]> git.saurik.com Git - apple/icu.git/blob - icuSources/common/ucnvmbcs.cpp
ICU-59117.0.1.tar.gz
[apple/icu.git] / icuSources / common / ucnvmbcs.cpp
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 ******************************************************************************
5 *
6 * Copyright (C) 2000-2016, International Business Machines
7 * Corporation and others. All Rights Reserved.
8 *
9 ******************************************************************************
10 * file name: ucnvmbcs.cpp
11 * encoding: UTF-8
12 * tab size: 8 (not used)
13 * indentation:4
14 *
15 * created on: 2000jul03
16 * created by: Markus W. Scherer
17 *
18 * The current code in this file replaces the previous implementation
19 * of conversion code from multi-byte codepages to Unicode and back.
20 * This implementation supports the following:
21 * - legacy variable-length codepages with up to 4 bytes per character
22 * - all Unicode code points (up to 0x10ffff)
23 * - efficient distinction of unassigned vs. illegal byte sequences
24 * - it is possible in fromUnicode() to directly deal with simple
25 * stateful encodings (used for EBCDIC_STATEFUL)
26 * - it is possible to convert Unicode code points
27 * to a single zero byte (but not as a fallback except for SBCS)
28 *
29 * Remaining limitations in fromUnicode:
30 * - byte sequences must not have leading zero bytes
31 * - except for SBCS codepages: no fallback mapping from Unicode to a zero byte
32 * - limitation to up to 4 bytes per character
33 *
34 * ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these
35 * limitations and adds m:n character mappings and other features.
36 * See ucnv_ext.h for details.
37 *
38 * Change history:
39 *
40 * 5/6/2001 Ram Moved MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U,
41 * MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2
42 * macros to ucnvmbcs.h file
43 */
44
45 #include "unicode/utypes.h"
46
47 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
48
49 #include "unicode/ucnv.h"
50 #include "unicode/ucnv_cb.h"
51 #include "unicode/udata.h"
52 #include "unicode/uset.h"
53 #include "unicode/utf8.h"
54 #include "unicode/utf16.h"
55 #include "ucnv_bld.h"
56 #include "ucnvmbcs.h"
57 #include "ucnv_ext.h"
58 #include "ucnv_cnv.h"
59 #include "cmemory.h"
60 #include "cstring.h"
61 #include "umutex.h"
62
63 /* control optimizations according to the platform */
64 #define MBCS_UNROLL_SINGLE_TO_BMP 1
65 #define MBCS_UNROLL_SINGLE_FROM_BMP 0
66
67 /*
68 * _MBCSHeader versions 5.3 & 4.3
69 * (Note that the _MBCSHeader version is in addition to the converter formatVersion.)
70 *
71 * This version is optional. Version 5 is used for incompatible data format changes.
72 * makeconv will continue to generate version 4 files if possible.
73 *
74 * Changes from version 4:
75 *
76 * The main difference is an additional _MBCSHeader field with
77 * - the length (number of uint32_t) of the _MBCSHeader
78 * - flags for further incompatible data format changes
79 * - flags for further, backward compatible data format changes
80 *
81 * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from
82 * the file and needs to be reconstituted at load time.
83 * This requires a utf8Friendly format with an additional mbcsIndex table for fast
84 * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar.
85 * (For details about these structures see below, and see ucnvmbcs.h.)
86 *
87 * utf8Friendly also implies that the fromUnicode mappings are stored in ascending order
88 * of the Unicode code points. (This requires that the .ucm file has the |0 etc.
89 * precision markers for all mappings.)
90 *
91 * All fallbacks have been moved to the extension table, leaving only roundtrips in the
92 * omitted data that can be reconstituted from the toUnicode data.
93 *
94 * Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted.
95 * With only roundtrip mappings in the base fromUnicode data, this part is fully
96 * redundant with the mbcsIndex and will be reconstituted from that (also using the
97 * stage 1 table which contains the information about how stage 2 was compacted).
98 *
99 * The rest of the stage 2 table, the part for code points above maxFastUChar,
100 * is stored in the file and will be appended to the reconstituted part.
101 *
102 * The entire fromUBytes array is omitted from the file and will be reconstitued.
103 * This is done by enumerating all toUnicode roundtrip mappings, performing
104 * each mapping (using the stage 1 and reconstituted stage 2 tables) and
105 * writing instead of reading the byte values.
106 *
107 * _MBCSHeader version 4.3
108 *
109 * Change from version 4.2:
110 * - Optional utf8Friendly data structures, with 64-entry stage 3 block
111 * allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS
112 * files which can be used instead of stages 1 & 2.
113 * Faster lookups for roundtrips from most commonly used characters,
114 * and lookups from UTF-8 byte sequences with a natural bit distribution.
115 * See ucnvmbcs.h for more details.
116 *
117 * Change from version 4.1:
118 * - Added an optional extension table structure at the end of the .cnv file.
119 * It is present if the upper bits of the header flags field contains a non-zero
120 * byte offset to it.
121 * Files that contain only a conversion table and no base table
122 * use the special outputType MBCS_OUTPUT_EXT_ONLY.
123 * These contain the base table name between the MBCS header and the extension
124 * data.
125 *
126 * Change from version 4.0:
127 * - Replace header.reserved with header.fromUBytesLength so that all
128 * fields in the data have length.
129 *
130 * Changes from version 3 (for performance improvements):
131 * - new bit distribution for state table entries
132 * - reordered action codes
133 * - new data structure for single-byte fromUnicode
134 * + stage 2 only contains indexes
135 * + stage 3 stores 16 bits per character with classification bits 15..8
136 * - no multiplier for stage 1 entries
137 * - stage 2 for non-single-byte codepages contains the index and the flags in
138 * one 32-bit value
139 * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers
140 *
141 * For more details about old versions of the MBCS data structure, see
142 * the corresponding versions of this file.
143 *
144 * Converting stateless codepage data ---------------------------------------***
145 * (or codepage data with simple states) to Unicode.
146 *
147 * Data structure and algorithm for converting from complex legacy codepages
148 * to Unicode. (Designed before 2000-may-22.)
149 *
150 * The basic idea is that the structure of legacy codepages can be described
151 * with state tables.
152 * When reading a byte stream, each input byte causes a state transition.
153 * Some transitions result in the output of a code point, some result in
154 * "unassigned" or "illegal" output.
155 * This is used here for character conversion.
156 *
157 * The data structure begins with a state table consisting of a row
158 * per state, with 256 entries (columns) per row for each possible input
159 * byte value.
160 * Each entry is 32 bits wide, with two formats distinguished by
161 * the sign bit (bit 31):
162 *
163 * One format for transitional entries (bit 31 not set) for non-final bytes, and
164 * one format for final entries (bit 31 set).
165 * Both formats contain the number of the next state in the same bit
166 * positions.
167 * State 0 is the initial state.
168 *
169 * Most of the time, the offset values of subsequent states are added
170 * up to a scalar value. This value will eventually be the index of
171 * the Unicode code point in a table that follows the state table.
172 * The effect is that the code points for final state table rows
173 * are contiguous. The code points of final state rows follow each other
174 * in the order of the references to those final states by previous
175 * states, etc.
176 *
177 * For some terminal states, the offset is itself the output Unicode
178 * code point (16 bits for a BMP code point or 20 bits for a supplementary
179 * code point (stored as code point minus 0x10000 so that 20 bits are enough).
180 * For others, the code point in the Unicode table is stored with either
181 * one or two code units: one for BMP code points, two for a pair of
182 * surrogates.
183 * All code points for a final state entry take up the same number of code
184 * units, regardless of whether they all actually _use_ the same number
185 * of code units. This is necessary for simple array access.
186 *
187 * An additional feature comes in with what in ICU is called "fallback"
188 * mappings:
189 *
190 * In addition to round-trippable, precise, 1:1 mappings, there are often
191 * mappings defined between similar, though not the same, characters.
192 * Typically, such mappings occur only in fromUnicode mapping tables because
193 * Unicode has a superset repertoire of most other codepages. However, it
194 * is possible to provide such mappings in the toUnicode tables, too.
195 * In this case, the fallback mappings are partly integrated into the
196 * general state tables because the structure of the encoding includes their
197 * byte sequences.
198 * For final entries in an initial state, fallback mappings are stored in
199 * the entry itself like with roundtrip mappings.
200 * For other final entries, they are stored in the code units table if
201 * the entry is for a pair of code units.
202 * For single-unit results in the code units table, there is no space to
203 * alternatively hold a fallback mapping; in this case, the code unit
204 * is stored as U+fffe (unassigned), and the fallback mapping needs to
205 * be looked up by the scalar offset value in a separate table.
206 *
207 * "Unassigned" state entries really mean "structurally unassigned",
208 * i.e., such a byte sequence will never have a mapping result.
209 *
210 * The interpretation of the bits in each entry is as follows:
211 *
212 * Bit 31 not set, not a terminal entry ("transitional"):
213 * 30..24 next state
214 * 23..0 offset delta, to be added up
215 *
216 * Bit 31 set, terminal ("final") entry:
217 * 30..24 next state (regardless of action code)
218 * 23..20 action code:
219 * action codes 0 and 1 result in precise-mapping Unicode code points
220 * 0 valid byte sequence
221 * 19..16 not used, 0
222 * 15..0 16-bit Unicode BMP code point
223 * never U+fffe or U+ffff
224 * 1 valid byte sequence
225 * 19..0 20-bit Unicode supplementary code point
226 * never U+fffe or U+ffff
227 *
228 * action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points
229 * 2 valid byte sequence (fallback)
230 * 19..16 not used, 0
231 * 15..0 16-bit Unicode BMP code point as fallback result
232 * 3 valid byte sequence (fallback)
233 * 19..0 20-bit Unicode supplementary code point as fallback result
234 *
235 * action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results
236 * depending on the code units they result in
237 * 4 valid byte sequence
238 * 19..9 not used, 0
239 * 8..0 final offset delta
240 * pointing to one 16-bit code unit which may be
241 * fffe unassigned -- look for a fallback for this offset
242 * ffff illegal
243 * 5 valid byte sequence
244 * 19..9 not used, 0
245 * 8..0 final offset delta
246 * pointing to two 16-bit code units
247 * (typically UTF-16 surrogates)
248 * the result depends on the first code unit as follows:
249 * 0000..d7ff roundtrip BMP code point (1st alone)
250 * d800..dbff roundtrip surrogate pair (1st, 2nd)
251 * dc00..dfff fallback surrogate pair (1st-400, 2nd)
252 * e000 roundtrip BMP code point (2nd alone)
253 * e001 fallback BMP code point (2nd alone)
254 * fffe unassigned
255 * ffff illegal
256 * (the final offset deltas are at most 255 * 2,
257 * times 2 because of storing code unit pairs)
258 *
259 * 6 unassigned byte sequence
260 * 19..16 not used, 0
261 * 15..0 16-bit Unicode BMP code point U+fffe (new with version 2)
262 * this does not contain a final offset delta because the main
263 * purpose of this action code is to save scalar offset values;
264 * therefore, fallback values cannot be assigned to byte
265 * sequences that result in this action code
266 * 7 illegal byte sequence
267 * 19..16 not used, 0
268 * 15..0 16-bit Unicode BMP code point U+ffff (new with version 2)
269 * 8 state change only
270 * 19..0 not used, 0
271 * useful for state changes in simple stateful encodings,
272 * at Shift-In/Shift-Out codes
273 *
274 *
275 * 9..15 reserved for future use
276 * current implementations will only perform a state change
277 * and ignore bits 19..0
278 *
279 * An encoding with contiguous ranges of unassigned byte sequences, like
280 * Shift-JIS and especially EUC-TW, can be stored efficiently by having
281 * at least two states for the trail bytes:
282 * One trail byte state that results in code points, and one that only
283 * has "unassigned" and "illegal" terminal states.
284 *
285 * Note: partly by accident, this data structure supports simple stateful
286 * encodings without any additional logic.
287 * Currently, only simple Shift-In/Shift-Out schemes are handled with
288 * appropriate state tables (especially EBCDIC_STATEFUL!).
289 *
290 * MBCS version 2 added:
291 * unassigned and illegal action codes have U+fffe and U+ffff
292 * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP()
293 *
294 * Converting from Unicode to codepage bytes --------------------------------***
295 *
296 * The conversion data structure for fromUnicode is designed for the known
297 * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to
298 * a sequence of 1..4 bytes, in addition to a flag that indicates if there is
299 * a roundtrip mapping.
300 *
301 * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3
302 * like in the character properties table.
303 * The beginning of the trie is at offsetFromUTable, the beginning of stage 3
304 * with the resulting bytes is at offsetFromUBytes.
305 *
306 * Beginning with version 4, single-byte codepages have a significantly different
307 * trie compared to other codepages.
308 * In all cases, the entry in stage 1 is directly the index of the block of
309 * 64 entries in stage 2.
310 *
311 * Single-byte lookup:
312 *
313 * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3.
314 * Stage 3 contains one 16-bit word per result:
315 * Bits 15..8 indicate the kind of result:
316 * f roundtrip result
317 * c fallback result from private-use code point
318 * 8 fallback result from other code points
319 * 0 unassigned
320 * Bits 7..0 contain the codepage byte. A zero byte is always possible.
321 *
322 * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly
323 * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup
324 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
325 * ASCII code points can be looked up with a linear array access into stage 3.
326 * See maxFastUChar and other details in ucnvmbcs.h.
327 *
328 * Multi-byte lookup:
329 *
330 * Stage 2 contains a 32-bit word for each 16-block in stage 3:
331 * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results
332 * test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)
333 * If this test is false, then a non-zero result will be interpreted as
334 * a fallback mapping.
335 * Bits 15..0 contain the index to stage 3, which must be multiplied by 16*(bytes per char)
336 *
337 * Stage 3 contains 2, 3, or 4 bytes per result.
338 * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness,
339 * while 3 bytes are stored as bytes in big-endian order.
340 * Leading zero bytes are ignored, and the number of bytes is counted.
341 * A zero byte mapping result is possible as a roundtrip result.
342 * For some output types, the actual result is processed from this;
343 * see ucnv_MBCSFromUnicodeWithOffsets().
344 *
345 * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10),
346 * or (version 3 and up) for BMP-only codepages, it contains 64 entries.
347 *
348 * In version 4.3, a utf8Friendly file contains an mbcsIndex table.
349 * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup
350 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
351 * ASCII code points can be looked up with a linear array access into stage 3.
352 * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h.
353 *
354 * In version 3, stage 2 blocks may overlap by multiples of the multiplier
355 * for compaction.
356 * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks)
357 * may overlap by any number of entries.
358 *
359 * MBCS version 2 added:
360 * the converter checks for known output types, which allows
361 * adding new ones without crashing an unaware converter
362 */
363
364 /**
365 * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from
366 * consecutive sequences of bytes, starting from the one encoded in value,
367 * to Unicode code points. (Multiple mappings to reduce per-function call overhead.)
368 * Does not currently support m:n mappings or reverse fallbacks.
369 * This function will not be called for sequences of bytes with leading zeros.
370 *
371 * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode()
372 * @param value contains 1..4 bytes of the first byte sequence, right-aligned
373 * @param codePoints resulting Unicode code points, or negative if a byte sequence does
374 * not map to anything
375 * @return TRUE to continue enumeration, FALSE to stop
376 */
377 typedef UBool U_CALLCONV
378 UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]);
379
380 static void U_CALLCONV
381 ucnv_MBCSLoad(UConverterSharedData *sharedData,
382 UConverterLoadArgs *pArgs,
383 const uint8_t *raw,
384 UErrorCode *pErrorCode);
385
386 static void U_CALLCONV
387 ucnv_MBCSUnload(UConverterSharedData *sharedData);
388
389 static void U_CALLCONV
390 ucnv_MBCSOpen(UConverter *cnv,
391 UConverterLoadArgs *pArgs,
392 UErrorCode *pErrorCode);
393
394 static UChar32 U_CALLCONV
395 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
396 UErrorCode *pErrorCode);
397
398 static void U_CALLCONV
399 ucnv_MBCSGetStarters(const UConverter* cnv,
400 UBool starters[256],
401 UErrorCode *pErrorCode);
402
403 U_CDECL_BEGIN
404 static const char* U_CALLCONV
405 ucnv_MBCSGetName(const UConverter *cnv);
406 U_CDECL_END
407
408 static void U_CALLCONV
409 ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
410 int32_t offsetIndex,
411 UErrorCode *pErrorCode);
412
413 static UChar32 U_CALLCONV
414 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
415 UErrorCode *pErrorCode);
416
417 static void U_CALLCONV
418 ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
419 UConverterToUnicodeArgs *pToUArgs,
420 UErrorCode *pErrorCode);
421
422 static void U_CALLCONV
423 ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
424 const USetAdder *sa,
425 UConverterUnicodeSet which,
426 UErrorCode *pErrorCode);
427
428 static void U_CALLCONV
429 ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
430 UConverterToUnicodeArgs *pToUArgs,
431 UErrorCode *pErrorCode);
432
433 static const UConverterImpl _SBCSUTF8Impl={
434 UCNV_MBCS,
435
436 ucnv_MBCSLoad,
437 ucnv_MBCSUnload,
438
439 ucnv_MBCSOpen,
440 NULL,
441 NULL,
442
443 ucnv_MBCSToUnicodeWithOffsets,
444 ucnv_MBCSToUnicodeWithOffsets,
445 ucnv_MBCSFromUnicodeWithOffsets,
446 ucnv_MBCSFromUnicodeWithOffsets,
447 ucnv_MBCSGetNextUChar,
448
449 ucnv_MBCSGetStarters,
450 ucnv_MBCSGetName,
451 ucnv_MBCSWriteSub,
452 NULL,
453 ucnv_MBCSGetUnicodeSet,
454
455 NULL,
456 ucnv_SBCSFromUTF8
457 };
458
459 static const UConverterImpl _DBCSUTF8Impl={
460 UCNV_MBCS,
461
462 ucnv_MBCSLoad,
463 ucnv_MBCSUnload,
464
465 ucnv_MBCSOpen,
466 NULL,
467 NULL,
468
469 ucnv_MBCSToUnicodeWithOffsets,
470 ucnv_MBCSToUnicodeWithOffsets,
471 ucnv_MBCSFromUnicodeWithOffsets,
472 ucnv_MBCSFromUnicodeWithOffsets,
473 ucnv_MBCSGetNextUChar,
474
475 ucnv_MBCSGetStarters,
476 ucnv_MBCSGetName,
477 ucnv_MBCSWriteSub,
478 NULL,
479 ucnv_MBCSGetUnicodeSet,
480
481 NULL,
482 ucnv_DBCSFromUTF8
483 };
484
485 static const UConverterImpl _MBCSImpl={
486 UCNV_MBCS,
487
488 ucnv_MBCSLoad,
489 ucnv_MBCSUnload,
490
491 ucnv_MBCSOpen,
492 NULL,
493 NULL,
494
495 ucnv_MBCSToUnicodeWithOffsets,
496 ucnv_MBCSToUnicodeWithOffsets,
497 ucnv_MBCSFromUnicodeWithOffsets,
498 ucnv_MBCSFromUnicodeWithOffsets,
499 ucnv_MBCSGetNextUChar,
500
501 ucnv_MBCSGetStarters,
502 ucnv_MBCSGetName,
503 ucnv_MBCSWriteSub,
504 NULL,
505 ucnv_MBCSGetUnicodeSet,
506 NULL,
507 NULL
508 };
509
510 /* Static data is in tools/makeconv/ucnvstat.c for data-based
511 * converters. Be sure to update it as well.
512 */
513
514 const UConverterSharedData _MBCSData={
515 sizeof(UConverterSharedData), 1,
516 NULL, NULL, FALSE, TRUE, &_MBCSImpl,
517 0, UCNV_MBCS_TABLE_INITIALIZER
518 };
519
520
521 /* GB 18030 data ------------------------------------------------------------ */
522
523 /* helper macros for linear values for GB 18030 four-byte sequences */
524 #define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d))
525
526 #define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30)
527
528 #define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff)
529
530 /*
531 * Some ranges of GB 18030 where both the Unicode code points and the
532 * GB four-byte sequences are contiguous and are handled algorithmically by
533 * the special callback functions below.
534 * The values are start & end of Unicode & GB codes.
535 *
536 * Note that single surrogates are not mapped by GB 18030
537 * as of the re-released mapping tables from 2000-nov-30.
538 */
539 static const uint32_t
540 gb18030Ranges[14][4]={
541 {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)},
542 {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)},
543 {0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)},
544 {0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)},
545 {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)},
546 {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)},
547 {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)},
548 {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)},
549 {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)},
550 {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)},
551 {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)},
552 {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)},
553 {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)},
554 {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)}
555 };
556
557 /* bit flag for UConverter.options indicating GB 18030 special handling */
558 #define _MBCS_OPTION_GB18030 0x8000
559
560 /* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */
561 #define _MBCS_OPTION_KEIS 0x01000
562 #define _MBCS_OPTION_JEF 0x02000
563 #define _MBCS_OPTION_JIPS 0x04000
564
565 #define KEIS_SO_CHAR_1 0x0A
566 #define KEIS_SO_CHAR_2 0x42
567 #define KEIS_SI_CHAR_1 0x0A
568 #define KEIS_SI_CHAR_2 0x41
569
570 #define JEF_SO_CHAR 0x28
571 #define JEF_SI_CHAR 0x29
572
573 #define JIPS_SO_CHAR_1 0x1A
574 #define JIPS_SO_CHAR_2 0x70
575 #define JIPS_SI_CHAR_1 0x1A
576 #define JIPS_SI_CHAR_2 0x71
577
578 enum SISO_Option {
579 SI,
580 SO
581 };
582 typedef enum SISO_Option SISO_Option;
583
584 static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) {
585 int32_t SISOLength = 0;
586
587 switch (option) {
588 case SI:
589 if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
590 value[0] = KEIS_SI_CHAR_1;
591 value[1] = KEIS_SI_CHAR_2;
592 SISOLength = 2;
593 } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
594 value[0] = JEF_SI_CHAR;
595 SISOLength = 1;
596 } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
597 value[0] = JIPS_SI_CHAR_1;
598 value[1] = JIPS_SI_CHAR_2;
599 SISOLength = 2;
600 } else {
601 value[0] = UCNV_SI;
602 SISOLength = 1;
603 }
604 break;
605 case SO:
606 if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
607 value[0] = KEIS_SO_CHAR_1;
608 value[1] = KEIS_SO_CHAR_2;
609 SISOLength = 2;
610 } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
611 value[0] = JEF_SO_CHAR;
612 SISOLength = 1;
613 } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
614 value[0] = JIPS_SO_CHAR_1;
615 value[1] = JIPS_SO_CHAR_2;
616 SISOLength = 2;
617 } else {
618 value[0] = UCNV_SO;
619 SISOLength = 1;
620 }
621 break;
622 default:
623 /* Should never happen. */
624 break;
625 }
626
627 return SISOLength;
628 }
629
630 /* Miscellaneous ------------------------------------------------------------ */
631
632 /* similar to ucnv_MBCSGetNextUChar() but recursive */
633 static UBool
634 enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[],
635 int32_t state, uint32_t offset,
636 uint32_t value,
637 UConverterEnumToUCallback *callback, const void *context,
638 UErrorCode *pErrorCode) {
639 UChar32 codePoints[32];
640 const int32_t *row;
641 const uint16_t *unicodeCodeUnits;
642 UChar32 anyCodePoints;
643 int32_t b, limit;
644
645 row=mbcsTable->stateTable[state];
646 unicodeCodeUnits=mbcsTable->unicodeCodeUnits;
647
648 value<<=8;
649 anyCodePoints=-1; /* becomes non-negative if there is a mapping */
650
651 b=(stateProps[state]&0x38)<<2;
652 if(b==0 && stateProps[state]>=0x40) {
653 /* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */
654 codePoints[0]=U_SENTINEL;
655 b=1;
656 }
657 limit=((stateProps[state]&7)+1)<<5;
658 while(b<limit) {
659 int32_t entry=row[b];
660 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
661 int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry);
662 if(stateProps[nextState]>=0) {
663 /* recurse to a state with non-ignorable actions */
664 if(!enumToU(
665 mbcsTable, stateProps, nextState,
666 offset+MBCS_ENTRY_TRANSITION_OFFSET(entry),
667 value|(uint32_t)b,
668 callback, context,
669 pErrorCode)) {
670 return FALSE;
671 }
672 }
673 codePoints[b&0x1f]=U_SENTINEL;
674 } else {
675 UChar32 c;
676 int32_t action;
677
678 /*
679 * An if-else-if chain provides more reliable performance for
680 * the most common cases compared to a switch.
681 */
682 action=MBCS_ENTRY_FINAL_ACTION(entry);
683 if(action==MBCS_STATE_VALID_DIRECT_16) {
684 /* output BMP code point */
685 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
686 } else if(action==MBCS_STATE_VALID_16) {
687 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
688 c=unicodeCodeUnits[finalOffset];
689 if(c<0xfffe) {
690 /* output BMP code point */
691 } else {
692 c=U_SENTINEL;
693 }
694 } else if(action==MBCS_STATE_VALID_16_PAIR) {
695 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
696 c=unicodeCodeUnits[finalOffset++];
697 if(c<0xd800) {
698 /* output BMP code point below 0xd800 */
699 } else if(c<=0xdbff) {
700 /* output roundtrip or fallback supplementary code point */
701 c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00);
702 } else if(c==0xe000) {
703 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
704 c=unicodeCodeUnits[finalOffset];
705 } else {
706 c=U_SENTINEL;
707 }
708 } else if(action==MBCS_STATE_VALID_DIRECT_20) {
709 /* output supplementary code point */
710 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
711 } else {
712 c=U_SENTINEL;
713 }
714
715 codePoints[b&0x1f]=c;
716 anyCodePoints&=c;
717 }
718 if(((++b)&0x1f)==0) {
719 if(anyCodePoints>=0) {
720 if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) {
721 return FALSE;
722 }
723 anyCodePoints=-1;
724 }
725 }
726 }
727 return TRUE;
728 }
729
730 /*
731 * Only called if stateProps[state]==-1.
732 * A recursive call may do stateProps[state]|=0x40 if this state is the target of an
733 * MBCS_STATE_CHANGE_ONLY.
734 */
735 static int8_t
736 getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) {
737 const int32_t *row;
738 int32_t min, max, entry, nextState;
739
740 row=stateTable[state];
741 stateProps[state]=0;
742
743 /* find first non-ignorable state */
744 for(min=0;; ++min) {
745 entry=row[min];
746 nextState=MBCS_ENTRY_STATE(entry);
747 if(stateProps[nextState]==-1) {
748 getStateProp(stateTable, stateProps, nextState);
749 }
750 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
751 if(stateProps[nextState]>=0) {
752 break;
753 }
754 } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
755 break;
756 }
757 if(min==0xff) {
758 stateProps[state]=-0x40; /* (int8_t)0xc0 */
759 return stateProps[state];
760 }
761 }
762 stateProps[state]|=(int8_t)((min>>5)<<3);
763
764 /* find last non-ignorable state */
765 for(max=0xff; min<max; --max) {
766 entry=row[max];
767 nextState=MBCS_ENTRY_STATE(entry);
768 if(stateProps[nextState]==-1) {
769 getStateProp(stateTable, stateProps, nextState);
770 }
771 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
772 if(stateProps[nextState]>=0) {
773 break;
774 }
775 } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
776 break;
777 }
778 }
779 stateProps[state]|=(int8_t)(max>>5);
780
781 /* recurse further and collect direct-state information */
782 while(min<=max) {
783 entry=row[min];
784 nextState=MBCS_ENTRY_STATE(entry);
785 if(stateProps[nextState]==-1) {
786 getStateProp(stateTable, stateProps, nextState);
787 }
788 if(MBCS_ENTRY_IS_FINAL(entry)) {
789 stateProps[nextState]|=0x40;
790 if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) {
791 stateProps[state]|=0x40;
792 }
793 }
794 ++min;
795 }
796 return stateProps[state];
797 }
798
799 /*
800 * Internal function enumerating the toUnicode data of an MBCS converter.
801 * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U
802 * table, but could also be used for a future ucnv_getUnicodeSet() option
803 * that includes reverse fallbacks (after updating this function's implementation).
804 * Currently only handles roundtrip mappings.
805 * Does not currently handle extensions.
806 */
807 static void
808 ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable,
809 UConverterEnumToUCallback *callback, const void *context,
810 UErrorCode *pErrorCode) {
811 /*
812 * Properties for each state, to speed up the enumeration.
813 * Ignorable actions are unassigned/illegal/state-change-only:
814 * They do not lead to mappings.
815 *
816 * Bits 7..6:
817 * 1 direct/initial state (stateful converters have multiple)
818 * 0 non-initial state with transitions or with non-ignorable result actions
819 * -1 final state with only ignorable actions
820 *
821 * Bits 5..3:
822 * The lowest byte value with non-ignorable actions is
823 * value<<5 (rounded down).
824 *
825 * Bits 2..0:
826 * The highest byte value with non-ignorable actions is
827 * (value<<5)&0x1f (rounded up).
828 */
829 int8_t stateProps[MBCS_MAX_STATE_COUNT];
830 int32_t state;
831
832 uprv_memset(stateProps, -1, sizeof(stateProps));
833
834 /* recurse from state 0 and set all stateProps */
835 getStateProp(mbcsTable->stateTable, stateProps, 0);
836
837 for(state=0; state<mbcsTable->countStates; ++state) {
838 /*if(stateProps[state]==-1) {
839 printf("unused/unreachable <icu:state> %d\n", state);
840 }*/
841 if(stateProps[state]>=0x40) {
842 /* start from each direct state */
843 enumToU(
844 mbcsTable, stateProps, state, 0, 0,
845 callback, context,
846 pErrorCode);
847 }
848 }
849 }
850
851 U_CFUNC void
852 ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData,
853 const USetAdder *sa,
854 UConverterUnicodeSet which,
855 UConverterSetFilter filter,
856 UErrorCode *pErrorCode) {
857 const UConverterMBCSTable *mbcsTable;
858 const uint16_t *table;
859
860 uint32_t st3;
861 uint16_t st1, maxStage1, st2;
862
863 UChar32 c;
864
865 /* enumerate the from-Unicode trie table */
866 mbcsTable=&sharedData->mbcs;
867 table=mbcsTable->fromUnicodeTable;
868 if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
869 maxStage1=0x440;
870 } else {
871 maxStage1=0x40;
872 }
873
874 c=0; /* keep track of the current code point while enumerating */
875
876 if(mbcsTable->outputType==MBCS_OUTPUT_1) {
877 const uint16_t *stage2, *stage3, *results;
878 uint16_t minValue;
879
880 results=(const uint16_t *)mbcsTable->fromUnicodeBytes;
881
882 /*
883 * Set a threshold variable for selecting which mappings to use.
884 * See ucnv_MBCSSingleFromBMPWithOffsets() and
885 * MBCS_SINGLE_RESULT_FROM_U() for details.
886 */
887 if(which==UCNV_ROUNDTRIP_SET) {
888 /* use only roundtrips */
889 minValue=0xf00;
890 } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ {
891 /* use all roundtrip and fallback results */
892 minValue=0x800;
893 }
894
895 for(st1=0; st1<maxStage1; ++st1) {
896 st2=table[st1];
897 if(st2>maxStage1) {
898 stage2=table+st2;
899 for(st2=0; st2<64; ++st2) {
900 if((st3=stage2[st2])!=0) {
901 /* read the stage 3 block */
902 stage3=results+st3;
903
904 do {
905 if(*stage3++>=minValue) {
906 sa->add(sa->set, c);
907 }
908 } while((++c&0xf)!=0);
909 } else {
910 c+=16; /* empty stage 3 block */
911 }
912 }
913 } else {
914 c+=1024; /* empty stage 2 block */
915 }
916 }
917 } else {
918 const uint32_t *stage2;
919 const uint8_t *stage3, *bytes;
920 uint32_t st3Multiplier;
921 uint32_t value;
922 UBool useFallback;
923
924 bytes=mbcsTable->fromUnicodeBytes;
925
926 useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET);
927
928 switch(mbcsTable->outputType) {
929 case MBCS_OUTPUT_3:
930 case MBCS_OUTPUT_4_EUC:
931 st3Multiplier=3;
932 break;
933 case MBCS_OUTPUT_4:
934 st3Multiplier=4;
935 break;
936 default:
937 st3Multiplier=2;
938 break;
939 }
940
941 for(st1=0; st1<maxStage1; ++st1) {
942 st2=table[st1];
943 if(st2>(maxStage1>>1)) {
944 stage2=(const uint32_t *)table+st2;
945 for(st2=0; st2<64; ++st2) {
946 if((st3=stage2[st2])!=0) {
947 /* read the stage 3 block */
948 stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3;
949
950 /* get the roundtrip flags for the stage 3 block */
951 st3>>=16;
952
953 /*
954 * Add code points for which the roundtrip flag is set,
955 * or which map to non-zero bytes if we use fallbacks.
956 * See ucnv_MBCSFromUnicodeWithOffsets() for details.
957 */
958 switch(filter) {
959 case UCNV_SET_FILTER_NONE:
960 do {
961 if(st3&1) {
962 sa->add(sa->set, c);
963 stage3+=st3Multiplier;
964 } else if(useFallback) {
965 uint8_t b=0;
966 switch(st3Multiplier) {
967 case 4:
968 b|=*stage3++;
969 U_FALLTHROUGH;
970 case 3:
971 b|=*stage3++;
972 U_FALLTHROUGH;
973 case 2:
974 b|=stage3[0]|stage3[1];
975 stage3+=2;
976 U_FALLTHROUGH;
977 default:
978 break;
979 }
980 if(b!=0) {
981 sa->add(sa->set, c);
982 }
983 }
984 st3>>=1;
985 } while((++c&0xf)!=0);
986 break;
987 case UCNV_SET_FILTER_DBCS_ONLY:
988 /* Ignore single-byte results (<0x100). */
989 do {
990 if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) {
991 sa->add(sa->set, c);
992 }
993 st3>>=1;
994 stage3+=2; /* +=st3Multiplier */
995 } while((++c&0xf)!=0);
996 break;
997 case UCNV_SET_FILTER_2022_CN:
998 /* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */
999 do {
1000 if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) {
1001 sa->add(sa->set, c);
1002 }
1003 st3>>=1;
1004 stage3+=3; /* +=st3Multiplier */
1005 } while((++c&0xf)!=0);
1006 break;
1007 case UCNV_SET_FILTER_SJIS:
1008 /* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */
1009 do {
1010 if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) {
1011 sa->add(sa->set, c);
1012 }
1013 st3>>=1;
1014 stage3+=2; /* +=st3Multiplier */
1015 } while((++c&0xf)!=0);
1016 break;
1017 case UCNV_SET_FILTER_GR94DBCS:
1018 /* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */
1019 do {
1020 if( ((st3&1)!=0 || useFallback) &&
1021 (uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) &&
1022 (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
1023 ) {
1024 sa->add(sa->set, c);
1025 }
1026 st3>>=1;
1027 stage3+=2; /* +=st3Multiplier */
1028 } while((++c&0xf)!=0);
1029 break;
1030 case UCNV_SET_FILTER_HZ:
1031 /* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */
1032 do {
1033 if( ((st3&1)!=0 || useFallback) &&
1034 (uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) &&
1035 (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
1036 ) {
1037 sa->add(sa->set, c);
1038 }
1039 st3>>=1;
1040 stage3+=2; /* +=st3Multiplier */
1041 } while((++c&0xf)!=0);
1042 break;
1043 default:
1044 *pErrorCode=U_INTERNAL_PROGRAM_ERROR;
1045 return;
1046 }
1047 } else {
1048 c+=16; /* empty stage 3 block */
1049 }
1050 }
1051 } else {
1052 c+=1024; /* empty stage 2 block */
1053 }
1054 }
1055 }
1056
1057 ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode);
1058 }
1059
1060 U_CFUNC void
1061 ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData,
1062 const USetAdder *sa,
1063 UConverterUnicodeSet which,
1064 UErrorCode *pErrorCode) {
1065 ucnv_MBCSGetFilteredUnicodeSetForUnicode(
1066 sharedData, sa, which,
1067 sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ?
1068 UCNV_SET_FILTER_DBCS_ONLY :
1069 UCNV_SET_FILTER_NONE,
1070 pErrorCode);
1071 }
1072
1073 static void U_CALLCONV
1074 ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
1075 const USetAdder *sa,
1076 UConverterUnicodeSet which,
1077 UErrorCode *pErrorCode) {
1078 if(cnv->options&_MBCS_OPTION_GB18030) {
1079 sa->addRange(sa->set, 0, 0xd7ff);
1080 sa->addRange(sa->set, 0xe000, 0x10ffff);
1081 } else {
1082 ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode);
1083 }
1084 }
1085
1086 /* conversion extensions for input not in the main table -------------------- */
1087
1088 /*
1089 * Hardcoded extension handling for GB 18030.
1090 * Definition of LINEAR macros and gb18030Ranges see near the beginning of the file.
1091 *
1092 * In the future, conversion extensions may handle m:n mappings and delta tables,
1093 * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/conversion_extensions.html
1094 *
1095 * If an input character cannot be mapped, then these functions set an error
1096 * code. The framework will then call the callback function.
1097 */
1098
1099 /*
1100 * @return if(U_FAILURE) return the code point for cnv->fromUChar32
1101 * else return 0 after output has been written to the target
1102 */
1103 static UChar32
1104 _extFromU(UConverter *cnv, const UConverterSharedData *sharedData,
1105 UChar32 cp,
1106 const UChar **source, const UChar *sourceLimit,
1107 uint8_t **target, const uint8_t *targetLimit,
1108 int32_t **offsets, int32_t sourceIndex,
1109 UBool flush,
1110 UErrorCode *pErrorCode) {
1111 const int32_t *cx;
1112
1113 cnv->useSubChar1=FALSE;
1114
1115 if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
1116 ucnv_extInitialMatchFromU(
1117 cnv, cx,
1118 cp, source, sourceLimit,
1119 (char **)target, (char *)targetLimit,
1120 offsets, sourceIndex,
1121 flush,
1122 pErrorCode)
1123 ) {
1124 return 0; /* an extension mapping handled the input */
1125 }
1126
1127 /* GB 18030 */
1128 if((cnv->options&_MBCS_OPTION_GB18030)!=0) {
1129 const uint32_t *range;
1130 int32_t i;
1131
1132 range=gb18030Ranges[0];
1133 for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) {
1134 if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) {
1135 /* found the Unicode code point, output the four-byte sequence for it */
1136 uint32_t linear;
1137 char bytes[4];
1138
1139 /* get the linear value of the first GB 18030 code in this range */
1140 linear=range[2]-LINEAR_18030_BASE;
1141
1142 /* add the offset from the beginning of the range */
1143 linear+=((uint32_t)cp-range[0]);
1144
1145 /* turn this into a four-byte sequence */
1146 bytes[3]=(char)(0x30+linear%10); linear/=10;
1147 bytes[2]=(char)(0x81+linear%126); linear/=126;
1148 bytes[1]=(char)(0x30+linear%10); linear/=10;
1149 bytes[0]=(char)(0x81+linear);
1150
1151 /* output this sequence */
1152 ucnv_fromUWriteBytes(cnv,
1153 bytes, 4, (char **)target, (char *)targetLimit,
1154 offsets, sourceIndex, pErrorCode);
1155 return 0;
1156 }
1157 }
1158 }
1159
1160 /* no mapping */
1161 *pErrorCode=U_INVALID_CHAR_FOUND;
1162 return cp;
1163 }
1164
1165 /*
1166 * Input sequence: cnv->toUBytes[0..length[
1167 * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input
1168 * else return 0 after output has been written to the target
1169 */
1170 static int8_t
1171 _extToU(UConverter *cnv, const UConverterSharedData *sharedData,
1172 int8_t length,
1173 const uint8_t **source, const uint8_t *sourceLimit,
1174 UChar **target, const UChar *targetLimit,
1175 int32_t **offsets, int32_t sourceIndex,
1176 UBool flush,
1177 UErrorCode *pErrorCode) {
1178 const int32_t *cx;
1179
1180 if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
1181 ucnv_extInitialMatchToU(
1182 cnv, cx,
1183 length, (const char **)source, (const char *)sourceLimit,
1184 target, targetLimit,
1185 offsets, sourceIndex,
1186 flush,
1187 pErrorCode)
1188 ) {
1189 return 0; /* an extension mapping handled the input */
1190 }
1191
1192 /* GB 18030 */
1193 if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) {
1194 const uint32_t *range;
1195 uint32_t linear;
1196 int32_t i;
1197
1198 linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]);
1199 range=gb18030Ranges[0];
1200 for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) {
1201 if(range[2]<=linear && linear<=range[3]) {
1202 /* found the sequence, output the Unicode code point for it */
1203 *pErrorCode=U_ZERO_ERROR;
1204
1205 /* add the linear difference between the input and start sequences to the start code point */
1206 linear=range[0]+(linear-range[2]);
1207
1208 /* output this code point */
1209 ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode);
1210
1211 return 0;
1212 }
1213 }
1214 }
1215
1216 /* no mapping */
1217 *pErrorCode=U_INVALID_CHAR_FOUND;
1218 return length;
1219 }
1220
1221 /* EBCDIC swap LF<->NL ------------------------------------------------------ */
1222
1223 /*
1224 * This code modifies a standard EBCDIC<->Unicode mapping table for
1225 * OS/390 (z/OS) Unix System Services (Open Edition).
1226 * The difference is in the mapping of Line Feed and New Line control codes:
1227 * Standard EBCDIC maps
1228 *
1229 * <U000A> \x25 |0
1230 * <U0085> \x15 |0
1231 *
1232 * but OS/390 USS EBCDIC swaps the control codes for LF and NL,
1233 * mapping
1234 *
1235 * <U000A> \x15 |0
1236 * <U0085> \x25 |0
1237 *
1238 * This code modifies a loaded standard EBCDIC<->Unicode mapping table
1239 * by copying it into allocated memory and swapping the LF and NL values.
1240 * It allows to support the same EBCDIC charset in both versions without
1241 * duplicating the entire installed table.
1242 */
1243
1244 /* standard EBCDIC codes */
1245 #define EBCDIC_LF 0x25
1246 #define EBCDIC_NL 0x15
1247
1248 /* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */
1249 #define EBCDIC_RT_LF 0xf25
1250 #define EBCDIC_RT_NL 0xf15
1251
1252 /* Unicode code points */
1253 #define U_LF 0x0a
1254 #define U_NL 0x85
1255
1256 static UBool
1257 _EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) {
1258 UConverterMBCSTable *mbcsTable;
1259
1260 const uint16_t *table, *results;
1261 const uint8_t *bytes;
1262
1263 int32_t (*newStateTable)[256];
1264 uint16_t *newResults;
1265 uint8_t *p;
1266 char *name;
1267
1268 uint32_t stage2Entry;
1269 uint32_t size, sizeofFromUBytes;
1270
1271 mbcsTable=&sharedData->mbcs;
1272
1273 table=mbcsTable->fromUnicodeTable;
1274 bytes=mbcsTable->fromUnicodeBytes;
1275 results=(const uint16_t *)bytes;
1276
1277 /*
1278 * Check that this is an EBCDIC table with SBCS portion -
1279 * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings.
1280 *
1281 * If not, ignore the option. Options are always ignored if they do not apply.
1282 */
1283 if(!(
1284 (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) &&
1285 mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) &&
1286 mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL)
1287 )) {
1288 return FALSE;
1289 }
1290
1291 if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1292 if(!(
1293 EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) &&
1294 EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL)
1295 )) {
1296 return FALSE;
1297 }
1298 } else /* MBCS_OUTPUT_2_SISO */ {
1299 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
1300 if(!(
1301 MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 &&
1302 EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF)
1303 )) {
1304 return FALSE;
1305 }
1306
1307 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
1308 if(!(
1309 MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 &&
1310 EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL)
1311 )) {
1312 return FALSE;
1313 }
1314 }
1315
1316 if(mbcsTable->fromUBytesLength>0) {
1317 /*
1318 * We _know_ the number of bytes in the fromUnicodeBytes array
1319 * starting with header.version 4.1.
1320 */
1321 sizeofFromUBytes=mbcsTable->fromUBytesLength;
1322 } else {
1323 /*
1324 * Otherwise:
1325 * There used to be code to enumerate the fromUnicode
1326 * trie and find the highest entry, but it was removed in ICU 3.2
1327 * because it was not tested and caused a low code coverage number.
1328 * See Jitterbug 3674.
1329 * This affects only some .cnv file formats with a header.version
1330 * below 4.1, and only when swaplfnl is requested.
1331 *
1332 * ucnvmbcs.c revision 1.99 is the last one with the
1333 * ucnv_MBCSSizeofFromUBytes() function.
1334 */
1335 *pErrorCode=U_INVALID_FORMAT_ERROR;
1336 return FALSE;
1337 }
1338
1339 /*
1340 * The table has an appropriate format.
1341 * Allocate and build
1342 * - a modified to-Unicode state table
1343 * - a modified from-Unicode output array
1344 * - a converter name string with the swap option appended
1345 */
1346 size=
1347 mbcsTable->countStates*1024+
1348 sizeofFromUBytes+
1349 UCNV_MAX_CONVERTER_NAME_LENGTH+20;
1350 p=(uint8_t *)uprv_malloc(size);
1351 if(p==NULL) {
1352 *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1353 return FALSE;
1354 }
1355
1356 /* copy and modify the to-Unicode state table */
1357 newStateTable=(int32_t (*)[256])p;
1358 uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024);
1359
1360 newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL);
1361 newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF);
1362
1363 /* copy and modify the from-Unicode result table */
1364 newResults=(uint16_t *)newStateTable[mbcsTable->countStates];
1365 uprv_memcpy(newResults, bytes, sizeofFromUBytes);
1366
1367 /* conveniently, the table access macros work on the left side of expressions */
1368 if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1369 MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL;
1370 MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF;
1371 } else /* MBCS_OUTPUT_2_SISO */ {
1372 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
1373 MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL;
1374
1375 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
1376 MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF;
1377 }
1378
1379 /* set the canonical converter name */
1380 name=(char *)newResults+sizeofFromUBytes;
1381 uprv_strcpy(name, sharedData->staticData->name);
1382 uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING);
1383
1384 /* set the pointers */
1385 umtx_lock(NULL);
1386 if(mbcsTable->swapLFNLStateTable==NULL) {
1387 mbcsTable->swapLFNLStateTable=newStateTable;
1388 mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults;
1389 mbcsTable->swapLFNLName=name;
1390
1391 newStateTable=NULL;
1392 }
1393 umtx_unlock(NULL);
1394
1395 /* release the allocated memory if another thread beat us to it */
1396 if(newStateTable!=NULL) {
1397 uprv_free(newStateTable);
1398 }
1399 return TRUE;
1400 }
1401
1402 /* reconstitute omitted fromUnicode data ------------------------------------ */
1403
1404 /* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */
1405 static UBool U_CALLCONV
1406 writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) {
1407 UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context;
1408 const uint16_t *table;
1409 uint32_t *stage2;
1410 uint8_t *bytes, *p;
1411 UChar32 c;
1412 int32_t i, st3;
1413
1414 table=mbcsTable->fromUnicodeTable;
1415 bytes=(uint8_t *)mbcsTable->fromUnicodeBytes;
1416
1417 /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */
1418 switch(mbcsTable->outputType) {
1419 case MBCS_OUTPUT_3_EUC:
1420 if(value<=0xffff) {
1421 /* short sequences are stored directly */
1422 /* code set 0 or 1 */
1423 } else if(value<=0x8effff) {
1424 /* code set 2 */
1425 value&=0x7fff;
1426 } else /* first byte is 0x8f */ {
1427 /* code set 3 */
1428 value&=0xff7f;
1429 }
1430 break;
1431 case MBCS_OUTPUT_4_EUC:
1432 if(value<=0xffffff) {
1433 /* short sequences are stored directly */
1434 /* code set 0 or 1 */
1435 } else if(value<=0x8effffff) {
1436 /* code set 2 */
1437 value&=0x7fffff;
1438 } else /* first byte is 0x8f */ {
1439 /* code set 3 */
1440 value&=0xff7fff;
1441 }
1442 break;
1443 default:
1444 break;
1445 }
1446
1447 for(i=0; i<=0x1f; ++value, ++i) {
1448 c=codePoints[i];
1449 if(c<0) {
1450 continue;
1451 }
1452
1453 /* locate the stage 2 & 3 data */
1454 stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f);
1455 p=bytes;
1456 st3=(int32_t)(uint16_t)*stage2*16+(c&0xf);
1457
1458 /* write the codepage bytes into stage 3 */
1459 switch(mbcsTable->outputType) {
1460 case MBCS_OUTPUT_3:
1461 case MBCS_OUTPUT_4_EUC:
1462 p+=st3*3;
1463 p[0]=(uint8_t)(value>>16);
1464 p[1]=(uint8_t)(value>>8);
1465 p[2]=(uint8_t)value;
1466 break;
1467 case MBCS_OUTPUT_4:
1468 ((uint32_t *)p)[st3]=value;
1469 break;
1470 default:
1471 /* 2 bytes per character */
1472 ((uint16_t *)p)[st3]=(uint16_t)value;
1473 break;
1474 }
1475
1476 /* set the roundtrip flag */
1477 *stage2|=(1UL<<(16+(c&0xf)));
1478 }
1479 return TRUE;
1480 }
1481
1482 static void
1483 reconstituteData(UConverterMBCSTable *mbcsTable,
1484 uint32_t stage1Length, uint32_t stage2Length,
1485 uint32_t fullStage2Length, /* lengths are numbers of units, not bytes */
1486 UErrorCode *pErrorCode) {
1487 uint16_t *stage1;
1488 uint32_t *stage2;
1489 uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength;
1490 mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength);
1491 if(mbcsTable->reconstitutedData==NULL) {
1492 *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1493 return;
1494 }
1495 uprv_memset(mbcsTable->reconstitutedData, 0, dataLength);
1496
1497 /* copy existing data and reroute the pointers */
1498 stage1=(uint16_t *)mbcsTable->reconstitutedData;
1499 uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2);
1500
1501 stage2=(uint32_t *)(stage1+stage1Length);
1502 uprv_memcpy(stage2+(fullStage2Length-stage2Length),
1503 mbcsTable->fromUnicodeTable+stage1Length,
1504 stage2Length*4);
1505
1506 mbcsTable->fromUnicodeTable=stage1;
1507 mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length);
1508
1509 /* indexes into stage 2 count from the bottom of the fromUnicodeTable */
1510 stage2=(uint32_t *)stage1;
1511
1512 /* reconstitute the initial part of stage 2 from the mbcsIndex */
1513 {
1514 int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6;
1515 int32_t stageUTF8Index=0;
1516 int32_t st1, st2, st3, i;
1517
1518 for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) {
1519 st2=stage1[st1];
1520 if(st2!=(int32_t)stage1Length/2) {
1521 /* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */
1522 for(i=0; i<16; ++i) {
1523 st3=mbcsTable->mbcsIndex[stageUTF8Index++];
1524 if(st3!=0) {
1525 /* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */
1526 st3>>=4;
1527 /*
1528 * 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are
1529 * allocated together as a single 64-block for access from the mbcsIndex
1530 */
1531 stage2[st2++]=st3++;
1532 stage2[st2++]=st3++;
1533 stage2[st2++]=st3++;
1534 stage2[st2++]=st3;
1535 } else {
1536 /* no stage 3 block, skip */
1537 st2+=4;
1538 }
1539 }
1540 } else {
1541 /* no stage 2 block, skip */
1542 stageUTF8Index+=16;
1543 }
1544 }
1545 }
1546
1547 /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */
1548 ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode);
1549 }
1550
1551 /* MBCS setup functions ----------------------------------------------------- */
1552
1553 static void U_CALLCONV
1554 ucnv_MBCSLoad(UConverterSharedData *sharedData,
1555 UConverterLoadArgs *pArgs,
1556 const uint8_t *raw,
1557 UErrorCode *pErrorCode) {
1558 UDataInfo info;
1559 UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1560 _MBCSHeader *header=(_MBCSHeader *)raw;
1561 uint32_t offset;
1562 uint32_t headerLength;
1563 UBool noFromU=FALSE;
1564
1565 if(header->version[0]==4) {
1566 headerLength=MBCS_HEADER_V4_LENGTH;
1567 } else if(header->version[0]==5 && header->version[1]>=3 &&
1568 (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) {
1569 headerLength=header->options&MBCS_OPT_LENGTH_MASK;
1570 noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0);
1571 } else {
1572 *pErrorCode=U_INVALID_TABLE_FORMAT;
1573 return;
1574 }
1575
1576 mbcsTable->outputType=(uint8_t)header->flags;
1577 if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) {
1578 *pErrorCode=U_INVALID_TABLE_FORMAT;
1579 return;
1580 }
1581
1582 /* extension data, header version 4.2 and higher */
1583 offset=header->flags>>8;
1584 if(offset!=0) {
1585 mbcsTable->extIndexes=(const int32_t *)(raw+offset);
1586 }
1587
1588 if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) {
1589 UConverterLoadArgs args=UCNV_LOAD_ARGS_INITIALIZER;
1590 UConverterSharedData *baseSharedData;
1591 const int32_t *extIndexes;
1592 const char *baseName;
1593
1594 /* extension-only file, load the base table and set values appropriately */
1595 if((extIndexes=mbcsTable->extIndexes)==NULL) {
1596 /* extension-only file without extension */
1597 *pErrorCode=U_INVALID_TABLE_FORMAT;
1598 return;
1599 }
1600
1601 if(pArgs->nestedLoads!=1) {
1602 /* an extension table must not be loaded as a base table */
1603 *pErrorCode=U_INVALID_TABLE_FILE;
1604 return;
1605 }
1606
1607 /* load the base table */
1608 baseName=(const char *)header+headerLength*4;
1609 if(0==uprv_strcmp(baseName, sharedData->staticData->name)) {
1610 /* forbid loading this same extension-only file */
1611 *pErrorCode=U_INVALID_TABLE_FORMAT;
1612 return;
1613 }
1614
1615 /* TODO parse package name out of the prefix of the base name in the extension .cnv file? */
1616 args.size=sizeof(UConverterLoadArgs);
1617 args.nestedLoads=2;
1618 args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable;
1619 args.reserved=pArgs->reserved;
1620 args.options=pArgs->options;
1621 args.pkg=pArgs->pkg;
1622 args.name=baseName;
1623 baseSharedData=ucnv_load(&args, pErrorCode);
1624 if(U_FAILURE(*pErrorCode)) {
1625 return;
1626 }
1627 if( baseSharedData->staticData->conversionType!=UCNV_MBCS ||
1628 baseSharedData->mbcs.baseSharedData!=NULL
1629 ) {
1630 ucnv_unload(baseSharedData);
1631 *pErrorCode=U_INVALID_TABLE_FORMAT;
1632 return;
1633 }
1634 if(pArgs->onlyTestIsLoadable) {
1635 /*
1636 * Exit as soon as we know that we can load the converter
1637 * and the format is valid and supported.
1638 * The worst that can happen in the following code is a memory
1639 * allocation error.
1640 */
1641 ucnv_unload(baseSharedData);
1642 return;
1643 }
1644
1645 /* copy the base table data */
1646 uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable));
1647
1648 /* overwrite values with relevant ones for the extension converter */
1649 mbcsTable->baseSharedData=baseSharedData;
1650 mbcsTable->extIndexes=extIndexes;
1651
1652 /*
1653 * It would be possible to share the swapLFNL data with a base converter,
1654 * but the generated name would have to be different, and the memory
1655 * would have to be free'd only once.
1656 * It is easier to just create the data for the extension converter
1657 * separately when it is requested.
1658 */
1659 mbcsTable->swapLFNLStateTable=NULL;
1660 mbcsTable->swapLFNLFromUnicodeBytes=NULL;
1661 mbcsTable->swapLFNLName=NULL;
1662
1663 /*
1664 * The reconstitutedData must be deleted only when the base converter
1665 * is unloaded.
1666 */
1667 mbcsTable->reconstitutedData=NULL;
1668
1669 /*
1670 * Set a special, runtime-only outputType if the extension converter
1671 * is a DBCS version of a base converter that also maps single bytes.
1672 */
1673 if( sharedData->staticData->conversionType==UCNV_DBCS ||
1674 (sharedData->staticData->conversionType==UCNV_MBCS &&
1675 sharedData->staticData->minBytesPerChar>=2)
1676 ) {
1677 if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) {
1678 /* the base converter is SI/SO-stateful */
1679 int32_t entry;
1680
1681 /* get the dbcs state from the state table entry for SO=0x0e */
1682 entry=mbcsTable->stateTable[0][0xe];
1683 if( MBCS_ENTRY_IS_FINAL(entry) &&
1684 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY &&
1685 MBCS_ENTRY_FINAL_STATE(entry)!=0
1686 ) {
1687 mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry);
1688
1689 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1690 }
1691 } else if(
1692 baseSharedData->staticData->conversionType==UCNV_MBCS &&
1693 baseSharedData->staticData->minBytesPerChar==1 &&
1694 baseSharedData->staticData->maxBytesPerChar==2 &&
1695 mbcsTable->countStates<=127
1696 ) {
1697 /* non-stateful base converter, need to modify the state table */
1698 int32_t (*newStateTable)[256];
1699 int32_t *state;
1700 int32_t i, count;
1701
1702 /* allocate a new state table and copy the base state table contents */
1703 count=mbcsTable->countStates;
1704 newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024);
1705 if(newStateTable==NULL) {
1706 ucnv_unload(baseSharedData);
1707 *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1708 return;
1709 }
1710
1711 uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024);
1712
1713 /* change all final single-byte entries to go to a new all-illegal state */
1714 state=newStateTable[0];
1715 for(i=0; i<256; ++i) {
1716 if(MBCS_ENTRY_IS_FINAL(state[i])) {
1717 state[i]=MBCS_ENTRY_TRANSITION(count, 0);
1718 }
1719 }
1720
1721 /* build the new all-illegal state */
1722 state=newStateTable[count];
1723 for(i=0; i<256; ++i) {
1724 state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0);
1725 }
1726 mbcsTable->stateTable=(const int32_t (*)[256])newStateTable;
1727 mbcsTable->countStates=(uint8_t)(count+1);
1728 mbcsTable->stateTableOwned=TRUE;
1729
1730 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1731 }
1732 }
1733
1734 /*
1735 * unlike below for files with base tables, do not get the unicodeMask
1736 * from the sharedData; instead, use the base table's unicodeMask,
1737 * which we copied in the memcpy above;
1738 * this is necessary because the static data unicodeMask, especially
1739 * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data
1740 */
1741 } else {
1742 /* conversion file with a base table; an additional extension table is optional */
1743 /* make sure that the output type is known */
1744 switch(mbcsTable->outputType) {
1745 case MBCS_OUTPUT_1:
1746 case MBCS_OUTPUT_2:
1747 case MBCS_OUTPUT_3:
1748 case MBCS_OUTPUT_4:
1749 case MBCS_OUTPUT_3_EUC:
1750 case MBCS_OUTPUT_4_EUC:
1751 case MBCS_OUTPUT_2_SISO:
1752 /* OK */
1753 break;
1754 default:
1755 *pErrorCode=U_INVALID_TABLE_FORMAT;
1756 return;
1757 }
1758 if(pArgs->onlyTestIsLoadable) {
1759 /*
1760 * Exit as soon as we know that we can load the converter
1761 * and the format is valid and supported.
1762 * The worst that can happen in the following code is a memory
1763 * allocation error.
1764 */
1765 return;
1766 }
1767
1768 mbcsTable->countStates=(uint8_t)header->countStates;
1769 mbcsTable->countToUFallbacks=header->countToUFallbacks;
1770 mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4);
1771 mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates);
1772 mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits);
1773
1774 mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable);
1775 mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes);
1776 mbcsTable->fromUBytesLength=header->fromUBytesLength;
1777
1778 /*
1779 * converter versions 6.1 and up contain a unicodeMask that is
1780 * used here to select the most efficient function implementations
1781 */
1782 info.size=sizeof(UDataInfo);
1783 udata_getInfo((UDataMemory *)sharedData->dataMemory, &info);
1784 if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) {
1785 /* mask off possible future extensions to be safe */
1786 mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3);
1787 } else {
1788 /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */
1789 mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES;
1790 }
1791
1792 /*
1793 * _MBCSHeader.version 4.3 adds utf8Friendly data structures.
1794 * Check for the header version, SBCS vs. MBCS, and for whether the
1795 * data structures are optimized for code points as high as what the
1796 * runtime code is designed for.
1797 * The implementation does not handle mapping tables with entries for
1798 * unpaired surrogates.
1799 */
1800 if( header->version[1]>=3 &&
1801 (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 &&
1802 (mbcsTable->countStates==1 ?
1803 (header->version[2]>=(SBCS_FAST_MAX>>8)) :
1804 (header->version[2]>=(MBCS_FAST_MAX>>8))
1805 )
1806 ) {
1807 mbcsTable->utf8Friendly=TRUE;
1808
1809 if(mbcsTable->countStates==1) {
1810 /*
1811 * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher.
1812 * Build a table with indexes to each block, to be used instead of
1813 * the regular stage 1/2 table.
1814 */
1815 int32_t i;
1816 for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) {
1817 mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)];
1818 }
1819 /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */
1820 mbcsTable->maxFastUChar=SBCS_FAST_MAX;
1821 } else {
1822 /*
1823 * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher.
1824 * The .cnv file is prebuilt with an additional stage table with indexes
1825 * to each block.
1826 */
1827 mbcsTable->mbcsIndex=(const uint16_t *)
1828 (mbcsTable->fromUnicodeBytes+
1829 (noFromU ? 0 : mbcsTable->fromUBytesLength));
1830 mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff;
1831 }
1832 }
1833
1834 /* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */
1835 {
1836 uint32_t asciiRoundtrips=0xffffffff;
1837 int32_t i;
1838
1839 for(i=0; i<0x80; ++i) {
1840 if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) {
1841 asciiRoundtrips&=~((uint32_t)1<<(i>>2));
1842 }
1843 }
1844 mbcsTable->asciiRoundtrips=asciiRoundtrips;
1845 }
1846
1847 if(noFromU) {
1848 uint32_t stage1Length=
1849 mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ?
1850 0x440 : 0x40;
1851 uint32_t stage2Length=
1852 (header->offsetFromUBytes-header->offsetFromUTable)/4-
1853 stage1Length/2;
1854 reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode);
1855 }
1856 }
1857
1858 /* Set the impl pointer here so that it is set for both extension-only and base tables. */
1859 if(mbcsTable->utf8Friendly) {
1860 if(mbcsTable->countStates==1) {
1861 sharedData->impl=&_SBCSUTF8Impl;
1862 } else {
1863 if(mbcsTable->outputType==MBCS_OUTPUT_2) {
1864 sharedData->impl=&_DBCSUTF8Impl;
1865 }
1866 }
1867 }
1868
1869 if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) {
1870 /*
1871 * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip.
1872 * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly.
1873 */
1874 mbcsTable->asciiRoundtrips=0;
1875 }
1876 }
1877
1878 static void U_CALLCONV
1879 ucnv_MBCSUnload(UConverterSharedData *sharedData) {
1880 UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1881
1882 if(mbcsTable->swapLFNLStateTable!=NULL) {
1883 uprv_free(mbcsTable->swapLFNLStateTable);
1884 }
1885 if(mbcsTable->stateTableOwned) {
1886 uprv_free((void *)mbcsTable->stateTable);
1887 }
1888 if(mbcsTable->baseSharedData!=NULL) {
1889 ucnv_unload(mbcsTable->baseSharedData);
1890 }
1891 if(mbcsTable->reconstitutedData!=NULL) {
1892 uprv_free(mbcsTable->reconstitutedData);
1893 }
1894 }
1895
1896 static void U_CALLCONV
1897 ucnv_MBCSOpen(UConverter *cnv,
1898 UConverterLoadArgs *pArgs,
1899 UErrorCode *pErrorCode) {
1900 UConverterMBCSTable *mbcsTable;
1901 const int32_t *extIndexes;
1902 uint8_t outputType;
1903 int8_t maxBytesPerUChar;
1904
1905 if(pArgs->onlyTestIsLoadable) {
1906 return;
1907 }
1908
1909 mbcsTable=&cnv->sharedData->mbcs;
1910 outputType=mbcsTable->outputType;
1911
1912 if(outputType==MBCS_OUTPUT_DBCS_ONLY) {
1913 /* the swaplfnl option does not apply, remove it */
1914 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
1915 }
1916
1917 if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) {
1918 /* do this because double-checked locking is broken */
1919 UBool isCached;
1920
1921 umtx_lock(NULL);
1922 isCached=mbcsTable->swapLFNLStateTable!=NULL;
1923 umtx_unlock(NULL);
1924
1925 if(!isCached) {
1926 if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) {
1927 if(U_FAILURE(*pErrorCode)) {
1928 return; /* something went wrong */
1929 }
1930
1931 /* the option does not apply, remove it */
1932 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
1933 }
1934 }
1935 }
1936
1937 if(uprv_strstr(pArgs->name, "18030")!=NULL) {
1938 if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name, "GB18030")!=NULL) {
1939 /* set a flag for GB 18030 mode, which changes the callback behavior */
1940 cnv->options|=_MBCS_OPTION_GB18030;
1941 }
1942 } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->name, "keis")!=NULL)) {
1943 /* set a flag for KEIS converter, which changes the SI/SO character sequence */
1944 cnv->options|=_MBCS_OPTION_KEIS;
1945 } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->name, "jef")!=NULL)) {
1946 /* set a flag for JEF converter, which changes the SI/SO character sequence */
1947 cnv->options|=_MBCS_OPTION_JEF;
1948 } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->name, "jips")!=NULL)) {
1949 /* set a flag for JIPS converter, which changes the SI/SO character sequence */
1950 cnv->options|=_MBCS_OPTION_JIPS;
1951 }
1952
1953 /* fix maxBytesPerUChar depending on outputType and options etc. */
1954 if(outputType==MBCS_OUTPUT_2_SISO) {
1955 cnv->maxBytesPerUChar=3; /* SO+DBCS */
1956 }
1957
1958 extIndexes=mbcsTable->extIndexes;
1959 if(extIndexes!=NULL) {
1960 maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes);
1961 if(outputType==MBCS_OUTPUT_2_SISO) {
1962 ++maxBytesPerUChar; /* SO + multiple DBCS */
1963 }
1964
1965 if(maxBytesPerUChar>cnv->maxBytesPerUChar) {
1966 cnv->maxBytesPerUChar=maxBytesPerUChar;
1967 }
1968 }
1969
1970 #if 0
1971 /*
1972 * documentation of UConverter fields used for status
1973 * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset()
1974 */
1975
1976 /* toUnicode */
1977 cnv->toUnicodeStatus=0; /* offset */
1978 cnv->mode=0; /* state */
1979 cnv->toULength=0; /* byteIndex */
1980
1981 /* fromUnicode */
1982 cnv->fromUChar32=0;
1983 cnv->fromUnicodeStatus=1; /* prevLength */
1984 #endif
1985 }
1986
1987 U_CDECL_BEGIN
1988
1989 static const char* U_CALLCONV
1990 ucnv_MBCSGetName(const UConverter *cnv) {
1991 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) {
1992 return cnv->sharedData->mbcs.swapLFNLName;
1993 } else {
1994 return cnv->sharedData->staticData->name;
1995 }
1996 }
1997 U_CDECL_END
1998
1999
2000 /* MBCS-to-Unicode conversion functions ------------------------------------- */
2001
2002 static UChar32 U_CALLCONV
2003 ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) {
2004 const _MBCSToUFallback *toUFallbacks;
2005 uint32_t i, start, limit;
2006
2007 limit=mbcsTable->countToUFallbacks;
2008 if(limit>0) {
2009 /* do a binary search for the fallback mapping */
2010 toUFallbacks=mbcsTable->toUFallbacks;
2011 start=0;
2012 while(start<limit-1) {
2013 i=(start+limit)/2;
2014 if(offset<toUFallbacks[i].offset) {
2015 limit=i;
2016 } else {
2017 start=i;
2018 }
2019 }
2020
2021 /* did we really find it? */
2022 if(offset==toUFallbacks[start].offset) {
2023 return toUFallbacks[start].codePoint;
2024 }
2025 }
2026
2027 return 0xfffe;
2028 }
2029
2030 /* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */
2031 static void
2032 ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
2033 UErrorCode *pErrorCode) {
2034 UConverter *cnv;
2035 const uint8_t *source, *sourceLimit;
2036 UChar *target;
2037 const UChar *targetLimit;
2038 int32_t *offsets;
2039
2040 const int32_t (*stateTable)[256];
2041
2042 int32_t sourceIndex;
2043
2044 int32_t entry;
2045 UChar c;
2046 uint8_t action;
2047
2048 /* set up the local pointers */
2049 cnv=pArgs->converter;
2050 source=(const uint8_t *)pArgs->source;
2051 sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2052 target=pArgs->target;
2053 targetLimit=pArgs->targetLimit;
2054 offsets=pArgs->offsets;
2055
2056 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2057 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2058 } else {
2059 stateTable=cnv->sharedData->mbcs.stateTable;
2060 }
2061
2062 /* sourceIndex=-1 if the current character began in the previous buffer */
2063 sourceIndex=0;
2064
2065 /* conversion loop */
2066 while(source<sourceLimit) {
2067 /*
2068 * This following test is to see if available input would overflow the output.
2069 * It does not catch output of more than one code unit that
2070 * overflows as a result of a surrogate pair or callback output
2071 * from the last source byte.
2072 * Therefore, those situations also test for overflows and will
2073 * then break the loop, too.
2074 */
2075 if(target>=targetLimit) {
2076 /* target is full */
2077 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2078 break;
2079 }
2080
2081 entry=stateTable[0][*source++];
2082 /* MBCS_ENTRY_IS_FINAL(entry) */
2083
2084 /* test the most common case first */
2085 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2086 /* output BMP code point */
2087 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2088 if(offsets!=NULL) {
2089 *offsets++=sourceIndex;
2090 }
2091
2092 /* normal end of action codes: prepare for a new character */
2093 ++sourceIndex;
2094 continue;
2095 }
2096
2097 /*
2098 * An if-else-if chain provides more reliable performance for
2099 * the most common cases compared to a switch.
2100 */
2101 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2102 if(action==MBCS_STATE_VALID_DIRECT_20 ||
2103 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2104 ) {
2105 entry=MBCS_ENTRY_FINAL_VALUE(entry);
2106 /* output surrogate pair */
2107 *target++=(UChar)(0xd800|(UChar)(entry>>10));
2108 if(offsets!=NULL) {
2109 *offsets++=sourceIndex;
2110 }
2111 c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
2112 if(target<targetLimit) {
2113 *target++=c;
2114 if(offsets!=NULL) {
2115 *offsets++=sourceIndex;
2116 }
2117 } else {
2118 /* target overflow */
2119 cnv->UCharErrorBuffer[0]=c;
2120 cnv->UCharErrorBufferLength=1;
2121 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2122 break;
2123 }
2124
2125 ++sourceIndex;
2126 continue;
2127 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2128 if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2129 /* output BMP code point */
2130 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2131 if(offsets!=NULL) {
2132 *offsets++=sourceIndex;
2133 }
2134
2135 ++sourceIndex;
2136 continue;
2137 }
2138 } else if(action==MBCS_STATE_UNASSIGNED) {
2139 /* just fall through */
2140 } else if(action==MBCS_STATE_ILLEGAL) {
2141 /* callback(illegal) */
2142 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2143 } else {
2144 /* reserved, must never occur */
2145 ++sourceIndex;
2146 continue;
2147 }
2148
2149 if(U_FAILURE(*pErrorCode)) {
2150 /* callback(illegal) */
2151 break;
2152 } else /* unassigned sequences indicated with byteIndex>0 */ {
2153 /* try an extension mapping */
2154 pArgs->source=(const char *)source;
2155 cnv->toUBytes[0]=*(source-1);
2156 cnv->toULength=_extToU(cnv, cnv->sharedData,
2157 1, &source, sourceLimit,
2158 &target, targetLimit,
2159 &offsets, sourceIndex,
2160 pArgs->flush,
2161 pErrorCode);
2162 sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source);
2163
2164 if(U_FAILURE(*pErrorCode)) {
2165 /* not mappable or buffer overflow */
2166 break;
2167 }
2168 }
2169 }
2170
2171 /* write back the updated pointers */
2172 pArgs->source=(const char *)source;
2173 pArgs->target=target;
2174 pArgs->offsets=offsets;
2175 }
2176
2177 /*
2178 * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages
2179 * that only map to and from the BMP.
2180 * In addition to single-byte optimizations, the offset calculations
2181 * become much easier.
2182 */
2183 static void
2184 ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs,
2185 UErrorCode *pErrorCode) {
2186 UConverter *cnv;
2187 const uint8_t *source, *sourceLimit, *lastSource;
2188 UChar *target;
2189 int32_t targetCapacity, length;
2190 int32_t *offsets;
2191
2192 const int32_t (*stateTable)[256];
2193
2194 int32_t sourceIndex;
2195
2196 int32_t entry;
2197 uint8_t action;
2198
2199 /* set up the local pointers */
2200 cnv=pArgs->converter;
2201 source=(const uint8_t *)pArgs->source;
2202 sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2203 target=pArgs->target;
2204 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
2205 offsets=pArgs->offsets;
2206
2207 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2208 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2209 } else {
2210 stateTable=cnv->sharedData->mbcs.stateTable;
2211 }
2212
2213 /* sourceIndex=-1 if the current character began in the previous buffer */
2214 sourceIndex=0;
2215 lastSource=source;
2216
2217 /*
2218 * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
2219 * for the minimum of the sourceLength and targetCapacity
2220 */
2221 length=(int32_t)(sourceLimit-source);
2222 if(length<targetCapacity) {
2223 targetCapacity=length;
2224 }
2225
2226 #if MBCS_UNROLL_SINGLE_TO_BMP
2227 /* unrolling makes it faster on Pentium III/Windows 2000 */
2228 /* unroll the loop with the most common case */
2229 unrolled:
2230 if(targetCapacity>=16) {
2231 int32_t count, loops, oredEntries;
2232
2233 loops=count=targetCapacity>>4;
2234 do {
2235 oredEntries=entry=stateTable[0][*source++];
2236 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2237 oredEntries|=entry=stateTable[0][*source++];
2238 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2239 oredEntries|=entry=stateTable[0][*source++];
2240 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2241 oredEntries|=entry=stateTable[0][*source++];
2242 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2243 oredEntries|=entry=stateTable[0][*source++];
2244 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2245 oredEntries|=entry=stateTable[0][*source++];
2246 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2247 oredEntries|=entry=stateTable[0][*source++];
2248 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2249 oredEntries|=entry=stateTable[0][*source++];
2250 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2251 oredEntries|=entry=stateTable[0][*source++];
2252 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2253 oredEntries|=entry=stateTable[0][*source++];
2254 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2255 oredEntries|=entry=stateTable[0][*source++];
2256 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2257 oredEntries|=entry=stateTable[0][*source++];
2258 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2259 oredEntries|=entry=stateTable[0][*source++];
2260 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2261 oredEntries|=entry=stateTable[0][*source++];
2262 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2263 oredEntries|=entry=stateTable[0][*source++];
2264 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2265 oredEntries|=entry=stateTable[0][*source++];
2266 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2267
2268 /* were all 16 entries really valid? */
2269 if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) {
2270 /* no, return to the first of these 16 */
2271 source-=16;
2272 target-=16;
2273 break;
2274 }
2275 } while(--count>0);
2276 count=loops-count;
2277 targetCapacity-=16*count;
2278
2279 if(offsets!=NULL) {
2280 lastSource+=16*count;
2281 while(count>0) {
2282 *offsets++=sourceIndex++;
2283 *offsets++=sourceIndex++;
2284 *offsets++=sourceIndex++;
2285 *offsets++=sourceIndex++;
2286 *offsets++=sourceIndex++;
2287 *offsets++=sourceIndex++;
2288 *offsets++=sourceIndex++;
2289 *offsets++=sourceIndex++;
2290 *offsets++=sourceIndex++;
2291 *offsets++=sourceIndex++;
2292 *offsets++=sourceIndex++;
2293 *offsets++=sourceIndex++;
2294 *offsets++=sourceIndex++;
2295 *offsets++=sourceIndex++;
2296 *offsets++=sourceIndex++;
2297 *offsets++=sourceIndex++;
2298 --count;
2299 }
2300 }
2301 }
2302 #endif
2303
2304 /* conversion loop */
2305 while(targetCapacity > 0 && source < sourceLimit) {
2306 entry=stateTable[0][*source++];
2307 /* MBCS_ENTRY_IS_FINAL(entry) */
2308
2309 /* test the most common case first */
2310 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2311 /* output BMP code point */
2312 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2313 --targetCapacity;
2314 continue;
2315 }
2316
2317 /*
2318 * An if-else-if chain provides more reliable performance for
2319 * the most common cases compared to a switch.
2320 */
2321 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2322 if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2323 if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2324 /* output BMP code point */
2325 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2326 --targetCapacity;
2327 continue;
2328 }
2329 } else if(action==MBCS_STATE_UNASSIGNED) {
2330 /* just fall through */
2331 } else if(action==MBCS_STATE_ILLEGAL) {
2332 /* callback(illegal) */
2333 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2334 } else {
2335 /* reserved, must never occur */
2336 continue;
2337 }
2338
2339 /* set offsets since the start or the last extension */
2340 if(offsets!=NULL) {
2341 int32_t count=(int32_t)(source-lastSource);
2342
2343 /* predecrement: do not set the offset for the callback-causing character */
2344 while(--count>0) {
2345 *offsets++=sourceIndex++;
2346 }
2347 /* offset and sourceIndex are now set for the current character */
2348 }
2349
2350 if(U_FAILURE(*pErrorCode)) {
2351 /* callback(illegal) */
2352 break;
2353 } else /* unassigned sequences indicated with byteIndex>0 */ {
2354 /* try an extension mapping */
2355 lastSource=source;
2356 cnv->toUBytes[0]=*(source-1);
2357 cnv->toULength=_extToU(cnv, cnv->sharedData,
2358 1, &source, sourceLimit,
2359 &target, pArgs->targetLimit,
2360 &offsets, sourceIndex,
2361 pArgs->flush,
2362 pErrorCode);
2363 sourceIndex+=1+(int32_t)(source-lastSource);
2364
2365 if(U_FAILURE(*pErrorCode)) {
2366 /* not mappable or buffer overflow */
2367 break;
2368 }
2369
2370 /* recalculate the targetCapacity after an extension mapping */
2371 targetCapacity=(int32_t)(pArgs->targetLimit-target);
2372 length=(int32_t)(sourceLimit-source);
2373 if(length<targetCapacity) {
2374 targetCapacity=length;
2375 }
2376 }
2377
2378 #if MBCS_UNROLL_SINGLE_TO_BMP
2379 /* unrolling makes it faster on Pentium III/Windows 2000 */
2380 goto unrolled;
2381 #endif
2382 }
2383
2384 if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) {
2385 /* target is full */
2386 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2387 }
2388
2389 /* set offsets since the start or the last callback */
2390 if(offsets!=NULL) {
2391 size_t count=source-lastSource;
2392 while(count>0) {
2393 *offsets++=sourceIndex++;
2394 --count;
2395 }
2396 }
2397
2398 /* write back the updated pointers */
2399 pArgs->source=(const char *)source;
2400 pArgs->target=target;
2401 pArgs->offsets=offsets;
2402 }
2403
2404 static UBool
2405 hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) {
2406 const int32_t *row=stateTable[state];
2407 int32_t b, entry;
2408 /* First test for final entries in this state for some commonly valid byte values. */
2409 entry=row[0xa1];
2410 if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2411 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2412 ) {
2413 return TRUE;
2414 }
2415 entry=row[0x41];
2416 if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2417 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2418 ) {
2419 return TRUE;
2420 }
2421 /* Then test for final entries in this state. */
2422 for(b=0; b<=0xff; ++b) {
2423 entry=row[b];
2424 if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2425 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2426 ) {
2427 return TRUE;
2428 }
2429 }
2430 /* Then recurse for transition entries. */
2431 for(b=0; b<=0xff; ++b) {
2432 entry=row[b];
2433 if( MBCS_ENTRY_IS_TRANSITION(entry) &&
2434 hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry))
2435 ) {
2436 return TRUE;
2437 }
2438 }
2439 return FALSE;
2440 }
2441
2442 /*
2443 * Is byte b a single/lead byte in this state?
2444 * Recurse for transition states, because here we don't want to say that
2445 * b is a lead byte if all byte sequences that start with b are illegal.
2446 */
2447 static UBool
2448 isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) {
2449 const int32_t *row=stateTable[state];
2450 int32_t entry=row[b];
2451 if(MBCS_ENTRY_IS_TRANSITION(entry)) { /* lead byte */
2452 return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry));
2453 } else {
2454 uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2455 if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) {
2456 return FALSE; /* SI/SO are illegal for DBCS-only conversion */
2457 } else {
2458 return action!=MBCS_STATE_ILLEGAL;
2459 }
2460 }
2461 }
2462
2463 U_CFUNC void
2464 ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
2465 UErrorCode *pErrorCode) {
2466 UConverter *cnv;
2467 const uint8_t *source, *sourceLimit;
2468 UChar *target;
2469 const UChar *targetLimit;
2470 int32_t *offsets;
2471
2472 const int32_t (*stateTable)[256];
2473 const uint16_t *unicodeCodeUnits;
2474
2475 uint32_t offset;
2476 uint8_t state;
2477 int8_t byteIndex;
2478 uint8_t *bytes;
2479
2480 int32_t sourceIndex, nextSourceIndex;
2481
2482 int32_t entry;
2483 UChar c;
2484 uint8_t action;
2485
2486 /* use optimized function if possible */
2487 cnv=pArgs->converter;
2488
2489 if(cnv->preToULength>0) {
2490 /*
2491 * pass sourceIndex=-1 because we continue from an earlier buffer
2492 * in the future, this may change with continuous offsets
2493 */
2494 ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode);
2495
2496 if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) {
2497 return;
2498 }
2499 }
2500
2501 if(cnv->sharedData->mbcs.countStates==1) {
2502 if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
2503 ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode);
2504 } else {
2505 ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode);
2506 }
2507 return;
2508 }
2509
2510 /* set up the local pointers */
2511 source=(const uint8_t *)pArgs->source;
2512 sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2513 target=pArgs->target;
2514 targetLimit=pArgs->targetLimit;
2515 offsets=pArgs->offsets;
2516
2517 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2518 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2519 } else {
2520 stateTable=cnv->sharedData->mbcs.stateTable;
2521 }
2522 unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
2523
2524 /* get the converter state from UConverter */
2525 offset=cnv->toUnicodeStatus;
2526 byteIndex=cnv->toULength;
2527 bytes=cnv->toUBytes;
2528
2529 /*
2530 * if we are in the SBCS state for a DBCS-only converter,
2531 * then load the DBCS state from the MBCS data
2532 * (dbcsOnlyState==0 if it is not a DBCS-only converter)
2533 */
2534 if((state=(uint8_t)(cnv->mode))==0) {
2535 state=cnv->sharedData->mbcs.dbcsOnlyState;
2536 }
2537
2538 /* sourceIndex=-1 if the current character began in the previous buffer */
2539 sourceIndex=byteIndex==0 ? 0 : -1;
2540 nextSourceIndex=0;
2541
2542 /* conversion loop */
2543 while(source<sourceLimit) {
2544 /*
2545 * This following test is to see if available input would overflow the output.
2546 * It does not catch output of more than one code unit that
2547 * overflows as a result of a surrogate pair or callback output
2548 * from the last source byte.
2549 * Therefore, those situations also test for overflows and will
2550 * then break the loop, too.
2551 */
2552 if(target>=targetLimit) {
2553 /* target is full */
2554 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2555 break;
2556 }
2557
2558 if(byteIndex==0) {
2559 /* optimized loop for 1/2-byte input and BMP output */
2560 if(offsets==NULL) {
2561 do {
2562 entry=stateTable[state][*source];
2563 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2564 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2565 offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2566
2567 ++source;
2568 if( source<sourceLimit &&
2569 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2570 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2571 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2572 ) {
2573 ++source;
2574 *target++=c;
2575 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2576 offset=0;
2577 } else {
2578 /* set the state and leave the optimized loop */
2579 bytes[0]=*(source-1);
2580 byteIndex=1;
2581 break;
2582 }
2583 } else {
2584 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2585 /* output BMP code point */
2586 ++source;
2587 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2588 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2589 } else {
2590 /* leave the optimized loop */
2591 break;
2592 }
2593 }
2594 } while(source<sourceLimit && target<targetLimit);
2595 } else /* offsets!=NULL */ {
2596 do {
2597 entry=stateTable[state][*source];
2598 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2599 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2600 offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2601
2602 ++source;
2603 if( source<sourceLimit &&
2604 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2605 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2606 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2607 ) {
2608 ++source;
2609 *target++=c;
2610 if(offsets!=NULL) {
2611 *offsets++=sourceIndex;
2612 sourceIndex=(nextSourceIndex+=2);
2613 }
2614 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2615 offset=0;
2616 } else {
2617 /* set the state and leave the optimized loop */
2618 ++nextSourceIndex;
2619 bytes[0]=*(source-1);
2620 byteIndex=1;
2621 break;
2622 }
2623 } else {
2624 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2625 /* output BMP code point */
2626 ++source;
2627 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2628 if(offsets!=NULL) {
2629 *offsets++=sourceIndex;
2630 sourceIndex=++nextSourceIndex;
2631 }
2632 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2633 } else {
2634 /* leave the optimized loop */
2635 break;
2636 }
2637 }
2638 } while(source<sourceLimit && target<targetLimit);
2639 }
2640
2641 /*
2642 * these tests and break statements could be put inside the loop
2643 * if C had "break outerLoop" like Java
2644 */
2645 if(source>=sourceLimit) {
2646 break;
2647 }
2648 if(target>=targetLimit) {
2649 /* target is full */
2650 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2651 break;
2652 }
2653
2654 ++nextSourceIndex;
2655 bytes[byteIndex++]=*source++;
2656 } else /* byteIndex>0 */ {
2657 ++nextSourceIndex;
2658 entry=stateTable[state][bytes[byteIndex++]=*source++];
2659 }
2660
2661 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2662 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2663 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2664 continue;
2665 }
2666
2667 /* save the previous state for proper extension mapping with SI/SO-stateful converters */
2668 cnv->mode=state;
2669
2670 /* set the next state early so that we can reuse the entry variable */
2671 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2672
2673 /*
2674 * An if-else-if chain provides more reliable performance for
2675 * the most common cases compared to a switch.
2676 */
2677 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2678 if(action==MBCS_STATE_VALID_16) {
2679 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2680 c=unicodeCodeUnits[offset];
2681 if(c<0xfffe) {
2682 /* output BMP code point */
2683 *target++=c;
2684 if(offsets!=NULL) {
2685 *offsets++=sourceIndex;
2686 }
2687 byteIndex=0;
2688 } else if(c==0xfffe) {
2689 if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
2690 /* output fallback BMP code point */
2691 *target++=(UChar)entry;
2692 if(offsets!=NULL) {
2693 *offsets++=sourceIndex;
2694 }
2695 byteIndex=0;
2696 }
2697 } else {
2698 /* callback(illegal) */
2699 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2700 }
2701 } else if(action==MBCS_STATE_VALID_DIRECT_16) {
2702 /* output BMP code point */
2703 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2704 if(offsets!=NULL) {
2705 *offsets++=sourceIndex;
2706 }
2707 byteIndex=0;
2708 } else if(action==MBCS_STATE_VALID_16_PAIR) {
2709 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2710 c=unicodeCodeUnits[offset++];
2711 if(c<0xd800) {
2712 /* output BMP code point below 0xd800 */
2713 *target++=c;
2714 if(offsets!=NULL) {
2715 *offsets++=sourceIndex;
2716 }
2717 byteIndex=0;
2718 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
2719 /* output roundtrip or fallback surrogate pair */
2720 *target++=(UChar)(c&0xdbff);
2721 if(offsets!=NULL) {
2722 *offsets++=sourceIndex;
2723 }
2724 byteIndex=0;
2725 if(target<targetLimit) {
2726 *target++=unicodeCodeUnits[offset];
2727 if(offsets!=NULL) {
2728 *offsets++=sourceIndex;
2729 }
2730 } else {
2731 /* target overflow */
2732 cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset];
2733 cnv->UCharErrorBufferLength=1;
2734 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2735
2736 offset=0;
2737 break;
2738 }
2739 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
2740 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
2741 *target++=unicodeCodeUnits[offset];
2742 if(offsets!=NULL) {
2743 *offsets++=sourceIndex;
2744 }
2745 byteIndex=0;
2746 } else if(c==0xffff) {
2747 /* callback(illegal) */
2748 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2749 }
2750 } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
2751 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2752 ) {
2753 entry=MBCS_ENTRY_FINAL_VALUE(entry);
2754 /* output surrogate pair */
2755 *target++=(UChar)(0xd800|(UChar)(entry>>10));
2756 if(offsets!=NULL) {
2757 *offsets++=sourceIndex;
2758 }
2759 byteIndex=0;
2760 c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
2761 if(target<targetLimit) {
2762 *target++=c;
2763 if(offsets!=NULL) {
2764 *offsets++=sourceIndex;
2765 }
2766 } else {
2767 /* target overflow */
2768 cnv->UCharErrorBuffer[0]=c;
2769 cnv->UCharErrorBufferLength=1;
2770 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2771
2772 offset=0;
2773 break;
2774 }
2775 } else if(action==MBCS_STATE_CHANGE_ONLY) {
2776 /*
2777 * This serves as a state change without any output.
2778 * It is useful for reading simple stateful encodings,
2779 * for example using just Shift-In/Shift-Out codes.
2780 * The 21 unused bits may later be used for more sophisticated
2781 * state transitions.
2782 */
2783 if(cnv->sharedData->mbcs.dbcsOnlyState==0) {
2784 byteIndex=0;
2785 } else {
2786 /* SI/SO are illegal for DBCS-only conversion */
2787 state=(uint8_t)(cnv->mode); /* restore the previous state */
2788
2789 /* callback(illegal) */
2790 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2791 }
2792 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2793 if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2794 /* output BMP code point */
2795 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2796 if(offsets!=NULL) {
2797 *offsets++=sourceIndex;
2798 }
2799 byteIndex=0;
2800 }
2801 } else if(action==MBCS_STATE_UNASSIGNED) {
2802 /* just fall through */
2803 } else if(action==MBCS_STATE_ILLEGAL) {
2804 /* callback(illegal) */
2805 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2806 } else {
2807 /* reserved, must never occur */
2808 byteIndex=0;
2809 }
2810
2811 /* end of action codes: prepare for a new character */
2812 offset=0;
2813
2814 if(byteIndex==0) {
2815 sourceIndex=nextSourceIndex;
2816 } else if(U_FAILURE(*pErrorCode)) {
2817 /* callback(illegal) */
2818 if(byteIndex>1) {
2819 /*
2820 * Ticket 5691: consistent illegal sequences:
2821 * - We include at least the first byte in the illegal sequence.
2822 * - If any of the non-initial bytes could be the start of a character,
2823 * we stop the illegal sequence before the first one of those.
2824 */
2825 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
2826 int8_t i;
2827 for(i=1;
2828 i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]);
2829 ++i) {}
2830 if(i<byteIndex) {
2831 /* Back out some bytes. */
2832 int8_t backOutDistance=byteIndex-i;
2833 int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source);
2834 byteIndex=i; /* length of reported illegal byte sequence */
2835 if(backOutDistance<=bytesFromThisBuffer) {
2836 source-=backOutDistance;
2837 } else {
2838 /* Back out bytes from the previous buffer: Need to replay them. */
2839 cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance);
2840 /* preToULength is negative! */
2841 uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength);
2842 source=(const uint8_t *)pArgs->source;
2843 }
2844 }
2845 }
2846 break;
2847 } else /* unassigned sequences indicated with byteIndex>0 */ {
2848 /* try an extension mapping */
2849 pArgs->source=(const char *)source;
2850 byteIndex=_extToU(cnv, cnv->sharedData,
2851 byteIndex, &source, sourceLimit,
2852 &target, targetLimit,
2853 &offsets, sourceIndex,
2854 pArgs->flush,
2855 pErrorCode);
2856 sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source);
2857
2858 if(U_FAILURE(*pErrorCode)) {
2859 /* not mappable or buffer overflow */
2860 break;
2861 }
2862 }
2863 }
2864
2865 /* set the converter state back into UConverter */
2866 cnv->toUnicodeStatus=offset;
2867 cnv->mode=state;
2868 cnv->toULength=byteIndex;
2869
2870 /* write back the updated pointers */
2871 pArgs->source=(const char *)source;
2872 pArgs->target=target;
2873 pArgs->offsets=offsets;
2874 }
2875
2876 /*
2877 * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages.
2878 * We still need a conversion loop in case we find reserved action codes, which are to be ignored.
2879 */
2880 static UChar32
2881 ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs,
2882 UErrorCode *pErrorCode) {
2883 UConverter *cnv;
2884 const int32_t (*stateTable)[256];
2885 const uint8_t *source, *sourceLimit;
2886
2887 int32_t entry;
2888 uint8_t action;
2889
2890 /* set up the local pointers */
2891 cnv=pArgs->converter;
2892 source=(const uint8_t *)pArgs->source;
2893 sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2894 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2895 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2896 } else {
2897 stateTable=cnv->sharedData->mbcs.stateTable;
2898 }
2899
2900 /* conversion loop */
2901 while(source<sourceLimit) {
2902 entry=stateTable[0][*source++];
2903 /* MBCS_ENTRY_IS_FINAL(entry) */
2904
2905 /* write back the updated pointer early so that we can return directly */
2906 pArgs->source=(const char *)source;
2907
2908 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2909 /* output BMP code point */
2910 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2911 }
2912
2913 /*
2914 * An if-else-if chain provides more reliable performance for
2915 * the most common cases compared to a switch.
2916 */
2917 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2918 if( action==MBCS_STATE_VALID_DIRECT_20 ||
2919 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2920 ) {
2921 /* output supplementary code point */
2922 return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
2923 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2924 if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2925 /* output BMP code point */
2926 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2927 }
2928 } else if(action==MBCS_STATE_UNASSIGNED) {
2929 /* just fall through */
2930 } else if(action==MBCS_STATE_ILLEGAL) {
2931 /* callback(illegal) */
2932 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2933 } else {
2934 /* reserved, must never occur */
2935 continue;
2936 }
2937
2938 if(U_FAILURE(*pErrorCode)) {
2939 /* callback(illegal) */
2940 break;
2941 } else /* unassigned sequence */ {
2942 /* defer to the generic implementation */
2943 pArgs->source=(const char *)source-1;
2944 return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2945 }
2946 }
2947
2948 /* no output because of empty input or only state changes */
2949 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2950 return 0xffff;
2951 }
2952
2953 /*
2954 * Version of _MBCSToUnicodeWithOffsets() optimized for single-character
2955 * conversion without offset handling.
2956 *
2957 * When a character does not have a mapping to Unicode, then we return to the
2958 * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback
2959 * handling.
2960 * We also defer to the generic code in other complicated cases and have them
2961 * ultimately handled by _MBCSToUnicodeWithOffsets() itself.
2962 *
2963 * All normal mappings and errors are handled here.
2964 */
2965 static UChar32 U_CALLCONV
2966 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
2967 UErrorCode *pErrorCode) {
2968 UConverter *cnv;
2969 const uint8_t *source, *sourceLimit, *lastSource;
2970
2971 const int32_t (*stateTable)[256];
2972 const uint16_t *unicodeCodeUnits;
2973
2974 uint32_t offset;
2975 uint8_t state;
2976
2977 int32_t entry;
2978 UChar32 c;
2979 uint8_t action;
2980
2981 /* use optimized function if possible */
2982 cnv=pArgs->converter;
2983
2984 if(cnv->preToULength>0) {
2985 /* use the generic code in ucnv_getNextUChar() to continue with a partial match */
2986 return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2987 }
2988
2989 if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) {
2990 /*
2991 * Using the generic ucnv_getNextUChar() code lets us deal correctly
2992 * with the rare case of a codepage that maps single surrogates
2993 * without adding the complexity to this already complicated function here.
2994 */
2995 return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2996 } else if(cnv->sharedData->mbcs.countStates==1) {
2997 return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode);
2998 }
2999
3000 /* set up the local pointers */
3001 source=lastSource=(const uint8_t *)pArgs->source;
3002 sourceLimit=(const uint8_t *)pArgs->sourceLimit;
3003
3004 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3005 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
3006 } else {
3007 stateTable=cnv->sharedData->mbcs.stateTable;
3008 }
3009 unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
3010
3011 /* get the converter state from UConverter */
3012 offset=cnv->toUnicodeStatus;
3013
3014 /*
3015 * if we are in the SBCS state for a DBCS-only converter,
3016 * then load the DBCS state from the MBCS data
3017 * (dbcsOnlyState==0 if it is not a DBCS-only converter)
3018 */
3019 if((state=(uint8_t)(cnv->mode))==0) {
3020 state=cnv->sharedData->mbcs.dbcsOnlyState;
3021 }
3022
3023 /* conversion loop */
3024 c=U_SENTINEL;
3025 while(source<sourceLimit) {
3026 entry=stateTable[state][*source++];
3027 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
3028 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
3029 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
3030
3031 /* optimization for 1/2-byte input and BMP output */
3032 if( source<sourceLimit &&
3033 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
3034 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
3035 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
3036 ) {
3037 ++source;
3038 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
3039 /* output BMP code point */
3040 break;
3041 }
3042 } else {
3043 /* save the previous state for proper extension mapping with SI/SO-stateful converters */
3044 cnv->mode=state;
3045
3046 /* set the next state early so that we can reuse the entry variable */
3047 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
3048
3049 /*
3050 * An if-else-if chain provides more reliable performance for
3051 * the most common cases compared to a switch.
3052 */
3053 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3054 if(action==MBCS_STATE_VALID_DIRECT_16) {
3055 /* output BMP code point */
3056 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3057 break;
3058 } else if(action==MBCS_STATE_VALID_16) {
3059 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3060 c=unicodeCodeUnits[offset];
3061 if(c<0xfffe) {
3062 /* output BMP code point */
3063 break;
3064 } else if(c==0xfffe) {
3065 if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
3066 break;
3067 }
3068 } else {
3069 /* callback(illegal) */
3070 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3071 }
3072 } else if(action==MBCS_STATE_VALID_16_PAIR) {
3073 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3074 c=unicodeCodeUnits[offset++];
3075 if(c<0xd800) {
3076 /* output BMP code point below 0xd800 */
3077 break;
3078 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
3079 /* output roundtrip or fallback supplementary code point */
3080 c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00);
3081 break;
3082 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
3083 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
3084 c=unicodeCodeUnits[offset];
3085 break;
3086 } else if(c==0xffff) {
3087 /* callback(illegal) */
3088 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3089 }
3090 } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
3091 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
3092 ) {
3093 /* output supplementary code point */
3094 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
3095 break;
3096 } else if(action==MBCS_STATE_CHANGE_ONLY) {
3097 /*
3098 * This serves as a state change without any output.
3099 * It is useful for reading simple stateful encodings,
3100 * for example using just Shift-In/Shift-Out codes.
3101 * The 21 unused bits may later be used for more sophisticated
3102 * state transitions.
3103 */
3104 if(cnv->sharedData->mbcs.dbcsOnlyState!=0) {
3105 /* SI/SO are illegal for DBCS-only conversion */
3106 state=(uint8_t)(cnv->mode); /* restore the previous state */
3107
3108 /* callback(illegal) */
3109 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3110 }
3111 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3112 if(UCNV_TO_U_USE_FALLBACK(cnv)) {
3113 /* output BMP code point */
3114 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3115 break;
3116 }
3117 } else if(action==MBCS_STATE_UNASSIGNED) {
3118 /* just fall through */
3119 } else if(action==MBCS_STATE_ILLEGAL) {
3120 /* callback(illegal) */
3121 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3122 } else {
3123 /* reserved (must never occur), or only state change */
3124 offset=0;
3125 lastSource=source;
3126 continue;
3127 }
3128
3129 /* end of action codes: prepare for a new character */
3130 offset=0;
3131
3132 if(U_FAILURE(*pErrorCode)) {
3133 /* callback(illegal) */
3134 break;
3135 } else /* unassigned sequence */ {
3136 /* defer to the generic implementation */
3137 cnv->toUnicodeStatus=0;
3138 cnv->mode=state;
3139 pArgs->source=(const char *)lastSource;
3140 return UCNV_GET_NEXT_UCHAR_USE_TO_U;
3141 }
3142 }
3143 }
3144
3145 if(c<0) {
3146 if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) {
3147 /* incomplete character byte sequence */
3148 uint8_t *bytes=cnv->toUBytes;
3149 cnv->toULength=(int8_t)(source-lastSource);
3150 do {
3151 *bytes++=*lastSource++;
3152 } while(lastSource<source);
3153 *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3154 } else if(U_FAILURE(*pErrorCode)) {
3155 /* callback(illegal) */
3156 /*
3157 * Ticket 5691: consistent illegal sequences:
3158 * - We include at least the first byte in the illegal sequence.
3159 * - If any of the non-initial bytes could be the start of a character,
3160 * we stop the illegal sequence before the first one of those.
3161 */
3162 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
3163 uint8_t *bytes=cnv->toUBytes;
3164 *bytes++=*lastSource++; /* first byte */
3165 if(lastSource==source) {
3166 cnv->toULength=1;
3167 } else /* lastSource<source: multi-byte character */ {
3168 int8_t i;
3169 for(i=1;
3170 lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource);
3171 ++i
3172 ) {
3173 *bytes++=*lastSource++;
3174 }
3175 cnv->toULength=i;
3176 source=lastSource;
3177 }
3178 } else {
3179 /* no output because of empty input or only state changes */
3180 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
3181 }
3182 c=0xffff;
3183 }
3184
3185 /* set the converter state back into UConverter, ready for a new character */
3186 cnv->toUnicodeStatus=0;
3187 cnv->mode=state;
3188
3189 /* write back the updated pointer */
3190 pArgs->source=(const char *)source;
3191 return c;
3192 }
3193
3194 #if 0
3195 /*
3196 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3197 * Removal improves code coverage.
3198 */
3199 /**
3200 * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages.
3201 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3202 * It does not handle conversion extensions (_extToU()).
3203 */
3204 U_CFUNC UChar32
3205 ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData,
3206 uint8_t b, UBool useFallback) {
3207 int32_t entry;
3208 uint8_t action;
3209
3210 entry=sharedData->mbcs.stateTable[0][b];
3211 /* MBCS_ENTRY_IS_FINAL(entry) */
3212
3213 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
3214 /* output BMP code point */
3215 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3216 }
3217
3218 /*
3219 * An if-else-if chain provides more reliable performance for
3220 * the most common cases compared to a switch.
3221 */
3222 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3223 if(action==MBCS_STATE_VALID_DIRECT_20) {
3224 /* output supplementary code point */
3225 return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3226 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3227 if(!TO_U_USE_FALLBACK(useFallback)) {
3228 return 0xfffe;
3229 }
3230 /* output BMP code point */
3231 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3232 } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3233 if(!TO_U_USE_FALLBACK(useFallback)) {
3234 return 0xfffe;
3235 }
3236 /* output supplementary code point */
3237 return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3238 } else if(action==MBCS_STATE_UNASSIGNED) {
3239 return 0xfffe;
3240 } else if(action==MBCS_STATE_ILLEGAL) {
3241 return 0xffff;
3242 } else {
3243 /* reserved, must never occur */
3244 return 0xffff;
3245 }
3246 }
3247 #endif
3248
3249 /*
3250 * This is a simple version of _MBCSGetNextUChar() that is used
3251 * by other converter implementations.
3252 * It only returns an "assigned" result if it consumes the entire input.
3253 * It does not use state from the converter, nor error codes.
3254 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3255 * It handles conversion extensions but not GB 18030.
3256 *
3257 * Return value:
3258 * U+fffe unassigned
3259 * U+ffff illegal
3260 * otherwise the Unicode code point
3261 */
3262 U_CFUNC UChar32
3263 ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData,
3264 const char *source, int32_t length,
3265 UBool useFallback) {
3266 const int32_t (*stateTable)[256];
3267 const uint16_t *unicodeCodeUnits;
3268
3269 uint32_t offset;
3270 uint8_t state, action;
3271
3272 UChar32 c;
3273 int32_t i, entry;
3274
3275 if(length<=0) {
3276 /* no input at all: "illegal" */
3277 return 0xffff;
3278 }
3279
3280 #if 0
3281 /*
3282 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3283 * TODO In future releases, verify that this function is never called for SBCS
3284 * conversions, i.e., that sharedData->mbcs.countStates==1 is still true.
3285 * Removal improves code coverage.
3286 */
3287 /* use optimized function if possible */
3288 if(sharedData->mbcs.countStates==1) {
3289 if(length==1) {
3290 return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback);
3291 } else {
3292 return 0xffff; /* illegal: more than a single byte for an SBCS converter */
3293 }
3294 }
3295 #endif
3296
3297 /* set up the local pointers */
3298 stateTable=sharedData->mbcs.stateTable;
3299 unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits;
3300
3301 /* converter state */
3302 offset=0;
3303 state=sharedData->mbcs.dbcsOnlyState;
3304
3305 /* conversion loop */
3306 for(i=0;;) {
3307 entry=stateTable[state][(uint8_t)source[i++]];
3308 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
3309 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
3310 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
3311
3312 if(i==length) {
3313 return 0xffff; /* truncated character */
3314 }
3315 } else {
3316 /*
3317 * An if-else-if chain provides more reliable performance for
3318 * the most common cases compared to a switch.
3319 */
3320 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3321 if(action==MBCS_STATE_VALID_16) {
3322 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3323 c=unicodeCodeUnits[offset];
3324 if(c!=0xfffe) {
3325 /* done */
3326 } else if(UCNV_TO_U_USE_FALLBACK(cnv)) {
3327 c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset);
3328 /* else done with 0xfffe */
3329 }
3330 break;
3331 } else if(action==MBCS_STATE_VALID_DIRECT_16) {
3332 /* output BMP code point */
3333 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3334 break;
3335 } else if(action==MBCS_STATE_VALID_16_PAIR) {
3336 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3337 c=unicodeCodeUnits[offset++];
3338 if(c<0xd800) {
3339 /* output BMP code point below 0xd800 */
3340 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
3341 /* output roundtrip or fallback supplementary code point */
3342 c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00));
3343 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
3344 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
3345 c=unicodeCodeUnits[offset];
3346 } else if(c==0xffff) {
3347 return 0xffff;
3348 } else {
3349 c=0xfffe;
3350 }
3351 break;
3352 } else if(action==MBCS_STATE_VALID_DIRECT_20) {
3353 /* output supplementary code point */
3354 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3355 break;
3356 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3357 if(!TO_U_USE_FALLBACK(useFallback)) {
3358 c=0xfffe;
3359 break;
3360 }
3361 /* output BMP code point */
3362 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3363 break;
3364 } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3365 if(!TO_U_USE_FALLBACK(useFallback)) {
3366 c=0xfffe;
3367 break;
3368 }
3369 /* output supplementary code point */
3370 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3371 break;
3372 } else if(action==MBCS_STATE_UNASSIGNED) {
3373 c=0xfffe;
3374 break;
3375 }
3376
3377 /*
3378 * forbid MBCS_STATE_CHANGE_ONLY for this function,
3379 * and MBCS_STATE_ILLEGAL and reserved action codes
3380 */
3381 return 0xffff;
3382 }
3383 }
3384
3385 if(i!=length) {
3386 /* illegal for this function: not all input consumed */
3387 return 0xffff;
3388 }
3389
3390 if(c==0xfffe) {
3391 /* try an extension mapping */
3392 const int32_t *cx=sharedData->mbcs.extIndexes;
3393 if(cx!=NULL) {
3394 return ucnv_extSimpleMatchToU(cx, source, length, useFallback);
3395 }
3396 }
3397
3398 return c;
3399 }
3400
3401 /* MBCS-from-Unicode conversion functions ----------------------------------- */
3402
3403 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */
3404 static void
3405 ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3406 UErrorCode *pErrorCode) {
3407 UConverter *cnv;
3408 const UChar *source, *sourceLimit;
3409 uint8_t *target;
3410 int32_t targetCapacity;
3411 int32_t *offsets;
3412
3413 const uint16_t *table;
3414 const uint16_t *mbcsIndex;
3415 const uint8_t *bytes;
3416
3417 UChar32 c;
3418
3419 int32_t sourceIndex, nextSourceIndex;
3420
3421 uint32_t stage2Entry;
3422 uint32_t asciiRoundtrips;
3423 uint32_t value;
3424 uint8_t unicodeMask;
3425
3426 /* use optimized function if possible */
3427 cnv=pArgs->converter;
3428 unicodeMask=cnv->sharedData->mbcs.unicodeMask;
3429
3430 /* set up the local pointers */
3431 source=pArgs->source;
3432 sourceLimit=pArgs->sourceLimit;
3433 target=(uint8_t *)pArgs->target;
3434 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3435 offsets=pArgs->offsets;
3436
3437 table=cnv->sharedData->mbcs.fromUnicodeTable;
3438 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
3439 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3440 bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3441 } else {
3442 bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
3443 }
3444 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3445
3446 /* get the converter state from UConverter */
3447 c=cnv->fromUChar32;
3448
3449 /* sourceIndex=-1 if the current character began in the previous buffer */
3450 sourceIndex= c==0 ? 0 : -1;
3451 nextSourceIndex=0;
3452
3453 /* conversion loop */
3454 if(c!=0 && targetCapacity>0) {
3455 goto getTrail;
3456 }
3457
3458 while(source<sourceLimit) {
3459 /*
3460 * This following test is to see if available input would overflow the output.
3461 * It does not catch output of more than one byte that
3462 * overflows as a result of a multi-byte character or callback output
3463 * from the last source character.
3464 * Therefore, those situations also test for overflows and will
3465 * then break the loop, too.
3466 */
3467 if(targetCapacity>0) {
3468 /*
3469 * Get a correct Unicode code point:
3470 * a single UChar for a BMP code point or
3471 * a matched surrogate pair for a "supplementary code point".
3472 */
3473 c=*source++;
3474 ++nextSourceIndex;
3475 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
3476 *target++=(uint8_t)c;
3477 if(offsets!=NULL) {
3478 *offsets++=sourceIndex;
3479 sourceIndex=nextSourceIndex;
3480 }
3481 --targetCapacity;
3482 c=0;
3483 continue;
3484 }
3485 /*
3486 * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
3487 * to avoid dealing with surrogates.
3488 * MBCS_FAST_MAX must be >=0xd7ff.
3489 */
3490 if(c<=0xd7ff) {
3491 value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c);
3492 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
3493 if(value==0) {
3494 goto unassigned;
3495 }
3496 /* output the value */
3497 } else {
3498 /*
3499 * This also tests if the codepage maps single surrogates.
3500 * If it does, then surrogates are not paired but mapped separately.
3501 * Note that in this case unmatched surrogates are not detected.
3502 */
3503 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
3504 if(U16_IS_SURROGATE_LEAD(c)) {
3505 getTrail:
3506 if(source<sourceLimit) {
3507 /* test the following code unit */
3508 UChar trail=*source;
3509 if(U16_IS_TRAIL(trail)) {
3510 ++source;
3511 ++nextSourceIndex;
3512 c=U16_GET_SUPPLEMENTARY(c, trail);
3513 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
3514 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3515 /* callback(unassigned) */
3516 goto unassigned;
3517 }
3518 /* convert this supplementary code point */
3519 /* exit this condition tree */
3520 } else {
3521 /* this is an unmatched lead code unit (1st surrogate) */
3522 /* callback(illegal) */
3523 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3524 break;
3525 }
3526 } else {
3527 /* no more input */
3528 break;
3529 }
3530 } else {
3531 /* this is an unmatched trail code unit (2nd surrogate) */
3532 /* callback(illegal) */
3533 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3534 break;
3535 }
3536 }
3537
3538 /* convert the Unicode code point in c into codepage bytes */
3539 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
3540
3541 /* get the bytes and the length for the output */
3542 /* MBCS_OUTPUT_2 */
3543 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
3544
3545 /* is this code point assigned, or do we use fallbacks? */
3546 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
3547 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
3548 ) {
3549 /*
3550 * We allow a 0 byte output if the "assigned" bit is set for this entry.
3551 * There is no way with this data structure for fallback output
3552 * to be a zero byte.
3553 */
3554
3555 unassigned:
3556 /* try an extension mapping */
3557 pArgs->source=source;
3558 c=_extFromU(cnv, cnv->sharedData,
3559 c, &source, sourceLimit,
3560 &target, target+targetCapacity,
3561 &offsets, sourceIndex,
3562 pArgs->flush,
3563 pErrorCode);
3564 nextSourceIndex+=(int32_t)(source-pArgs->source);
3565
3566 if(U_FAILURE(*pErrorCode)) {
3567 /* not mappable or buffer overflow */
3568 break;
3569 } else {
3570 /* a mapping was written to the target, continue */
3571
3572 /* recalculate the targetCapacity after an extension mapping */
3573 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3574
3575 /* normal end of conversion: prepare for a new character */
3576 sourceIndex=nextSourceIndex;
3577 continue;
3578 }
3579 }
3580 }
3581
3582 /* write the output character bytes from value and length */
3583 /* from the first if in the loop we know that targetCapacity>0 */
3584 if(value<=0xff) {
3585 /* this is easy because we know that there is enough space */
3586 *target++=(uint8_t)value;
3587 if(offsets!=NULL) {
3588 *offsets++=sourceIndex;
3589 }
3590 --targetCapacity;
3591 } else /* length==2 */ {
3592 *target++=(uint8_t)(value>>8);
3593 if(2<=targetCapacity) {
3594 *target++=(uint8_t)value;
3595 if(offsets!=NULL) {
3596 *offsets++=sourceIndex;
3597 *offsets++=sourceIndex;
3598 }
3599 targetCapacity-=2;
3600 } else {
3601 if(offsets!=NULL) {
3602 *offsets++=sourceIndex;
3603 }
3604 cnv->charErrorBuffer[0]=(char)value;
3605 cnv->charErrorBufferLength=1;
3606
3607 /* target overflow */
3608 targetCapacity=0;
3609 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3610 c=0;
3611 break;
3612 }
3613 }
3614
3615 /* normal end of conversion: prepare for a new character */
3616 c=0;
3617 sourceIndex=nextSourceIndex;
3618 continue;
3619 } else {
3620 /* target is full */
3621 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3622 break;
3623 }
3624 }
3625
3626 /* set the converter state back into UConverter */
3627 cnv->fromUChar32=c;
3628
3629 /* write back the updated pointers */
3630 pArgs->source=source;
3631 pArgs->target=(char *)target;
3632 pArgs->offsets=offsets;
3633 }
3634
3635 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */
3636 static void
3637 ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3638 UErrorCode *pErrorCode) {
3639 UConverter *cnv;
3640 const UChar *source, *sourceLimit;
3641 uint8_t *target;
3642 int32_t targetCapacity;
3643 int32_t *offsets;
3644
3645 const uint16_t *table;
3646 const uint16_t *results;
3647
3648 UChar32 c;
3649
3650 int32_t sourceIndex, nextSourceIndex;
3651
3652 uint16_t value, minValue;
3653 UBool hasSupplementary;
3654
3655 /* set up the local pointers */
3656 cnv=pArgs->converter;
3657 source=pArgs->source;
3658 sourceLimit=pArgs->sourceLimit;
3659 target=(uint8_t *)pArgs->target;
3660 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3661 offsets=pArgs->offsets;
3662
3663 table=cnv->sharedData->mbcs.fromUnicodeTable;
3664 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3665 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3666 } else {
3667 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3668 }
3669
3670 if(cnv->useFallback) {
3671 /* use all roundtrip and fallback results */
3672 minValue=0x800;
3673 } else {
3674 /* use only roundtrips and fallbacks from private-use characters */
3675 minValue=0xc00;
3676 }
3677 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
3678
3679 /* get the converter state from UConverter */
3680 c=cnv->fromUChar32;
3681
3682 /* sourceIndex=-1 if the current character began in the previous buffer */
3683 sourceIndex= c==0 ? 0 : -1;
3684 nextSourceIndex=0;
3685
3686 /* conversion loop */
3687 if(c!=0 && targetCapacity>0) {
3688 goto getTrail;
3689 }
3690
3691 while(source<sourceLimit) {
3692 /*
3693 * This following test is to see if available input would overflow the output.
3694 * It does not catch output of more than one byte that
3695 * overflows as a result of a multi-byte character or callback output
3696 * from the last source character.
3697 * Therefore, those situations also test for overflows and will
3698 * then break the loop, too.
3699 */
3700 if(targetCapacity>0) {
3701 /*
3702 * Get a correct Unicode code point:
3703 * a single UChar for a BMP code point or
3704 * a matched surrogate pair for a "supplementary code point".
3705 */
3706 c=*source++;
3707 ++nextSourceIndex;
3708 if(U16_IS_SURROGATE(c)) {
3709 if(U16_IS_SURROGATE_LEAD(c)) {
3710 getTrail:
3711 if(source<sourceLimit) {
3712 /* test the following code unit */
3713 UChar trail=*source;
3714 if(U16_IS_TRAIL(trail)) {
3715 ++source;
3716 ++nextSourceIndex;
3717 c=U16_GET_SUPPLEMENTARY(c, trail);
3718 if(!hasSupplementary) {
3719 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3720 /* callback(unassigned) */
3721 goto unassigned;
3722 }
3723 /* convert this supplementary code point */
3724 /* exit this condition tree */
3725 } else {
3726 /* this is an unmatched lead code unit (1st surrogate) */
3727 /* callback(illegal) */
3728 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3729 break;
3730 }
3731 } else {
3732 /* no more input */
3733 break;
3734 }
3735 } else {
3736 /* this is an unmatched trail code unit (2nd surrogate) */
3737 /* callback(illegal) */
3738 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3739 break;
3740 }
3741 }
3742
3743 /* convert the Unicode code point in c into codepage bytes */
3744 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3745
3746 /* is this code point assigned, or do we use fallbacks? */
3747 if(value>=minValue) {
3748 /* assigned, write the output character bytes from value and length */
3749 /* length==1 */
3750 /* this is easy because we know that there is enough space */
3751 *target++=(uint8_t)value;
3752 if(offsets!=NULL) {
3753 *offsets++=sourceIndex;
3754 }
3755 --targetCapacity;
3756
3757 /* normal end of conversion: prepare for a new character */
3758 c=0;
3759 sourceIndex=nextSourceIndex;
3760 } else { /* unassigned */
3761 unassigned:
3762 /* try an extension mapping */
3763 pArgs->source=source;
3764 c=_extFromU(cnv, cnv->sharedData,
3765 c, &source, sourceLimit,
3766 &target, target+targetCapacity,
3767 &offsets, sourceIndex,
3768 pArgs->flush,
3769 pErrorCode);
3770 nextSourceIndex+=(int32_t)(source-pArgs->source);
3771
3772 if(U_FAILURE(*pErrorCode)) {
3773 /* not mappable or buffer overflow */
3774 break;
3775 } else {
3776 /* a mapping was written to the target, continue */
3777
3778 /* recalculate the targetCapacity after an extension mapping */
3779 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3780
3781 /* normal end of conversion: prepare for a new character */
3782 sourceIndex=nextSourceIndex;
3783 }
3784 }
3785 } else {
3786 /* target is full */
3787 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3788 break;
3789 }
3790 }
3791
3792 /* set the converter state back into UConverter */
3793 cnv->fromUChar32=c;
3794
3795 /* write back the updated pointers */
3796 pArgs->source=source;
3797 pArgs->target=(char *)target;
3798 pArgs->offsets=offsets;
3799 }
3800
3801 /*
3802 * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages
3803 * that map only to and from the BMP.
3804 * In addition to single-byte/state optimizations, the offset calculations
3805 * become much easier.
3806 * It would be possible to use the sbcsIndex for UTF-8-friendly tables,
3807 * but measurements have shown that this diminishes performance
3808 * in more cases than it improves it.
3809 * See SVN revision 21013 (2007-feb-06) for the last version with #if switches
3810 * for various MBCS and SBCS optimizations.
3811 */
3812 static void
3813 ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs,
3814 UErrorCode *pErrorCode) {
3815 UConverter *cnv;
3816 const UChar *source, *sourceLimit, *lastSource;
3817 uint8_t *target;
3818 int32_t targetCapacity, length;
3819 int32_t *offsets;
3820
3821 const uint16_t *table;
3822 const uint16_t *results;
3823
3824 UChar32 c;
3825
3826 int32_t sourceIndex;
3827
3828 uint32_t asciiRoundtrips;
3829 uint16_t value, minValue;
3830
3831 /* set up the local pointers */
3832 cnv=pArgs->converter;
3833 source=pArgs->source;
3834 sourceLimit=pArgs->sourceLimit;
3835 target=(uint8_t *)pArgs->target;
3836 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3837 offsets=pArgs->offsets;
3838
3839 table=cnv->sharedData->mbcs.fromUnicodeTable;
3840 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3841 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3842 } else {
3843 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3844 }
3845 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3846
3847 if(cnv->useFallback) {
3848 /* use all roundtrip and fallback results */
3849 minValue=0x800;
3850 } else {
3851 /* use only roundtrips and fallbacks from private-use characters */
3852 minValue=0xc00;
3853 }
3854
3855 /* get the converter state from UConverter */
3856 c=cnv->fromUChar32;
3857
3858 /* sourceIndex=-1 if the current character began in the previous buffer */
3859 sourceIndex= c==0 ? 0 : -1;
3860 lastSource=source;
3861
3862 /*
3863 * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
3864 * for the minimum of the sourceLength and targetCapacity
3865 */
3866 length=(int32_t)(sourceLimit-source);
3867 if(length<targetCapacity) {
3868 targetCapacity=length;
3869 }
3870
3871 /* conversion loop */
3872 if(c!=0 && targetCapacity>0) {
3873 goto getTrail;
3874 }
3875
3876 #if MBCS_UNROLL_SINGLE_FROM_BMP
3877 /* unrolling makes it slower on Pentium III/Windows 2000?! */
3878 /* unroll the loop with the most common case */
3879 unrolled:
3880 if(targetCapacity>=4) {
3881 int32_t count, loops;
3882 uint16_t andedValues;
3883
3884 loops=count=targetCapacity>>2;
3885 do {
3886 c=*source++;
3887 andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3888 *target++=(uint8_t)value;
3889 c=*source++;
3890 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3891 *target++=(uint8_t)value;
3892 c=*source++;
3893 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3894 *target++=(uint8_t)value;
3895 c=*source++;
3896 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3897 *target++=(uint8_t)value;
3898
3899 /* were all 4 entries really valid? */
3900 if(andedValues<minValue) {
3901 /* no, return to the first of these 4 */
3902 source-=4;
3903 target-=4;
3904 break;
3905 }
3906 } while(--count>0);
3907 count=loops-count;
3908 targetCapacity-=4*count;
3909
3910 if(offsets!=NULL) {
3911 lastSource+=4*count;
3912 while(count>0) {
3913 *offsets++=sourceIndex++;
3914 *offsets++=sourceIndex++;
3915 *offsets++=sourceIndex++;
3916 *offsets++=sourceIndex++;
3917 --count;
3918 }
3919 }
3920
3921 c=0;
3922 }
3923 #endif
3924
3925 while(targetCapacity>0) {
3926 /*
3927 * Get a correct Unicode code point:
3928 * a single UChar for a BMP code point or
3929 * a matched surrogate pair for a "supplementary code point".
3930 */
3931 c=*source++;
3932 /*
3933 * Do not immediately check for single surrogates:
3934 * Assume that they are unassigned and check for them in that case.
3935 * This speeds up the conversion of assigned characters.
3936 */
3937 /* convert the Unicode code point in c into codepage bytes */
3938 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
3939 *target++=(uint8_t)c;
3940 --targetCapacity;
3941 c=0;
3942 continue;
3943 }
3944 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3945 /* is this code point assigned, or do we use fallbacks? */
3946 if(value>=minValue) {
3947 /* assigned, write the output character bytes from value and length */
3948 /* length==1 */
3949 /* this is easy because we know that there is enough space */
3950 *target++=(uint8_t)value;
3951 --targetCapacity;
3952
3953 /* normal end of conversion: prepare for a new character */
3954 c=0;
3955 continue;
3956 } else if(!U16_IS_SURROGATE(c)) {
3957 /* normal, unassigned BMP character */
3958 } else if(U16_IS_SURROGATE_LEAD(c)) {
3959 getTrail:
3960 if(source<sourceLimit) {
3961 /* test the following code unit */
3962 UChar trail=*source;
3963 if(U16_IS_TRAIL(trail)) {
3964 ++source;
3965 c=U16_GET_SUPPLEMENTARY(c, trail);
3966 /* this codepage does not map supplementary code points */
3967 /* callback(unassigned) */
3968 } else {
3969 /* this is an unmatched lead code unit (1st surrogate) */
3970 /* callback(illegal) */
3971 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3972 break;
3973 }
3974 } else {
3975 /* no more input */
3976 if (pArgs->flush) {
3977 *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3978 }
3979 break;
3980 }
3981 } else {
3982 /* this is an unmatched trail code unit (2nd surrogate) */
3983 /* callback(illegal) */
3984 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3985 break;
3986 }
3987
3988 /* c does not have a mapping */
3989
3990 /* get the number of code units for c to correctly advance sourceIndex */
3991 length=U16_LENGTH(c);
3992
3993 /* set offsets since the start or the last extension */
3994 if(offsets!=NULL) {
3995 int32_t count=(int32_t)(source-lastSource);
3996
3997 /* do not set the offset for this character */
3998 count-=length;
3999
4000 while(count>0) {
4001 *offsets++=sourceIndex++;
4002 --count;
4003 }
4004 /* offsets and sourceIndex are now set for the current character */
4005 }
4006
4007 /* try an extension mapping */
4008 lastSource=source;
4009 c=_extFromU(cnv, cnv->sharedData,
4010 c, &source, sourceLimit,
4011 &target, (const uint8_t *)(pArgs->targetLimit),
4012 &offsets, sourceIndex,
4013 pArgs->flush,
4014 pErrorCode);
4015 sourceIndex+=length+(int32_t)(source-lastSource);
4016 lastSource=source;
4017
4018 if(U_FAILURE(*pErrorCode)) {
4019 /* not mappable or buffer overflow */
4020 break;
4021 } else {
4022 /* a mapping was written to the target, continue */
4023
4024 /* recalculate the targetCapacity after an extension mapping */
4025 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
4026 length=(int32_t)(sourceLimit-source);
4027 if(length<targetCapacity) {
4028 targetCapacity=length;
4029 }
4030 }
4031
4032 #if MBCS_UNROLL_SINGLE_FROM_BMP
4033 /* unrolling makes it slower on Pentium III/Windows 2000?! */
4034 goto unrolled;
4035 #endif
4036 }
4037
4038 if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) {
4039 /* target is full */
4040 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4041 }
4042
4043 /* set offsets since the start or the last callback */
4044 if(offsets!=NULL) {
4045 size_t count=source-lastSource;
4046 if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) {
4047 /*
4048 Caller gave us a partial supplementary character,
4049 which this function couldn't convert in any case.
4050 The callback will handle the offset.
4051 */
4052 count--;
4053 }
4054 while(count>0) {
4055 *offsets++=sourceIndex++;
4056 --count;
4057 }
4058 }
4059
4060 /* set the converter state back into UConverter */
4061 cnv->fromUChar32=c;
4062
4063 /* write back the updated pointers */
4064 pArgs->source=source;
4065 pArgs->target=(char *)target;
4066 pArgs->offsets=offsets;
4067 }
4068
4069 U_CFUNC void
4070 ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
4071 UErrorCode *pErrorCode) {
4072 UConverter *cnv;
4073 const UChar *source, *sourceLimit;
4074 uint8_t *target;
4075 int32_t targetCapacity;
4076 int32_t *offsets;
4077
4078 const uint16_t *table;
4079 const uint16_t *mbcsIndex;
4080 const uint8_t *p, *bytes;
4081 uint8_t outputType;
4082
4083 UChar32 c;
4084
4085 int32_t prevSourceIndex, sourceIndex, nextSourceIndex;
4086
4087 uint32_t stage2Entry;
4088 uint32_t asciiRoundtrips;
4089 uint32_t value;
4090 /* Shift-In and Shift-Out byte sequences differ by encoding scheme. */
4091 uint8_t siBytes[2] = {0, 0};
4092 uint8_t soBytes[2] = {0, 0};
4093 uint8_t siLength, soLength;
4094 int32_t length = 0, prevLength;
4095 uint8_t unicodeMask;
4096
4097 cnv=pArgs->converter;
4098
4099 if(cnv->preFromUFirstCP>=0) {
4100 /*
4101 * pass sourceIndex=-1 because we continue from an earlier buffer
4102 * in the future, this may change with continuous offsets
4103 */
4104 ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode);
4105
4106 if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) {
4107 return;
4108 }
4109 }
4110
4111 /* use optimized function if possible */
4112 outputType=cnv->sharedData->mbcs.outputType;
4113 unicodeMask=cnv->sharedData->mbcs.unicodeMask;
4114 if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) {
4115 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4116 ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode);
4117 } else {
4118 ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode);
4119 }
4120 return;
4121 } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) {
4122 ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode);
4123 return;
4124 }
4125
4126 /* set up the local pointers */
4127 source=pArgs->source;
4128 sourceLimit=pArgs->sourceLimit;
4129 target=(uint8_t *)pArgs->target;
4130 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
4131 offsets=pArgs->offsets;
4132
4133 table=cnv->sharedData->mbcs.fromUnicodeTable;
4134 if(cnv->sharedData->mbcs.utf8Friendly) {
4135 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
4136 } else {
4137 mbcsIndex=NULL;
4138 }
4139 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
4140 bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
4141 } else {
4142 bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
4143 }
4144 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
4145
4146 /* get the converter state from UConverter */
4147 c=cnv->fromUChar32;
4148
4149 if(outputType==MBCS_OUTPUT_2_SISO) {
4150 prevLength=cnv->fromUnicodeStatus;
4151 if(prevLength==0) {
4152 /* set the real value */
4153 prevLength=1;
4154 }
4155 } else {
4156 /* prevent fromUnicodeStatus from being set to something non-0 */
4157 prevLength=0;
4158 }
4159
4160 /* sourceIndex=-1 if the current character began in the previous buffer */
4161 prevSourceIndex=-1;
4162 sourceIndex= c==0 ? 0 : -1;
4163 nextSourceIndex=0;
4164
4165 /* Get the SI/SO character for the converter */
4166 siLength = getSISOBytes(SI, cnv->options, siBytes);
4167 soLength = getSISOBytes(SO, cnv->options, soBytes);
4168
4169 /* conversion loop */
4170 /*
4171 * This is another piece of ugly code:
4172 * A goto into the loop if the converter state contains a first surrogate
4173 * from the previous function call.
4174 * It saves me to check in each loop iteration a check of if(c==0)
4175 * and duplicating the trail-surrogate-handling code in the else
4176 * branch of that check.
4177 * I could not find any other way to get around this other than
4178 * using a function call for the conversion and callback, which would
4179 * be even more inefficient.
4180 *
4181 * Markus Scherer 2000-jul-19
4182 */
4183 if(c!=0 && targetCapacity>0) {
4184 goto getTrail;
4185 }
4186
4187 while(source<sourceLimit) {
4188 /*
4189 * This following test is to see if available input would overflow the output.
4190 * It does not catch output of more than one byte that
4191 * overflows as a result of a multi-byte character or callback output
4192 * from the last source character.
4193 * Therefore, those situations also test for overflows and will
4194 * then break the loop, too.
4195 */
4196 if(targetCapacity>0) {
4197 /*
4198 * Get a correct Unicode code point:
4199 * a single UChar for a BMP code point or
4200 * a matched surrogate pair for a "supplementary code point".
4201 */
4202 c=*source++;
4203 ++nextSourceIndex;
4204 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
4205 *target++=(uint8_t)c;
4206 if(offsets!=NULL) {
4207 *offsets++=sourceIndex;
4208 prevSourceIndex=sourceIndex;
4209 sourceIndex=nextSourceIndex;
4210 }
4211 --targetCapacity;
4212 c=0;
4213 continue;
4214 }
4215 /*
4216 * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
4217 * to avoid dealing with surrogates.
4218 * MBCS_FAST_MAX must be >=0xd7ff.
4219 */
4220 if(c<=0xd7ff && mbcsIndex!=NULL) {
4221 value=mbcsIndex[c>>6];
4222
4223 /* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */
4224 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
4225 switch(outputType) {
4226 case MBCS_OUTPUT_2:
4227 value=((const uint16_t *)bytes)[value +(c&0x3f)];
4228 if(value<=0xff) {
4229 if(value==0) {
4230 goto unassigned;
4231 } else {
4232 length=1;
4233 }
4234 } else {
4235 length=2;
4236 }
4237 break;
4238 case MBCS_OUTPUT_2_SISO:
4239 /* 1/2-byte stateful with Shift-In/Shift-Out */
4240 /*
4241 * Save the old state in the converter object
4242 * right here, then change the local prevLength state variable if necessary.
4243 * Then, if this character turns out to be unassigned or a fallback that
4244 * is not taken, the callback code must not save the new state in the converter
4245 * because the new state is for a character that is not output.
4246 * However, the callback must still restore the state from the converter
4247 * in case the callback function changed it for its output.
4248 */
4249 cnv->fromUnicodeStatus=prevLength; /* save the old state */
4250 value=((const uint16_t *)bytes)[value +(c&0x3f)];
4251 if(value<=0xff) {
4252 if(value==0) {
4253 goto unassigned;
4254 } else if(prevLength<=1) {
4255 length=1;
4256 } else {
4257 /* change from double-byte mode to single-byte */
4258 if (siLength == 1) {
4259 value|=(uint32_t)siBytes[0]<<8;
4260 length = 2;
4261 } else if (siLength == 2) {
4262 value|=(uint32_t)siBytes[1]<<8;
4263 value|=(uint32_t)siBytes[0]<<16;
4264 length = 3;
4265 }
4266 prevLength=1;
4267 }
4268 } else {
4269 if(prevLength==2) {
4270 length=2;
4271 } else {
4272 /* change from single-byte mode to double-byte */
4273 if (soLength == 1) {
4274 value|=(uint32_t)soBytes[0]<<16;
4275 length = 3;
4276 } else if (soLength == 2) {
4277 value|=(uint32_t)soBytes[1]<<16;
4278 value|=(uint32_t)soBytes[0]<<24;
4279 length = 4;
4280 }
4281 prevLength=2;
4282 }
4283 }
4284 break;
4285 case MBCS_OUTPUT_DBCS_ONLY:
4286 /* table with single-byte results, but only DBCS mappings used */
4287 value=((const uint16_t *)bytes)[value +(c&0x3f)];
4288 if(value<=0xff) {
4289 /* no mapping or SBCS result, not taken for DBCS-only */
4290 goto unassigned;
4291 } else {
4292 length=2;
4293 }
4294 break;
4295 case MBCS_OUTPUT_3:
4296 p=bytes+(value+(c&0x3f))*3;
4297 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4298 if(value<=0xff) {
4299 if(value==0) {
4300 goto unassigned;
4301 } else {
4302 length=1;
4303 }
4304 } else if(value<=0xffff) {
4305 length=2;
4306 } else {
4307 length=3;
4308 }
4309 break;
4310 case MBCS_OUTPUT_4:
4311 value=((const uint32_t *)bytes)[value +(c&0x3f)];
4312 if(value<=0xff) {
4313 if(value==0) {
4314 goto unassigned;
4315 } else {
4316 length=1;
4317 }
4318 } else if(value<=0xffff) {
4319 length=2;
4320 } else if(value<=0xffffff) {
4321 length=3;
4322 } else {
4323 length=4;
4324 }
4325 break;
4326 case MBCS_OUTPUT_3_EUC:
4327 value=((const uint16_t *)bytes)[value +(c&0x3f)];
4328 /* EUC 16-bit fixed-length representation */
4329 if(value<=0xff) {
4330 if(value==0) {
4331 goto unassigned;
4332 } else {
4333 length=1;
4334 }
4335 } else if((value&0x8000)==0) {
4336 value|=0x8e8000;
4337 length=3;
4338 } else if((value&0x80)==0) {
4339 value|=0x8f0080;
4340 length=3;
4341 } else {
4342 length=2;
4343 }
4344 break;
4345 case MBCS_OUTPUT_4_EUC:
4346 p=bytes+(value+(c&0x3f))*3;
4347 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4348 /* EUC 16-bit fixed-length representation applied to the first two bytes */
4349 if(value<=0xff) {
4350 if(value==0) {
4351 goto unassigned;
4352 } else {
4353 length=1;
4354 }
4355 } else if(value<=0xffff) {
4356 length=2;
4357 } else if((value&0x800000)==0) {
4358 value|=0x8e800000;
4359 length=4;
4360 } else if((value&0x8000)==0) {
4361 value|=0x8f008000;
4362 length=4;
4363 } else {
4364 length=3;
4365 }
4366 break;
4367 default:
4368 /* must not occur */
4369 /*
4370 * To avoid compiler warnings that value & length may be
4371 * used without having been initialized, we set them here.
4372 * In reality, this is unreachable code.
4373 * Not having a default branch also causes warnings with
4374 * some compilers.
4375 */
4376 value=0;
4377 length=0;
4378 break;
4379 }
4380 /* output the value */
4381 } else {
4382 /*
4383 * This also tests if the codepage maps single surrogates.
4384 * If it does, then surrogates are not paired but mapped separately.
4385 * Note that in this case unmatched surrogates are not detected.
4386 */
4387 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
4388 if(U16_IS_SURROGATE_LEAD(c)) {
4389 getTrail:
4390 if(source<sourceLimit) {
4391 /* test the following code unit */
4392 UChar trail=*source;
4393 if(U16_IS_TRAIL(trail)) {
4394 ++source;
4395 ++nextSourceIndex;
4396 c=U16_GET_SUPPLEMENTARY(c, trail);
4397 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4398 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4399 cnv->fromUnicodeStatus=prevLength; /* save the old state */
4400 /* callback(unassigned) */
4401 goto unassigned;
4402 }
4403 /* convert this supplementary code point */
4404 /* exit this condition tree */
4405 } else {
4406 /* this is an unmatched lead code unit (1st surrogate) */
4407 /* callback(illegal) */
4408 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4409 break;
4410 }
4411 } else {
4412 /* no more input */
4413 break;
4414 }
4415 } else {
4416 /* this is an unmatched trail code unit (2nd surrogate) */
4417 /* callback(illegal) */
4418 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4419 break;
4420 }
4421 }
4422
4423 /* convert the Unicode code point in c into codepage bytes */
4424
4425 /*
4426 * The basic lookup is a triple-stage compact array (trie) lookup.
4427 * For details see the beginning of this file.
4428 *
4429 * Single-byte codepages are handled with a different data structure
4430 * by _MBCSSingle... functions.
4431 *
4432 * The result consists of a 32-bit value from stage 2 and
4433 * a pointer to as many bytes as are stored per character.
4434 * The pointer points to the character's bytes in stage 3.
4435 * Bits 15..0 of the stage 2 entry contain the stage 3 index
4436 * for that pointer, while bits 31..16 are flags for which of
4437 * the 16 characters in the block are roundtrip-assigned.
4438 *
4439 * For 2-byte and 4-byte codepages, the bytes are stored as uint16_t
4440 * respectively as uint32_t, in the platform encoding.
4441 * For 3-byte codepages, the bytes are always stored in big-endian order.
4442 *
4443 * For EUC encodings that use only either 0x8e or 0x8f as the first
4444 * byte of their longest byte sequences, the first two bytes in
4445 * this third stage indicate with their 7th bits whether these bytes
4446 * are to be written directly or actually need to be preceeded by
4447 * one of the two Single-Shift codes. With this, the third stage
4448 * stores one byte fewer per character than the actual maximum length of
4449 * EUC byte sequences.
4450 *
4451 * Other than that, leading zero bytes are removed and the other
4452 * bytes output. A single zero byte may be output if the "assigned"
4453 * bit in stage 2 was on.
4454 * The data structure does not support zero byte output as a fallback,
4455 * and also does not allow output of leading zeros.
4456 */
4457 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
4458
4459 /* get the bytes and the length for the output */
4460 switch(outputType) {
4461 case MBCS_OUTPUT_2:
4462 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4463 if(value<=0xff) {
4464 length=1;
4465 } else {
4466 length=2;
4467 }
4468 break;
4469 case MBCS_OUTPUT_2_SISO:
4470 /* 1/2-byte stateful with Shift-In/Shift-Out */
4471 /*
4472 * Save the old state in the converter object
4473 * right here, then change the local prevLength state variable if necessary.
4474 * Then, if this character turns out to be unassigned or a fallback that
4475 * is not taken, the callback code must not save the new state in the converter
4476 * because the new state is for a character that is not output.
4477 * However, the callback must still restore the state from the converter
4478 * in case the callback function changed it for its output.
4479 */
4480 cnv->fromUnicodeStatus=prevLength; /* save the old state */
4481 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4482 if(value<=0xff) {
4483 if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) {
4484 /* no mapping, leave value==0 */
4485 length=0;
4486 } else if(prevLength<=1) {
4487 length=1;
4488 } else {
4489 /* change from double-byte mode to single-byte */
4490 if (siLength == 1) {
4491 value|=(uint32_t)siBytes[0]<<8;
4492 length = 2;
4493 } else if (siLength == 2) {
4494 value|=(uint32_t)siBytes[1]<<8;
4495 value|=(uint32_t)siBytes[0]<<16;
4496 length = 3;
4497 }
4498 prevLength=1;
4499 }
4500 } else {
4501 if(prevLength==2) {
4502 length=2;
4503 } else {
4504 /* change from single-byte mode to double-byte */
4505 if (soLength == 1) {
4506 value|=(uint32_t)soBytes[0]<<16;
4507 length = 3;
4508 } else if (soLength == 2) {
4509 value|=(uint32_t)soBytes[1]<<16;
4510 value|=(uint32_t)soBytes[0]<<24;
4511 length = 4;
4512 }
4513 prevLength=2;
4514 }
4515 }
4516 break;
4517 case MBCS_OUTPUT_DBCS_ONLY:
4518 /* table with single-byte results, but only DBCS mappings used */
4519 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4520 if(value<=0xff) {
4521 /* no mapping or SBCS result, not taken for DBCS-only */
4522 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4523 length=0;
4524 } else {
4525 length=2;
4526 }
4527 break;
4528 case MBCS_OUTPUT_3:
4529 p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
4530 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4531 if(value<=0xff) {
4532 length=1;
4533 } else if(value<=0xffff) {
4534 length=2;
4535 } else {
4536 length=3;
4537 }
4538 break;
4539 case MBCS_OUTPUT_4:
4540 value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c);
4541 if(value<=0xff) {
4542 length=1;
4543 } else if(value<=0xffff) {
4544 length=2;
4545 } else if(value<=0xffffff) {
4546 length=3;
4547 } else {
4548 length=4;
4549 }
4550 break;
4551 case MBCS_OUTPUT_3_EUC:
4552 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4553 /* EUC 16-bit fixed-length representation */
4554 if(value<=0xff) {
4555 length=1;
4556 } else if((value&0x8000)==0) {
4557 value|=0x8e8000;
4558 length=3;
4559 } else if((value&0x80)==0) {
4560 value|=0x8f0080;
4561 length=3;
4562 } else {
4563 length=2;
4564 }
4565 break;
4566 case MBCS_OUTPUT_4_EUC:
4567 p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
4568 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4569 /* EUC 16-bit fixed-length representation applied to the first two bytes */
4570 if(value<=0xff) {
4571 length=1;
4572 } else if(value<=0xffff) {
4573 length=2;
4574 } else if((value&0x800000)==0) {
4575 value|=0x8e800000;
4576 length=4;
4577 } else if((value&0x8000)==0) {
4578 value|=0x8f008000;
4579 length=4;
4580 } else {
4581 length=3;
4582 }
4583 break;
4584 default:
4585 /* must not occur */
4586 /*
4587 * To avoid compiler warnings that value & length may be
4588 * used without having been initialized, we set them here.
4589 * In reality, this is unreachable code.
4590 * Not having a default branch also causes warnings with
4591 * some compilers.
4592 */
4593 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4594 length=0;
4595 break;
4596 }
4597
4598 /* is this code point assigned, or do we use fallbacks? */
4599 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 ||
4600 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
4601 ) {
4602 /*
4603 * We allow a 0 byte output if the "assigned" bit is set for this entry.
4604 * There is no way with this data structure for fallback output
4605 * to be a zero byte.
4606 */
4607
4608 unassigned:
4609 /* try an extension mapping */
4610 pArgs->source=source;
4611 c=_extFromU(cnv, cnv->sharedData,
4612 c, &source, sourceLimit,
4613 &target, target+targetCapacity,
4614 &offsets, sourceIndex,
4615 pArgs->flush,
4616 pErrorCode);
4617 nextSourceIndex+=(int32_t)(source-pArgs->source);
4618 prevLength=cnv->fromUnicodeStatus; /* restore SISO state */
4619
4620 if(U_FAILURE(*pErrorCode)) {
4621 /* not mappable or buffer overflow */
4622 break;
4623 } else {
4624 /* a mapping was written to the target, continue */
4625
4626 /* recalculate the targetCapacity after an extension mapping */
4627 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
4628
4629 /* normal end of conversion: prepare for a new character */
4630 if(offsets!=NULL) {
4631 prevSourceIndex=sourceIndex;
4632 sourceIndex=nextSourceIndex;
4633 }
4634 continue;
4635 }
4636 }
4637 }
4638
4639 /* write the output character bytes from value and length */
4640 /* from the first if in the loop we know that targetCapacity>0 */
4641 if(length<=targetCapacity) {
4642 if(offsets==NULL) {
4643 switch(length) {
4644 /* each branch falls through to the next one */
4645 case 4:
4646 *target++=(uint8_t)(value>>24);
4647 U_FALLTHROUGH;
4648 case 3:
4649 *target++=(uint8_t)(value>>16);
4650 U_FALLTHROUGH;
4651 case 2:
4652 *target++=(uint8_t)(value>>8);
4653 U_FALLTHROUGH;
4654 case 1:
4655 *target++=(uint8_t)value;
4656 U_FALLTHROUGH;
4657 default:
4658 /* will never occur */
4659 break;
4660 }
4661 } else {
4662 switch(length) {
4663 /* each branch falls through to the next one */
4664 case 4:
4665 *target++=(uint8_t)(value>>24);
4666 *offsets++=sourceIndex;
4667 U_FALLTHROUGH;
4668 case 3:
4669 *target++=(uint8_t)(value>>16);
4670 *offsets++=sourceIndex;
4671 U_FALLTHROUGH;
4672 case 2:
4673 *target++=(uint8_t)(value>>8);
4674 *offsets++=sourceIndex;
4675 U_FALLTHROUGH;
4676 case 1:
4677 *target++=(uint8_t)value;
4678 *offsets++=sourceIndex;
4679 U_FALLTHROUGH;
4680 default:
4681 /* will never occur */
4682 break;
4683 }
4684 }
4685 targetCapacity-=length;
4686 } else {
4687 uint8_t *charErrorBuffer;
4688
4689 /*
4690 * We actually do this backwards here:
4691 * In order to save an intermediate variable, we output
4692 * first to the overflow buffer what does not fit into the
4693 * regular target.
4694 */
4695 /* we know that 1<=targetCapacity<length<=4 */
4696 length-=targetCapacity;
4697 charErrorBuffer=(uint8_t *)cnv->charErrorBuffer;
4698 switch(length) {
4699 /* each branch falls through to the next one */
4700 case 3:
4701 *charErrorBuffer++=(uint8_t)(value>>16);
4702 U_FALLTHROUGH;
4703 case 2:
4704 *charErrorBuffer++=(uint8_t)(value>>8);
4705 U_FALLTHROUGH;
4706 case 1:
4707 *charErrorBuffer=(uint8_t)value;
4708 U_FALLTHROUGH;
4709 default:
4710 /* will never occur */
4711 break;
4712 }
4713 cnv->charErrorBufferLength=(int8_t)length;
4714
4715 /* now output what fits into the regular target */
4716 value>>=8*length; /* length was reduced by targetCapacity */
4717 switch(targetCapacity) {
4718 /* each branch falls through to the next one */
4719 case 3:
4720 *target++=(uint8_t)(value>>16);
4721 if(offsets!=NULL) {
4722 *offsets++=sourceIndex;
4723 }
4724 U_FALLTHROUGH;
4725 case 2:
4726 *target++=(uint8_t)(value>>8);
4727 if(offsets!=NULL) {
4728 *offsets++=sourceIndex;
4729 }
4730 U_FALLTHROUGH;
4731 case 1:
4732 *target++=(uint8_t)value;
4733 if(offsets!=NULL) {
4734 *offsets++=sourceIndex;
4735 }
4736 U_FALLTHROUGH;
4737 default:
4738 /* will never occur */
4739 break;
4740 }
4741
4742 /* target overflow */
4743 targetCapacity=0;
4744 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4745 c=0;
4746 break;
4747 }
4748
4749 /* normal end of conversion: prepare for a new character */
4750 c=0;
4751 if(offsets!=NULL) {
4752 prevSourceIndex=sourceIndex;
4753 sourceIndex=nextSourceIndex;
4754 }
4755 continue;
4756 } else {
4757 /* target is full */
4758 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4759 break;
4760 }
4761 }
4762
4763 /*
4764 * the end of the input stream and detection of truncated input
4765 * are handled by the framework, but for EBCDIC_STATEFUL conversion
4766 * we need to emit an SI at the very end
4767 *
4768 * conditions:
4769 * successful
4770 * EBCDIC_STATEFUL in DBCS mode
4771 * end of input and no truncated input
4772 */
4773 if( U_SUCCESS(*pErrorCode) &&
4774 outputType==MBCS_OUTPUT_2_SISO && prevLength==2 &&
4775 pArgs->flush && source>=sourceLimit && c==0
4776 ) {
4777 /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */
4778 if(targetCapacity>0) {
4779 *target++=(uint8_t)siBytes[0];
4780 if (siLength == 2) {
4781 if (targetCapacity<2) {
4782 cnv->charErrorBuffer[0]=(uint8_t)siBytes[1];
4783 cnv->charErrorBufferLength=1;
4784 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4785 } else {
4786 *target++=(uint8_t)siBytes[1];
4787 }
4788 }
4789 if(offsets!=NULL) {
4790 /* set the last source character's index (sourceIndex points at sourceLimit now) */
4791 *offsets++=prevSourceIndex;
4792 }
4793 } else {
4794 /* target is full */
4795 cnv->charErrorBuffer[0]=(uint8_t)siBytes[0];
4796 if (siLength == 2) {
4797 cnv->charErrorBuffer[1]=(uint8_t)siBytes[1];
4798 }
4799 cnv->charErrorBufferLength=siLength;
4800 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4801 }
4802 prevLength=1; /* we switched into SBCS */
4803 }
4804
4805 /* set the converter state back into UConverter */
4806 cnv->fromUChar32=c;
4807 cnv->fromUnicodeStatus=prevLength;
4808
4809 /* write back the updated pointers */
4810 pArgs->source=source;
4811 pArgs->target=(char *)target;
4812 pArgs->offsets=offsets;
4813 }
4814
4815 /*
4816 * This is another simple conversion function for internal use by other
4817 * conversion implementations.
4818 * It does not use the converter state nor call callbacks.
4819 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4820 * It handles conversion extensions but not GB 18030.
4821 *
4822 * It converts one single Unicode code point into codepage bytes, encoded
4823 * as one 32-bit value. The function returns the number of bytes in *pValue:
4824 * 1..4 the number of bytes in *pValue
4825 * 0 unassigned (*pValue undefined)
4826 * -1 illegal (currently not used, *pValue undefined)
4827 *
4828 * *pValue will contain the resulting bytes with the last byte in bits 7..0,
4829 * the second to last byte in bits 15..8, etc.
4830 * Currently, the function assumes but does not check that 0<=c<=0x10ffff.
4831 */
4832 U_CFUNC int32_t
4833 ucnv_MBCSFromUChar32(UConverterSharedData *sharedData,
4834 UChar32 c, uint32_t *pValue,
4835 UBool useFallback) {
4836 const int32_t *cx;
4837 const uint16_t *table;
4838 #if 0
4839 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4840 const uint8_t *p;
4841 #endif
4842 uint32_t stage2Entry;
4843 uint32_t value;
4844 int32_t length;
4845
4846 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4847 if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4848 table=sharedData->mbcs.fromUnicodeTable;
4849
4850 /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
4851 if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) {
4852 value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
4853 /* is this code point assigned, or do we use fallbacks? */
4854 if(useFallback ? value>=0x800 : value>=0xc00) {
4855 *pValue=value&0xff;
4856 return 1;
4857 }
4858 } else /* outputType!=MBCS_OUTPUT_1 */ {
4859 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
4860
4861 /* get the bytes and the length for the output */
4862 switch(sharedData->mbcs.outputType) {
4863 case MBCS_OUTPUT_2:
4864 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4865 if(value<=0xff) {
4866 length=1;
4867 } else {
4868 length=2;
4869 }
4870 break;
4871 #if 0
4872 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4873 case MBCS_OUTPUT_DBCS_ONLY:
4874 /* table with single-byte results, but only DBCS mappings used */
4875 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4876 if(value<=0xff) {
4877 /* no mapping or SBCS result, not taken for DBCS-only */
4878 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4879 length=0;
4880 } else {
4881 length=2;
4882 }
4883 break;
4884 case MBCS_OUTPUT_3:
4885 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4886 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4887 if(value<=0xff) {
4888 length=1;
4889 } else if(value<=0xffff) {
4890 length=2;
4891 } else {
4892 length=3;
4893 }
4894 break;
4895 case MBCS_OUTPUT_4:
4896 value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4897 if(value<=0xff) {
4898 length=1;
4899 } else if(value<=0xffff) {
4900 length=2;
4901 } else if(value<=0xffffff) {
4902 length=3;
4903 } else {
4904 length=4;
4905 }
4906 break;
4907 case MBCS_OUTPUT_3_EUC:
4908 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4909 /* EUC 16-bit fixed-length representation */
4910 if(value<=0xff) {
4911 length=1;
4912 } else if((value&0x8000)==0) {
4913 value|=0x8e8000;
4914 length=3;
4915 } else if((value&0x80)==0) {
4916 value|=0x8f0080;
4917 length=3;
4918 } else {
4919 length=2;
4920 }
4921 break;
4922 case MBCS_OUTPUT_4_EUC:
4923 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4924 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4925 /* EUC 16-bit fixed-length representation applied to the first two bytes */
4926 if(value<=0xff) {
4927 length=1;
4928 } else if(value<=0xffff) {
4929 length=2;
4930 } else if((value&0x800000)==0) {
4931 value|=0x8e800000;
4932 length=4;
4933 } else if((value&0x8000)==0) {
4934 value|=0x8f008000;
4935 length=4;
4936 } else {
4937 length=3;
4938 }
4939 break;
4940 #endif
4941 default:
4942 /* must not occur */
4943 return -1;
4944 }
4945
4946 /* is this code point assigned, or do we use fallbacks? */
4947 if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
4948 (FROM_U_USE_FALLBACK(useFallback, c) && value!=0)
4949 ) {
4950 /*
4951 * We allow a 0 byte output if the "assigned" bit is set for this entry.
4952 * There is no way with this data structure for fallback output
4953 * to be a zero byte.
4954 */
4955 /* assigned */
4956 *pValue=value;
4957 return length;
4958 }
4959 }
4960 }
4961
4962 cx=sharedData->mbcs.extIndexes;
4963 if(cx!=NULL) {
4964 length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback);
4965 return length>=0 ? length : -length; /* return abs(length); */
4966 }
4967
4968 /* unassigned */
4969 return 0;
4970 }
4971
4972
4973 #if 0
4974 /*
4975 * This function has been moved to ucnv2022.c for inlining.
4976 * This implementation is here only for documentation purposes
4977 */
4978
4979 /**
4980 * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages.
4981 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4982 * It does not handle conversion extensions (_extFromU()).
4983 *
4984 * It returns the codepage byte for the code point, or -1 if it is unassigned.
4985 */
4986 U_CFUNC int32_t
4987 ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData,
4988 UChar32 c,
4989 UBool useFallback) {
4990 const uint16_t *table;
4991 int32_t value;
4992
4993 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4994 if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4995 return -1;
4996 }
4997
4998 /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
4999 table=sharedData->mbcs.fromUnicodeTable;
5000
5001 /* get the byte for the output */
5002 value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
5003 /* is this code point assigned, or do we use fallbacks? */
5004 if(useFallback ? value>=0x800 : value>=0xc00) {
5005 return value&0xff;
5006 } else {
5007 return -1;
5008 }
5009 }
5010 #endif
5011
5012 /* MBCS-from-UTF-8 conversion functions ------------------------------------- */
5013
5014 /* minimum code point values for n-byte UTF-8 sequences, n=0..4 */
5015 static const UChar32
5016 utf8_minLegal[5]={ 0, 0, 0x80, 0x800, 0x10000 };
5017
5018 /* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */
5019 static const UChar32
5020 utf8_offsets[7]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 };
5021
5022 static void U_CALLCONV
5023 ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
5024 UConverterToUnicodeArgs *pToUArgs,
5025 UErrorCode *pErrorCode) {
5026 UConverter *utf8, *cnv;
5027 const uint8_t *source, *sourceLimit;
5028 uint8_t *target;
5029 int32_t targetCapacity;
5030
5031 const uint16_t *table, *sbcsIndex;
5032 const uint16_t *results;
5033
5034 int8_t oldToULength, toULength, toULimit;
5035
5036 UChar32 c;
5037 uint8_t b, t1, t2;
5038
5039 uint32_t asciiRoundtrips;
5040 uint16_t value, minValue;
5041 UBool hasSupplementary;
5042
5043 /* set up the local pointers */
5044 utf8=pToUArgs->converter;
5045 cnv=pFromUArgs->converter;
5046 source=(uint8_t *)pToUArgs->source;
5047 sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
5048 target=(uint8_t *)pFromUArgs->target;
5049 targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
5050
5051 table=cnv->sharedData->mbcs.fromUnicodeTable;
5052 sbcsIndex=cnv->sharedData->mbcs.sbcsIndex;
5053 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
5054 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
5055 } else {
5056 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
5057 }
5058 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
5059
5060 if(cnv->useFallback) {
5061 /* use all roundtrip and fallback results */
5062 minValue=0x800;
5063 } else {
5064 /* use only roundtrips and fallbacks from private-use characters */
5065 minValue=0xc00;
5066 }
5067 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
5068
5069 /* get the converter state from the UTF-8 UConverter */
5070 c=(UChar32)utf8->toUnicodeStatus;
5071 if(c!=0) {
5072 toULength=oldToULength=utf8->toULength;
5073 toULimit=(int8_t)utf8->mode;
5074 } else {
5075 toULength=oldToULength=toULimit=0;
5076 }
5077
5078 /*
5079 * Make sure that the last byte sequence before sourceLimit is complete
5080 * or runs into a lead byte.
5081 * Do not go back into the bytes that will be read for finishing a partial
5082 * sequence from the previous buffer.
5083 * In the conversion loop compare source with sourceLimit only once
5084 * per multi-byte character.
5085 */
5086 {
5087 int32_t i, length;
5088
5089 length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
5090 for(i=0; i<3 && i<length;) {
5091 b=*(sourceLimit-i-1);
5092 if(U8_IS_TRAIL(b)) {
5093 ++i;
5094 } else {
5095 if(i<U8_COUNT_TRAIL_BYTES(b)) {
5096 /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */
5097 sourceLimit-=i+1;
5098 }
5099 break;
5100 }
5101 }
5102 }
5103
5104 if(c!=0 && targetCapacity>0) {
5105 utf8->toUnicodeStatus=0;
5106 utf8->toULength=0;
5107 goto moreBytes;
5108 /*
5109 * Note: We could avoid the goto by duplicating some of the moreBytes
5110 * code, but only up to the point of collecting a complete UTF-8
5111 * sequence; then recurse for the toUBytes[toULength]
5112 * and then continue with normal conversion.
5113 *
5114 * If so, move this code to just after initializing the minimum
5115 * set of local variables for reading the UTF-8 input
5116 * (utf8, source, target, limits but not cnv, table, minValue, etc.).
5117 *
5118 * Potential advantages:
5119 * - avoid the goto
5120 * - oldToULength could become a local variable in just those code blocks
5121 * that deal with buffer boundaries
5122 * - possibly faster if the goto prevents some compiler optimizations
5123 * (this would need measuring to confirm)
5124 * Disadvantage:
5125 * - code duplication
5126 */
5127 }
5128
5129 /* conversion loop */
5130 while(source<sourceLimit) {
5131 if(targetCapacity>0) {
5132 b=*source++;
5133 if((int8_t)b>=0) {
5134 /* convert ASCII */
5135 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
5136 *target++=(uint8_t)b;
5137 --targetCapacity;
5138 continue;
5139 } else {
5140 c=b;
5141 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c);
5142 }
5143 } else {
5144 if(b<0xe0) {
5145 if( /* handle U+0080..U+07FF inline */
5146 b>=0xc2 &&
5147 (t1=(uint8_t)(*source-0x80)) <= 0x3f
5148 ) {
5149 c=b&0x1f;
5150 ++source;
5151 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1);
5152 if(value>=minValue) {
5153 *target++=(uint8_t)value;
5154 --targetCapacity;
5155 continue;
5156 } else {
5157 c=(c<<6)|t1;
5158 }
5159 } else {
5160 c=-1;
5161 }
5162 } else if(b==0xe0) {
5163 if( /* handle U+0800..U+0FFF inline */
5164 (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 &&
5165 (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5166 ) {
5167 c=t1;
5168 source+=2;
5169 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2);
5170 if(value>=minValue) {
5171 *target++=(uint8_t)value;
5172 --targetCapacity;
5173 continue;
5174 } else {
5175 c=(c<<6)|t2;
5176 }
5177 } else {
5178 c=-1;
5179 }
5180 } else {
5181 c=-1;
5182 }
5183
5184 if(c<0) {
5185 /* handle "complicated" and error cases, and continuing partial characters */
5186 oldToULength=0;
5187 toULength=1;
5188 toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5189 c=b;
5190 moreBytes:
5191 while(toULength<toULimit) {
5192 /*
5193 * The sourceLimit may have been adjusted before the conversion loop
5194 * to stop before a truncated sequence.
5195 * Here we need to use the real limit in case we have two truncated
5196 * sequences at the end.
5197 * See ticket #7492.
5198 */
5199 if(source<(uint8_t *)pToUArgs->sourceLimit) {
5200 b=*source;
5201 if(U8_IS_TRAIL(b)) {
5202 ++source;
5203 ++toULength;
5204 c=(c<<6)+b;
5205 } else {
5206 break; /* sequence too short, stop with toULength<toULimit */
5207 }
5208 } else {
5209 /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5210 source-=(toULength-oldToULength);
5211 while(oldToULength<toULength) {
5212 utf8->toUBytes[oldToULength++]=*source++;
5213 }
5214 utf8->toUnicodeStatus=c;
5215 utf8->toULength=toULength;
5216 utf8->mode=toULimit;
5217 pToUArgs->source=(char *)source;
5218 pFromUArgs->target=(char *)target;
5219 return;
5220 }
5221 }
5222
5223 if( toULength==toULimit && /* consumed all trail bytes */
5224 (toULength==3 || toULength==2) && /* BMP */
5225 (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &&
5226 (c<=0xd7ff || 0xe000<=c) /* not a surrogate */
5227 ) {
5228 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
5229 } else if(
5230 toULength==toULimit && toULength==4 &&
5231 (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff)
5232 ) {
5233 /* supplementary code point */
5234 if(!hasSupplementary) {
5235 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5236 value=0;
5237 } else {
5238 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
5239 }
5240 } else {
5241 /* error handling: illegal UTF-8 byte sequence */
5242 source-=(toULength-oldToULength);
5243 while(oldToULength<toULength) {
5244 utf8->toUBytes[oldToULength++]=*source++;
5245 }
5246 utf8->toULength=toULength;
5247 pToUArgs->source=(char *)source;
5248 pFromUArgs->target=(char *)target;
5249 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5250 return;
5251 }
5252 }
5253 }
5254
5255 if(value>=minValue) {
5256 /* output the mapping for c */
5257 *target++=(uint8_t)value;
5258 --targetCapacity;
5259 } else {
5260 /* value<minValue means c is unassigned (unmappable) */
5261 /*
5262 * Try an extension mapping.
5263 * Pass in no source because we don't have UTF-16 input.
5264 * If we have a partial match on c, we will return and revert
5265 * to UTF-8->UTF-16->charset conversion.
5266 */
5267 static const UChar nul=0;
5268 const UChar *noSource=&nul;
5269 c=_extFromU(cnv, cnv->sharedData,
5270 c, &noSource, noSource,
5271 &target, target+targetCapacity,
5272 NULL, -1,
5273 pFromUArgs->flush,
5274 pErrorCode);
5275
5276 if(U_FAILURE(*pErrorCode)) {
5277 /* not mappable or buffer overflow */
5278 cnv->fromUChar32=c;
5279 break;
5280 } else if(cnv->preFromUFirstCP>=0) {
5281 /*
5282 * Partial match, return and revert to pivoting.
5283 * In normal from-UTF-16 conversion, we would just continue
5284 * but then exit the loop because the extension match would
5285 * have consumed the source.
5286 */
5287 *pErrorCode=U_USING_DEFAULT_WARNING;
5288 break;
5289 } else {
5290 /* a mapping was written to the target, continue */
5291
5292 /* recalculate the targetCapacity after an extension mapping */
5293 targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5294 }
5295 }
5296 } else {
5297 /* target is full */
5298 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5299 break;
5300 }
5301 }
5302
5303 /*
5304 * The sourceLimit may have been adjusted before the conversion loop
5305 * to stop before a truncated sequence.
5306 * If so, then collect the truncated sequence now.
5307 */
5308 if(U_SUCCESS(*pErrorCode) &&
5309 cnv->preFromUFirstCP<0 &&
5310 source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5311 c=utf8->toUBytes[0]=b=*source++;
5312 toULength=1;
5313 toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5314 while(source<sourceLimit) {
5315 utf8->toUBytes[toULength++]=b=*source++;
5316 c=(c<<6)+b;
5317 }
5318 utf8->toUnicodeStatus=c;
5319 utf8->toULength=toULength;
5320 utf8->mode=toULimit;
5321 }
5322
5323 /* write back the updated pointers */
5324 pToUArgs->source=(char *)source;
5325 pFromUArgs->target=(char *)target;
5326 }
5327
5328 static void U_CALLCONV
5329 ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
5330 UConverterToUnicodeArgs *pToUArgs,
5331 UErrorCode *pErrorCode) {
5332 UConverter *utf8, *cnv;
5333 const uint8_t *source, *sourceLimit;
5334 uint8_t *target;
5335 int32_t targetCapacity;
5336
5337 const uint16_t *table, *mbcsIndex;
5338 const uint16_t *results;
5339
5340 int8_t oldToULength, toULength, toULimit;
5341
5342 UChar32 c;
5343 uint8_t b, t1, t2;
5344
5345 uint32_t stage2Entry;
5346 uint32_t asciiRoundtrips;
5347 uint16_t value;
5348 UBool hasSupplementary;
5349
5350 /* set up the local pointers */
5351 utf8=pToUArgs->converter;
5352 cnv=pFromUArgs->converter;
5353 source=(uint8_t *)pToUArgs->source;
5354 sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
5355 target=(uint8_t *)pFromUArgs->target;
5356 targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
5357
5358 table=cnv->sharedData->mbcs.fromUnicodeTable;
5359 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
5360 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
5361 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
5362 } else {
5363 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
5364 }
5365 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
5366
5367 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
5368
5369 /* get the converter state from the UTF-8 UConverter */
5370 c=(UChar32)utf8->toUnicodeStatus;
5371 if(c!=0) {
5372 toULength=oldToULength=utf8->toULength;
5373 toULimit=(int8_t)utf8->mode;
5374 } else {
5375 toULength=oldToULength=toULimit=0;
5376 }
5377
5378 /*
5379 * Make sure that the last byte sequence before sourceLimit is complete
5380 * or runs into a lead byte.
5381 * Do not go back into the bytes that will be read for finishing a partial
5382 * sequence from the previous buffer.
5383 * In the conversion loop compare source with sourceLimit only once
5384 * per multi-byte character.
5385 */
5386 {
5387 int32_t i, length;
5388
5389 length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
5390 for(i=0; i<3 && i<length;) {
5391 b=*(sourceLimit-i-1);
5392 if(U8_IS_TRAIL(b)) {
5393 ++i;
5394 } else {
5395 if(i<U8_COUNT_TRAIL_BYTES(b)) {
5396 /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */
5397 sourceLimit-=i+1;
5398 }
5399 break;
5400 }
5401 }
5402 }
5403
5404 if(c!=0 && targetCapacity>0) {
5405 utf8->toUnicodeStatus=0;
5406 utf8->toULength=0;
5407 goto moreBytes;
5408 /* See note in ucnv_SBCSFromUTF8() about this goto. */
5409 }
5410
5411 /* conversion loop */
5412 while(source<sourceLimit) {
5413 if(targetCapacity>0) {
5414 b=*source++;
5415 if((int8_t)b>=0) {
5416 /* convert ASCII */
5417 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
5418 *target++=b;
5419 --targetCapacity;
5420 continue;
5421 } else {
5422 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b);
5423 if(value==0) {
5424 c=b;
5425 goto unassigned;
5426 }
5427 }
5428 } else {
5429 if(b>0xe0) {
5430 if( /* handle U+1000..U+D7FF inline */
5431 (((t1=(uint8_t)(source[0]-0x80), b<0xed) && (t1 <= 0x3f)) ||
5432 (b==0xed && (t1 <= 0x1f))) &&
5433 (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5434 ) {
5435 c=((b&0xf)<<6)|t1;
5436 source+=2;
5437 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2);
5438 if(value==0) {
5439 c=(c<<6)|t2;
5440 goto unassigned;
5441 }
5442 } else {
5443 c=-1;
5444 }
5445 } else if(b<0xe0) {
5446 if( /* handle U+0080..U+07FF inline */
5447 b>=0xc2 &&
5448 (t1=(uint8_t)(*source-0x80)) <= 0x3f
5449 ) {
5450 c=b&0x1f;
5451 ++source;
5452 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1);
5453 if(value==0) {
5454 c=(c<<6)|t1;
5455 goto unassigned;
5456 }
5457 } else {
5458 c=-1;
5459 }
5460 } else {
5461 c=-1;
5462 }
5463
5464 if(c<0) {
5465 /* handle "complicated" and error cases, and continuing partial characters */
5466 oldToULength=0;
5467 toULength=1;
5468 toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5469 c=b;
5470 moreBytes:
5471 while(toULength<toULimit) {
5472 /*
5473 * The sourceLimit may have been adjusted before the conversion loop
5474 * to stop before a truncated sequence.
5475 * Here we need to use the real limit in case we have two truncated
5476 * sequences at the end.
5477 * See ticket #7492.
5478 */
5479 if(source<(uint8_t *)pToUArgs->sourceLimit) {
5480 b=*source;
5481 if(U8_IS_TRAIL(b)) {
5482 ++source;
5483 ++toULength;
5484 c=(c<<6)+b;
5485 } else {
5486 break; /* sequence too short, stop with toULength<toULimit */
5487 }
5488 } else {
5489 /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5490 source-=(toULength-oldToULength);
5491 while(oldToULength<toULength) {
5492 utf8->toUBytes[oldToULength++]=*source++;
5493 }
5494 utf8->toUnicodeStatus=c;
5495 utf8->toULength=toULength;
5496 utf8->mode=toULimit;
5497 pToUArgs->source=(char *)source;
5498 pFromUArgs->target=(char *)target;
5499 return;
5500 }
5501 }
5502
5503 if( toULength==toULimit && /* consumed all trail bytes */
5504 (toULength==3 || toULength==2) && /* BMP */
5505 (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &&
5506 (c<=0xd7ff || 0xe000<=c) /* not a surrogate */
5507 ) {
5508 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
5509 } else if(
5510 toULength==toULimit && toULength==4 &&
5511 (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff)
5512 ) {
5513 /* supplementary code point */
5514 if(!hasSupplementary) {
5515 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5516 stage2Entry=0;
5517 } else {
5518 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
5519 }
5520 } else {
5521 /* error handling: illegal UTF-8 byte sequence */
5522 source-=(toULength-oldToULength);
5523 while(oldToULength<toULength) {
5524 utf8->toUBytes[oldToULength++]=*source++;
5525 }
5526 utf8->toULength=toULength;
5527 pToUArgs->source=(char *)source;
5528 pFromUArgs->target=(char *)target;
5529 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5530 return;
5531 }
5532
5533 /* get the bytes and the length for the output */
5534 /* MBCS_OUTPUT_2 */
5535 value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c);
5536
5537 /* is this code point assigned, or do we use fallbacks? */
5538 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
5539 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
5540 ) {
5541 goto unassigned;
5542 }
5543 }
5544 }
5545
5546 /* write the output character bytes from value and length */
5547 /* from the first if in the loop we know that targetCapacity>0 */
5548 if(value<=0xff) {
5549 /* this is easy because we know that there is enough space */
5550 *target++=(uint8_t)value;
5551 --targetCapacity;
5552 } else /* length==2 */ {
5553 *target++=(uint8_t)(value>>8);
5554 if(2<=targetCapacity) {
5555 *target++=(uint8_t)value;
5556 targetCapacity-=2;
5557 } else {
5558 cnv->charErrorBuffer[0]=(char)value;
5559 cnv->charErrorBufferLength=1;
5560
5561 /* target overflow */
5562 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5563 break;
5564 }
5565 }
5566 continue;
5567
5568 unassigned:
5569 {
5570 /*
5571 * Try an extension mapping.
5572 * Pass in no source because we don't have UTF-16 input.
5573 * If we have a partial match on c, we will return and revert
5574 * to UTF-8->UTF-16->charset conversion.
5575 */
5576 static const UChar nul=0;
5577 const UChar *noSource=&nul;
5578 c=_extFromU(cnv, cnv->sharedData,
5579 c, &noSource, noSource,
5580 &target, target+targetCapacity,
5581 NULL, -1,
5582 pFromUArgs->flush,
5583 pErrorCode);
5584
5585 if(U_FAILURE(*pErrorCode)) {
5586 /* not mappable or buffer overflow */
5587 cnv->fromUChar32=c;
5588 break;
5589 } else if(cnv->preFromUFirstCP>=0) {
5590 /*
5591 * Partial match, return and revert to pivoting.
5592 * In normal from-UTF-16 conversion, we would just continue
5593 * but then exit the loop because the extension match would
5594 * have consumed the source.
5595 */
5596 *pErrorCode=U_USING_DEFAULT_WARNING;
5597 break;
5598 } else {
5599 /* a mapping was written to the target, continue */
5600
5601 /* recalculate the targetCapacity after an extension mapping */
5602 targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5603 continue;
5604 }
5605 }
5606 } else {
5607 /* target is full */
5608 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5609 break;
5610 }
5611 }
5612
5613 /*
5614 * The sourceLimit may have been adjusted before the conversion loop
5615 * to stop before a truncated sequence.
5616 * If so, then collect the truncated sequence now.
5617 */
5618 if(U_SUCCESS(*pErrorCode) &&
5619 cnv->preFromUFirstCP<0 &&
5620 source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5621 c=utf8->toUBytes[0]=b=*source++;
5622 toULength=1;
5623 toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5624 while(source<sourceLimit) {
5625 utf8->toUBytes[toULength++]=b=*source++;
5626 c=(c<<6)+b;
5627 }
5628 utf8->toUnicodeStatus=c;
5629 utf8->toULength=toULength;
5630 utf8->mode=toULimit;
5631 }
5632
5633 /* write back the updated pointers */
5634 pToUArgs->source=(char *)source;
5635 pFromUArgs->target=(char *)target;
5636 }
5637
5638 /* miscellaneous ------------------------------------------------------------ */
5639
5640 static void U_CALLCONV
5641 ucnv_MBCSGetStarters(const UConverter* cnv,
5642 UBool starters[256],
5643 UErrorCode *) {
5644 const int32_t *state0;
5645 int i;
5646
5647 state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState];
5648 for(i=0; i<256; ++i) {
5649 /* all bytes that cause a state transition from state 0 are lead bytes */
5650 starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]);
5651 }
5652 }
5653
5654 /*
5655 * This is an internal function that allows other converter implementations
5656 * to check whether a byte is a lead byte.
5657 */
5658 U_CFUNC UBool
5659 ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) {
5660 return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]);
5661 }
5662
5663 static void U_CALLCONV
5664 ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
5665 int32_t offsetIndex,
5666 UErrorCode *pErrorCode) {
5667 UConverter *cnv=pArgs->converter;
5668 char *p, *subchar;
5669 char buffer[4];
5670 int32_t length;
5671
5672 /* first, select between subChar and subChar1 */
5673 if( cnv->subChar1!=0 &&
5674 (cnv->sharedData->mbcs.extIndexes!=NULL ?
5675 cnv->useSubChar1 :
5676 (cnv->invalidUCharBuffer[0]<=0xff))
5677 ) {
5678 /* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */
5679 subchar=(char *)&cnv->subChar1;
5680 length=1;
5681 } else {
5682 /* select subChar in all other cases */
5683 subchar=(char *)cnv->subChars;
5684 length=cnv->subCharLen;
5685 }
5686
5687 /* reset the selector for the next code point */
5688 cnv->useSubChar1=FALSE;
5689
5690 if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) {
5691 p=buffer;
5692
5693 /* fromUnicodeStatus contains prevLength */
5694 switch(length) {
5695 case 1:
5696 if(cnv->fromUnicodeStatus==2) {
5697 /* DBCS mode and SBCS sub char: change to SBCS */
5698 cnv->fromUnicodeStatus=1;
5699 *p++=UCNV_SI;
5700 }
5701 *p++=subchar[0];
5702 break;
5703 case 2:
5704 if(cnv->fromUnicodeStatus<=1) {
5705 /* SBCS mode and DBCS sub char: change to DBCS */
5706 cnv->fromUnicodeStatus=2;
5707 *p++=UCNV_SO;
5708 }
5709 *p++=subchar[0];
5710 *p++=subchar[1];
5711 break;
5712 default:
5713 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
5714 return;
5715 }
5716 subchar=buffer;
5717 length=(int32_t)(p-buffer);
5718 }
5719
5720 ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode);
5721 }
5722
5723 U_CFUNC UConverterType
5724 ucnv_MBCSGetType(const UConverter* converter) {
5725 /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */
5726 if(converter->sharedData->mbcs.countStates==1) {
5727 return (UConverterType)UCNV_SBCS;
5728 } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) {
5729 return (UConverterType)UCNV_EBCDIC_STATEFUL;
5730 } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) {
5731 return (UConverterType)UCNV_DBCS;
5732 }
5733 return (UConverterType)UCNV_MBCS;
5734 }
5735
5736 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */