1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
4 **********************************************************************
5 * Copyright (C) 1997-2015, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 **********************************************************************
11 * Modification History:
13 * Date Name Description
14 * 03/21/97 clhuang Converted from java.
15 * 03/21/97 clhuang Implemented with new APIs.
16 * 03/27/97 helena Updated to pass the simple test after code review.
17 * 03/31/97 aliu Moved isLONG_MIN to here, and fixed it.
18 * 04/15/97 aliu Changed MAX_COUNT to DBL_DIG. Changed Digit to char.
19 * Reworked representation by replacing fDecimalAt
21 * 04/16/97 aliu Rewrote set() and getDouble() to use sprintf/atof
22 * to do digit conversion.
23 * 09/09/97 aliu Modified for exponential notation support.
24 * 08/02/98 stephen Added nearest/even rounding
25 * Fixed bug in fitsIntoLong
26 ******************************************************************************
29 #if defined(__CYGWIN__) && !defined(_GNU_SOURCE)
35 #if !UCONFIG_NO_FORMATTING
37 #include "unicode/putil.h"
44 #include "digitinterval.h"
53 #if !defined(U_USE_STRTOD_L)
54 # if U_PLATFORM_USES_ONLY_WIN32_API
55 # define U_USE_STRTOD_L 1
56 # elif defined(U_HAVE_STRTOD_L)
57 # define U_USE_STRTOD_L U_HAVE_STRTOD_L
59 # define U_USE_STRTOD_L 0
64 # if U_PLATFORM_USES_ONLY_WIN32_API || U_PLATFORM == U_PF_CYGWIN
71 // ***************************************************************************
73 // A wrapper onto decNumber.
74 // Used to be standalone.
75 // ***************************************************************************
78 * This is the zero digit. The base for the digits returned by getDigit()
79 * Note that it is the platform invariant digit, and is not Unicode.
84 /* Only for 32 bit numbers. Ignore the negative sign. */
85 //static const char LONG_MIN_REP[] = "2147483648";
86 //static const char I64_MIN_REP[] = "9223372036854775808";
91 // -------------------------------------
92 // default constructor
94 DigitList::DigitList()
96 uprv_decContextDefault(&fContext
, DEC_INIT_BASE
);
98 uprv_decContextSetRounding(&fContext
, DEC_ROUND_HALF_EVEN
);
99 fContext
.digits
= fStorage
.getCapacity();
101 fDecNumber
= fStorage
.getAlias();
102 uprv_decNumberZero(fDecNumber
);
104 internalSetDouble(0.0);
107 // -------------------------------------
109 DigitList::~DigitList()
113 // -------------------------------------
116 DigitList::DigitList(const DigitList
&other
)
118 fDecNumber
= fStorage
.getAlias();
123 // -------------------------------------
124 // assignment operator
127 DigitList::operator=(const DigitList
& other
)
131 uprv_memcpy(&fContext
, &other
.fContext
, sizeof(decContext
));
133 if (other
.fStorage
.getCapacity() > fStorage
.getCapacity()) {
134 fDecNumber
= fStorage
.resize(other
.fStorage
.getCapacity());
136 // Always reset the fContext.digits, even if fDecNumber was not reallocated,
137 // because above we copied fContext from other.fContext.
138 fContext
.digits
= fStorage
.getCapacity();
139 uprv_decNumberCopy(fDecNumber
, other
.fDecNumber
);
142 // fDouble is lazily created and cached.
143 // Avoid potential races with that happening with other.fDouble
144 // while we are doing the assignment.
147 if(other
.fHave
==kDouble
) {
148 fUnion
.fDouble
= other
.fUnion
.fDouble
;
156 // -------------------------------------
157 // operator == (does not exactly match the old DigitList function)
160 DigitList::operator==(const DigitList
& that
) const
165 decNumber n
; // Has space for only a none digit value.
167 uprv_decContextDefault(&c
, DEC_INIT_BASE
);
171 uprv_decNumberCompare(&n
, this->fDecNumber
, that
.fDecNumber
, &c
);
172 UBool result
= decNumberIsZero(&n
);
176 // -------------------------------------
177 // comparison function. Returns
178 // Not Comparable : -2
182 int32_t DigitList::compare(const DigitList
&other
) {
184 int32_t savedDigits
= fContext
.digits
;
186 uprv_decNumberCompare(&result
, this->fDecNumber
, other
.fDecNumber
, &fContext
);
187 fContext
.digits
= savedDigits
;
188 if (decNumberIsZero(&result
)) {
190 } else if (decNumberIsSpecial(&result
)) {
192 } else if (result
.bits
& DECNEG
) {
200 // -------------------------------------
201 // Reduce - remove trailing zero digits.
203 DigitList::reduce() {
204 uprv_decNumberReduce(fDecNumber
, fDecNumber
, &fContext
);
208 // -------------------------------------
209 // trim - remove trailing fraction zero digits.
212 uprv_decNumberTrim(fDecNumber
);
215 // -------------------------------------
216 // Resets the digit list; sets all the digits to zero.
221 uprv_decNumberZero(fDecNumber
);
222 uprv_decContextSetRounding(&fContext
, DEC_ROUND_HALF_EVEN
);
223 internalSetDouble(0.0);
228 * Formats a int64_t number into a base 10 string representation, and NULL terminates it.
229 * @param number The number to format
230 * @param outputStr The string to output to. Must be at least MAX_DIGITS+2 in length (21),
231 * to hold the longest int64_t value.
232 * @return the number of digits written, not including the sign.
235 formatBase10(int64_t number
, char *outputStr
) {
236 // The number is output backwards, starting with the LSD.
237 // Fill the buffer from the far end. After the number is complete,
238 // slide the string contents to the front.
240 const int32_t MAX_IDX
= MAX_DIGITS
+2;
241 int32_t destIdx
= MAX_IDX
;
242 outputStr
[--destIdx
] = 0;
245 if (number
< 0) { // Negative numbers are slightly larger than a postive
246 outputStr
[--destIdx
] = (char)(-(n
% 10) + kZero
);
250 outputStr
[--destIdx
] = (char)(n
% 10 + kZero
);
255 outputStr
[--destIdx
] = '-';
258 // Slide the number to the start of the output str
259 U_ASSERT(destIdx
>= 0);
260 int32_t length
= MAX_IDX
- destIdx
;
261 uprv_memmove(outputStr
, outputStr
+MAX_IDX
-length
, length
);
267 // -------------------------------------
270 // For most modes, the meaning and names are the same between the decNumber library
271 // (which DigitList follows) and the ICU Formatting Rounding Mode values.
272 // The flag constants are different, however.
274 // Note that ICU's kRoundingUnnecessary is not implemented directly by DigitList.
275 // This mode, inherited from Java, means that numbers that would not format exactly
276 // will return an error when formatting is attempted.
279 DigitList::setRoundingMode(DecimalFormat::ERoundingMode m
) {
283 case DecimalFormat::kRoundCeiling
: r
= DEC_ROUND_CEILING
; break;
284 case DecimalFormat::kRoundFloor
: r
= DEC_ROUND_FLOOR
; break;
285 case DecimalFormat::kRoundDown
: r
= DEC_ROUND_DOWN
; break;
286 case DecimalFormat::kRoundUp
: r
= DEC_ROUND_UP
; break;
287 case DecimalFormat::kRoundHalfEven
: r
= DEC_ROUND_HALF_EVEN
; break;
288 case DecimalFormat::kRoundHalfDown
: r
= DEC_ROUND_HALF_DOWN
; break;
289 case DecimalFormat::kRoundHalfUp
: r
= DEC_ROUND_HALF_UP
; break;
290 case DecimalFormat::kRoundUnnecessary
: r
= DEC_ROUND_HALF_EVEN
; break;
292 // TODO: how to report the problem?
293 // Leave existing mode unchanged.
294 r
= uprv_decContextGetRounding(&fContext
);
296 uprv_decContextSetRounding(&fContext
, r
);
301 // -------------------------------------
304 DigitList::setPositive(UBool s
) {
306 fDecNumber
->bits
&= ~DECNEG
;
308 fDecNumber
->bits
|= DECNEG
;
312 // -------------------------------------
315 DigitList::setDecimalAt(int32_t d
) {
316 U_ASSERT((fDecNumber
->bits
& DECSPECIAL
) == 0); // Not Infinity or NaN
317 U_ASSERT(d
-1>-999999999);
318 U_ASSERT(d
-1< 999999999);
319 int32_t adjustedDigits
= fDecNumber
->digits
;
320 if (decNumberIsZero(fDecNumber
)) {
321 // Account for difference in how zero is represented between DigitList & decNumber.
324 fDecNumber
->exponent
= d
- adjustedDigits
;
329 DigitList::getDecimalAt() {
330 U_ASSERT((fDecNumber
->bits
& DECSPECIAL
) == 0); // Not Infinity or NaN
331 if (decNumberIsZero(fDecNumber
) || ((fDecNumber
->bits
& DECSPECIAL
) != 0)) {
332 return fDecNumber
->exponent
; // Exponent should be zero for these cases.
334 return fDecNumber
->exponent
+ fDecNumber
->digits
;
338 DigitList::setCount(int32_t c
) {
339 U_ASSERT(c
<= fContext
.digits
);
341 // For a value of zero, DigitList sets all fields to zero, while
342 // decNumber keeps one digit (with that digit being a zero)
344 fDecNumber
->lsu
[0] = 0;
346 fDecNumber
->digits
= c
;
351 DigitList::getCount() const {
352 if (decNumberIsZero(fDecNumber
) && fDecNumber
->exponent
==0) {
353 // The extra test for exponent==0 is needed because parsing sometimes appends
354 // zero digits. It's bogus, decimalFormatter parsing needs to be cleaned up.
357 return fDecNumber
->digits
;
362 DigitList::setDigit(int32_t i
, char v
) {
363 int32_t count
= fDecNumber
->digits
;
365 U_ASSERT(v
>='0' && v
<='9');
367 fDecNumber
->lsu
[count
-i
-1] = v
;
372 DigitList::getDigit(int32_t i
) {
373 int32_t count
= fDecNumber
->digits
;
375 return fDecNumber
->lsu
[count
-i
-1] + '0';
378 // copied from DigitList::getDigit()
380 DigitList::getDigitValue(int32_t i
) {
381 int32_t count
= fDecNumber
->digits
;
383 return fDecNumber
->lsu
[count
-i
-1];
386 // -------------------------------------
387 // Appends the digit to the digit list if it's not out of scope.
388 // Ignores the digit, otherwise.
390 // This function is horribly inefficient to implement with decNumber because
391 // the digits are stored least significant first, which requires moving all
392 // existing digits down one to make space for the new one to be appended.
395 DigitList::append(char digit
)
397 U_ASSERT(digit
>='0' && digit
<='9');
398 // Ignore digits which exceed the precision we can represent
399 // And don't fix for larger precision. Fix callers instead.
400 if (decNumberIsZero(fDecNumber
)) {
401 // Zero needs to be special cased because of the difference in the way
402 // that the old DigitList and decNumber represent it.
403 // digit cout was zero for digitList, is one for decNumber
404 fDecNumber
->lsu
[0] = digit
& 0x0f;
405 fDecNumber
->digits
= 1;
406 fDecNumber
->exponent
--; // To match the old digit list implementation.
408 int32_t nDigits
= fDecNumber
->digits
;
409 if (nDigits
< fContext
.digits
) {
411 for (i
=nDigits
; i
>0; i
--) {
412 fDecNumber
->lsu
[i
] = fDecNumber
->lsu
[i
-1];
414 fDecNumber
->lsu
[0] = digit
& 0x0f;
415 fDecNumber
->digits
++;
416 // DigitList emulation - appending doesn't change the magnitude of existing
417 // digits. With decNumber's decimal being after the
418 // least signficant digit, we need to adjust the exponent.
419 fDecNumber
->exponent
--;
425 // -------------------------------------
428 * Currently, getDouble() depends on strtod() to do its conversion.
431 * This is an extremely costly function. ~1/2 of the conversion time
432 * can be linked to this function.
435 DigitList::getDouble() const
439 if (fHave
== kDouble
) {
440 return fUnion
.fDouble
;
444 double tDouble
= 0.0;
447 if (decNumberIsNegative(fDecNumber
)) {
450 } else if (isInfinite()) {
451 if (std::numeric_limits
<double>::has_infinity
) {
452 tDouble
= std::numeric_limits
<double>::infinity();
454 tDouble
= std::numeric_limits
<double>::max();
457 tDouble
= -tDouble
; //this was incorrectly "-fDouble" originally.
460 MaybeStackArray
<char, MAX_DBL_DIGITS
+18> s
;
461 // Note: 14 is a magic constant from the decNumber library documentation,
462 // the max number of extra characters beyond the number of digits
463 // needed to represent the number in string form. Add a few more
464 // for the additional digits we retain.
466 // Round down to appx. double precision, if the number is longer than that.
467 // Copy the number first, so that we don't modify the original.
468 if (getCount() > MAX_DBL_DIGITS
+ 3) {
469 DigitList
numToConvert(*this);
470 numToConvert
.reduce(); // Removes any trailing zeros, so that digit count is good.
471 numToConvert
.round(MAX_DBL_DIGITS
+3);
472 uprv_decNumberToString(numToConvert
.fDecNumber
, s
.getAlias());
473 // TODO: how many extra digits should be included for an accurate conversion?
475 uprv_decNumberToString(this->fDecNumber
, s
.getAlias());
477 U_ASSERT(uprv_strlen(&s
[0]) < MAX_DBL_DIGITS
+18);
480 tDouble
= decimalStrToDouble(s
.getAlias(), &end
);
484 DigitList
*nonConstThis
= const_cast<DigitList
*>(this);
485 nonConstThis
->internalSetDouble(tDouble
);
490 #if U_USE_STRTOD_L && U_PLATFORM_USES_ONLY_WIN32_API
491 # define locale_t _locale_t
492 # define freelocale _free_locale
493 # define strtod_l _strtod_l
497 static locale_t gCLocale
= (locale_t
)0;
499 static icu::UInitOnce gCLocaleInitOnce
= U_INITONCE_INITIALIZER
;
502 // Cleanup callback func
503 static UBool U_CALLCONV
digitList_cleanup(void)
506 if (gCLocale
!= (locale_t
)0) {
507 freelocale(gCLocale
);
512 // C Locale initialization func
513 static void U_CALLCONV
initCLocale(void) {
514 ucln_i18n_registerCleanup(UCLN_I18N_DIGITLIST
, digitList_cleanup
);
516 # if U_PLATFORM_USES_ONLY_WIN32_API
517 gCLocale
= _create_locale(LC_ALL
, "C");
519 gCLocale
= newlocale(LC_ALL_MASK
, "C", (locale_t
)0);
526 DigitList::decimalStrToDouble(char *decstr
, char **end
) {
527 umtx_initOnce(gCLocaleInitOnce
, &initCLocale
);
529 return strtod_l(decstr
, end
, gCLocale
);
531 char *decimalPt
= strchr(decstr
, '.');
533 // We need to know the decimal separator character that will be used with strtod().
534 // Depends on the C runtime global locale.
535 // Most commonly is '.'
536 char rep
[MAX_DIGITS
];
537 sprintf(rep
, "%+1.1f", 1.0);
540 return uprv_strtod(decstr
, end
);
544 // -------------------------------------
547 * convert this number to an int32_t. Round if there is a fractional part.
548 * Return zero if the number cannot be represented.
550 int32_t DigitList::getLong() /*const*/
553 if (getUpperExponent() > 10) {
554 // Overflow, absolute value too big.
557 if (fDecNumber
->exponent
!= 0) {
558 // Force to an integer, with zero exponent, rounding if necessary.
559 // (decNumberToInt32 will only work if the exponent is exactly zero.)
560 DigitList
copy(*this);
562 uprv_decNumberQuantize(copy
.fDecNumber
, copy
.fDecNumber
, zero
.fDecNumber
, &fContext
);
563 result
= uprv_decNumberToInt32(copy
.fDecNumber
, &fContext
);
565 result
= uprv_decNumberToInt32(fDecNumber
, &fContext
);
572 * convert this number to an int64_t. Truncate if there is a fractional part.
573 * Return zero if the number cannot be represented.
575 int64_t DigitList::getInt64() /*const*/ {
576 // TODO: fast conversion if fHave == fDouble
578 // Truncate if non-integer.
579 // Return 0 if out of range.
580 // Range of in64_t is -9223372036854775808 to 9223372036854775807 (19 digits)
582 if (getUpperExponent() > 19) {
583 // Overflow, absolute value too big.
587 // The number of integer digits may differ from the number of digits stored
588 // in the decimal number.
589 // for 12.345 numIntDigits = 2, number->digits = 5
590 // for 12E4 numIntDigits = 6, number->digits = 2
591 // The conversion ignores the fraction digits in the first case,
592 // and fakes up extra zero digits in the second.
593 // TODO: It would be faster to store a table of powers of ten to multiply by
594 // instead of looping over zero digits, multiplying each time.
596 int32_t numIntDigits
= getUpperExponent();
598 for (int32_t i
= 0; i
< numIntDigits
; i
++) {
599 // Loop is iterating over digits starting with the most significant.
600 // Numbers are stored with the least significant digit at index zero.
601 int32_t digitIndex
= fDecNumber
->digits
- i
- 1;
602 int32_t v
= (digitIndex
>= 0) ? fDecNumber
->lsu
[digitIndex
] : 0;
603 value
= value
* (uint64_t)10 + (uint64_t)v
;
606 if (decNumberIsNegative(fDecNumber
)) {
610 int64_t svalue
= (int64_t)value
;
612 // Check overflow. It's convenient that the MSD is 9 only on overflow, the amount of
613 // overflow can't wrap too far. The test will also fail -0, but
614 // that does no harm; the right answer is 0.
615 if (numIntDigits
== 19) {
616 if (( decNumberIsNegative(fDecNumber
) && svalue
>0) ||
617 (!decNumberIsNegative(fDecNumber
) && svalue
<0)) {
627 * Return a string form of this number.
628 * Format is as defined by the decNumber library, for interchange of
631 void DigitList::getDecimal(CharString
&str
, UErrorCode
&status
) {
632 if (U_FAILURE(status
)) {
636 // A decimal number in string form can, worst case, be 14 characters longer
637 // than the number of digits. So says the decNumber library doc.
638 int32_t maxLength
= fDecNumber
->digits
+ 14;
639 int32_t capacity
= 0;
640 char *buffer
= str
.clear().getAppendBuffer(maxLength
, 0, capacity
, status
);
641 if (U_FAILURE(status
)) {
642 return; // Memory allocation error on growing the string.
644 U_ASSERT(capacity
>= maxLength
);
645 uprv_decNumberToString(this->fDecNumber
, buffer
);
646 U_ASSERT((int32_t)uprv_strlen(buffer
) <= maxLength
);
647 str
.append(buffer
, -1, status
);
651 * Return true if this is an integer value that can be held
652 * by an int32_t type.
655 DigitList::fitsIntoLong(UBool ignoreNegativeZero
) /*const*/
657 if (decNumberIsSpecial(this->fDecNumber
)) {
658 // NaN or Infinity. Does not fit in int32.
661 uprv_decNumberTrim(this->fDecNumber
);
662 if (fDecNumber
->exponent
< 0) {
663 // Number contains fraction digits.
666 if (decNumberIsZero(this->fDecNumber
) && !ignoreNegativeZero
&&
667 (fDecNumber
->bits
& DECNEG
) != 0) {
668 // Negative Zero, not ingored. Cannot represent as a long.
671 if (getUpperExponent() < 10) {
672 // The number is 9 or fewer digits.
673 // The max and min int32 are 10 digts, so this number fits.
674 // This is the common case.
678 // TODO: Should cache these constants; construction is relatively costly.
679 // But not of huge consequence; they're only needed for 10 digit ints.
680 UErrorCode status
= U_ZERO_ERROR
;
681 DigitList min32
; min32
.set("-2147483648", status
);
682 if (this->compare(min32
) < 0) {
685 DigitList max32
; max32
.set("2147483647", status
);
686 if (this->compare(max32
) > 0) {
689 if (U_FAILURE(status
)) {
698 * Return true if the number represented by this object can fit into
702 DigitList::fitsIntoInt64(UBool ignoreNegativeZero
) /*const*/
704 if (decNumberIsSpecial(this->fDecNumber
)) {
705 // NaN or Infinity. Does not fit in int32.
708 uprv_decNumberTrim(this->fDecNumber
);
709 if (fDecNumber
->exponent
< 0) {
710 // Number contains fraction digits.
713 if (decNumberIsZero(this->fDecNumber
) && !ignoreNegativeZero
&&
714 (fDecNumber
->bits
& DECNEG
) != 0) {
715 // Negative Zero, not ingored. Cannot represent as a long.
718 if (getUpperExponent() < 19) {
719 // The number is 18 or fewer digits.
720 // The max and min int64 are 19 digts, so this number fits.
721 // This is the common case.
725 // TODO: Should cache these constants; construction is relatively costly.
726 // But not of huge consequence; they're only needed for 19 digit ints.
727 UErrorCode status
= U_ZERO_ERROR
;
728 DigitList min64
; min64
.set("-9223372036854775808", status
);
729 if (this->compare(min64
) < 0) {
732 DigitList max64
; max64
.set("9223372036854775807", status
);
733 if (this->compare(max64
) > 0) {
736 if (U_FAILURE(status
)) {
743 // -------------------------------------
746 DigitList::set(int32_t source
)
748 set((int64_t)source
);
749 internalSetDouble(source
);
752 // -------------------------------------
754 * Set an int64, via decnumber
757 DigitList::set(int64_t source
)
759 char str
[MAX_DIGITS
+2]; // Leave room for sign and trailing nul.
760 formatBase10(source
, str
);
761 U_ASSERT(uprv_strlen(str
) < sizeof(str
));
763 uprv_decNumberFromString(fDecNumber
, str
, &fContext
);
764 internalSetDouble(static_cast<double>(source
));
767 // -------------------------------------
769 * Set the DigitList from a decimal number string.
771 * The incoming string _must_ be nul terminated, even though it is arriving
772 * as a StringPiece because that is what the decNumber library wants.
773 * We can get away with this for an internal function; it would not
774 * be acceptable for a public API.
777 DigitList::set(StringPiece source
, UErrorCode
&status
, uint32_t /*fastpathBits*/) {
778 if (U_FAILURE(status
)) {
783 if(fastpathBits
==(kFastpathOk
|kNoDecimal
)) {
784 int32_t size
= source
.size();
785 const char *data
= source
.data();
790 char ch
= data
[--size
];
798 //printf("CH[%d]=%c, %d, *=%d\n", size,ch, (int)d, (int)m);
803 //printf("R=%d\n", r);
808 // Figure out a max number of digits to use during the conversion, and
809 // resize the number up if necessary.
810 int32_t numDigits
= source
.length();
811 if (numDigits
> fContext
.digits
) {
812 // fContext.digits == fStorage.getCapacity()
813 decNumber
*t
= fStorage
.resize(numDigits
, fStorage
.getCapacity());
815 status
= U_MEMORY_ALLOCATION_ERROR
;
819 fContext
.digits
= numDigits
;
823 uprv_decNumberFromString(fDecNumber
, source
.data(), &fContext
);
824 if ((fContext
.status
& DEC_Conversion_syntax
) != 0) {
825 status
= U_DECIMAL_NUMBER_SYNTAX_ERROR
;
832 * Set the digit list to a representation of the given double value.
833 * This method supports both fixed-point and exponential notation.
834 * @param source Value to be converted.
837 DigitList::set(double source
)
839 // for now, simple implementation; later, do proper IEEE stuff
840 char rep
[MAX_DIGITS
+ 8]; // Extra space for '+', '.', e+NNN, and '\0' (actually +8 is enough)
842 // Generate a representation of the form /[+-][0-9].[0-9]+e[+-][0-9]+/
843 // Can also generate /[+-]nan/ or /[+-]inf/
844 // TODO: Use something other than sprintf() here, since it's behavior is somewhat platform specific.
845 // That is why infinity is special cased here.
846 if (uprv_isInfinite(source
)) {
847 if (uprv_isNegativeInfinity(source
)) {
848 uprv_strcpy(rep
,"-inf"); // Handle negative infinity
850 uprv_strcpy(rep
,"inf");
853 sprintf(rep
, "%+1.*e", MAX_DBL_DIGITS
- 1, source
);
855 U_ASSERT(uprv_strlen(rep
) < sizeof(rep
));
857 // uprv_decNumberFromString() will parse the string expecting '.' as a
858 // decimal separator, however sprintf() can use ',' in certain locales.
859 // Overwrite a ',' with '.' here before proceeding.
860 char *decimalSeparator
= strchr(rep
, ',');
861 if (decimalSeparator
!= NULL
) {
862 *decimalSeparator
= '.';
865 // Create a decNumber from the string.
866 uprv_decNumberFromString(fDecNumber
, rep
, &fContext
);
867 uprv_decNumberTrim(fDecNumber
);
868 internalSetDouble(source
);
871 // -------------------------------------
875 * The number will be expanded if need be to retain full precision.
876 * In practice, for formatting, multiply is by 10, 100 or 1000, so more digits
877 * will not be required for this use.
880 DigitList::mult(const DigitList
&other
, UErrorCode
&status
) {
881 if (U_FAILURE(status
)) {
885 int32_t requiredDigits
= this->digits() + other
.digits();
886 if (requiredDigits
> fContext
.digits
) {
887 reduce(); // Remove any trailing zeros
888 int32_t requiredDigits
= this->digits() + other
.digits();
889 ensureCapacity(requiredDigits
, status
);
891 uprv_decNumberMultiply(fDecNumber
, fDecNumber
, other
.fDecNumber
, &fContext
);
895 // -------------------------------------
899 * The number will _not_ be expanded for inexact results.
900 * TODO: probably should expand some, for rounding increments that
901 * could add a few digits, e.g. .25, but not expand arbitrarily.
904 DigitList::div(const DigitList
&other
, UErrorCode
&status
) {
905 if (U_FAILURE(status
)) {
908 uprv_decNumberDivide(fDecNumber
, fDecNumber
, other
.fDecNumber
, &fContext
);
912 // -------------------------------------
915 * ensureCapacity. Grow the digit storage for the number if it's less than the requested
916 * amount. Never reduce it. Available size is kept in fContext.digits.
919 DigitList::ensureCapacity(int32_t requestedCapacity
, UErrorCode
&status
) {
920 if (U_FAILURE(status
)) {
923 if (requestedCapacity
<= 0) {
924 status
= U_ILLEGAL_ARGUMENT_ERROR
;
927 if (requestedCapacity
> DEC_MAX_DIGITS
) {
928 // Don't report an error for requesting too much.
929 // Arithemetic Results will be rounded to what can be supported.
930 // At 999,999,999 max digits, exceeding the limit is not too likely!
931 requestedCapacity
= DEC_MAX_DIGITS
;
933 if (requestedCapacity
> fContext
.digits
) {
934 decNumber
*newBuffer
= fStorage
.resize(requestedCapacity
, fStorage
.getCapacity());
935 if (newBuffer
== NULL
) {
936 status
= U_MEMORY_ALLOCATION_ERROR
;
939 fContext
.digits
= requestedCapacity
;
940 fDecNumber
= newBuffer
;
944 // -------------------------------------
947 * Round the representation to the given number of digits.
948 * @param maximumDigits The maximum number of digits to be shown.
949 * Upon return, count will be less than or equal to maximumDigits.
952 DigitList::round(int32_t maximumDigits
)
955 if (maximumDigits
>= fDecNumber
->digits
) {
958 int32_t savedDigits
= fContext
.digits
;
959 fContext
.digits
= maximumDigits
;
960 uprv_decNumberPlus(fDecNumber
, fDecNumber
, &fContext
);
961 fContext
.digits
= savedDigits
;
962 uprv_decNumberTrim(fDecNumber
);
969 DigitList::roundFixedPoint(int32_t maximumFractionDigits
) {
970 reduce(); // Remove trailing zeros.
971 if (fDecNumber
->exponent
>= -maximumFractionDigits
) {
974 decNumber scale
; // Dummy decimal number, but with the desired number of
975 uprv_decNumberZero(&scale
); // fraction digits.
976 scale
.exponent
= -maximumFractionDigits
;
979 uprv_decNumberQuantize(fDecNumber
, fDecNumber
, &scale
, &fContext
);
984 // -------------------------------------
987 DigitList::toIntegralValue() {
988 uprv_decNumberToIntegralValue(fDecNumber
, fDecNumber
, &fContext
);
992 // -------------------------------------
994 DigitList::isZero() const
996 return decNumberIsZero(fDecNumber
);
999 // -------------------------------------
1001 DigitList::getUpperExponent() const {
1002 return fDecNumber
->digits
+ fDecNumber
->exponent
;
1006 DigitList::getSmallestInterval(DigitInterval
&result
) const {
1007 result
.setLeastSignificantInclusive(fDecNumber
->exponent
);
1008 result
.setMostSignificantExclusive(getUpperExponent());
1013 DigitList::getDigitByExponent(int32_t exponent
) const {
1014 int32_t idx
= exponent
- fDecNumber
->exponent
;
1015 if (idx
< 0 || idx
>= fDecNumber
->digits
) {
1018 return fDecNumber
->lsu
[idx
];
1022 DigitList::appendDigitsTo(CharString
&str
, UErrorCode
&status
) const {
1023 str
.append((const char *) fDecNumber
->lsu
, fDecNumber
->digits
, status
);
1027 DigitList::roundAtExponent(int32_t exponent
, int32_t maxSigDigits
) {
1029 if (maxSigDigits
< fDecNumber
->digits
) {
1030 int32_t minExponent
= getUpperExponent() - maxSigDigits
;
1031 if (exponent
< minExponent
) {
1032 exponent
= minExponent
;
1035 if (exponent
<= fDecNumber
->exponent
) {
1038 int32_t digits
= getUpperExponent() - exponent
;
1042 roundFixedPoint(-exponent
);
1047 DigitList::quantize(const DigitList
&quantity
, UErrorCode
&status
) {
1048 if (U_FAILURE(status
)) {
1051 div(quantity
, status
);
1053 mult(quantity
, status
);
1058 DigitList::getScientificExponent(
1059 int32_t minIntDigitCount
, int32_t exponentMultiplier
) const {
1060 // The exponent for zero is always zero.
1064 int32_t intDigitCount
= getUpperExponent();
1066 if (intDigitCount
>= minIntDigitCount
) {
1067 int32_t maxAdjustment
= intDigitCount
- minIntDigitCount
;
1068 exponent
= (maxAdjustment
/ exponentMultiplier
) * exponentMultiplier
;
1070 int32_t minAdjustment
= minIntDigitCount
- intDigitCount
;
1071 exponent
= ((minAdjustment
+ exponentMultiplier
- 1) / exponentMultiplier
) * -exponentMultiplier
;
1077 DigitList::toScientific(
1078 int32_t minIntDigitCount
, int32_t exponentMultiplier
) {
1079 int32_t exponent
= getScientificExponent(
1080 minIntDigitCount
, exponentMultiplier
);
1081 shiftDecimalRight(-exponent
);
1086 DigitList::shiftDecimalRight(int32_t n
) {
1087 fDecNumber
->exponent
+= n
;
1092 #endif // #if !UCONFIG_NO_FORMATTING