2 ******************************************************************************
3 * Copyright (C) 1997-2016, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 ******************************************************************************
6 * Date Name Description
7 * 03/22/00 aliu Adapted from original C++ ICU Hashtable.
8 * 07/06/01 aliu Modified to support int32_t keys on
9 * platforms with sizeof(void*) < 32.
10 ******************************************************************************
14 #include "unicode/ustring.h"
20 /* This hashtable is implemented as a double hash. All elements are
21 * stored in a single array with no secondary storage for collision
22 * resolution (no linked list, etc.). When there is a hash collision
23 * (when two unequal keys have the same hashcode) we resolve this by
24 * using a secondary hash. The secondary hash is an increment
25 * computed as a hash function (a different one) of the primary
26 * hashcode. This increment is added to the initial hash value to
27 * obtain further slots assigned to the same hash code. For this to
28 * work, the length of the array and the increment must be relatively
29 * prime. The easiest way to achieve this is to have the length of
30 * the array be prime, and the increment be any value from
33 * Hashcodes are 32-bit integers. We make sure all hashcodes are
34 * non-negative by masking off the top bit. This has two effects: (1)
35 * modulo arithmetic is simplified. If we allowed negative hashcodes,
36 * then when we computed hashcode % length, we could get a negative
37 * result, which we would then have to adjust back into range. It's
38 * simpler to just make hashcodes non-negative. (2) It makes it easy
39 * to check for empty vs. occupied slots in the table. We just mark
40 * empty or deleted slots with a negative hashcode.
42 * The central function is _uhash_find(). This function looks for a
43 * slot matching the given key and hashcode. If one is found, it
44 * returns a pointer to that slot. If the table is full, and no match
45 * is found, it returns NULL -- in theory. This would make the code
46 * more complicated, since all callers of _uhash_find() would then
47 * have to check for a NULL result. To keep this from happening, we
48 * don't allow the table to fill. When there is only one
49 * empty/deleted slot left, uhash_put() will refuse to increase the
50 * count, and fail. This simplifies the code. In practice, one will
51 * seldom encounter this using default UHashtables. However, if a
52 * hashtable is set to a U_FIXED resize policy, or if memory is
53 * exhausted, then the table may fill.
55 * High and low water ratios control rehashing. They establish levels
56 * of fullness (from 0 to 1) outside of which the data array is
57 * reallocated and repopulated. Setting the low water ratio to zero
58 * means the table will never shrink. Setting the high water ratio to
59 * one means the table will never grow. The ratios should be
60 * coordinated with the ratio between successive elements of the
61 * PRIMES table, so that when the primeIndex is incremented or
62 * decremented during rehashing, it brings the ratio of count / length
63 * back into the desired range (between low and high water ratios).
66 /********************************************************************
67 * PRIVATE Constants, Macros
68 ********************************************************************/
70 /* This is a list of non-consecutive primes chosen such that
71 * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81
72 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this
73 * ratio is changed, the low and high water ratios should also be
76 * These prime numbers were also chosen so that they are the largest
77 * prime number while being less than a power of two.
79 static const int32_t PRIMES
[] = {
80 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,
81 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593,
82 16777213, 33554393, 67108859, 134217689, 268435399, 536870909,
83 1073741789, 2147483647 /*, 4294967291 */
86 #define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES)
87 #define DEFAULT_PRIME_INDEX 4
89 /* These ratios are tuned to the PRIMES array such that a resize
90 * places the table back into the zone of non-resizing. That is,
91 * after a call to _uhash_rehash(), a subsequent call to
92 * _uhash_rehash() should do nothing (should not churn). This is only
93 * a potential problem with U_GROW_AND_SHRINK.
95 static const float RESIZE_POLICY_RATIO_TABLE
[6] = {
96 /* low, high water ratio */
97 0.0F
, 0.5F
, /* U_GROW: Grow on demand, do not shrink */
98 0.1F
, 0.5F
, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
99 0.0F
, 1.0F
/* U_FIXED: Never change size */
103 Invariants for hashcode values:
109 Hashcodes may not start out this way, but internally they are
110 adjusted so that they are always positive. We assume 32-bit
111 hashcodes; adjust these constants for other hashcode sizes.
113 #define HASH_DELETED ((int32_t) 0x80000000)
114 #define HASH_EMPTY ((int32_t) HASH_DELETED + 1)
116 #define IS_EMPTY_OR_DELETED(x) ((x) < 0)
118 /* This macro expects a UHashTok.pointer as its keypointer and
119 valuepointer parameters */
120 #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \
121 if (hash->keyDeleter != NULL && keypointer != NULL) { \
122 (*hash->keyDeleter)(keypointer); \
124 if (hash->valueDeleter != NULL && valuepointer != NULL) { \
125 (*hash->valueDeleter)(valuepointer); \
129 * Constants for hinting whether a key or value is an integer
130 * or a pointer. If a hint bit is zero, then the associated
131 * token is assumed to be an integer.
133 #define HINT_KEY_POINTER (1)
134 #define HINT_VALUE_POINTER (2)
136 /********************************************************************
137 * PRIVATE Implementation
138 ********************************************************************/
141 _uhash_setElement(UHashtable
*hash
, UHashElement
* e
,
143 UHashTok key
, UHashTok value
, int8_t hint
) {
145 UHashTok oldValue
= e
->value
;
146 if (hash
->keyDeleter
!= NULL
&& e
->key
.pointer
!= NULL
&&
147 e
->key
.pointer
!= key
.pointer
) { /* Avoid double deletion */
148 (*hash
->keyDeleter
)(e
->key
.pointer
);
150 if (hash
->valueDeleter
!= NULL
) {
151 if (oldValue
.pointer
!= NULL
&&
152 oldValue
.pointer
!= value
.pointer
) { /* Avoid double deletion */
153 (*hash
->valueDeleter
)(oldValue
.pointer
);
155 oldValue
.pointer
= NULL
;
157 /* Compilers should copy the UHashTok union correctly, but even if
158 * they do, memory heap tools (e.g. BoundsChecker) can get
159 * confused when a pointer is cloaked in a union and then copied.
160 * TO ALLEVIATE THIS, we use hints (based on what API the user is
161 * calling) to copy pointers when we know the user thinks
162 * something is a pointer. */
163 if (hint
& HINT_KEY_POINTER
) {
164 e
->key
.pointer
= key
.pointer
;
168 if (hint
& HINT_VALUE_POINTER
) {
169 e
->value
.pointer
= value
.pointer
;
173 e
->hashcode
= hashcode
;
178 * Assumes that the given element is not empty or deleted.
181 _uhash_internalRemoveElement(UHashtable
*hash
, UHashElement
* e
) {
183 U_ASSERT(!IS_EMPTY_OR_DELETED(e
->hashcode
));
185 empty
.pointer
= NULL
; empty
.integer
= 0;
186 return _uhash_setElement(hash
, e
, HASH_DELETED
, empty
, empty
, 0);
190 _uhash_internalSetResizePolicy(UHashtable
*hash
, enum UHashResizePolicy policy
) {
191 U_ASSERT(hash
!= NULL
);
192 U_ASSERT(((int32_t)policy
) >= 0);
193 U_ASSERT(((int32_t)policy
) < 3);
194 hash
->lowWaterRatio
= RESIZE_POLICY_RATIO_TABLE
[policy
* 2];
195 hash
->highWaterRatio
= RESIZE_POLICY_RATIO_TABLE
[policy
* 2 + 1];
199 * Allocate internal data array of a size determined by the given
200 * prime index. If the index is out of range it is pinned into range.
201 * If the allocation fails the status is set to
202 * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In
203 * either case the previous array pointer is overwritten.
205 * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
208 _uhash_allocate(UHashtable
*hash
,
210 UErrorCode
*status
) {
212 UHashElement
*p
, *limit
;
215 if (U_FAILURE(*status
)) return;
217 U_ASSERT(primeIndex
>= 0 && primeIndex
< PRIMES_LENGTH
);
219 hash
->primeIndex
= primeIndex
;
220 hash
->length
= PRIMES
[primeIndex
];
222 p
= hash
->elements
= (UHashElement
*)
223 uprv_malloc(sizeof(UHashElement
) * hash
->length
);
225 if (hash
->elements
== NULL
) {
226 *status
= U_MEMORY_ALLOCATION_ERROR
;
230 emptytok
.pointer
= NULL
; /* Only one of these two is needed */
231 emptytok
.integer
= 0; /* but we don't know which one. */
233 limit
= p
+ hash
->length
;
237 p
->hashcode
= HASH_EMPTY
;
242 hash
->lowWaterMark
= (int32_t)(hash
->length
* hash
->lowWaterRatio
);
243 hash
->highWaterMark
= (int32_t)(hash
->length
* hash
->highWaterRatio
);
247 _uhash_init(UHashtable
*result
,
248 UHashFunction
*keyHash
,
249 UKeyComparator
*keyComp
,
250 UValueComparator
*valueComp
,
254 if (U_FAILURE(*status
)) return NULL
;
255 U_ASSERT(keyHash
!= NULL
);
256 U_ASSERT(keyComp
!= NULL
);
258 result
->keyHasher
= keyHash
;
259 result
->keyComparator
= keyComp
;
260 result
->valueComparator
= valueComp
;
261 result
->keyDeleter
= NULL
;
262 result
->valueDeleter
= NULL
;
263 result
->allocated
= FALSE
;
264 _uhash_internalSetResizePolicy(result
, U_GROW
);
266 _uhash_allocate(result
, primeIndex
, status
);
268 if (U_FAILURE(*status
)) {
276 _uhash_create(UHashFunction
*keyHash
,
277 UKeyComparator
*keyComp
,
278 UValueComparator
*valueComp
,
280 UErrorCode
*status
) {
283 if (U_FAILURE(*status
)) return NULL
;
285 result
= (UHashtable
*) uprv_malloc(sizeof(UHashtable
));
286 if (result
== NULL
) {
287 *status
= U_MEMORY_ALLOCATION_ERROR
;
291 _uhash_init(result
, keyHash
, keyComp
, valueComp
, primeIndex
, status
);
292 result
->allocated
= TRUE
;
294 if (U_FAILURE(*status
)) {
303 * Look for a key in the table, or if no such key exists, the first
304 * empty slot matching the given hashcode. Keys are compared using
305 * the keyComparator function.
307 * First find the start position, which is the hashcode modulo
308 * the length. Test it to see if it is:
310 * a. identical: First check the hash values for a quick check,
311 * then compare keys for equality using keyComparator.
315 * Stop if it is identical or empty, otherwise continue by adding a
316 * "jump" value (moduloing by the length again to keep it within
317 * range) and retesting. For efficiency, there need enough empty
318 * values so that the searchs stop within a reasonable amount of time.
319 * This can be changed by changing the high/low water marks.
321 * In theory, this function can return NULL, if it is full (no empty
322 * or deleted slots) and if no matching key is found. In practice, we
323 * prevent this elsewhere (in uhash_put) by making sure the last slot
324 * in the table is never filled.
326 * The size of the table should be prime for this algorithm to work;
327 * otherwise we are not guaranteed that the jump value (the secondary
328 * hash) is relatively prime to the table length.
331 _uhash_find(const UHashtable
*hash
, UHashTok key
,
334 int32_t firstDeleted
= -1; /* assume invalid index */
335 int32_t theIndex
, startIndex
;
336 int32_t jump
= 0; /* lazy evaluate */
338 UHashElement
*elements
= hash
->elements
;
340 hashcode
&= 0x7FFFFFFF; /* must be positive */
341 startIndex
= theIndex
= (hashcode
^ 0x4000000) % hash
->length
;
344 tableHash
= elements
[theIndex
].hashcode
;
345 if (tableHash
== hashcode
) { /* quick check */
346 if ((*hash
->keyComparator
)(key
, elements
[theIndex
].key
)) {
347 return &(elements
[theIndex
]);
349 } else if (!IS_EMPTY_OR_DELETED(tableHash
)) {
350 /* We have hit a slot which contains a key-value pair,
351 * but for which the hash code does not match. Keep
354 } else if (tableHash
== HASH_EMPTY
) { /* empty, end o' the line */
356 } else if (firstDeleted
< 0) { /* remember first deleted */
357 firstDeleted
= theIndex
;
359 if (jump
== 0) { /* lazy compute jump */
360 /* The jump value must be relatively prime to the table
361 * length. As long as the length is prime, then any value
362 * 1..length-1 will be relatively prime to it.
364 jump
= (hashcode
% (hash
->length
- 1)) + 1;
366 theIndex
= (theIndex
+ jump
) % hash
->length
;
367 } while (theIndex
!= startIndex
);
369 if (firstDeleted
>= 0) {
370 theIndex
= firstDeleted
; /* reset if had deleted slot */
371 } else if (tableHash
!= HASH_EMPTY
) {
372 /* We get to this point if the hashtable is full (no empty or
373 * deleted slots), and we've failed to find a match. THIS
374 * WILL NEVER HAPPEN as long as uhash_put() makes sure that
375 * count is always < length.
378 return NULL
; /* Never happens if uhash_put() behaves */
380 return &(elements
[theIndex
]);
384 * Attempt to grow or shrink the data arrays in order to make the
385 * count fit between the high and low water marks. hash_put() and
386 * hash_remove() call this method when the count exceeds the high or
387 * low water marks. This method may do nothing, if memory allocation
388 * fails, or if the count is already in range, or if the length is
389 * already at the low or high limit. In any case, upon return the
390 * arrays will be valid.
393 _uhash_rehash(UHashtable
*hash
, UErrorCode
*status
) {
395 UHashElement
*old
= hash
->elements
;
396 int32_t oldLength
= hash
->length
;
397 int32_t newPrimeIndex
= hash
->primeIndex
;
400 if (hash
->count
> hash
->highWaterMark
) {
401 if (++newPrimeIndex
>= PRIMES_LENGTH
) {
404 } else if (hash
->count
< hash
->lowWaterMark
) {
405 if (--newPrimeIndex
< 0) {
412 _uhash_allocate(hash
, newPrimeIndex
, status
);
414 if (U_FAILURE(*status
)) {
415 hash
->elements
= old
;
416 hash
->length
= oldLength
;
420 for (i
= oldLength
- 1; i
>= 0; --i
) {
421 if (!IS_EMPTY_OR_DELETED(old
[i
].hashcode
)) {
422 UHashElement
*e
= _uhash_find(hash
, old
[i
].key
, old
[i
].hashcode
);
424 U_ASSERT(e
->hashcode
== HASH_EMPTY
);
426 e
->value
= old
[i
].value
;
427 e
->hashcode
= old
[i
].hashcode
;
436 _uhash_remove(UHashtable
*hash
,
438 /* First find the position of the key in the table. If the object
439 * has not been removed already, remove it. If the user wanted
440 * keys deleted, then delete it also. We have to put a special
441 * hashcode in that position that means that something has been
442 * deleted, since when we do a find, we have to continue PAST any
446 UHashElement
* e
= _uhash_find(hash
, key
, hash
->keyHasher(key
));
448 result
.pointer
= NULL
;
450 if (!IS_EMPTY_OR_DELETED(e
->hashcode
)) {
451 result
= _uhash_internalRemoveElement(hash
, e
);
452 if (hash
->count
< hash
->lowWaterMark
) {
453 UErrorCode status
= U_ZERO_ERROR
;
454 _uhash_rehash(hash
, &status
);
461 _uhash_put(UHashtable
*hash
,
465 UErrorCode
*status
) {
467 /* Put finds the position in the table for the new value. If the
468 * key is already in the table, it is deleted, if there is a
469 * non-NULL keyDeleter. Then the key, the hash and the value are
470 * all put at the position in their respective arrays.
476 if (U_FAILURE(*status
)) {
479 U_ASSERT(hash
!= NULL
);
480 /* Cannot always check pointer here or iSeries sees NULL every time. */
481 if ((hint
& HINT_VALUE_POINTER
) && value
.pointer
== NULL
) {
482 /* Disallow storage of NULL values, since NULL is returned by
483 * get() to indicate an absent key. Storing NULL == removing.
485 return _uhash_remove(hash
, key
);
487 if (hash
->count
> hash
->highWaterMark
) {
488 _uhash_rehash(hash
, status
);
489 if (U_FAILURE(*status
)) {
494 hashcode
= (*hash
->keyHasher
)(key
);
495 e
= _uhash_find(hash
, key
, hashcode
);
498 if (IS_EMPTY_OR_DELETED(e
->hashcode
)) {
499 /* Important: We must never actually fill the table up. If we
500 * do so, then _uhash_find() will return NULL, and we'll have
501 * to check for NULL after every call to _uhash_find(). To
502 * avoid this we make sure there is always at least one empty
503 * or deleted slot in the table. This only is a problem if we
504 * are out of memory and rehash isn't working.
507 if (hash
->count
== hash
->length
) {
508 /* Don't allow count to reach length */
510 *status
= U_MEMORY_ALLOCATION_ERROR
;
515 /* We must in all cases handle storage properly. If there was an
516 * old key, then it must be deleted (if the deleter != NULL).
517 * Make hashcodes stored in table positive.
519 return _uhash_setElement(hash
, e
, hashcode
& 0x7FFFFFFF, key
, value
, hint
);
522 /* If the deleters are non-NULL, this method adopts its key and/or
523 * value arguments, and we must be sure to delete the key and/or
524 * value in all cases, even upon failure.
526 HASH_DELETE_KEY_VALUE(hash
, key
.pointer
, value
.pointer
);
527 emptytok
.pointer
= NULL
; emptytok
.integer
= 0;
532 /********************************************************************
534 ********************************************************************/
536 U_CAPI UHashtable
* U_EXPORT2
537 uhash_open(UHashFunction
*keyHash
,
538 UKeyComparator
*keyComp
,
539 UValueComparator
*valueComp
,
540 UErrorCode
*status
) {
542 return _uhash_create(keyHash
, keyComp
, valueComp
, DEFAULT_PRIME_INDEX
, status
);
545 U_CAPI UHashtable
* U_EXPORT2
546 uhash_openSize(UHashFunction
*keyHash
,
547 UKeyComparator
*keyComp
,
548 UValueComparator
*valueComp
,
550 UErrorCode
*status
) {
552 /* Find the smallest index i for which PRIMES[i] >= size. */
554 while (i
<(PRIMES_LENGTH
-1) && PRIMES
[i
]<size
) {
558 return _uhash_create(keyHash
, keyComp
, valueComp
, i
, status
);
561 U_CAPI UHashtable
* U_EXPORT2
562 uhash_init(UHashtable
*fillinResult
,
563 UHashFunction
*keyHash
,
564 UKeyComparator
*keyComp
,
565 UValueComparator
*valueComp
,
566 UErrorCode
*status
) {
568 return _uhash_init(fillinResult
, keyHash
, keyComp
, valueComp
, DEFAULT_PRIME_INDEX
, status
);
571 U_CAPI UHashtable
* U_EXPORT2
572 uhash_initSize(UHashtable
*fillinResult
,
573 UHashFunction
*keyHash
,
574 UKeyComparator
*keyComp
,
575 UValueComparator
*valueComp
,
577 UErrorCode
*status
) {
579 /* Find the smallest index i for which PRIMES[i] >= size. */
581 while (i
<(PRIMES_LENGTH
-1) && PRIMES
[i
]<size
) {
585 return _uhash_init(fillinResult
, keyHash
, keyComp
, valueComp
, i
, status
);
588 U_CAPI
void U_EXPORT2
589 uhash_close(UHashtable
*hash
) {
593 if (hash
->elements
!= NULL
) {
594 if (hash
->keyDeleter
!= NULL
|| hash
->valueDeleter
!= NULL
) {
595 int32_t pos
=UHASH_FIRST
;
597 while ((e
= (UHashElement
*) uhash_nextElement(hash
, &pos
)) != NULL
) {
598 HASH_DELETE_KEY_VALUE(hash
, e
->key
.pointer
, e
->value
.pointer
);
601 uprv_free(hash
->elements
);
602 hash
->elements
= NULL
;
604 if (hash
->allocated
) {
609 U_CAPI UHashFunction
*U_EXPORT2
610 uhash_setKeyHasher(UHashtable
*hash
, UHashFunction
*fn
) {
611 UHashFunction
*result
= hash
->keyHasher
;
612 hash
->keyHasher
= fn
;
616 U_CAPI UKeyComparator
*U_EXPORT2
617 uhash_setKeyComparator(UHashtable
*hash
, UKeyComparator
*fn
) {
618 UKeyComparator
*result
= hash
->keyComparator
;
619 hash
->keyComparator
= fn
;
622 U_CAPI UValueComparator
*U_EXPORT2
623 uhash_setValueComparator(UHashtable
*hash
, UValueComparator
*fn
){
624 UValueComparator
*result
= hash
->valueComparator
;
625 hash
->valueComparator
= fn
;
629 U_CAPI UObjectDeleter
*U_EXPORT2
630 uhash_setKeyDeleter(UHashtable
*hash
, UObjectDeleter
*fn
) {
631 UObjectDeleter
*result
= hash
->keyDeleter
;
632 hash
->keyDeleter
= fn
;
636 U_CAPI UObjectDeleter
*U_EXPORT2
637 uhash_setValueDeleter(UHashtable
*hash
, UObjectDeleter
*fn
) {
638 UObjectDeleter
*result
= hash
->valueDeleter
;
639 hash
->valueDeleter
= fn
;
643 U_CAPI
void U_EXPORT2
644 uhash_setResizePolicy(UHashtable
*hash
, enum UHashResizePolicy policy
) {
645 UErrorCode status
= U_ZERO_ERROR
;
646 _uhash_internalSetResizePolicy(hash
, policy
);
647 hash
->lowWaterMark
= (int32_t)(hash
->length
* hash
->lowWaterRatio
);
648 hash
->highWaterMark
= (int32_t)(hash
->length
* hash
->highWaterRatio
);
649 _uhash_rehash(hash
, &status
);
652 U_CAPI
int32_t U_EXPORT2
653 uhash_count(const UHashtable
*hash
) {
657 U_CAPI
void* U_EXPORT2
658 uhash_get(const UHashtable
*hash
,
661 keyholder
.pointer
= (void*) key
;
662 return _uhash_find(hash
, keyholder
, hash
->keyHasher(keyholder
))->value
.pointer
;
665 U_CAPI
void* U_EXPORT2
666 uhash_iget(const UHashtable
*hash
,
669 keyholder
.integer
= key
;
670 return _uhash_find(hash
, keyholder
, hash
->keyHasher(keyholder
))->value
.pointer
;
673 U_CAPI
int32_t U_EXPORT2
674 uhash_geti(const UHashtable
*hash
,
677 keyholder
.pointer
= (void*) key
;
678 return _uhash_find(hash
, keyholder
, hash
->keyHasher(keyholder
))->value
.integer
;
681 U_CAPI
int32_t U_EXPORT2
682 uhash_igeti(const UHashtable
*hash
,
685 keyholder
.integer
= key
;
686 return _uhash_find(hash
, keyholder
, hash
->keyHasher(keyholder
))->value
.integer
;
689 U_CAPI
void* U_EXPORT2
690 uhash_put(UHashtable
*hash
,
693 UErrorCode
*status
) {
694 UHashTok keyholder
, valueholder
;
695 keyholder
.pointer
= key
;
696 valueholder
.pointer
= value
;
697 return _uhash_put(hash
, keyholder
, valueholder
,
698 HINT_KEY_POINTER
| HINT_VALUE_POINTER
,
702 U_CAPI
void* U_EXPORT2
703 uhash_iput(UHashtable
*hash
,
706 UErrorCode
*status
) {
707 UHashTok keyholder
, valueholder
;
708 keyholder
.integer
= key
;
709 valueholder
.pointer
= value
;
710 return _uhash_put(hash
, keyholder
, valueholder
,
715 U_CAPI
int32_t U_EXPORT2
716 uhash_puti(UHashtable
*hash
,
719 UErrorCode
*status
) {
720 UHashTok keyholder
, valueholder
;
721 keyholder
.pointer
= key
;
722 valueholder
.integer
= value
;
723 return _uhash_put(hash
, keyholder
, valueholder
,
729 U_CAPI
int32_t U_EXPORT2
730 uhash_iputi(UHashtable
*hash
,
733 UErrorCode
*status
) {
734 UHashTok keyholder
, valueholder
;
735 keyholder
.integer
= key
;
736 valueholder
.integer
= value
;
737 return _uhash_put(hash
, keyholder
, valueholder
,
738 0, /* neither is a ptr */
742 U_CAPI
void* U_EXPORT2
743 uhash_remove(UHashtable
*hash
,
746 keyholder
.pointer
= (void*) key
;
747 return _uhash_remove(hash
, keyholder
).pointer
;
750 U_CAPI
void* U_EXPORT2
751 uhash_iremove(UHashtable
*hash
,
754 keyholder
.integer
= key
;
755 return _uhash_remove(hash
, keyholder
).pointer
;
758 U_CAPI
int32_t U_EXPORT2
759 uhash_removei(UHashtable
*hash
,
762 keyholder
.pointer
= (void*) key
;
763 return _uhash_remove(hash
, keyholder
).integer
;
766 U_CAPI
int32_t U_EXPORT2
767 uhash_iremovei(UHashtable
*hash
,
770 keyholder
.integer
= key
;
771 return _uhash_remove(hash
, keyholder
).integer
;
774 U_CAPI
void U_EXPORT2
775 uhash_removeAll(UHashtable
*hash
) {
776 int32_t pos
= UHASH_FIRST
;
777 const UHashElement
*e
;
778 U_ASSERT(hash
!= NULL
);
779 if (hash
->count
!= 0) {
780 while ((e
= uhash_nextElement(hash
, &pos
)) != NULL
) {
781 uhash_removeElement(hash
, e
);
784 U_ASSERT(hash
->count
== 0);
787 U_CAPI
const UHashElement
* U_EXPORT2
788 uhash_find(const UHashtable
*hash
, const void* key
) {
790 const UHashElement
*e
;
791 keyholder
.pointer
= (void*) key
;
792 e
= _uhash_find(hash
, keyholder
, hash
->keyHasher(keyholder
));
793 return IS_EMPTY_OR_DELETED(e
->hashcode
) ? NULL
: e
;
796 U_CAPI
const UHashElement
* U_EXPORT2
797 uhash_nextElement(const UHashtable
*hash
, int32_t *pos
) {
798 /* Walk through the array until we find an element that is not
799 * EMPTY and not DELETED.
802 U_ASSERT(hash
!= NULL
);
803 for (i
= *pos
+ 1; i
< hash
->length
; ++i
) {
804 if (!IS_EMPTY_OR_DELETED(hash
->elements
[i
].hashcode
)) {
806 return &(hash
->elements
[i
]);
810 /* No more elements */
814 U_CAPI
void* U_EXPORT2
815 uhash_removeElement(UHashtable
*hash
, const UHashElement
* e
) {
816 U_ASSERT(hash
!= NULL
);
818 if (!IS_EMPTY_OR_DELETED(e
->hashcode
)) {
819 UHashElement
*nce
= (UHashElement
*)e
;
820 return _uhash_internalRemoveElement(hash
, nce
).pointer
;
825 /********************************************************************
826 * UHashTok convenience
827 ********************************************************************/
830 * Return a UHashTok for an integer.
832 /*U_CAPI UHashTok U_EXPORT2
833 uhash_toki(int32_t i) {
840 * Return a UHashTok for a pointer.
842 /*U_CAPI UHashTok U_EXPORT2
843 uhash_tokp(void* p) {
849 /********************************************************************
850 * PUBLIC Key Hash Functions
851 ********************************************************************/
853 U_CAPI
int32_t U_EXPORT2
854 uhash_hashUChars(const UHashTok key
) {
855 const UChar
*s
= (const UChar
*)key
.pointer
;
856 return s
== NULL
? 0 : ustr_hashUCharsN(s
, u_strlen(s
));
859 U_CAPI
int32_t U_EXPORT2
860 uhash_hashChars(const UHashTok key
) {
861 const char *s
= (const char *)key
.pointer
;
862 return s
== NULL
? 0 : ustr_hashCharsN(s
, uprv_strlen(s
));
865 U_CAPI
int32_t U_EXPORT2
866 uhash_hashIChars(const UHashTok key
) {
867 const char *s
= (const char *)key
.pointer
;
868 return s
== NULL
? 0 : ustr_hashICharsN(s
, uprv_strlen(s
));
871 U_CAPI UBool U_EXPORT2
872 uhash_equals(const UHashtable
* hash1
, const UHashtable
* hash2
){
873 int32_t count1
, count2
, pos
, i
;
880 * Make sure that we are comparing 2 valid hashes of the same type
881 * with valid comparison functions.
882 * Without valid comparison functions, a binary comparison
883 * of the hash values will yield random results on machines
884 * with 64-bit pointers and 32-bit integer hashes.
885 * A valueComparator is normally optional.
887 if (hash1
==NULL
|| hash2
==NULL
||
888 hash1
->keyComparator
!= hash2
->keyComparator
||
889 hash1
->valueComparator
!= hash2
->valueComparator
||
890 hash1
->valueComparator
== NULL
)
893 Normally we would return an error here about incompatible hash tables,
894 but we return FALSE instead.
899 count1
= uhash_count(hash1
);
900 count2
= uhash_count(hash2
);
906 for(i
=0; i
<count1
; i
++){
907 const UHashElement
* elem1
= uhash_nextElement(hash1
, &pos
);
908 const UHashTok key1
= elem1
->key
;
909 const UHashTok val1
= elem1
->value
;
910 /* here the keys are not compared, instead the key form hash1 is used to fetch
911 * value from hash2. If the hashes are equal then then both hashes should
912 * contain equal values for the same key!
914 const UHashElement
* elem2
= _uhash_find(hash2
, key1
, hash2
->keyHasher(key1
));
915 const UHashTok val2
= elem2
->value
;
916 if(hash1
->valueComparator(val1
, val2
)==FALSE
){
923 /********************************************************************
924 * PUBLIC Comparator Functions
925 ********************************************************************/
927 U_CAPI UBool U_EXPORT2
928 uhash_compareUChars(const UHashTok key1
, const UHashTok key2
) {
929 const UChar
*p1
= (const UChar
*) key1
.pointer
;
930 const UChar
*p2
= (const UChar
*) key2
.pointer
;
934 if (p1
== NULL
|| p2
== NULL
) {
937 while (*p1
!= 0 && *p1
== *p2
) {
941 return (UBool
)(*p1
== *p2
);
944 U_CAPI UBool U_EXPORT2
945 uhash_compareChars(const UHashTok key1
, const UHashTok key2
) {
946 const char *p1
= (const char*) key1
.pointer
;
947 const char *p2
= (const char*) key2
.pointer
;
951 if (p1
== NULL
|| p2
== NULL
) {
954 while (*p1
!= 0 && *p1
== *p2
) {
958 return (UBool
)(*p1
== *p2
);
961 U_CAPI UBool U_EXPORT2
962 uhash_compareIChars(const UHashTok key1
, const UHashTok key2
) {
963 const char *p1
= (const char*) key1
.pointer
;
964 const char *p2
= (const char*) key2
.pointer
;
968 if (p1
== NULL
|| p2
== NULL
) {
971 while (*p1
!= 0 && uprv_tolower(*p1
) == uprv_tolower(*p2
)) {
975 return (UBool
)(*p1
== *p2
);
978 /********************************************************************
979 * PUBLIC int32_t Support Functions
980 ********************************************************************/
982 U_CAPI
int32_t U_EXPORT2
983 uhash_hashLong(const UHashTok key
) {
987 U_CAPI UBool U_EXPORT2
988 uhash_compareLong(const UHashTok key1
, const UHashTok key2
) {
989 return (UBool
)(key1
.integer
== key2
.integer
);