]>
git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/gregoimp.cpp
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
4 **********************************************************************
5 * Copyright (c) 2003-2008, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 **********************************************************************
9 * Created: September 2 2003
11 **********************************************************************
16 #if !UCONFIG_NO_FORMATTING
18 #include "unicode/ucal.h"
25 int32_t ClockMath::floorDivide(int32_t numerator
, int32_t denominator
) {
26 return (numerator
>= 0) ?
27 numerator
/ denominator
: ((numerator
+ 1) / denominator
) - 1;
30 int32_t ClockMath::floorDivide(double numerator
, int32_t denominator
,
33 quotient
= uprv_floor(numerator
/ denominator
);
34 remainder
= (int32_t) (numerator
- (quotient
* denominator
));
35 return (int32_t) quotient
;
38 double ClockMath::floorDivide(double dividend
, double divisor
,
40 // Only designed to work for positive divisors
41 U_ASSERT(divisor
> 0);
42 double quotient
= floorDivide(dividend
, divisor
);
43 remainder
= dividend
- (quotient
* divisor
);
44 // N.B. For certain large dividends, on certain platforms, there
45 // is a bug such that the quotient is off by one. If you doubt
46 // this to be true, set a breakpoint below and run cintltst.
47 if (remainder
< 0 || remainder
>= divisor
) {
48 // E.g. 6.7317038241449352e+022 / 86400000.0 is wrong on my
49 // machine (too high by one). 4.1792057231752762e+024 /
50 // 86400000.0 is wrong the other way (too low).
52 quotient
+= (remainder
< 0) ? -1 : +1;
54 // For quotients > ~2^53, we won't be able to add or
55 // subtract one, since the LSB of the mantissa will be >
56 // 2^0; that is, the exponent (base 2) will be larger than
57 // the length, in bits, of the mantissa. In that case, we
58 // can't give a correct answer, so we set the remainder to
59 // zero. This has the desired effect of making extreme
60 // values give back an approximate answer rather than
61 // crashing. For example, UDate values above a ~10^25
62 // might all have a time of midnight.
65 remainder
= dividend
- (quotient
* divisor
);
68 U_ASSERT(0 <= remainder
&& remainder
< divisor
);
72 const int32_t JULIAN_1_CE
= 1721426; // January 1, 1 CE Gregorian
73 const int32_t JULIAN_1970_CE
= 2440588; // January 1, 1970 CE Gregorian
75 const int16_t Grego::DAYS_BEFORE
[24] =
76 {0,31,59,90,120,151,181,212,243,273,304,334,
77 0,31,60,91,121,152,182,213,244,274,305,335};
79 const int8_t Grego::MONTH_LENGTH
[24] =
80 {31,28,31,30,31,30,31,31,30,31,30,31,
81 31,29,31,30,31,30,31,31,30,31,30,31};
83 double Grego::fieldsToDay(int32_t year
, int32_t month
, int32_t dom
) {
87 double julian
= 365 * y
+ ClockMath::floorDivide(y
, 4) + (JULIAN_1_CE
- 3) + // Julian cal
88 ClockMath::floorDivide(y
, 400) - ClockMath::floorDivide(y
, 100) + 2 + // => Gregorian cal
89 DAYS_BEFORE
[month
+ (isLeapYear(year
) ? 12 : 0)] + dom
; // => month/dom
91 return julian
- JULIAN_1970_CE
; // JD => epoch day
94 void Grego::dayToFields(double day
, int32_t& year
, int32_t& month
,
95 int32_t& dom
, int32_t& dow
, int32_t& doy
) {
97 // Convert from 1970 CE epoch to 1 CE epoch (Gregorian calendar)
98 day
+= JULIAN_1970_CE
- JULIAN_1_CE
;
100 // Convert from the day number to the multiple radix
101 // representation. We use 400-year, 100-year, and 4-year cycles.
102 // For example, the 4-year cycle has 4 years + 1 leap day; giving
103 // 1461 == 365*4 + 1 days.
104 int32_t n400
= ClockMath::floorDivide(day
, 146097, doy
); // 400-year cycle length
105 int32_t n100
= ClockMath::floorDivide(doy
, 36524, doy
); // 100-year cycle length
106 int32_t n4
= ClockMath::floorDivide(doy
, 1461, doy
); // 4-year cycle length
107 int32_t n1
= ClockMath::floorDivide(doy
, 365, doy
);
108 year
= 400*n400
+ 100*n100
+ 4*n4
+ n1
;
109 if (n100
== 4 || n1
== 4) {
110 doy
= 365; // Dec 31 at end of 4- or 400-year cycle
115 UBool isLeap
= isLeapYear(year
);
117 // Gregorian day zero is a Monday.
118 dow
= (int32_t) uprv_fmod(day
+ 1, 7);
119 dow
+= (dow
< 0) ? (UCAL_SUNDAY
+ 7) : UCAL_SUNDAY
;
121 // Common Julian/Gregorian calculation
122 int32_t correction
= 0;
123 int32_t march1
= isLeap
? 60 : 59; // zero-based DOY for March 1
125 correction
= isLeap
? 1 : 2;
127 month
= (12 * (doy
+ correction
) + 6) / 367; // zero-based month
128 dom
= doy
- DAYS_BEFORE
[month
+ (isLeap
? 12 : 0)] + 1; // one-based DOM
129 doy
++; // one-based doy
132 void Grego::timeToFields(UDate time
, int32_t& year
, int32_t& month
,
133 int32_t& dom
, int32_t& dow
, int32_t& doy
, int32_t& mid
) {
135 double day
= ClockMath::floorDivide((double)time
, (double)U_MILLIS_PER_DAY
, millisInDay
);
136 mid
= (int32_t)millisInDay
;
137 dayToFields(day
, year
, month
, dom
, dow
, doy
);
140 int32_t Grego::dayOfWeek(double day
) {
142 ClockMath::floorDivide(day
+ UCAL_THURSDAY
, 7, dow
);
143 return (dow
== 0) ? UCAL_SATURDAY
: dow
;
146 int32_t Grego::dayOfWeekInMonth(int32_t year
, int32_t month
, int32_t dom
) {
147 int32_t weekInMonth
= (dom
+ 6)/7;
148 if (weekInMonth
== 4) {
149 if (dom
+ 7 > monthLength(year
, month
)) {
152 } else if (weekInMonth
== 5) {