]> git.saurik.com Git - apple/icu.git/blob - icuSources/test/perf/perldriver/Dataset.pm
ICU-59117.0.1.tar.gz
[apple/icu.git] / icuSources / test / perf / perldriver / Dataset.pm
1 #!/usr/local/bin/perl
2 # ********************************************************************
3 # * Copyright (C) 2016 and later: Unicode, Inc. and others.
4 # * License & terms of use: http://www.unicode.org/copyright.html#License
5 # ********************************************************************
6 # ********************************************************************
7 # * COPYRIGHT:
8 # * Copyright (c) 2002, International Business Machines Corporation and
9 # * others. All Rights Reserved.
10 # ********************************************************************
11
12 package Dataset;
13 use Statistics::Descriptive;
14 use Statistics::Distributions;
15 use strict;
16
17 # Create a new Dataset with the given data.
18 sub new {
19 my ($class) = shift;
20 my $self = bless {
21 _data => \@_,
22 _scale => 1.0,
23 _mean => 0.0,
24 _error => 0.0,
25 }, $class;
26
27 my $n = @_;
28
29 if ($n >= 1) {
30 my $stats = Statistics::Descriptive::Full->new();
31 $stats->add_data(@{$self->{_data}});
32 $self->{_mean} = $stats->mean();
33
34 if ($n >= 2) {
35 # Use a t distribution rather than Gaussian because (a) we
36 # assume an underlying normal dist, (b) we do not know the
37 # standard deviation -- we estimate it from the data, and (c)
38 # we MAY have a small sample size (also works for large n).
39 my $t = Statistics::Distributions::tdistr($n-1, 0.005);
40 $self->{_error} = $t * $stats->standard_deviation();
41 }
42 }
43
44 $self;
45 }
46
47 # Set a scaling factor for all data; 1.0 means no scaling.
48 # Scale must be > 0.
49 sub setScale {
50 my ($self, $scale) = @_;
51 $self->{_scale} = $scale;
52 }
53
54 # Multiply the scaling factor by a value.
55 sub scaleBy {
56 my ($self, $a) = @_;
57 $self->{_scale} *= $a;
58 }
59
60 # Return the mean.
61 sub getMean {
62 my $self = shift;
63 return $self->{_mean} * $self->{_scale};
64 }
65
66 # Return a 99% error based on the t distribution. The dataset
67 # is desribed as getMean() +/- getError().
68 sub getError {
69 my $self = shift;
70 return $self->{_error} * $self->{_scale};
71 }
72
73 # Divide two Datasets and return a new one, maintaining the
74 # mean+/-error. The new Dataset has no data points.
75 sub divide {
76 my $self = shift;
77 my $rhs = shift;
78
79 my $minratio = ($self->{_mean} - $self->{_error}) /
80 ($rhs->{_mean} + $rhs->{_error});
81 my $maxratio = ($self->{_mean} + $self->{_error}) /
82 ($rhs->{_mean} - $rhs->{_error});
83
84 my $result = Dataset->new();
85 $result->{_mean} = ($minratio + $maxratio) / 2;
86 $result->{_error} = $result->{_mean} - $minratio;
87 $result->{_scale} = $self->{_scale} / $rhs->{_scale};
88 $result;
89 }
90
91 # subtracts two Datasets and return a new one, maintaining the
92 # mean+/-error. The new Dataset has no data points.
93 sub subtract {
94 my $self = shift;
95 my $rhs = shift;
96
97 my $result = Dataset->new();
98 $result->{_mean} = $self->{_mean} - $rhs->{_mean};
99 $result->{_error} = $self->{_error} + $rhs->{_error};
100 $result->{_scale} = $self->{_scale};
101 $result;
102 }
103
104 # adds two Datasets and return a new one, maintaining the
105 # mean+/-error. The new Dataset has no data points.
106 sub add {
107 my $self = shift;
108 my $rhs = shift;
109
110 my $result = Dataset->new();
111 $result->{_mean} = $self->{_mean} + $rhs->{_mean};
112 $result->{_error} = $self->{_error} + $rhs->{_error};
113 $result->{_scale} = $self->{_scale};
114 $result;
115 }
116
117 # Divides a dataset by a scalar.
118 # The new Dataset has no data points.
119 sub divideByScalar {
120 my $self = shift;
121 my $s = shift;
122
123 my $result = Dataset->new();
124 $result->{_mean} = $self->{_mean}/$s;
125 $result->{_error} = $self->{_error}/$s;
126 $result->{_scale} = $self->{_scale};
127 $result;
128 }
129
130 # Divides a dataset by a scalar.
131 # The new Dataset has no data points.
132 sub multiplyByScalar {
133 my $self = shift;
134 my $s = shift;
135
136 my $result = Dataset->new();
137 $result->{_mean} = $self->{_mean}*$s;
138 $result->{_error} = $self->{_error}*$s;
139 $result->{_scale} = $self->{_scale};
140 $result;
141 }
142
143 1;