1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
4 **********************************************************************
5 * Copyright (C) 2000-2016, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 **********************************************************************
8 * file name: ucnv_lmb.cpp
10 * tab size: 4 (not used)
13 * created on: 2000feb09
14 * created by: Brendan Murray
15 * extensively hacked up by: Jim Snyder-Grant
17 * Modification History:
19 * Date Name Description
21 * 06/20/2000 helena OS/400 port changes; mostly typecast.
22 * 06/27/2000 Jim Snyder-Grant Deal with partial characters and small buffers.
23 * Add comments to document LMBCS format and implementation
24 * restructured order & breakdown of functions
25 * 06/28/2000 helena Major rewrite for the callback API changes.
28 #include "unicode/utypes.h"
30 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION && !UCONFIG_ONLY_HTML_CONVERSION
32 #include "unicode/ucnv_err.h"
33 #include "unicode/ucnv.h"
34 #include "unicode/uset.h"
49 (Lotus Multi-Byte Character Set)
51 LMBCS was invented in the late 1980's and is primarily used in Lotus Notes
52 databases and in Lotus 1-2-3 files. Programmers who work with the APIs
53 into these products will sometimes need to deal with strings in this format.
55 The code in this file provides an implementation for an ICU converter of
56 LMBCS to and from Unicode.
58 Since the LMBCS character set is only sparsely documented in existing
59 printed or online material, we have added extensive annotation to this
60 file to serve as a guide to understanding LMBCS.
62 LMBCS was originally designed with these four sometimes-competing design goals:
64 -Provide encodings for the characters in 12 existing national standards
65 (plus a few other characters)
66 -Minimal memory footprint
67 -Maximal speed of conversion into the existing national character sets
68 -No need to track a changing state as you interpret a string.
71 All of the national character sets LMBCS was trying to encode are 'ANSI'
72 based, in that the bytes from 0x20 - 0x7F are almost exactly the
73 same common Latin unaccented characters and symbols in all character sets.
75 So, in order to help meet the speed & memory design goals, the common ANSI
76 bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS.
78 The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as
83 That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2
84 data bytes. The maximum size of a LMBCS chjaracter is 3 bytes:
86 #define ULMBCS_CHARSIZE_MAX 3
88 The single-byte values from 0x20 to 0x7F are examples of single D1 bytes.
89 We often have to figure out if byte values are below or above this, so we
90 use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control
91 characters just above & below the common lower-ANSI range */
92 #define ULMBCS_C0END 0x1F
93 #define ULMBCS_C1START 0x80
95 Since LMBCS is always dealing in byte units. we create a local type here for
96 dealing with these units of LMBCS code units:
99 typedef uint8_t ulmbcs_byte_t
;
102 Most of the values less than 0x20 are reserved in LMBCS to announce
103 which national character standard is being used for the 'D' bytes.
104 In the comments we show the common name and the IBM character-set ID
105 for these character-set announcers:
108 #define ULMBCS_GRP_L1 0x01 /* Latin-1 :ibm-850 */
109 #define ULMBCS_GRP_GR 0x02 /* Greek :ibm-851 */
110 #define ULMBCS_GRP_HE 0x03 /* Hebrew :ibm-1255 */
111 #define ULMBCS_GRP_AR 0x04 /* Arabic :ibm-1256 */
112 #define ULMBCS_GRP_RU 0x05 /* Cyrillic :ibm-1251 */
113 #define ULMBCS_GRP_L2 0x06 /* Latin-2 :ibm-852 */
114 #define ULMBCS_GRP_TR 0x08 /* Turkish :ibm-1254 */
115 #define ULMBCS_GRP_TH 0x0B /* Thai :ibm-874 */
116 #define ULMBCS_GRP_JA 0x10 /* Japanese :ibm-943 */
117 #define ULMBCS_GRP_KO 0x11 /* Korean :ibm-1261 */
118 #define ULMBCS_GRP_TW 0x12 /* Chinese SC :ibm-950 */
119 #define ULMBCS_GRP_CN 0x13 /* Chinese TC :ibm-1386 */
122 So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS
123 character is one of those 12 values, you can interpret the remaining bytes of
124 that character as coming from one of those character sets. Since the lower
125 ANSI bytes already are represented in single bytes, using one of the character
126 set announcers is used to announce a character that starts with a byte of
129 The character sets are arranged so that the single byte sets all appear
130 before the multi-byte character sets. When we need to tell whether a
131 group byte is for a single byte char set or not we use this define: */
133 #define ULMBCS_DOUBLEOPTGROUP_START 0x10
136 However, to fully understand LMBCS, you must also understand a series of
137 exceptions & optimizations made in service of the design goals.
139 First, those of you who are character set mavens may have noticed that
140 the 'double-byte' character sets are actually multi-byte character sets
141 that can have 1 or two bytes, even in the upper-ascii range. To force
142 each group byte to introduce a fixed-width encoding (to make it faster to
143 count characters), we use a convention of doubling up on the group byte
144 to introduce any single-byte character > 0x80 in an otherwise double-byte
145 character set. So, for example, the LMBCS sequence x10 x10 xAE is the
146 same as '0xAE' in the Japanese code page 943.
148 Next, you will notice that the list of group bytes has some gaps.
149 These are used in various ways.
151 We reserve a few special single byte values for common control
152 characters. These are in the same place as their ANSI eqivalents for speed.
155 #define ULMBCS_HT 0x09 /* Fixed control char - Horizontal Tab */
156 #define ULMBCS_LF 0x0A /* Fixed control char - Line Feed */
157 #define ULMBCS_CR 0x0D /* Fixed control char - Carriage Return */
159 /* Then, 1-2-3 reserved a special single-byte character to put at the
160 beginning of internal 'system' range names: */
162 #define ULMBCS_123SYSTEMRANGE 0x19
164 /* Then we needed a place to put all the other ansi control characters
165 that must be moved to different values because LMBCS reserves those
166 values for other purposes. To represent the control characters, we start
167 with a first byte of 0xF & add the control chaarcter value as the
169 #define ULMBCS_GRP_CTRL 0x0F
171 /* For the C0 controls (less than 0x20), we add 0x20 to preserve the
172 useful doctrine that any byte less than 0x20 in a LMBCS char must be
173 the first byte of a character:*/
174 #define ULMBCS_CTRLOFFSET 0x20
177 Where to put the characters that aren't part of any of the 12 national
178 character sets? The first thing that was done, in the earlier years of
179 LMBCS, was to use up the spaces of the form
183 where 'G' was one of the single-byte character groups, and
184 D1 was less than 0x80. These sequences are gathered together
185 into a Lotus-invented doublebyte character set to represent a
186 lot of stray values. Internally, in this implementation, we track this
187 as group '0', as a place to tuck this exceptions list.*/
189 #define ULMBCS_GRP_EXCEPT 0x00
191 Finally, as the durability and usefulness of UNICODE became clear,
192 LOTUS added a new group 0x14 to hold Unicode values not otherwise
193 represented in LMBCS: */
194 #define ULMBCS_GRP_UNICODE 0x14
195 /* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE
196 (Big-Endian) characters. The exception comes when the UTF16
197 representation would have a zero as the second byte. In that case,
198 'F6' is used in its place, and the bytes are swapped. (This prevents
199 LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK:
200 0xF6xx is in the middle of the Private Use Area.)*/
201 #define ULMBCS_UNICOMPATZERO 0xF6
203 /* It is also useful in our code to have a constant for the size of
204 a LMBCS char that holds a literal Unicode value */
205 #define ULMBCS_UNICODE_SIZE 3
208 To squish the LMBCS representations down even further, and to make
209 translations even faster,sometimes the optimization group byte can be dropped
210 from a LMBCS character. This is decided on a process-by-process basis. The
211 group byte that is dropped is called the 'optimization group'.
213 For Notes, the optimzation group is always 0x1.*/
214 #define ULMBCS_DEFAULTOPTGROUP 0x1
215 /* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3
218 In any case, when using ICU, you either pass in the
219 optimization group as part of the name of the converter (LMBCS-1, LMBCS-2,
220 etc.). Using plain 'LMBCS' as the name of the converter will give you
224 *** Implementation strategy ***
227 Because of the extensive use of other character sets, the LMBCS converter
228 keeps a mapping between optimization groups and IBM character sets, so that
229 ICU converters can be created and used as needed. */
231 /* As you can see, even though any byte below 0x20 could be an optimization
232 byte, only those at 0x13 or below can map to an actual converter. To limit
233 some loops and searches, we define a value for that last group converter:*/
235 #define ULMBCS_GRP_LAST 0x13 /* last LMBCS group that has a converter */
237 static const char * const OptGroupByteToCPName
[ULMBCS_GRP_LAST
+ 1] = {
238 /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */
239 /* 0x0001 */ "ibm-850",
240 /* 0x0002 */ "ibm-851",
241 /* 0x0003 */ "windows-1255",
242 /* 0x0004 */ "windows-1256",
243 /* 0x0005 */ "windows-1251",
244 /* 0x0006 */ "ibm-852",
245 /* 0x0007 */ NULL
, /* Unused */
246 /* 0x0008 */ "windows-1254",
247 /* 0x0009 */ NULL
, /* Control char HT */
248 /* 0x000A */ NULL
, /* Control char LF */
249 /* 0x000B */ "windows-874",
250 /* 0x000C */ NULL
, /* Unused */
251 /* 0x000D */ NULL
, /* Control char CR */
252 /* 0x000E */ NULL
, /* Unused */
253 /* 0x000F */ NULL
, /* Control chars: 0x0F20 + C0/C1 character: algorithmic */
254 /* 0x0010 */ "windows-932",
255 /* 0x0011 */ "windows-949",
256 /* 0x0012 */ "windows-950",
257 /* 0x0013 */ "windows-936"
259 /* The rest are null, including the 0x0014 Unicode compatibility region
260 and 0x0019, the 1-2-3 system range control char */
264 /* That's approximately all the data that's needed for translating
268 However, to translate Unicode to LMBCS, we need some more support.
270 That's because there are often more than one possible mappings from a Unicode
271 code point back into LMBCS. The first thing we do is look up into a table
272 to figure out if there are more than one possible mappings. This table,
273 arranged by Unicode values (including ranges) either lists which group
274 to use, or says that it could go into one or more of the SBCS sets, or
275 into one or more of the DBCS sets. (If the character exists in both DBCS &
276 SBCS, the table will place it in the SBCS sets, to make the LMBCS code point
277 length as small as possible. Here's the two special markers we use to indicate
278 ambiguous mappings: */
280 #define ULMBCS_AMBIGUOUS_SBCS 0x80 /* could fit in more than one
281 LMBCS sbcs native encoding
282 (example: most accented latin) */
283 #define ULMBCS_AMBIGUOUS_MBCS 0x81 /* could fit in more than one
284 LMBCS mbcs native encoding
286 #define ULMBCS_AMBIGUOUS_ALL 0x82
287 /* And here's a simple way to see if a group falls in an appropriate range */
288 #define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \
289 ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \
290 (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \
291 (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \
292 (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START)) || \
293 ((agroup) == ULMBCS_AMBIGUOUS_ALL)
296 /* The table & some code to use it: */
299 static const struct _UniLMBCSGrpMap
301 const UChar uniStartRange
;
302 const UChar uniEndRange
;
303 const ulmbcs_byte_t GrpType
;
308 {0x0001, 0x001F, ULMBCS_GRP_CTRL
},
309 {0x0080, 0x009F, ULMBCS_GRP_CTRL
},
310 {0x00A0, 0x00A6, ULMBCS_AMBIGUOUS_SBCS
},
311 {0x00A7, 0x00A8, ULMBCS_AMBIGUOUS_ALL
},
312 {0x00A9, 0x00AF, ULMBCS_AMBIGUOUS_SBCS
},
313 {0x00B0, 0x00B1, ULMBCS_AMBIGUOUS_ALL
},
314 {0x00B2, 0x00B3, ULMBCS_AMBIGUOUS_SBCS
},
315 {0x00B4, 0x00B4, ULMBCS_AMBIGUOUS_ALL
},
316 {0x00B5, 0x00B5, ULMBCS_AMBIGUOUS_SBCS
},
317 {0x00B6, 0x00B6, ULMBCS_AMBIGUOUS_ALL
},
318 {0x00B7, 0x00D6, ULMBCS_AMBIGUOUS_SBCS
},
319 {0x00D7, 0x00D7, ULMBCS_AMBIGUOUS_ALL
},
320 {0x00D8, 0x00F6, ULMBCS_AMBIGUOUS_SBCS
},
321 {0x00F7, 0x00F7, ULMBCS_AMBIGUOUS_ALL
},
322 {0x00F8, 0x01CD, ULMBCS_AMBIGUOUS_SBCS
},
323 {0x01CE, 0x01CE, ULMBCS_GRP_TW
},
324 {0x01CF, 0x02B9, ULMBCS_AMBIGUOUS_SBCS
},
325 {0x02BA, 0x02BA, ULMBCS_GRP_CN
},
326 {0x02BC, 0x02C8, ULMBCS_AMBIGUOUS_SBCS
},
327 {0x02C9, 0x02D0, ULMBCS_AMBIGUOUS_MBCS
},
328 {0x02D8, 0x02DD, ULMBCS_AMBIGUOUS_SBCS
},
329 {0x0384, 0x0390, ULMBCS_AMBIGUOUS_SBCS
},
330 {0x0391, 0x03A9, ULMBCS_AMBIGUOUS_ALL
},
331 {0x03AA, 0x03B0, ULMBCS_AMBIGUOUS_SBCS
},
332 {0x03B1, 0x03C9, ULMBCS_AMBIGUOUS_ALL
},
333 {0x03CA, 0x03CE, ULMBCS_AMBIGUOUS_SBCS
},
334 {0x0400, 0x0400, ULMBCS_GRP_RU
},
335 {0x0401, 0x0401, ULMBCS_AMBIGUOUS_ALL
},
336 {0x0402, 0x040F, ULMBCS_GRP_RU
},
337 {0x0410, 0x0431, ULMBCS_AMBIGUOUS_ALL
},
338 {0x0432, 0x044E, ULMBCS_GRP_RU
},
339 {0x044F, 0x044F, ULMBCS_AMBIGUOUS_ALL
},
340 {0x0450, 0x0491, ULMBCS_GRP_RU
},
341 {0x05B0, 0x05F2, ULMBCS_GRP_HE
},
342 {0x060C, 0x06AF, ULMBCS_GRP_AR
},
343 {0x0E01, 0x0E5B, ULMBCS_GRP_TH
},
344 {0x200C, 0x200F, ULMBCS_AMBIGUOUS_SBCS
},
345 {0x2010, 0x2010, ULMBCS_AMBIGUOUS_MBCS
},
346 {0x2013, 0x2014, ULMBCS_AMBIGUOUS_SBCS
},
347 {0x2015, 0x2015, ULMBCS_AMBIGUOUS_MBCS
},
348 {0x2016, 0x2016, ULMBCS_AMBIGUOUS_MBCS
},
349 {0x2017, 0x2017, ULMBCS_AMBIGUOUS_SBCS
},
350 {0x2018, 0x2019, ULMBCS_AMBIGUOUS_ALL
},
351 {0x201A, 0x201B, ULMBCS_AMBIGUOUS_SBCS
},
352 {0x201C, 0x201D, ULMBCS_AMBIGUOUS_ALL
},
353 {0x201E, 0x201F, ULMBCS_AMBIGUOUS_SBCS
},
354 {0x2020, 0x2021, ULMBCS_AMBIGUOUS_ALL
},
355 {0x2022, 0x2024, ULMBCS_AMBIGUOUS_SBCS
},
356 {0x2025, 0x2025, ULMBCS_AMBIGUOUS_MBCS
},
357 {0x2026, 0x2026, ULMBCS_AMBIGUOUS_ALL
},
358 {0x2027, 0x2027, ULMBCS_GRP_TW
},
359 {0x2030, 0x2030, ULMBCS_AMBIGUOUS_ALL
},
360 {0x2031, 0x2031, ULMBCS_AMBIGUOUS_SBCS
},
361 {0x2032, 0x2033, ULMBCS_AMBIGUOUS_MBCS
},
362 {0x2035, 0x2035, ULMBCS_AMBIGUOUS_MBCS
},
363 {0x2039, 0x203A, ULMBCS_AMBIGUOUS_SBCS
},
364 {0x203B, 0x203B, ULMBCS_AMBIGUOUS_MBCS
},
365 {0x203C, 0x203C, ULMBCS_GRP_EXCEPT
},
366 {0x2074, 0x2074, ULMBCS_GRP_KO
},
367 {0x207F, 0x207F, ULMBCS_GRP_EXCEPT
},
368 {0x2081, 0x2084, ULMBCS_GRP_KO
},
369 {0x20A4, 0x20AC, ULMBCS_AMBIGUOUS_SBCS
},
370 {0x2103, 0x2109, ULMBCS_AMBIGUOUS_MBCS
},
371 {0x2111, 0x2120, ULMBCS_AMBIGUOUS_SBCS
},
372 /*zhujin: upgrade, for regressiont test, spr HKIA4YHTSU*/
373 {0x2121, 0x2121, ULMBCS_AMBIGUOUS_MBCS
},
374 {0x2122, 0x2126, ULMBCS_AMBIGUOUS_SBCS
},
375 {0x212B, 0x212B, ULMBCS_AMBIGUOUS_MBCS
},
376 {0x2135, 0x2135, ULMBCS_AMBIGUOUS_SBCS
},
377 {0x2153, 0x2154, ULMBCS_GRP_KO
},
378 {0x215B, 0x215E, ULMBCS_GRP_EXCEPT
},
379 {0x2160, 0x2179, ULMBCS_AMBIGUOUS_MBCS
},
380 {0x2190, 0x2193, ULMBCS_AMBIGUOUS_ALL
},
381 {0x2194, 0x2195, ULMBCS_GRP_EXCEPT
},
382 {0x2196, 0x2199, ULMBCS_AMBIGUOUS_MBCS
},
383 {0x21A8, 0x21A8, ULMBCS_GRP_EXCEPT
},
384 {0x21B8, 0x21B9, ULMBCS_GRP_CN
},
385 {0x21D0, 0x21D1, ULMBCS_GRP_EXCEPT
},
386 {0x21D2, 0x21D2, ULMBCS_AMBIGUOUS_MBCS
},
387 {0x21D3, 0x21D3, ULMBCS_GRP_EXCEPT
},
388 {0x21D4, 0x21D4, ULMBCS_AMBIGUOUS_MBCS
},
389 {0x21D5, 0x21D5, ULMBCS_GRP_EXCEPT
},
390 {0x21E7, 0x21E7, ULMBCS_GRP_CN
},
391 {0x2200, 0x2200, ULMBCS_AMBIGUOUS_MBCS
},
392 {0x2201, 0x2201, ULMBCS_GRP_EXCEPT
},
393 {0x2202, 0x2202, ULMBCS_AMBIGUOUS_MBCS
},
394 {0x2203, 0x2203, ULMBCS_AMBIGUOUS_MBCS
},
395 {0x2204, 0x2206, ULMBCS_GRP_EXCEPT
},
396 {0x2207, 0x2208, ULMBCS_AMBIGUOUS_MBCS
},
397 {0x2209, 0x220A, ULMBCS_GRP_EXCEPT
},
398 {0x220B, 0x220B, ULMBCS_AMBIGUOUS_MBCS
},
399 {0x220F, 0x2215, ULMBCS_AMBIGUOUS_MBCS
},
400 {0x2219, 0x2219, ULMBCS_GRP_EXCEPT
},
401 {0x221A, 0x221A, ULMBCS_AMBIGUOUS_MBCS
},
402 {0x221B, 0x221C, ULMBCS_GRP_EXCEPT
},
403 {0x221D, 0x221E, ULMBCS_AMBIGUOUS_MBCS
},
404 {0x221F, 0x221F, ULMBCS_GRP_EXCEPT
},
405 {0x2220, 0x2220, ULMBCS_AMBIGUOUS_MBCS
},
406 {0x2223, 0x222A, ULMBCS_AMBIGUOUS_MBCS
},
407 {0x222B, 0x223D, ULMBCS_AMBIGUOUS_MBCS
},
408 {0x2245, 0x2248, ULMBCS_GRP_EXCEPT
},
409 {0x224C, 0x224C, ULMBCS_GRP_TW
},
410 {0x2252, 0x2252, ULMBCS_AMBIGUOUS_MBCS
},
411 {0x2260, 0x2261, ULMBCS_AMBIGUOUS_MBCS
},
412 {0x2262, 0x2265, ULMBCS_GRP_EXCEPT
},
413 {0x2266, 0x226F, ULMBCS_AMBIGUOUS_MBCS
},
414 {0x2282, 0x2283, ULMBCS_AMBIGUOUS_MBCS
},
415 {0x2284, 0x2285, ULMBCS_GRP_EXCEPT
},
416 {0x2286, 0x2287, ULMBCS_AMBIGUOUS_MBCS
},
417 {0x2288, 0x2297, ULMBCS_GRP_EXCEPT
},
418 {0x2299, 0x22BF, ULMBCS_AMBIGUOUS_MBCS
},
419 {0x22C0, 0x22C0, ULMBCS_GRP_EXCEPT
},
420 {0x2310, 0x2310, ULMBCS_GRP_EXCEPT
},
421 {0x2312, 0x2312, ULMBCS_AMBIGUOUS_MBCS
},
422 {0x2318, 0x2321, ULMBCS_GRP_EXCEPT
},
423 {0x2318, 0x2321, ULMBCS_GRP_CN
},
424 {0x2460, 0x24E9, ULMBCS_AMBIGUOUS_MBCS
},
425 {0x2500, 0x2500, ULMBCS_AMBIGUOUS_SBCS
},
426 {0x2501, 0x2501, ULMBCS_AMBIGUOUS_MBCS
},
427 {0x2502, 0x2502, ULMBCS_AMBIGUOUS_ALL
},
428 {0x2503, 0x2503, ULMBCS_AMBIGUOUS_MBCS
},
429 {0x2504, 0x2505, ULMBCS_GRP_TW
},
430 {0x2506, 0x2665, ULMBCS_AMBIGUOUS_ALL
},
431 {0x2666, 0x2666, ULMBCS_GRP_EXCEPT
},
432 {0x2667, 0x2669, ULMBCS_AMBIGUOUS_SBCS
},
433 {0x266A, 0x266A, ULMBCS_AMBIGUOUS_ALL
},
434 {0x266B, 0x266C, ULMBCS_AMBIGUOUS_SBCS
},
435 {0x266D, 0x266D, ULMBCS_AMBIGUOUS_MBCS
},
436 {0x266E, 0x266E, ULMBCS_AMBIGUOUS_SBCS
},
437 {0x266F, 0x266F, ULMBCS_GRP_JA
},
438 {0x2670, 0x2E7F, ULMBCS_AMBIGUOUS_SBCS
},
439 {0x2E80, 0xF861, ULMBCS_AMBIGUOUS_MBCS
},
440 {0xF862, 0xF8FF, ULMBCS_GRP_EXCEPT
},
441 {0xF900, 0xFA2D, ULMBCS_AMBIGUOUS_MBCS
},
442 {0xFB00, 0xFEFF, ULMBCS_AMBIGUOUS_SBCS
},
443 {0xFF01, 0xFFEE, ULMBCS_AMBIGUOUS_MBCS
},
444 {0xFFFF, 0xFFFF, ULMBCS_GRP_UNICODE
}
448 FindLMBCSUniRange(UChar uniChar
)
450 const struct _UniLMBCSGrpMap
* pTable
= UniLMBCSGrpMap
;
452 while (uniChar
> pTable
->uniEndRange
)
457 if (uniChar
>= pTable
->uniStartRange
)
459 return pTable
->GrpType
;
461 return ULMBCS_GRP_UNICODE
;
465 We also ask the creator of a converter to send in a preferred locale
466 that we can use in resolving ambiguous mappings. They send the locale
467 in as a string, and we map it, if possible, to one of the
468 LMBCS groups. We use this table, and the associated code, to
471 /**************************************************
472 This table maps locale ID's to LMBCS opt groups.
473 The default return is group 0x01. Note that for
474 performance reasons, the table is sorted in
475 increasing alphabetic order, with the notable
476 exception of zhTW. This is to force the check
477 for Traditonal Chinese before dropping back to
480 Note too that the Latin-1 groups have been
481 commented out because it's the default, and
482 this shortens the table, allowing a serial
483 search to go quickly.
484 *************************************************/
486 static const struct _LocaleLMBCSGrpMap
488 const char *LocaleID
;
489 const ulmbcs_byte_t OptGroup
;
490 } LocaleLMBCSGrpMap
[] =
492 {"ar", ULMBCS_GRP_AR
},
493 {"be", ULMBCS_GRP_RU
},
494 {"bg", ULMBCS_GRP_L2
},
495 /* {"ca", ULMBCS_GRP_L1}, */
496 {"cs", ULMBCS_GRP_L2
},
497 /* {"da", ULMBCS_GRP_L1}, */
498 /* {"de", ULMBCS_GRP_L1}, */
499 {"el", ULMBCS_GRP_GR
},
500 /* {"en", ULMBCS_GRP_L1}, */
501 /* {"es", ULMBCS_GRP_L1}, */
502 /* {"et", ULMBCS_GRP_L1}, */
503 /* {"fi", ULMBCS_GRP_L1}, */
504 /* {"fr", ULMBCS_GRP_L1}, */
505 {"he", ULMBCS_GRP_HE
},
506 {"hu", ULMBCS_GRP_L2
},
507 /* {"is", ULMBCS_GRP_L1}, */
508 /* {"it", ULMBCS_GRP_L1}, */
509 {"iw", ULMBCS_GRP_HE
},
510 {"ja", ULMBCS_GRP_JA
},
511 {"ko", ULMBCS_GRP_KO
},
512 /* {"lt", ULMBCS_GRP_L1}, */
513 /* {"lv", ULMBCS_GRP_L1}, */
514 {"mk", ULMBCS_GRP_RU
},
515 /* {"nl", ULMBCS_GRP_L1}, */
516 /* {"no", ULMBCS_GRP_L1}, */
517 {"pl", ULMBCS_GRP_L2
},
518 /* {"pt", ULMBCS_GRP_L1}, */
519 {"ro", ULMBCS_GRP_L2
},
520 {"ru", ULMBCS_GRP_RU
},
521 {"sh", ULMBCS_GRP_L2
},
522 {"sk", ULMBCS_GRP_L2
},
523 {"sl", ULMBCS_GRP_L2
},
524 {"sq", ULMBCS_GRP_L2
},
525 {"sr", ULMBCS_GRP_RU
},
526 /* {"sv", ULMBCS_GRP_L1}, */
527 {"th", ULMBCS_GRP_TH
},
528 {"tr", ULMBCS_GRP_TR
},
529 {"uk", ULMBCS_GRP_RU
},
530 /* {"vi", ULMBCS_GRP_L1}, */
531 {"zhTW", ULMBCS_GRP_TW
},
532 {"zh", ULMBCS_GRP_CN
},
533 {NULL
, ULMBCS_GRP_L1
}
538 FindLMBCSLocale(const char *LocaleID
)
540 const struct _LocaleLMBCSGrpMap
*pTable
= LocaleLMBCSGrpMap
;
542 if ((!LocaleID
) || (!*LocaleID
))
547 while (pTable
->LocaleID
)
549 if (*pTable
->LocaleID
== *LocaleID
) /* Check only first char for speed */
551 /* First char matches - check whole name, for entry-length */
552 if (uprv_strncmp(pTable
->LocaleID
, LocaleID
, strlen(pTable
->LocaleID
)) == 0)
553 return pTable
->OptGroup
;
556 if (*pTable
->LocaleID
> *LocaleID
) /* Sorted alphabetically - exit */
560 return ULMBCS_GRP_L1
;
565 Before we get to the main body of code, here's how we hook up to the rest
566 of ICU. ICU converters are required to define a structure that includes
567 some function pointers, and some common data, in the style of a C++
568 vtable. There is also room in there for converter-specific data. LMBCS
569 uses that converter-specific data to keep track of the 12 subconverters
570 we use, the optimization group, and the group (if any) that matches the
571 locale. We have one structure instantiated for each of the 12 possible
572 optimization groups. To avoid typos & to avoid boring the reader, we
573 put the declarations of these structures and functions into macros. To see
574 the definitions of these structures, see unicode\ucnv_bld.h
579 UConverterSharedData
*OptGrpConverter
[ULMBCS_GRP_LAST
+1]; /* Converter per Opt. grp. */
580 uint8_t OptGroup
; /* default Opt. grp. for this LMBCS session */
581 uint8_t localeConverterIndex
; /* reasonable locale match for index */
586 static void U_CALLCONV
_LMBCSClose(UConverter
* _this
);
589 #define DECLARE_LMBCS_DATA(n) \
590 static const UConverterImpl _LMBCSImpl##n={\
596 _LMBCSToUnicodeWithOffsets,\
597 _LMBCSToUnicodeWithOffsets,\
605 ucnv_getCompleteUnicodeSet,\
609 static const UConverterStaticData _LMBCSStaticData##n={\
610 sizeof(UConverterStaticData),\
612 0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\
613 { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \
615 const UConverterSharedData _LMBCSData##n= \
616 UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_LMBCSStaticData##n, &_LMBCSImpl##n);
618 /* The only function we needed to duplicate 12 times was the 'open'
619 function, which will do basically the same thing except set a different
620 optimization group. So, we put the common stuff into a worker function,
621 and set up another macro to stamp out the 12 open functions:*/
622 #define DEFINE_LMBCS_OPEN(n) \
623 static void U_CALLCONV \
624 _LMBCSOpen##n(UConverter* _this, UConverterLoadArgs* pArgs, UErrorCode* err) \
625 { _LMBCSOpenWorker(_this, pArgs, err, n); }
629 /* Here's the open worker & the common close function */
631 _LMBCSOpenWorker(UConverter
* _this
,
632 UConverterLoadArgs
*pArgs
,
634 ulmbcs_byte_t OptGroup
)
636 UConverterDataLMBCS
* extraInfo
= (UConverterDataLMBCS
*)uprv_malloc (sizeof (UConverterDataLMBCS
));
637 _this
->extraInfo
= extraInfo
;
638 if(extraInfo
!= NULL
)
640 UConverterNamePieces stackPieces
;
641 UConverterLoadArgs stackArgs
= UCNV_LOAD_ARGS_INITIALIZER
;
644 uprv_memset(extraInfo
, 0, sizeof(UConverterDataLMBCS
));
646 stackArgs
.onlyTestIsLoadable
= pArgs
->onlyTestIsLoadable
;
648 for (i
=0; i
<= ULMBCS_GRP_LAST
&& U_SUCCESS(*err
); i
++)
650 if(OptGroupByteToCPName
[i
] != NULL
) {
651 extraInfo
->OptGrpConverter
[i
] = ucnv_loadSharedData(OptGroupByteToCPName
[i
], &stackPieces
, &stackArgs
, err
);
655 if(U_FAILURE(*err
) || pArgs
->onlyTestIsLoadable
) {
659 extraInfo
->OptGroup
= OptGroup
;
660 extraInfo
->localeConverterIndex
= FindLMBCSLocale(pArgs
->locale
);
664 *err
= U_MEMORY_ALLOCATION_ERROR
;
669 static void U_CALLCONV
670 _LMBCSClose(UConverter
* _this
)
672 if (_this
->extraInfo
!= NULL
)
675 UConverterDataLMBCS
* extraInfo
= (UConverterDataLMBCS
*) _this
->extraInfo
;
677 for (Ix
=0; Ix
<= ULMBCS_GRP_LAST
; Ix
++)
679 if (extraInfo
->OptGrpConverter
[Ix
] != NULL
)
680 ucnv_unloadSharedDataIfReady(extraInfo
->OptGrpConverter
[Ix
]);
682 if (!_this
->isExtraLocal
) {
683 uprv_free (_this
->extraInfo
);
684 _this
->extraInfo
= NULL
;
689 typedef struct LMBCSClone
{
691 UConverterDataLMBCS lmbcs
;
694 static UConverter
* U_CALLCONV
695 _LMBCSSafeClone(const UConverter
*cnv
,
697 int32_t *pBufferSize
,
698 UErrorCode
*status
) {
700 LMBCSClone
*newLMBCS
;
701 UConverterDataLMBCS
*extraInfo
;
704 if(*pBufferSize
<=0) {
705 *pBufferSize
=(int32_t)sizeof(LMBCSClone
);
709 extraInfo
=(UConverterDataLMBCS
*)cnv
->extraInfo
;
710 newLMBCS
=(LMBCSClone
*)stackBuffer
;
712 /* ucnv.c/ucnv_safeClone() copied the main UConverter already */
714 uprv_memcpy(&newLMBCS
->lmbcs
, extraInfo
, sizeof(UConverterDataLMBCS
));
716 /* share the subconverters */
717 for(i
= 0; i
<= ULMBCS_GRP_LAST
; ++i
) {
718 if(extraInfo
->OptGrpConverter
[i
] != NULL
) {
719 ucnv_incrementRefCount(extraInfo
->OptGrpConverter
[i
]);
723 newLMBCS
->cnv
.extraInfo
= &newLMBCS
->lmbcs
;
724 newLMBCS
->cnv
.isExtraLocal
= TRUE
;
725 return &newLMBCS
->cnv
;
729 * There used to be a _LMBCSGetUnicodeSet() function here (up to svn revision 20117)
730 * which added all code points except for U+F6xx
731 * because those cannot be represented in the Unicode group.
732 * However, it turns out that windows-950 has roundtrips for all of U+F6xx
733 * which means that LMBCS can convert all Unicode code points after all.
734 * We now simply use ucnv_getCompleteUnicodeSet().
736 * This may need to be looked at again as Lotus uses _LMBCSGetUnicodeSet(). (091216)
740 Here's the basic helper function that we use when converting from
741 Unicode to LMBCS, and we suspect that a Unicode character will fit into
742 one of the 12 groups. The return value is the number of bytes written
743 starting at pStartLMBCS (if any).
747 LMBCSConversionWorker (
748 UConverterDataLMBCS
* extraInfo
, /* subconverters, opt & locale groups */
749 ulmbcs_byte_t group
, /* The group to try */
750 ulmbcs_byte_t
* pStartLMBCS
, /* where to put the results */
751 UChar
* pUniChar
, /* The input unicode character */
752 ulmbcs_byte_t
* lastConverterIndex
, /* output: track last successful group used */
753 UBool
* groups_tried
/* output: track any unsuccessful groups */
756 ulmbcs_byte_t
* pLMBCS
= pStartLMBCS
;
757 UConverterSharedData
* xcnv
= extraInfo
->OptGrpConverter
[group
];
761 ulmbcs_byte_t firstByte
;
764 U_ASSERT(group
<ULMBCS_GRP_UNICODE
);
766 bytesConverted
= ucnv_MBCSFromUChar32(xcnv
, *pUniChar
, &value
, FALSE
);
768 /* get the first result byte */
769 if(bytesConverted
> 0) {
770 firstByte
= (ulmbcs_byte_t
)(value
>> ((bytesConverted
- 1) * 8));
772 /* most common failure mode is an unassigned character */
773 groups_tried
[group
] = TRUE
;
777 *lastConverterIndex
= group
;
779 /* All initial byte values in lower ascii range should have been caught by now,
780 except with the exception group.
782 U_ASSERT((firstByte
<= ULMBCS_C0END
) || (firstByte
>= ULMBCS_C1START
) || (group
== ULMBCS_GRP_EXCEPT
));
784 /* use converted data: first write 0, 1 or two group bytes */
785 if (group
!= ULMBCS_GRP_EXCEPT
&& extraInfo
->OptGroup
!= group
)
788 if (bytesConverted
== 1 && group
>= ULMBCS_DOUBLEOPTGROUP_START
)
794 /* don't emit control chars */
795 if ( bytesConverted
== 1 && firstByte
< 0x20 )
799 /* then move over the converted data */
800 switch(bytesConverted
)
803 *pLMBCS
++ = (ulmbcs_byte_t
)(value
>> 24);
806 *pLMBCS
++ = (ulmbcs_byte_t
)(value
>> 16);
809 *pLMBCS
++ = (ulmbcs_byte_t
)(value
>> 8);
812 *pLMBCS
++ = (ulmbcs_byte_t
)value
;
815 /* will never occur */
819 return (pLMBCS
- pStartLMBCS
);
823 /* This is a much simpler version of above, when we
824 know we are writing LMBCS using the Unicode group
827 LMBCSConvertUni(ulmbcs_byte_t
* pLMBCS
, UChar uniChar
)
829 /* encode into LMBCS Unicode range */
830 uint8_t LowCh
= (uint8_t)(uniChar
& 0x00FF);
831 uint8_t HighCh
= (uint8_t)(uniChar
>> 8);
833 *pLMBCS
++ = ULMBCS_GRP_UNICODE
;
837 *pLMBCS
++ = ULMBCS_UNICOMPATZERO
;
845 return ULMBCS_UNICODE_SIZE
;
850 /* The main Unicode to LMBCS conversion function */
851 static void U_CALLCONV
852 _LMBCSFromUnicode(UConverterFromUnicodeArgs
* args
,
855 ulmbcs_byte_t lastConverterIndex
= 0;
857 ulmbcs_byte_t LMBCS
[ULMBCS_CHARSIZE_MAX
];
858 ulmbcs_byte_t
* pLMBCS
;
859 int32_t bytes_written
;
860 UBool groups_tried
[ULMBCS_GRP_LAST
+1];
861 UConverterDataLMBCS
* extraInfo
= (UConverterDataLMBCS
*) args
->converter
->extraInfo
;
864 /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS)
865 If that succeeds, see if it will all fit into the target & copy it over
868 We try conversions in the following order:
870 1. Single-byte ascii & special fixed control chars (&null)
871 2. Look up group in table & try that (could be
874 C) national encoding,
875 or ambiguous SBCS or MBCS group (on to step 4...)
877 3. If its ambiguous, try this order:
878 A) The optimization group
880 C) The last group that succeeded with this string.
881 D) every other group that's relevent (single or double)
882 E) If its single-byte ambiguous, try the exceptions group
884 4. And as a grand fallback: Unicode
887 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
888 ulmbcs_byte_t OldConverterIndex
= 0;
890 while (args
->source
< args
->sourceLimit
&& !U_FAILURE(*err
))
892 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
893 OldConverterIndex
= extraInfo
->localeConverterIndex
;
895 if (args
->target
>= args
->targetLimit
)
897 *err
= U_BUFFER_OVERFLOW_ERROR
;
900 uniChar
= *(args
->source
);
904 /* check cases in rough order of how common they are, for speed */
906 /* single byte matches: strategy 1 */
907 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
908 if((uniChar
>=0x80) && (uniChar
<=0xff)
909 /*Fix for SPR#JUYA6XAERU and TSAO7GL5NK (Lotus)*/ &&(uniChar
!=0xB1) &&(uniChar
!=0xD7) &&(uniChar
!=0xF7)
910 &&(uniChar
!=0xB0) &&(uniChar
!=0xB4) &&(uniChar
!=0xB6) &&(uniChar
!=0xA7) &&(uniChar
!=0xA8))
912 extraInfo
->localeConverterIndex
= ULMBCS_GRP_L1
;
914 if (((uniChar
> ULMBCS_C0END
) && (uniChar
< ULMBCS_C1START
)) ||
915 uniChar
== 0 || uniChar
== ULMBCS_HT
|| uniChar
== ULMBCS_CR
||
916 uniChar
== ULMBCS_LF
|| uniChar
== ULMBCS_123SYSTEMRANGE
919 *pLMBCS
++ = (ulmbcs_byte_t
) uniChar
;
926 /* Check by UNICODE range (Strategy 2) */
927 ulmbcs_byte_t group
= FindLMBCSUniRange(uniChar
);
929 if (group
== ULMBCS_GRP_UNICODE
) /* (Strategy 2A) */
931 pLMBCS
+= LMBCSConvertUni(pLMBCS
,uniChar
);
933 bytes_written
= (int32_t)(pLMBCS
- LMBCS
);
935 else if (group
== ULMBCS_GRP_CTRL
) /* (Strategy 2B) */
937 /* Handle control characters here */
938 if (uniChar
<= ULMBCS_C0END
)
940 *pLMBCS
++ = ULMBCS_GRP_CTRL
;
941 *pLMBCS
++ = (ulmbcs_byte_t
)(ULMBCS_CTRLOFFSET
+ uniChar
);
943 else if (uniChar
>= ULMBCS_C1START
&& uniChar
<= ULMBCS_C1START
+ ULMBCS_CTRLOFFSET
)
945 *pLMBCS
++ = ULMBCS_GRP_CTRL
;
946 *pLMBCS
++ = (ulmbcs_byte_t
) (uniChar
& 0x00FF);
948 bytes_written
= (int32_t)(pLMBCS
- LMBCS
);
950 else if (group
< ULMBCS_GRP_UNICODE
) /* (Strategy 2C) */
952 /* a specific converter has been identified - use it */
953 bytes_written
= (int32_t)LMBCSConversionWorker (
954 extraInfo
, group
, pLMBCS
, &uniChar
,
955 &lastConverterIndex
, groups_tried
);
957 if (!bytes_written
) /* the ambiguous group cases (Strategy 3) */
959 uprv_memset(groups_tried
, 0, sizeof(groups_tried
));
961 /* check for non-default optimization group (Strategy 3A )*/
962 if ((extraInfo
->OptGroup
!= 1) && (ULMBCS_AMBIGUOUS_MATCH(group
, extraInfo
->OptGroup
)))
964 /*zhujin: upgrade, merge #39299 here (Lotus) */
965 /*To make R5 compatible translation, look for exceptional group first for non-DBCS*/
967 if(extraInfo
->localeConverterIndex
< ULMBCS_DOUBLEOPTGROUP_START
)
969 bytes_written
= LMBCSConversionWorker (extraInfo
,
970 ULMBCS_GRP_L1
, pLMBCS
, &uniChar
,
971 &lastConverterIndex
, groups_tried
);
975 bytes_written
= LMBCSConversionWorker (extraInfo
,
976 ULMBCS_GRP_EXCEPT
, pLMBCS
, &uniChar
,
977 &lastConverterIndex
, groups_tried
);
981 bytes_written
= LMBCSConversionWorker (extraInfo
,
982 extraInfo
->localeConverterIndex
, pLMBCS
, &uniChar
,
983 &lastConverterIndex
, groups_tried
);
988 bytes_written
= LMBCSConversionWorker (extraInfo
,
989 extraInfo
->localeConverterIndex
, pLMBCS
, &uniChar
,
990 &lastConverterIndex
, groups_tried
);
993 /* check for locale optimization group (Strategy 3B) */
994 if (!bytes_written
&& (extraInfo
->localeConverterIndex
) && (ULMBCS_AMBIGUOUS_MATCH(group
, extraInfo
->localeConverterIndex
)))
996 bytes_written
= (int32_t)LMBCSConversionWorker (extraInfo
,
997 extraInfo
->localeConverterIndex
, pLMBCS
, &uniChar
, &lastConverterIndex
, groups_tried
);
999 /* check for last optimization group used for this string (Strategy 3C) */
1000 if (!bytes_written
&& (lastConverterIndex
) && (ULMBCS_AMBIGUOUS_MATCH(group
, lastConverterIndex
)))
1002 bytes_written
= (int32_t)LMBCSConversionWorker (extraInfo
,
1003 lastConverterIndex
, pLMBCS
, &uniChar
, &lastConverterIndex
, groups_tried
);
1007 /* just check every possible matching converter (Strategy 3D) */
1008 ulmbcs_byte_t grp_start
;
1009 ulmbcs_byte_t grp_end
;
1010 ulmbcs_byte_t grp_ix
;
1011 grp_start
= (ulmbcs_byte_t
)((group
== ULMBCS_AMBIGUOUS_MBCS
)
1012 ? ULMBCS_DOUBLEOPTGROUP_START
1014 grp_end
= (ulmbcs_byte_t
)((group
== ULMBCS_AMBIGUOUS_MBCS
)
1017 if(group
== ULMBCS_AMBIGUOUS_ALL
)
1019 grp_start
= ULMBCS_GRP_L1
;
1020 grp_end
= ULMBCS_GRP_LAST
;
1022 for (grp_ix
= grp_start
;
1023 grp_ix
<= grp_end
&& !bytes_written
;
1026 if (extraInfo
->OptGrpConverter
[grp_ix
] && !groups_tried
[grp_ix
])
1028 bytes_written
= (int32_t)LMBCSConversionWorker (extraInfo
,
1029 grp_ix
, pLMBCS
, &uniChar
,
1030 &lastConverterIndex
, groups_tried
);
1033 /* a final conversion fallback to the exceptions group if its likely
1034 to be single byte (Strategy 3E) */
1035 if (!bytes_written
&& grp_start
== ULMBCS_GRP_L1
)
1037 bytes_written
= (int32_t)LMBCSConversionWorker (extraInfo
,
1038 ULMBCS_GRP_EXCEPT
, pLMBCS
, &uniChar
,
1039 &lastConverterIndex
, groups_tried
);
1042 /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/
1046 pLMBCS
+= LMBCSConvertUni(pLMBCS
, uniChar
);
1047 bytes_written
= (int32_t)(pLMBCS
- LMBCS
);
1052 /* we have a translation. increment source and write as much as posible to target */
1055 while (args
->target
< args
->targetLimit
&& bytes_written
--)
1057 *(args
->target
)++ = *pLMBCS
++;
1060 *(args
->offsets
)++ = sourceIndex
;
1064 if (bytes_written
> 0)
1066 /* write any bytes that didn't fit in target to the error buffer,
1067 common code will move this to target if we get called back with
1070 uint8_t * pErrorBuffer
= args
->converter
->charErrorBuffer
;
1071 *err
= U_BUFFER_OVERFLOW_ERROR
;
1072 args
->converter
->charErrorBufferLength
= (int8_t)bytes_written
;
1073 while (bytes_written
--)
1075 *pErrorBuffer
++ = *pLMBCS
++;
1078 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
1079 extraInfo
->localeConverterIndex
= OldConverterIndex
;
1084 /* Now, the Unicode from LMBCS section */
1087 /* A function to call when we are looking at the Unicode group byte in LMBCS */
1089 GetUniFromLMBCSUni(char const ** ppLMBCSin
) /* Called with LMBCS-style Unicode byte stream */
1091 uint8_t HighCh
= *(*ppLMBCSin
)++; /* Big-endian Unicode in LMBCS compatibility group*/
1092 uint8_t LowCh
= *(*ppLMBCSin
)++;
1094 if (HighCh
== ULMBCS_UNICOMPATZERO
)
1097 LowCh
= 0; /* zero-byte in LSB special character */
1099 return (UChar
)((HighCh
<< 8) | LowCh
);
1104 /* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index'
1105 bytes left in source up to sourceLimit.Errors appropriately if not.
1106 If we reach the limit, then update the source pointer to there to consume
1107 all input as required by ICU converter semantics.
1110 #define CHECK_SOURCE_LIMIT(index) \
1111 if (args->source+index > args->sourceLimit){\
1112 *err = U_TRUNCATED_CHAR_FOUND;\
1113 args->source = args->sourceLimit;\
1116 /* Return the Unicode representation for the current LMBCS character */
1118 static UChar32 U_CALLCONV
1119 _LMBCSGetNextUCharWorker(UConverterToUnicodeArgs
* args
,
1122 UChar32 uniChar
= 0; /* an output UNICODE char */
1123 ulmbcs_byte_t CurByte
; /* A byte from the input stream */
1126 if (args
->source
>= args
->sourceLimit
)
1128 *err
= U_ILLEGAL_ARGUMENT_ERROR
;
1131 /* Grab first byte & save address for error recovery */
1132 CurByte
= *((ulmbcs_byte_t
*) (args
->source
++));
1135 * at entry of each if clause:
1136 * 1. 'CurByte' points at the first byte of a LMBCS character
1137 * 2. '*source'points to the next byte of the source stream after 'CurByte'
1139 * the job of each if clause is:
1140 * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte)
1141 * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately
1144 /* First lets check the simple fixed values. */
1146 if(((CurByte
> ULMBCS_C0END
) && (CurByte
< ULMBCS_C1START
)) /* ascii range */
1148 || CurByte
== ULMBCS_HT
|| CurByte
== ULMBCS_CR
1149 || CurByte
== ULMBCS_LF
|| CurByte
== ULMBCS_123SYSTEMRANGE
)
1155 UConverterDataLMBCS
* extraInfo
;
1156 ulmbcs_byte_t group
;
1157 UConverterSharedData
*cnv
;
1159 if (CurByte
== ULMBCS_GRP_CTRL
) /* Control character group - no opt group update */
1161 ulmbcs_byte_t C0C1byte
;
1162 CHECK_SOURCE_LIMIT(1);
1163 C0C1byte
= *(args
->source
)++;
1164 uniChar
= (C0C1byte
< ULMBCS_C1START
) ? C0C1byte
- ULMBCS_CTRLOFFSET
: C0C1byte
;
1167 if (CurByte
== ULMBCS_GRP_UNICODE
) /* Unicode compatibility group: BigEndian UTF16 */
1169 CHECK_SOURCE_LIMIT(2);
1171 /* don't check for error indicators fffe/ffff below */
1172 return GetUniFromLMBCSUni(&(args
->source
));
1174 else if (CurByte
<= ULMBCS_CTRLOFFSET
)
1176 group
= CurByte
; /* group byte is in the source */
1177 extraInfo
= (UConverterDataLMBCS
*) args
->converter
->extraInfo
;
1178 if (group
> ULMBCS_GRP_LAST
|| (cnv
= extraInfo
->OptGrpConverter
[group
]) == NULL
)
1180 /* this is not a valid group byte - no converter*/
1181 *err
= U_INVALID_CHAR_FOUND
;
1183 else if (group
>= ULMBCS_DOUBLEOPTGROUP_START
) /* double byte conversion */
1186 CHECK_SOURCE_LIMIT(2);
1188 /* check for LMBCS doubled-group-byte case */
1189 if (*args
->source
== group
) {
1192 uniChar
= ucnv_MBCSSimpleGetNextUChar(cnv
, args
->source
, 1, FALSE
);
1196 uniChar
= ucnv_MBCSSimpleGetNextUChar(cnv
, args
->source
, 2, FALSE
);
1200 else { /* single byte conversion */
1201 CHECK_SOURCE_LIMIT(1);
1202 CurByte
= *(args
->source
)++;
1204 if (CurByte
>= ULMBCS_C1START
)
1206 uniChar
= _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv
, CurByte
);
1210 /* The non-optimizable oddballs where there is an explicit byte
1211 * AND the second byte is not in the upper ascii range
1215 extraInfo
= (UConverterDataLMBCS
*) args
->converter
->extraInfo
;
1216 cnv
= extraInfo
->OptGrpConverter
[ULMBCS_GRP_EXCEPT
];
1218 /* Lookup value must include opt group */
1221 uniChar
= ucnv_MBCSSimpleGetNextUChar(cnv
, bytes
, 2, FALSE
);
1225 else if (CurByte
>= ULMBCS_C1START
) /* group byte is implicit */
1227 extraInfo
= (UConverterDataLMBCS
*) args
->converter
->extraInfo
;
1228 group
= extraInfo
->OptGroup
;
1229 cnv
= extraInfo
->OptGrpConverter
[group
];
1230 if (group
>= ULMBCS_DOUBLEOPTGROUP_START
) /* double byte conversion */
1232 if (!ucnv_MBCSIsLeadByte(cnv
, CurByte
))
1234 CHECK_SOURCE_LIMIT(0);
1236 /* let the MBCS conversion consume CurByte again */
1237 uniChar
= ucnv_MBCSSimpleGetNextUChar(cnv
, args
->source
- 1, 1, FALSE
);
1241 CHECK_SOURCE_LIMIT(1);
1242 /* let the MBCS conversion consume CurByte again */
1243 uniChar
= ucnv_MBCSSimpleGetNextUChar(cnv
, args
->source
- 1, 2, FALSE
);
1247 else /* single byte conversion */
1249 uniChar
= _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv
, CurByte
);
1257 /* The exported function that converts lmbcs to one or more
1258 UChars - currently UTF-16
1260 static void U_CALLCONV
1261 _LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs
* args
,
1264 char LMBCS
[ULMBCS_CHARSIZE_MAX
];
1265 UChar uniChar
; /* one output UNICODE char */
1266 const char * saveSource
; /* beginning of current code point */
1267 const char * pStartLMBCS
= args
->source
; /* beginning of whole string */
1268 const char * errSource
= NULL
; /* pointer to actual input in case an error occurs */
1269 int8_t savebytes
= 0;
1271 /* Process from source to limit, or until error */
1272 while (U_SUCCESS(*err
) && args
->sourceLimit
> args
->source
&& args
->targetLimit
> args
->target
)
1274 saveSource
= args
->source
; /* beginning of current code point */
1276 if (args
->converter
->toULength
) /* reassemble char from previous call */
1278 const char *saveSourceLimit
;
1279 size_t size_old
= args
->converter
->toULength
;
1281 /* limit from source is either remainder of temp buffer, or user limit on source */
1282 size_t size_new_maybe_1
= sizeof(LMBCS
) - size_old
;
1283 size_t size_new_maybe_2
= args
->sourceLimit
- args
->source
;
1284 size_t size_new
= (size_new_maybe_1
< size_new_maybe_2
) ? size_new_maybe_1
: size_new_maybe_2
;
1287 uprv_memcpy(LMBCS
, args
->converter
->toUBytes
, size_old
);
1288 uprv_memcpy(LMBCS
+ size_old
, args
->source
, size_new
);
1289 saveSourceLimit
= args
->sourceLimit
;
1290 args
->source
= errSource
= LMBCS
;
1291 args
->sourceLimit
= LMBCS
+size_old
+size_new
;
1292 savebytes
= (int8_t)(size_old
+size_new
);
1293 uniChar
= (UChar
) _LMBCSGetNextUCharWorker(args
, err
);
1294 args
->source
= saveSource
+ ((args
->source
- LMBCS
) - size_old
);
1295 args
->sourceLimit
= saveSourceLimit
;
1297 if (*err
== U_TRUNCATED_CHAR_FOUND
)
1299 /* evil special case: source buffers so small a char spans more than 2 buffers */
1300 args
->converter
->toULength
= savebytes
;
1301 uprv_memcpy(args
->converter
->toUBytes
, LMBCS
, savebytes
);
1302 args
->source
= args
->sourceLimit
;
1303 *err
= U_ZERO_ERROR
;
1308 /* clear the partial-char marker */
1309 args
->converter
->toULength
= 0;
1314 errSource
= saveSource
;
1315 uniChar
= (UChar
) _LMBCSGetNextUCharWorker(args
, err
);
1316 savebytes
= (int8_t)(args
->source
- saveSource
);
1318 if (U_SUCCESS(*err
))
1320 if (uniChar
< 0xfffe)
1322 *(args
->target
)++ = uniChar
;
1325 *(args
->offsets
)++ = (int32_t)(saveSource
- pStartLMBCS
);
1328 else if (uniChar
== 0xfffe)
1330 *err
= U_INVALID_CHAR_FOUND
;
1332 else /* if (uniChar == 0xffff) */
1334 *err
= U_ILLEGAL_CHAR_FOUND
;
1338 /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */
1339 if (U_SUCCESS(*err
) && args
->sourceLimit
> args
->source
&& args
->targetLimit
<= args
->target
)
1341 *err
= U_BUFFER_OVERFLOW_ERROR
;
1343 else if (U_FAILURE(*err
))
1345 /* If character incomplete or unmappable/illegal, store it in toUBytes[] */
1346 args
->converter
->toULength
= savebytes
;
1347 if (savebytes
> 0) {
1348 uprv_memcpy(args
->converter
->toUBytes
, errSource
, savebytes
);
1350 if (*err
== U_TRUNCATED_CHAR_FOUND
) {
1351 *err
= U_ZERO_ERROR
;
1356 /* And now, the macroized declarations of data & functions: */
1357 DEFINE_LMBCS_OPEN(1)
1358 DEFINE_LMBCS_OPEN(2)
1359 DEFINE_LMBCS_OPEN(3)
1360 DEFINE_LMBCS_OPEN(4)
1361 DEFINE_LMBCS_OPEN(5)
1362 DEFINE_LMBCS_OPEN(6)
1363 DEFINE_LMBCS_OPEN(8)
1364 DEFINE_LMBCS_OPEN(11)
1365 DEFINE_LMBCS_OPEN(16)
1366 DEFINE_LMBCS_OPEN(17)
1367 DEFINE_LMBCS_OPEN(18)
1368 DEFINE_LMBCS_OPEN(19)
1371 DECLARE_LMBCS_DATA(1)
1372 DECLARE_LMBCS_DATA(2)
1373 DECLARE_LMBCS_DATA(3)
1374 DECLARE_LMBCS_DATA(4)
1375 DECLARE_LMBCS_DATA(5)
1376 DECLARE_LMBCS_DATA(6)
1377 DECLARE_LMBCS_DATA(8)
1378 DECLARE_LMBCS_DATA(11)
1379 DECLARE_LMBCS_DATA(16)
1380 DECLARE_LMBCS_DATA(17)
1381 DECLARE_LMBCS_DATA(18)
1382 DECLARE_LMBCS_DATA(19)
1386 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */