (UBool)(*p1 == *p2);
942 }
943
944 U_CAPI UBool U_EXPORT2
945 uhash_compareChars(const UHashTok key1, const UHashTok key2) {
946 const char *p1 = (const char*) key1.pointer;
947 const char *p2 = (const char*) key2.pointer;
948 if (p1 == p2) {
949 return TRUE;
950 }
951 if (p1 == NULL || p2 == NULL) {
952 return FALSE;
953 }
954 while (*p1 != 0 && *p1 == *p2) {
955 ++p1;
956 ++p2;
957 }
958 return (UBool)(*p1 == *p2);
959 }
960
961 U_CAPI UBool U_EXPORT2
962 uhash_compareIChars(const UHashTok key1, const UHashTok key2) {
963 const char *p1 = (const char*) key1.pointer;
964 const char *p2 = (const char*) key2.pointer;
965 if (p1 == p2) {
966 return TRUE;
967 }
968 if (p1 == NULL || p2 == NULL) {
969 return FALSE;
970 }
971 while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) {
972 ++p1;
973 ++p2;
974 }
975 return (UBool)(*p1 == *p2);
976 }
977
978 /********************************************************************
979 * PUBLIC int32_t Support Functions
980 ********************************************************************/
981
982 U_CAPI int32_t U_EXPORT2
983 uhash_hashLong(const UHashTok key) {
984 return key.integer;
985 }
986
987 U_CAPI UBool U_EXPORT2
988 uhash_compareLong(const UHashTok key1, const UHashTok key2) {
989 return (UBool)(key1.integer == key2.integer);
990 }