]> git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/gregoimp.cpp
ICU-59117.0.1.tar.gz
[apple/icu.git] / icuSources / i18n / gregoimp.cpp
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 **********************************************************************
5 * Copyright (c) 2003-2008, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 **********************************************************************
8 * Author: Alan Liu
9 * Created: September 2 2003
10 * Since: ICU 2.8
11 **********************************************************************
12 */
13
14 #include "gregoimp.h"
15
16 #if !UCONFIG_NO_FORMATTING
17
18 #include "unicode/ucal.h"
19 #include "uresimp.h"
20 #include "cstring.h"
21 #include "uassert.h"
22
23 U_NAMESPACE_BEGIN
24
25 int32_t ClockMath::floorDivide(int32_t numerator, int32_t denominator) {
26 return (numerator >= 0) ?
27 numerator / denominator : ((numerator + 1) / denominator) - 1;
28 }
29
30 int32_t ClockMath::floorDivide(double numerator, int32_t denominator,
31 int32_t& remainder) {
32 double quotient;
33 quotient = uprv_floor(numerator / denominator);
34 remainder = (int32_t) (numerator - (quotient * denominator));
35 return (int32_t) quotient;
36 }
37
38 double ClockMath::floorDivide(double dividend, double divisor,
39 double& remainder) {
40 // Only designed to work for positive divisors
41 U_ASSERT(divisor > 0);
42 double quotient = floorDivide(dividend, divisor);
43 remainder = dividend - (quotient * divisor);
44 // N.B. For certain large dividends, on certain platforms, there
45 // is a bug such that the quotient is off by one. If you doubt
46 // this to be true, set a breakpoint below and run cintltst.
47 if (remainder < 0 || remainder >= divisor) {
48 // E.g. 6.7317038241449352e+022 / 86400000.0 is wrong on my
49 // machine (too high by one). 4.1792057231752762e+024 /
50 // 86400000.0 is wrong the other way (too low).
51 double q = quotient;
52 quotient += (remainder < 0) ? -1 : +1;
53 if (q == quotient) {
54 // For quotients > ~2^53, we won't be able to add or
55 // subtract one, since the LSB of the mantissa will be >
56 // 2^0; that is, the exponent (base 2) will be larger than
57 // the length, in bits, of the mantissa. In that case, we
58 // can't give a correct answer, so we set the remainder to
59 // zero. This has the desired effect of making extreme
60 // values give back an approximate answer rather than
61 // crashing. For example, UDate values above a ~10^25
62 // might all have a time of midnight.
63 remainder = 0;
64 } else {
65 remainder = dividend - (quotient * divisor);
66 }
67 }
68 U_ASSERT(0 <= remainder && remainder < divisor);
69 return quotient;
70 }
71
72 const int32_t JULIAN_1_CE = 1721426; // January 1, 1 CE Gregorian
73 const int32_t JULIAN_1970_CE = 2440588; // January 1, 1970 CE Gregorian
74
75 const int16_t Grego::DAYS_BEFORE[24] =
76 {0,31,59,90,120,151,181,212,243,273,304,334,
77 0,31,60,91,121,152,182,213,244,274,305,335};
78
79 const int8_t Grego::MONTH_LENGTH[24] =
80 {31,28,31,30,31,30,31,31,30,31,30,31,
81 31,29,31,30,31,30,31,31,30,31,30,31};
82
83 double Grego::fieldsToDay(int32_t year, int32_t month, int32_t dom) {
84
85 int32_t y = year - 1;
86
87 double julian = 365 * y + ClockMath::floorDivide(y, 4) + (JULIAN_1_CE - 3) + // Julian cal
88 ClockMath::floorDivide(y, 400) - ClockMath::floorDivide(y, 100) + 2 + // => Gregorian cal
89 DAYS_BEFORE[month + (isLeapYear(year) ? 12 : 0)] + dom; // => month/dom
90
91 return julian - JULIAN_1970_CE; // JD => epoch day
92 }
93
94 void Grego::dayToFields(double day, int32_t& year, int32_t& month,
95 int32_t& dom, int32_t& dow, int32_t& doy) {
96
97 // Convert from 1970 CE epoch to 1 CE epoch (Gregorian calendar)
98 day += JULIAN_1970_CE - JULIAN_1_CE;
99
100 // Convert from the day number to the multiple radix
101 // representation. We use 400-year, 100-year, and 4-year cycles.
102 // For example, the 4-year cycle has 4 years + 1 leap day; giving
103 // 1461 == 365*4 + 1 days.
104 int32_t n400 = ClockMath::floorDivide(day, 146097, doy); // 400-year cycle length
105 int32_t n100 = ClockMath::floorDivide(doy, 36524, doy); // 100-year cycle length
106 int32_t n4 = ClockMath::floorDivide(doy, 1461, doy); // 4-year cycle length
107 int32_t n1 = ClockMath::floorDivide(doy, 365, doy);
108 year = 400*n400 + 100*n100 + 4*n4 + n1;
109 if (n100 == 4 || n1 == 4) {
110 doy = 365; // Dec 31 at end of 4- or 400-year cycle
111 } else {
112 ++year;
113 }
114
115 UBool isLeap = isLeapYear(year);
116
117 // Gregorian day zero is a Monday.
118 dow = (int32_t) uprv_fmod(day + 1, 7);
119 dow += (dow < 0) ? (UCAL_SUNDAY + 7) : UCAL_SUNDAY;
120
121 // Common Julian/Gregorian calculation
122 int32_t correction = 0;
123 int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1
124 if (doy >= march1) {
125 correction = isLeap ? 1 : 2;
126 }
127 month = (12 * (doy + correction) + 6) / 367; // zero-based month
128 dom = doy - DAYS_BEFORE[month + (isLeap ? 12 : 0)] + 1; // one-based DOM
129 doy++; // one-based doy
130 }
131
132 void Grego::timeToFields(UDate time, int32_t& year, int32_t& month,
133 int32_t& dom, int32_t& dow, int32_t& doy, int32_t& mid) {
134 double millisInDay;
135 double day = ClockMath::floorDivide((double)time, (double)U_MILLIS_PER_DAY, millisInDay);
136 mid = (int32_t)millisInDay;
137 dayToFields(day, year, month, dom, dow, doy);
138 }
139
140 int32_t Grego::dayOfWeek(double day) {
141 int32_t dow;
142 ClockMath::floorDivide(day + UCAL_THURSDAY, 7, dow);
143 return (dow == 0) ? UCAL_SATURDAY : dow;
144 }
145
146 int32_t Grego::dayOfWeekInMonth(int32_t year, int32_t month, int32_t dom) {
147 int32_t weekInMonth = (dom + 6)/7;
148 if (weekInMonth == 4) {
149 if (dom + 7 > monthLength(year, month)) {
150 weekInMonth = -1;
151 }
152 } else if (weekInMonth == 5) {
153 weekInMonth = -1;
154 }
155 return weekInMonth;
156 }
157
158 U_NAMESPACE_END
159
160 #endif
161 //eof