]> git.saurik.com Git - apple/icu.git/blob - icuSources/common/rbbi.cpp
ICU-59117.0.1.tar.gz
[apple/icu.git] / icuSources / common / rbbi.cpp
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 ***************************************************************************
5 * Copyright (C) 1999-2016 International Business Machines Corporation
6 * and others. All rights reserved.
7 ***************************************************************************
8 */
9 //
10 // file: rbbi.c Contains the implementation of the rule based break iterator
11 // runtime engine and the API implementation for
12 // class RuleBasedBreakIterator
13 //
14
15 #include "utypeinfo.h" // for 'typeid' to work
16
17 #include "unicode/utypes.h"
18
19 #if !UCONFIG_NO_BREAK_ITERATION
20
21 #include "unicode/rbbi.h"
22 #include "unicode/schriter.h"
23 #include "unicode/uchriter.h"
24 #include "unicode/udata.h"
25 #include "unicode/uclean.h"
26 #include "rbbidata.h"
27 #include "rbbirb.h"
28 #include "cmemory.h"
29 #include "cstring.h"
30 #include "umutex.h"
31 #include "ucln_cmn.h"
32 #include "brkeng.h"
33
34 #include "uassert.h"
35 #include "uvector.h"
36
37 // if U_LOCAL_SERVICE_HOOK is defined, then localsvc.cpp is expected to be included.
38 #if U_LOCAL_SERVICE_HOOK
39 #include "localsvc.h"
40 #endif
41
42 #ifdef RBBI_DEBUG
43 static UBool fTrace = FALSE;
44 #endif
45
46 U_NAMESPACE_BEGIN
47
48 // The state number of the starting state
49 #define START_STATE 1
50
51 // The state-transition value indicating "stop"
52 #define STOP_STATE 0
53
54
55 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator)
56
57
58 //=======================================================================
59 // constructors
60 //=======================================================================
61
62 /**
63 * Constructs a RuleBasedBreakIterator that uses the already-created
64 * tables object that is passed in as a parameter.
65 */
66 RuleBasedBreakIterator::RuleBasedBreakIterator(RBBIDataHeader* data, UErrorCode &status)
67 {
68 init();
69 fData = new RBBIDataWrapper(data, status); // status checked in constructor
70 if (U_FAILURE(status)) {return;}
71 if(fData == 0) {
72 status = U_MEMORY_ALLOCATION_ERROR;
73 return;
74 }
75 }
76
77 /**
78 * Same as above but does not adopt memory
79 * Open-source ICU eliminated this method in #12071, but Apple code needs it, so restore it.
80 */
81 RuleBasedBreakIterator::RuleBasedBreakIterator(const RBBIDataHeader* data, enum EDontAdopt, UErrorCode &status)
82 {
83 init();
84 fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status); // status checked in constructor
85 if (U_FAILURE(status)) {return;}
86 if(fData == 0) {
87 status = U_MEMORY_ALLOCATION_ERROR;
88 return;
89 }
90 }
91
92
93 //
94 // Construct from precompiled binary rules (tables). This constructor is public API,
95 // taking the rules as a (const uint8_t *) to match the type produced by getBinaryRules().
96 //
97 RuleBasedBreakIterator::RuleBasedBreakIterator(const uint8_t *compiledRules,
98 uint32_t ruleLength,
99 UErrorCode &status) {
100 init();
101 if (U_FAILURE(status)) {
102 return;
103 }
104 if (compiledRules == NULL || ruleLength < sizeof(RBBIDataHeader)) {
105 status = U_ILLEGAL_ARGUMENT_ERROR;
106 return;
107 }
108 const RBBIDataHeader *data = (const RBBIDataHeader *)compiledRules;
109 if (data->fLength > ruleLength) {
110 status = U_ILLEGAL_ARGUMENT_ERROR;
111 return;
112 }
113 fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status);
114 if (U_FAILURE(status)) {return;}
115 if(fData == 0) {
116 status = U_MEMORY_ALLOCATION_ERROR;
117 return;
118 }
119 }
120
121
122 //-------------------------------------------------------------------------------
123 //
124 // Constructor from a UDataMemory handle to precompiled break rules
125 // stored in an ICU data file.
126 //
127 //-------------------------------------------------------------------------------
128 RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UErrorCode &status)
129 {
130 init();
131 fData = new RBBIDataWrapper(udm, status); // status checked in constructor
132 if (U_FAILURE(status)) {return;}
133 if(fData == 0) {
134 status = U_MEMORY_ALLOCATION_ERROR;
135 return;
136 }
137 }
138
139
140
141 //-------------------------------------------------------------------------------
142 //
143 // Constructor from a set of rules supplied as a string.
144 //
145 //-------------------------------------------------------------------------------
146 RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString &rules,
147 UParseError &parseError,
148 UErrorCode &status)
149 {
150 init();
151 if (U_FAILURE(status)) {return;}
152 RuleBasedBreakIterator *bi = (RuleBasedBreakIterator *)
153 RBBIRuleBuilder::createRuleBasedBreakIterator(rules, &parseError, status);
154 // Note: This is a bit awkward. The RBBI ruleBuilder has a factory method that
155 // creates and returns a complete RBBI. From here, in a constructor, we
156 // can't just return the object created by the builder factory, hence
157 // the assignment of the factory created object to "this".
158 if (U_SUCCESS(status)) {
159 *this = *bi;
160 delete bi;
161 }
162 }
163
164
165 //-------------------------------------------------------------------------------
166 //
167 // Default Constructor. Create an empty shell that can be set up later.
168 // Used when creating a RuleBasedBreakIterator from a set
169 // of rules.
170 //-------------------------------------------------------------------------------
171 RuleBasedBreakIterator::RuleBasedBreakIterator() {
172 init();
173 }
174
175
176 //-------------------------------------------------------------------------------
177 //
178 // Copy constructor. Will produce a break iterator with the same behavior,
179 // and which iterates over the same text, as the one passed in.
180 //
181 //-------------------------------------------------------------------------------
182 RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& other)
183 : BreakIterator(other)
184 {
185 this->init();
186 *this = other;
187 }
188
189
190 /**
191 * Destructor
192 */
193 RuleBasedBreakIterator::~RuleBasedBreakIterator() {
194 if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
195 // fCharIter was adopted from the outside.
196 delete fCharIter;
197 }
198 fCharIter = NULL;
199 delete fSCharIter;
200 fCharIter = NULL;
201 delete fDCharIter;
202 fDCharIter = NULL;
203
204 utext_close(fText);
205
206 if (fData != NULL) {
207 fData->removeReference();
208 fData = NULL;
209 }
210 if (fCachedBreakPositions) {
211 uprv_free(fCachedBreakPositions);
212 fCachedBreakPositions = NULL;
213 }
214 if (fLanguageBreakEngines) {
215 delete fLanguageBreakEngines;
216 fLanguageBreakEngines = NULL;
217 }
218 if (fUnhandledBreakEngine) {
219 delete fUnhandledBreakEngine;
220 fUnhandledBreakEngine = NULL;
221 }
222 }
223
224 /**
225 * Assignment operator. Sets this iterator to have the same behavior,
226 * and iterate over the same text, as the one passed in.
227 */
228 RuleBasedBreakIterator&
229 RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator& that) {
230 if (this == &that) {
231 return *this;
232 }
233 fKeepAll = that.fKeepAll;
234 reset(); // Delete break cache information
235 fBreakType = that.fBreakType;
236 if (fLanguageBreakEngines != NULL) {
237 delete fLanguageBreakEngines;
238 fLanguageBreakEngines = NULL; // Just rebuild for now
239 }
240 // TODO: clone fLanguageBreakEngines from "that"
241 UErrorCode status = U_ZERO_ERROR;
242 fText = utext_clone(fText, that.fText, FALSE, TRUE, &status);
243
244 if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
245 delete fCharIter;
246 }
247 fCharIter = NULL;
248
249 if (that.fCharIter != NULL ) {
250 // This is a little bit tricky - it will intially appear that
251 // this->fCharIter is adopted, even if that->fCharIter was
252 // not adopted. That's ok.
253 fCharIter = that.fCharIter->clone();
254 }
255
256 if (fData != NULL) {
257 fData->removeReference();
258 fData = NULL;
259 }
260 if (that.fData != NULL) {
261 fData = that.fData->addReference();
262 }
263
264 return *this;
265 }
266
267
268
269 //-----------------------------------------------------------------------------
270 //
271 // init() Shared initialization routine. Used by all the constructors.
272 // Initializes all fields, leaving the object in a consistent state.
273 //
274 //-----------------------------------------------------------------------------
275 void RuleBasedBreakIterator::init() {
276 UErrorCode status = U_ZERO_ERROR;
277 fText = utext_openUChars(NULL, NULL, 0, &status);
278 fCharIter = NULL;
279 fSCharIter = NULL;
280 fDCharIter = NULL;
281 fData = NULL;
282 fLastRuleStatusIndex = 0;
283 fLastStatusIndexValid = TRUE;
284 fDictionaryCharCount = 0;
285 fBreakType = UBRK_WORD; // Defaulting BreakType to word gives reasonable
286 // dictionary behavior for Break Iterators that are
287 // built from rules. Even better would be the ability to
288 // declare the type in the rules.
289
290 fCachedBreakPositions = NULL;
291 fLanguageBreakEngines = NULL;
292 fUnhandledBreakEngine = NULL;
293 fNumCachedBreakPositions = 0;
294 fPositionInCache = 0;
295
296 #ifdef RBBI_DEBUG
297 static UBool debugInitDone = FALSE;
298 if (debugInitDone == FALSE) {
299 char *debugEnv = getenv("U_RBBIDEBUG");
300 if (debugEnv && uprv_strstr(debugEnv, "trace")) {
301 fTrace = TRUE;
302 }
303 debugInitDone = TRUE;
304 }
305 #endif
306 }
307
308
309
310 //-----------------------------------------------------------------------------
311 //
312 // clone - Returns a newly-constructed RuleBasedBreakIterator with the same
313 // behavior, and iterating over the same text, as this one.
314 // Virtual function: does the right thing with subclasses.
315 //
316 //-----------------------------------------------------------------------------
317 BreakIterator*
318 RuleBasedBreakIterator::clone(void) const {
319 return new RuleBasedBreakIterator(*this);
320 }
321
322 /**
323 * Equality operator. Returns TRUE if both BreakIterators are of the
324 * same class, have the same behavior, and iterate over the same text.
325 */
326 UBool
327 RuleBasedBreakIterator::operator==(const BreakIterator& that) const {
328 if (typeid(*this) != typeid(that)) {
329 return FALSE;
330 }
331
332 const RuleBasedBreakIterator& that2 = (const RuleBasedBreakIterator&) that;
333 if (that2.fKeepAll != fKeepAll) {
334 return FALSE;
335 }
336
337 if (!utext_equals(fText, that2.fText)) {
338 // The two break iterators are operating on different text,
339 // or have a different interation position.
340 return FALSE;
341 };
342
343 // TODO: need a check for when in a dictionary region at different offsets.
344
345 if (that2.fData == fData ||
346 (fData != NULL && that2.fData != NULL && *that2.fData == *fData)) {
347 // The two break iterators are using the same rules.
348 return TRUE;
349 }
350 return FALSE;
351 }
352
353 /**
354 * Compute a hash code for this BreakIterator
355 * @return A hash code
356 */
357 int32_t
358 RuleBasedBreakIterator::hashCode(void) const {
359 int32_t hash = 0;
360 if (fData != NULL) {
361 hash = fData->hashCode();
362 }
363 return hash;
364 }
365
366
367 void RuleBasedBreakIterator::setText(UText *ut, UErrorCode &status) {
368 if (U_FAILURE(status)) {
369 return;
370 }
371 reset();
372 fText = utext_clone(fText, ut, FALSE, TRUE, &status);
373
374 // Set up a dummy CharacterIterator to be returned if anyone
375 // calls getText(). With input from UText, there is no reasonable
376 // way to return a characterIterator over the actual input text.
377 // Return one over an empty string instead - this is the closest
378 // we can come to signaling a failure.
379 // (GetText() is obsolete, this failure is sort of OK)
380 if (fDCharIter == NULL) {
381 static const UChar c = 0;
382 fDCharIter = new UCharCharacterIterator(&c, 0);
383 if (fDCharIter == NULL) {
384 status = U_MEMORY_ALLOCATION_ERROR;
385 return;
386 }
387 }
388
389 if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
390 // existing fCharIter was adopted from the outside. Delete it now.
391 delete fCharIter;
392 }
393 fCharIter = fDCharIter;
394
395 this->first();
396 }
397
398
399 UText *RuleBasedBreakIterator::getUText(UText *fillIn, UErrorCode &status) const {
400 UText *result = utext_clone(fillIn, fText, FALSE, TRUE, &status);
401 return result;
402 }
403
404
405
406 /**
407 * Returns the description used to create this iterator
408 */
409 const UnicodeString&
410 RuleBasedBreakIterator::getRules() const {
411 if (fData != NULL) {
412 return fData->getRuleSourceString();
413 } else {
414 static const UnicodeString *s;
415 if (s == NULL) {
416 // TODO: something more elegant here.
417 // perhaps API should return the string by value.
418 // Note: thread unsafe init & leak are semi-ok, better than
419 // what was before. Sould be cleaned up, though.
420 s = new UnicodeString;
421 }
422 return *s;
423 }
424 }
425
426 //=======================================================================
427 // BreakIterator overrides
428 //=======================================================================
429
430 /**
431 * Return a CharacterIterator over the text being analyzed.
432 */
433 CharacterIterator&
434 RuleBasedBreakIterator::getText() const {
435 return *fCharIter;
436 }
437
438 /**
439 * Set the iterator to analyze a new piece of text. This function resets
440 * the current iteration position to the beginning of the text.
441 * @param newText An iterator over the text to analyze.
442 */
443 void
444 RuleBasedBreakIterator::adoptText(CharacterIterator* newText) {
445 // If we are holding a CharacterIterator adopted from a
446 // previous call to this function, delete it now.
447 if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
448 delete fCharIter;
449 }
450
451 fCharIter = newText;
452 UErrorCode status = U_ZERO_ERROR;
453 reset();
454 if (newText==NULL || newText->startIndex() != 0) {
455 // startIndex !=0 wants to be an error, but there's no way to report it.
456 // Make the iterator text be an empty string.
457 fText = utext_openUChars(fText, NULL, 0, &status);
458 } else {
459 fText = utext_openCharacterIterator(fText, newText, &status);
460 }
461 this->first();
462 }
463
464 /**
465 * Set the iterator to analyze a new piece of text. This function resets
466 * the current iteration position to the beginning of the text.
467 * @param newText An iterator over the text to analyze.
468 */
469 void
470 RuleBasedBreakIterator::setText(const UnicodeString& newText) {
471 UErrorCode status = U_ZERO_ERROR;
472 reset();
473 fText = utext_openConstUnicodeString(fText, &newText, &status);
474
475 // Set up a character iterator on the string.
476 // Needed in case someone calls getText().
477 // Can not, unfortunately, do this lazily on the (probably never)
478 // call to getText(), because getText is const.
479 if (fSCharIter == NULL) {
480 fSCharIter = new StringCharacterIterator(newText);
481 } else {
482 fSCharIter->setText(newText);
483 }
484
485 if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
486 // old fCharIter was adopted from the outside. Delete it.
487 delete fCharIter;
488 }
489 fCharIter = fSCharIter;
490
491 this->first();
492 }
493
494
495 /**
496 * Provide a new UText for the input text. Must reference text with contents identical
497 * to the original.
498 * Intended for use with text data originating in Java (garbage collected) environments
499 * where the data may be moved in memory at arbitrary times.
500 */
501 RuleBasedBreakIterator &RuleBasedBreakIterator::refreshInputText(UText *input, UErrorCode &status) {
502 if (U_FAILURE(status)) {
503 return *this;
504 }
505 if (input == NULL) {
506 status = U_ILLEGAL_ARGUMENT_ERROR;
507 return *this;
508 }
509 int64_t pos = utext_getNativeIndex(fText);
510 // Shallow read-only clone of the new UText into the existing input UText
511 fText = utext_clone(fText, input, FALSE, TRUE, &status);
512 if (U_FAILURE(status)) {
513 return *this;
514 }
515 utext_setNativeIndex(fText, pos);
516 if (utext_getNativeIndex(fText) != pos) {
517 // Sanity check. The new input utext is supposed to have the exact same
518 // contents as the old. If we can't set to the same position, it doesn't.
519 // The contents underlying the old utext might be invalid at this point,
520 // so it's not safe to check directly.
521 status = U_ILLEGAL_ARGUMENT_ERROR;
522 }
523 return *this;
524 }
525
526
527 /**
528 * Sets the current iteration position to the beginning of the text, position zero.
529 * @return The new iterator position, which is zero.
530 */
531 int32_t RuleBasedBreakIterator::first(void) {
532 reset();
533 fLastRuleStatusIndex = 0;
534 fLastStatusIndexValid = TRUE;
535 //if (fText == NULL)
536 // return BreakIterator::DONE;
537
538 utext_setNativeIndex(fText, 0);
539 return 0;
540 }
541
542 /**
543 * Sets the current iteration position to the end of the text.
544 * @return The text's past-the-end offset.
545 */
546 int32_t RuleBasedBreakIterator::last(void) {
547 reset();
548 if (fText == NULL) {
549 fLastRuleStatusIndex = 0;
550 fLastStatusIndexValid = TRUE;
551 return BreakIterator::DONE;
552 }
553
554 fLastStatusIndexValid = FALSE;
555 int32_t pos = (int32_t)utext_nativeLength(fText);
556 utext_setNativeIndex(fText, pos);
557 return pos;
558 }
559
560 /**
561 * Advances the iterator either forward or backward the specified number of steps.
562 * Negative values move backward, and positive values move forward. This is
563 * equivalent to repeatedly calling next() or previous().
564 * @param n The number of steps to move. The sign indicates the direction
565 * (negative is backwards, and positive is forwards).
566 * @return The character offset of the boundary position n boundaries away from
567 * the current one.
568 */
569 int32_t RuleBasedBreakIterator::next(int32_t n) {
570 int32_t result = current();
571 while (n > 0) {
572 result = next();
573 --n;
574 }
575 while (n < 0) {
576 result = previous();
577 ++n;
578 }
579 return result;
580 }
581
582 /**
583 * Advances the iterator to the next boundary position.
584 * @return The position of the first boundary after this one.
585 */
586 int32_t RuleBasedBreakIterator::next(void) {
587 // if we have cached break positions and we're still in the range
588 // covered by them, just move one step forward in the cache
589 if (fCachedBreakPositions != NULL) {
590 if (fPositionInCache < fNumCachedBreakPositions - 1) {
591 ++fPositionInCache;
592 int32_t pos = fCachedBreakPositions[fPositionInCache];
593 utext_setNativeIndex(fText, pos);
594 return pos;
595 }
596 else {
597 reset();
598 }
599 }
600
601 int32_t startPos = current();
602 fDictionaryCharCount = 0;
603 int32_t result = handleNext(fData->fForwardTable);
604 while (fKeepAll) {
605 UChar32 prevChr = utext_char32At(fText, result-1);
606 UChar32 currChr = utext_char32At(fText, result);
607 if (currChr == U_SENTINEL || prevChr == U_SENTINEL || !u_isalpha(currChr) || !u_isalpha(prevChr)) {
608 break;
609 }
610 int32_t nextResult = handleNext(fData->fForwardTable);
611 if (nextResult <= result) {
612 break;
613 }
614 result = nextResult;
615 }
616 if (fDictionaryCharCount > 0) {
617 result = checkDictionary(startPos, result, FALSE);
618 }
619 return result;
620 }
621
622 /**
623 * Advances the iterator backwards, to the last boundary preceding this one.
624 * @return The position of the last boundary position preceding this one.
625 */
626 int32_t RuleBasedBreakIterator::previous(void) {
627 int32_t result;
628 int32_t startPos;
629
630 // if we have cached break positions and we're still in the range
631 // covered by them, just move one step backward in the cache
632 if (fCachedBreakPositions != NULL) {
633 if (fPositionInCache > 0) {
634 --fPositionInCache;
635 // If we're at the beginning of the cache, need to reevaluate the
636 // rule status
637 if (fPositionInCache <= 0) {
638 fLastStatusIndexValid = FALSE;
639 }
640 int32_t pos = fCachedBreakPositions[fPositionInCache];
641 utext_setNativeIndex(fText, pos);
642 return pos;
643 }
644 else {
645 reset();
646 }
647 }
648
649 // if we're already sitting at the beginning of the text, return DONE
650 if (fText == NULL || (startPos = current()) == 0) {
651 fLastRuleStatusIndex = 0;
652 fLastStatusIndexValid = TRUE;
653 return BreakIterator::DONE;
654 }
655
656 if (fData->fSafeRevTable != NULL || fData->fSafeFwdTable != NULL) {
657 result = handlePrevious(fData->fReverseTable);
658 while (fKeepAll) {
659 UChar32 prevChr = utext_char32At(fText, result-1);
660 UChar32 currChr = utext_char32At(fText, result);
661 if (currChr == U_SENTINEL || prevChr == U_SENTINEL || !u_isalpha(currChr) || !u_isalpha(prevChr)) {
662 break;
663 }
664 int32_t prevResult = handlePrevious(fData->fReverseTable);
665 if (prevResult >= result) {
666 break;
667 }
668 result = prevResult;
669 }
670 if (fDictionaryCharCount > 0) {
671 result = checkDictionary(result, startPos, TRUE);
672 }
673 return result;
674 }
675
676 // old rule syntax
677 // set things up. handlePrevious() will back us up to some valid
678 // break position before the current position (we back our internal
679 // iterator up one step to prevent handlePrevious() from returning
680 // the current position), but not necessarily the last one before
681 // where we started
682
683 int32_t start = current();
684
685 (void)UTEXT_PREVIOUS32(fText);
686 int32_t lastResult = handlePrevious(fData->fReverseTable);
687 if (lastResult == UBRK_DONE) {
688 lastResult = 0;
689 utext_setNativeIndex(fText, 0);
690 }
691 result = lastResult;
692 int32_t lastTag = 0;
693 UBool breakTagValid = FALSE;
694
695 // iterate forward from the known break position until we pass our
696 // starting point. The last break position before the starting
697 // point is our return value
698
699 for (;;) {
700 result = next();
701 if (result == BreakIterator::DONE || result >= start) {
702 break;
703 }
704 lastResult = result;
705 lastTag = fLastRuleStatusIndex;
706 breakTagValid = TRUE;
707 }
708
709 // fLastBreakTag wants to have the value for section of text preceding
710 // the result position that we are to return (in lastResult.) If
711 // the backwards rules overshot and the above loop had to do two or more
712 // next()s to move up to the desired return position, we will have a valid
713 // tag value. But, if handlePrevious() took us to exactly the correct result position,
714 // we wont have a tag value for that position, which is only set by handleNext().
715
716 // Set the current iteration position to be the last break position
717 // before where we started, and then return that value.
718 utext_setNativeIndex(fText, lastResult);
719 fLastRuleStatusIndex = lastTag; // for use by getRuleStatus()
720 fLastStatusIndexValid = breakTagValid;
721
722 // No need to check the dictionary; it will have been handled by
723 // next()
724
725 return lastResult;
726 }
727
728 /**
729 * Sets the iterator to refer to the first boundary position following
730 * the specified position.
731 * @offset The position from which to begin searching for a break position.
732 * @return The position of the first break after the current position.
733 */
734 int32_t RuleBasedBreakIterator::following(int32_t offset) {
735 // if the offset passed in is already past the end of the text,
736 // just return DONE; if it's before the beginning, return the
737 // text's starting offset
738 if (fText == NULL || offset >= utext_nativeLength(fText)) {
739 last();
740 return next();
741 }
742 else if (offset < 0) {
743 return first();
744 }
745
746 // Move requested offset to a code point start. It might be on a trail surrogate,
747 // or on a trail byte if the input is UTF-8.
748 utext_setNativeIndex(fText, offset);
749 offset = (int32_t)utext_getNativeIndex(fText);
750
751 // if we have cached break positions and offset is in the range
752 // covered by them, use them
753 // TODO: could use binary search
754 // TODO: what if offset is outside range, but break is not?
755 if (fCachedBreakPositions != NULL) {
756 if (offset >= fCachedBreakPositions[0]
757 && offset < fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
758 fPositionInCache = 0;
759 // We are guaranteed not to leave the array due to range test above
760 while (offset >= fCachedBreakPositions[fPositionInCache]) {
761 ++fPositionInCache;
762 }
763 int32_t pos = fCachedBreakPositions[fPositionInCache];
764 utext_setNativeIndex(fText, pos);
765 return pos;
766 }
767 else {
768 reset();
769 }
770 }
771
772 // Set our internal iteration position (temporarily)
773 // to the position passed in. If this is the _beginning_ position,
774 // then we can just use next() to get our return value
775
776 int32_t result = 0;
777
778 if (fData->fSafeRevTable != NULL) {
779 // new rule syntax
780 utext_setNativeIndex(fText, offset);
781 // move forward one codepoint to prepare for moving back to a
782 // safe point.
783 // this handles offset being between a supplementary character
784 // TODO: is this still needed, with move to code point boundary handled above?
785 (void)UTEXT_NEXT32(fText);
786 // handlePrevious will move most of the time to < 1 boundary away
787 handlePrevious(fData->fSafeRevTable);
788 int32_t result = next();
789 while (result <= offset) {
790 result = next();
791 }
792 return result;
793 }
794 if (fData->fSafeFwdTable != NULL) {
795 // backup plan if forward safe table is not available
796 utext_setNativeIndex(fText, offset);
797 (void)UTEXT_PREVIOUS32(fText);
798 // handle next will give result >= offset
799 handleNext(fData->fSafeFwdTable);
800 // previous will give result 0 or 1 boundary away from offset,
801 // most of the time
802 // we have to
803 int32_t oldresult = previous();
804 while (oldresult > offset) {
805 int32_t result = previous();
806 if (result <= offset) {
807 return oldresult;
808 }
809 oldresult = result;
810 }
811 int32_t result = next();
812 if (result <= offset) {
813 return next();
814 }
815 return result;
816 }
817 // otherwise, we have to sync up first. Use handlePrevious() to back
818 // up to a known break position before the specified position (if
819 // we can determine that the specified position is a break position,
820 // we don't back up at all). This may or may not be the last break
821 // position at or before our starting position. Advance forward
822 // from here until we've passed the starting position. The position
823 // we stop on will be the first break position after the specified one.
824 // old rule syntax
825
826 utext_setNativeIndex(fText, offset);
827 if (offset==0 ||
828 (offset==1 && utext_getNativeIndex(fText)==0)) {
829 return next();
830 }
831 result = previous();
832
833 while (result != BreakIterator::DONE && result <= offset) {
834 result = next();
835 }
836
837 return result;
838 }
839
840 /**
841 * Sets the iterator to refer to the last boundary position before the
842 * specified position.
843 * @offset The position to begin searching for a break from.
844 * @return The position of the last boundary before the starting position.
845 */
846 int32_t RuleBasedBreakIterator::preceding(int32_t offset) {
847 // if the offset passed in is already past the end of the text,
848 // just return DONE; if it's before the beginning, return the
849 // text's starting offset
850 if (fText == NULL || offset > utext_nativeLength(fText)) {
851 return last();
852 }
853 else if (offset < 0) {
854 return first();
855 }
856
857 // Move requested offset to a code point start. It might be on a trail surrogate,
858 // or on a trail byte if the input is UTF-8.
859 utext_setNativeIndex(fText, offset);
860 offset = (int32_t)utext_getNativeIndex(fText);
861
862 // if we have cached break positions and offset is in the range
863 // covered by them, use them
864 if (fCachedBreakPositions != NULL) {
865 // TODO: binary search?
866 // TODO: What if offset is outside range, but break is not?
867 if (offset > fCachedBreakPositions[0]
868 && offset <= fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
869 fPositionInCache = 0;
870 while (fPositionInCache < fNumCachedBreakPositions
871 && offset > fCachedBreakPositions[fPositionInCache])
872 ++fPositionInCache;
873 --fPositionInCache;
874 // If we're at the beginning of the cache, need to reevaluate the
875 // rule status
876 if (fPositionInCache <= 0) {
877 fLastStatusIndexValid = FALSE;
878 }
879 utext_setNativeIndex(fText, fCachedBreakPositions[fPositionInCache]);
880 return fCachedBreakPositions[fPositionInCache];
881 }
882 else {
883 reset();
884 }
885 }
886
887 // if we start by updating the current iteration position to the
888 // position specified by the caller, we can just use previous()
889 // to carry out this operation
890
891 if (fData->fSafeFwdTable != NULL) {
892 // new rule syntax
893 utext_setNativeIndex(fText, offset);
894 int32_t newOffset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
895 if (newOffset != offset) {
896 // Will come here if specified offset was not a code point boundary AND
897 // the underlying implmentation is using UText, which snaps any non-code-point-boundary
898 // indices to the containing code point.
899 // For breakitereator::preceding only, these non-code-point indices need to be moved
900 // up to refer to the following codepoint.
901 (void)UTEXT_NEXT32(fText);
902 offset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
903 }
904
905 // TODO: (synwee) would it be better to just check for being in the middle of a surrogate pair,
906 // rather than adjusting the position unconditionally?
907 // (Change would interact with safe rules.)
908 // TODO: change RBBI behavior for off-boundary indices to match that of UText?
909 // affects only preceding(), seems cleaner, but is slightly different.
910 (void)UTEXT_PREVIOUS32(fText);
911 handleNext(fData->fSafeFwdTable);
912 int32_t result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
913 while (result >= offset) {
914 result = previous();
915 }
916 return result;
917 }
918 if (fData->fSafeRevTable != NULL) {
919 // backup plan if forward safe table is not available
920 // TODO: check whether this path can be discarded
921 // It's probably OK to say that rules must supply both safe tables
922 // if they use safe tables at all. We have certainly never described
923 // to anyone how to work with just one safe table.
924 utext_setNativeIndex(fText, offset);
925 (void)UTEXT_NEXT32(fText);
926
927 // handle previous will give result <= offset
928 handlePrevious(fData->fSafeRevTable);
929
930 // next will give result 0 or 1 boundary away from offset,
931 // most of the time
932 // we have to
933 int32_t oldresult = next();
934 while (oldresult < offset) {
935 int32_t result = next();
936 if (result >= offset) {
937 return oldresult;
938 }
939 oldresult = result;
940 }
941 int32_t result = previous();
942 if (result >= offset) {
943 return previous();
944 }
945 return result;
946 }
947
948 // old rule syntax
949 utext_setNativeIndex(fText, offset);
950 return previous();
951 }
952
953 /**
954 * Returns true if the specfied position is a boundary position. As a side
955 * effect, leaves the iterator pointing to the first boundary position at
956 * or after "offset".
957 * @param offset the offset to check.
958 * @return True if "offset" is a boundary position.
959 */
960 UBool RuleBasedBreakIterator::isBoundary(int32_t offset) {
961 // the beginning index of the iterator is always a boundary position by definition
962 if (offset == 0) {
963 first(); // For side effects on current position, tag values.
964 return TRUE;
965 }
966
967 if (offset == (int32_t)utext_nativeLength(fText)) {
968 last(); // For side effects on current position, tag values.
969 return TRUE;
970 }
971
972 // out-of-range indexes are never boundary positions
973 if (offset < 0) {
974 first(); // For side effects on current position, tag values.
975 return FALSE;
976 }
977
978 if (offset > utext_nativeLength(fText)) {
979 last(); // For side effects on current position, tag values.
980 return FALSE;
981 }
982
983 // otherwise, we can use following() on the position before the specified
984 // one and return true if the position we get back is the one the user
985 // specified
986 utext_previous32From(fText, offset);
987 int32_t backOne = (int32_t)UTEXT_GETNATIVEINDEX(fText);
988 UBool result = following(backOne) == offset;
989 return result;
990 }
991
992 /**
993 * Returns the current iteration position.
994 * @return The current iteration position.
995 */
996 int32_t RuleBasedBreakIterator::current(void) const {
997 int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText);
998 return pos;
999 }
1000
1001 //=======================================================================
1002 // implementation
1003 //=======================================================================
1004
1005 //
1006 // RBBIRunMode - the state machine runs an extra iteration at the beginning and end
1007 // of user text. A variable with this enum type keeps track of where we
1008 // are. The state machine only fetches user input while in the RUN mode.
1009 //
1010 enum RBBIRunMode {
1011 RBBI_START, // state machine processing is before first char of input
1012 RBBI_RUN, // state machine processing is in the user text
1013 RBBI_END // state machine processing is after end of user text.
1014 };
1015
1016
1017 // Map from look-ahead break states (corresponds to rules) to boundary positions.
1018 // Allows multiple lookahead break rules to be in flight at the same time.
1019 //
1020 // This is a temporary approach for ICU 57. A better fix is to make the look-ahead numbers
1021 // in the state table be sequential, then we can just index an array. And the
1022 // table could also tell us in advance how big that array needs to be.
1023 //
1024 // Before ICU 57 there was just a single simple variable for a look-ahead match that
1025 // was in progress. Two rules at once did not work.
1026
1027 static const int32_t kMaxLookaheads = 8;
1028 struct LookAheadResults {
1029 int32_t fUsedSlotLimit;
1030 int32_t fPositions[8];
1031 int16_t fKeys[8];
1032
1033 LookAheadResults() : fUsedSlotLimit(0), fPositions(), fKeys() {};
1034
1035 int32_t getPosition(int16_t key) {
1036 for (int32_t i=0; i<fUsedSlotLimit; ++i) {
1037 if (fKeys[i] == key) {
1038 return fPositions[i];
1039 }
1040 }
1041 U_ASSERT(FALSE);
1042 return -1;
1043 }
1044
1045 void setPosition(int16_t key, int32_t position) {
1046 int32_t i;
1047 for (i=0; i<fUsedSlotLimit; ++i) {
1048 if (fKeys[i] == key) {
1049 fPositions[i] = position;
1050 return;
1051 }
1052 }
1053 if (i >= kMaxLookaheads) {
1054 U_ASSERT(FALSE);
1055 i = kMaxLookaheads - 1;
1056 }
1057 fKeys[i] = key;
1058 fPositions[i] = position;
1059 U_ASSERT(fUsedSlotLimit == i);
1060 fUsedSlotLimit = i + 1;
1061 }
1062 };
1063
1064
1065 //-----------------------------------------------------------------------------------
1066 //
1067 // handleNext(stateTable)
1068 // This method is the actual implementation of the rbbi next() method.
1069 // This method initializes the state machine to state 1
1070 // and advances through the text character by character until we reach the end
1071 // of the text or the state machine transitions to state 0. We update our return
1072 // value every time the state machine passes through an accepting state.
1073 //
1074 //-----------------------------------------------------------------------------------
1075 int32_t RuleBasedBreakIterator::handleNext(const RBBIStateTable *statetable) {
1076 int32_t state;
1077 uint16_t category = 0;
1078 RBBIRunMode mode;
1079
1080 RBBIStateTableRow *row;
1081 UChar32 c;
1082 LookAheadResults lookAheadMatches;
1083 int32_t result = 0;
1084 int32_t initialPosition = 0;
1085 const char *tableData = statetable->fTableData;
1086 uint32_t tableRowLen = statetable->fRowLen;
1087
1088 #ifdef RBBI_DEBUG
1089 if (fTrace) {
1090 RBBIDebugPuts("Handle Next pos char state category");
1091 }
1092 #endif
1093
1094 // No matter what, handleNext alway correctly sets the break tag value.
1095 fLastStatusIndexValid = TRUE;
1096 fLastRuleStatusIndex = 0;
1097
1098 // if we're already at the end of the text, return DONE.
1099 initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1100 result = initialPosition;
1101 c = UTEXT_NEXT32(fText);
1102 if (fData == NULL || c==U_SENTINEL) {
1103 return BreakIterator::DONE;
1104 }
1105
1106 // Set the initial state for the state machine
1107 state = START_STATE;
1108 row = (RBBIStateTableRow *)
1109 //(statetable->fTableData + (statetable->fRowLen * state));
1110 (tableData + tableRowLen * state);
1111
1112
1113 mode = RBBI_RUN;
1114 if (statetable->fFlags & RBBI_BOF_REQUIRED) {
1115 category = 2;
1116 mode = RBBI_START;
1117 }
1118
1119
1120 // loop until we reach the end of the text or transition to state 0
1121 //
1122 for (;;) {
1123 if (c == U_SENTINEL) {
1124 // Reached end of input string.
1125 if (mode == RBBI_END) {
1126 // We have already run the loop one last time with the
1127 // character set to the psueudo {eof} value. Now it is time
1128 // to unconditionally bail out.
1129 break;
1130 }
1131 // Run the loop one last time with the fake end-of-input character category.
1132 mode = RBBI_END;
1133 category = 1;
1134 }
1135
1136 //
1137 // Get the char category. An incoming category of 1 or 2 means that
1138 // we are preset for doing the beginning or end of input, and
1139 // that we shouldn't get a category from an actual text input character.
1140 //
1141 if (mode == RBBI_RUN) {
1142 // look up the current character's character category, which tells us
1143 // which column in the state table to look at.
1144 // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned,
1145 // not the size of the character going in, which is a UChar32.
1146 //
1147 UTRIE_GET16(&fData->fTrie, c, category);
1148
1149 // Check the dictionary bit in the character's category.
1150 // Counter is only used by dictionary based iterators (subclasses).
1151 // Chars that need to be handled by a dictionary have a flag bit set
1152 // in their category values.
1153 //
1154 if ((category & 0x4000) != 0) {
1155 fDictionaryCharCount++;
1156 // And off the dictionary flag bit.
1157 category &= ~0x4000;
1158 }
1159 }
1160
1161 #ifdef RBBI_DEBUG
1162 if (fTrace) {
1163 RBBIDebugPrintf(" %4lld ", utext_getNativeIndex(fText));
1164 if (0x20<=c && c<0x7f) {
1165 RBBIDebugPrintf("\"%c\" ", c);
1166 } else {
1167 RBBIDebugPrintf("%5x ", c);
1168 }
1169 RBBIDebugPrintf("%3d %3d\n", state, category);
1170 }
1171 #endif
1172
1173 // State Transition - move machine to its next state
1174 //
1175
1176 // Note: fNextState is defined as uint16_t[2], but we are casting
1177 // a generated RBBI table to RBBIStateTableRow and some tables
1178 // actually have more than 2 categories.
1179 U_ASSERT(category<fData->fHeader->fCatCount);
1180 state = row->fNextState[category]; /*Not accessing beyond memory*/
1181 row = (RBBIStateTableRow *)
1182 // (statetable->fTableData + (statetable->fRowLen * state));
1183 (tableData + tableRowLen * state);
1184
1185
1186 if (row->fAccepting == -1) {
1187 // Match found, common case.
1188 if (mode != RBBI_START) {
1189 result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1190 }
1191 fLastRuleStatusIndex = row->fTagIdx; // Remember the break status (tag) values.
1192 }
1193
1194 int16_t completedRule = row->fAccepting;
1195 if (completedRule > 0) {
1196 // Lookahead match is completed.
1197 int32_t lookaheadResult = lookAheadMatches.getPosition(completedRule);
1198 if (lookaheadResult >= 0) {
1199 fLastRuleStatusIndex = row->fTagIdx;
1200 UTEXT_SETNATIVEINDEX(fText, lookaheadResult);
1201 return lookaheadResult;
1202 }
1203 }
1204 int16_t rule = row->fLookAhead;
1205 if (rule != 0) {
1206 // At the position of a '/' in a look-ahead match. Record it.
1207 int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1208 lookAheadMatches.setPosition(rule, pos);
1209 }
1210
1211 if (state == STOP_STATE) {
1212 // This is the normal exit from the lookup state machine.
1213 // We have advanced through the string until it is certain that no
1214 // longer match is possible, no matter what characters follow.
1215 break;
1216 }
1217
1218 // Advance to the next character.
1219 // If this is a beginning-of-input loop iteration, don't advance
1220 // the input position. The next iteration will be processing the
1221 // first real input character.
1222 if (mode == RBBI_RUN) {
1223 c = UTEXT_NEXT32(fText);
1224 } else {
1225 if (mode == RBBI_START) {
1226 mode = RBBI_RUN;
1227 }
1228 }
1229
1230
1231 }
1232
1233 // The state machine is done. Check whether it found a match...
1234
1235 // If the iterator failed to advance in the match engine, force it ahead by one.
1236 // (This really indicates a defect in the break rules. They should always match
1237 // at least one character.)
1238 if (result == initialPosition) {
1239 UTEXT_SETNATIVEINDEX(fText, initialPosition);
1240 UTEXT_NEXT32(fText);
1241 result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1242 }
1243
1244 // Leave the iterator at our result position.
1245 UTEXT_SETNATIVEINDEX(fText, result);
1246 #ifdef RBBI_DEBUG
1247 if (fTrace) {
1248 RBBIDebugPrintf("result = %d\n\n", result);
1249 }
1250 #endif
1251 return result;
1252 }
1253
1254
1255
1256 //-----------------------------------------------------------------------------------
1257 //
1258 // handlePrevious()
1259 //
1260 // Iterate backwards, according to the logic of the reverse rules.
1261 // This version handles the exact style backwards rules.
1262 //
1263 // The logic of this function is very similar to handleNext(), above.
1264 //
1265 //-----------------------------------------------------------------------------------
1266 int32_t RuleBasedBreakIterator::handlePrevious(const RBBIStateTable *statetable) {
1267 int32_t state;
1268 uint16_t category = 0;
1269 RBBIRunMode mode;
1270 RBBIStateTableRow *row;
1271 UChar32 c;
1272 LookAheadResults lookAheadMatches;
1273 int32_t result = 0;
1274 int32_t initialPosition = 0;
1275
1276 #ifdef RBBI_DEBUG
1277 if (fTrace) {
1278 RBBIDebugPuts("Handle Previous pos char state category");
1279 }
1280 #endif
1281
1282 // handlePrevious() never gets the rule status.
1283 // Flag the status as invalid; if the user ever asks for status, we will need
1284 // to back up, then re-find the break position using handleNext(), which does
1285 // get the status value.
1286 fLastStatusIndexValid = FALSE;
1287 fLastRuleStatusIndex = 0;
1288
1289 // if we're already at the start of the text, return DONE.
1290 if (fText == NULL || fData == NULL || UTEXT_GETNATIVEINDEX(fText)==0) {
1291 return BreakIterator::DONE;
1292 }
1293
1294 // Set up the starting char.
1295 initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1296 result = initialPosition;
1297 c = UTEXT_PREVIOUS32(fText);
1298
1299 // Set the initial state for the state machine
1300 state = START_STATE;
1301 row = (RBBIStateTableRow *)
1302 (statetable->fTableData + (statetable->fRowLen * state));
1303 category = 3;
1304 mode = RBBI_RUN;
1305 if (statetable->fFlags & RBBI_BOF_REQUIRED) {
1306 category = 2;
1307 mode = RBBI_START;
1308 }
1309
1310
1311 // loop until we reach the start of the text or transition to state 0
1312 //
1313 for (;;) {
1314 if (c == U_SENTINEL) {
1315 // Reached end of input string.
1316 if (mode == RBBI_END) {
1317 // We have already run the loop one last time with the
1318 // character set to the psueudo {eof} value. Now it is time
1319 // to unconditionally bail out.
1320 if (result == initialPosition) {
1321 // Ran off start, no match found.
1322 // move one index one (towards the start, since we are doing a previous())
1323 UTEXT_SETNATIVEINDEX(fText, initialPosition);
1324 (void)UTEXT_PREVIOUS32(fText); // TODO: shouldn't be necessary. We're already at beginning. Check.
1325 }
1326 break;
1327 }
1328 // Run the loop one last time with the fake end-of-input character category.
1329 mode = RBBI_END;
1330 category = 1;
1331 }
1332
1333 //
1334 // Get the char category. An incoming category of 1 or 2 means that
1335 // we are preset for doing the beginning or end of input, and
1336 // that we shouldn't get a category from an actual text input character.
1337 //
1338 if (mode == RBBI_RUN) {
1339 // look up the current character's character category, which tells us
1340 // which column in the state table to look at.
1341 // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned,
1342 // not the size of the character going in, which is a UChar32.
1343 //
1344 UTRIE_GET16(&fData->fTrie, c, category);
1345
1346 // Check the dictionary bit in the character's category.
1347 // Counter is only used by dictionary based iterators (subclasses).
1348 // Chars that need to be handled by a dictionary have a flag bit set
1349 // in their category values.
1350 //
1351 if ((category & 0x4000) != 0) {
1352 fDictionaryCharCount++;
1353 // And off the dictionary flag bit.
1354 category &= ~0x4000;
1355 }
1356 }
1357
1358 #ifdef RBBI_DEBUG
1359 if (fTrace) {
1360 RBBIDebugPrintf(" %4d ", (int32_t)utext_getNativeIndex(fText));
1361 if (0x20<=c && c<0x7f) {
1362 RBBIDebugPrintf("\"%c\" ", c);
1363 } else {
1364 RBBIDebugPrintf("%5x ", c);
1365 }
1366 RBBIDebugPrintf("%3d %3d\n", state, category);
1367 }
1368 #endif
1369
1370 // State Transition - move machine to its next state
1371 //
1372
1373 // Note: fNextState is defined as uint16_t[2], but we are casting
1374 // a generated RBBI table to RBBIStateTableRow and some tables
1375 // actually have more than 2 categories.
1376 U_ASSERT(category<fData->fHeader->fCatCount);
1377 state = row->fNextState[category]; /*Not accessing beyond memory*/
1378 row = (RBBIStateTableRow *)
1379 (statetable->fTableData + (statetable->fRowLen * state));
1380
1381 if (row->fAccepting == -1) {
1382 // Match found, common case.
1383 result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1384 }
1385
1386 int16_t completedRule = row->fAccepting;
1387 if (completedRule > 0) {
1388 // Lookahead match is completed.
1389 int32_t lookaheadResult = lookAheadMatches.getPosition(completedRule);
1390 if (lookaheadResult >= 0) {
1391 UTEXT_SETNATIVEINDEX(fText, lookaheadResult);
1392 return lookaheadResult;
1393 }
1394 }
1395 int16_t rule = row->fLookAhead;
1396 if (rule != 0) {
1397 // At the position of a '/' in a look-ahead match. Record it.
1398 int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1399 lookAheadMatches.setPosition(rule, pos);
1400 }
1401
1402 if (state == STOP_STATE) {
1403 // This is the normal exit from the lookup state machine.
1404 // We have advanced through the string until it is certain that no
1405 // longer match is possible, no matter what characters follow.
1406 break;
1407 }
1408
1409 // Move (backwards) to the next character to process.
1410 // If this is a beginning-of-input loop iteration, don't advance
1411 // the input position. The next iteration will be processing the
1412 // first real input character.
1413 if (mode == RBBI_RUN) {
1414 c = UTEXT_PREVIOUS32(fText);
1415 } else {
1416 if (mode == RBBI_START) {
1417 mode = RBBI_RUN;
1418 }
1419 }
1420 }
1421
1422 // The state machine is done. Check whether it found a match...
1423
1424 // If the iterator failed to advance in the match engine, force it ahead by one.
1425 // (This really indicates a defect in the break rules. They should always match
1426 // at least one character.)
1427 if (result == initialPosition) {
1428 UTEXT_SETNATIVEINDEX(fText, initialPosition);
1429 UTEXT_PREVIOUS32(fText);
1430 result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1431 }
1432
1433 // Leave the iterator at our result position.
1434 UTEXT_SETNATIVEINDEX(fText, result);
1435 #ifdef RBBI_DEBUG
1436 if (fTrace) {
1437 RBBIDebugPrintf("result = %d\n\n", result);
1438 }
1439 #endif
1440 return result;
1441 }
1442
1443
1444 void
1445 RuleBasedBreakIterator::reset()
1446 {
1447 if (fCachedBreakPositions) {
1448 uprv_free(fCachedBreakPositions);
1449 }
1450 fCachedBreakPositions = NULL;
1451 fNumCachedBreakPositions = 0;
1452 fDictionaryCharCount = 0;
1453 fPositionInCache = 0;
1454 }
1455
1456
1457
1458 //-------------------------------------------------------------------------------
1459 //
1460 // getRuleStatus() Return the break rule tag associated with the current
1461 // iterator position. If the iterator arrived at its current
1462 // position by iterating forwards, the value will have been
1463 // cached by the handleNext() function.
1464 //
1465 // If no cached status value is available, the status is
1466 // found by doing a previous() followed by a next(), which
1467 // leaves the iterator where it started, and computes the
1468 // status while doing the next().
1469 //
1470 //-------------------------------------------------------------------------------
1471 void RuleBasedBreakIterator::makeRuleStatusValid() {
1472 if (fLastStatusIndexValid == FALSE) {
1473 // No cached status is available.
1474 if (fText == NULL || current() == 0) {
1475 // At start of text, or there is no text. Status is always zero.
1476 fLastRuleStatusIndex = 0;
1477 fLastStatusIndexValid = TRUE;
1478 } else {
1479 // Not at start of text. Find status the tedious way.
1480 int32_t pa = current();
1481 previous();
1482 if (fNumCachedBreakPositions > 0) {
1483 reset(); // Blow off the dictionary cache
1484 }
1485 int32_t pb = next();
1486 if (pa != pb) {
1487 // note: the if (pa != pb) test is here only to eliminate warnings for
1488 // unused local variables on gcc. Logically, it isn't needed.
1489 U_ASSERT(pa == pb);
1490 }
1491 }
1492 }
1493 U_ASSERT(fLastRuleStatusIndex >= 0 && fLastRuleStatusIndex < fData->fStatusMaxIdx);
1494 }
1495
1496
1497 int32_t RuleBasedBreakIterator::getRuleStatus() const {
1498 RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this;
1499 nonConstThis->makeRuleStatusValid();
1500
1501 // fLastRuleStatusIndex indexes to the start of the appropriate status record
1502 // (the number of status values.)
1503 // This function returns the last (largest) of the array of status values.
1504 int32_t idx = fLastRuleStatusIndex + fData->fRuleStatusTable[fLastRuleStatusIndex];
1505 int32_t tagVal = fData->fRuleStatusTable[idx];
1506
1507 return tagVal;
1508 }
1509
1510
1511
1512
1513 int32_t RuleBasedBreakIterator::getRuleStatusVec(
1514 int32_t *fillInVec, int32_t capacity, UErrorCode &status)
1515 {
1516 if (U_FAILURE(status)) {
1517 return 0;
1518 }
1519
1520 RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this;
1521 nonConstThis->makeRuleStatusValid();
1522 int32_t numVals = fData->fRuleStatusTable[fLastRuleStatusIndex];
1523 int32_t numValsToCopy = numVals;
1524 if (numVals > capacity) {
1525 status = U_BUFFER_OVERFLOW_ERROR;
1526 numValsToCopy = capacity;
1527 }
1528 int i;
1529 for (i=0; i<numValsToCopy; i++) {
1530 fillInVec[i] = fData->fRuleStatusTable[fLastRuleStatusIndex + i + 1];
1531 }
1532 return numVals;
1533 }
1534
1535
1536
1537 //-------------------------------------------------------------------------------
1538 //
1539 // getBinaryRules Access to the compiled form of the rules,
1540 // for use by build system tools that save the data
1541 // for standard iterator types.
1542 //
1543 //-------------------------------------------------------------------------------
1544 const uint8_t *RuleBasedBreakIterator::getBinaryRules(uint32_t &length) {
1545 const uint8_t *retPtr = NULL;
1546 length = 0;
1547
1548 if (fData != NULL) {
1549 retPtr = (const uint8_t *)fData->fHeader;
1550 length = fData->fHeader->fLength;
1551 }
1552 return retPtr;
1553 }
1554
1555
1556 BreakIterator * RuleBasedBreakIterator::createBufferClone(void * /*stackBuffer*/,
1557 int32_t &bufferSize,
1558 UErrorCode &status)
1559 {
1560 if (U_FAILURE(status)){
1561 return NULL;
1562 }
1563
1564 if (bufferSize == 0) {
1565 bufferSize = 1; // preflighting for deprecated functionality
1566 return NULL;
1567 }
1568
1569 BreakIterator *clonedBI = clone();
1570 if (clonedBI == NULL) {
1571 status = U_MEMORY_ALLOCATION_ERROR;
1572 } else {
1573 status = U_SAFECLONE_ALLOCATED_WARNING;
1574 }
1575 return (RuleBasedBreakIterator *)clonedBI;
1576 }
1577
1578
1579 //-------------------------------------------------------------------------------
1580 //
1581 // isDictionaryChar Return true if the category lookup for this char
1582 // indicates that it is in the set of dictionary lookup
1583 // chars.
1584 //
1585 // This function is intended for use by dictionary based
1586 // break iterators.
1587 //
1588 //-------------------------------------------------------------------------------
1589 /*UBool RuleBasedBreakIterator::isDictionaryChar(UChar32 c) {
1590 if (fData == NULL) {
1591 return FALSE;
1592 }
1593 uint16_t category;
1594 UTRIE_GET16(&fData->fTrie, c, category);
1595 return (category & 0x4000) != 0;
1596 }*/
1597
1598
1599 //-------------------------------------------------------------------------------
1600 //
1601 // checkDictionary This function handles all processing of characters in
1602 // the "dictionary" set. It will determine the appropriate
1603 // course of action, and possibly set up a cache in the
1604 // process.
1605 //
1606 //-------------------------------------------------------------------------------
1607 int32_t RuleBasedBreakIterator::checkDictionary(int32_t startPos,
1608 int32_t endPos,
1609 UBool reverse) {
1610 // Reset the old break cache first.
1611 reset();
1612
1613 // note: code segment below assumes that dictionary chars are in the
1614 // startPos-endPos range
1615 // value returned should be next character in sequence
1616 if ((endPos - startPos) <= 1) {
1617 return (reverse ? startPos : endPos);
1618 }
1619
1620 // Starting from the starting point, scan towards the proposed result,
1621 // looking for the first dictionary character (which may be the one
1622 // we're on, if we're starting in the middle of a range).
1623 utext_setNativeIndex(fText, reverse ? endPos : startPos);
1624 if (reverse) {
1625 UTEXT_PREVIOUS32(fText);
1626 }
1627
1628 int32_t rangeStart = startPos;
1629 int32_t rangeEnd = endPos;
1630
1631 uint16_t category;
1632 int32_t current;
1633 UErrorCode status = U_ZERO_ERROR;
1634 UStack breaks(status);
1635 int32_t foundBreakCount = 0;
1636 UChar32 c = utext_current32(fText);
1637
1638 UTRIE_GET16(&fData->fTrie, c, category);
1639
1640 // Is the character we're starting on a dictionary character? If so, we
1641 // need to back up to include the entire run; otherwise the results of
1642 // the break algorithm will differ depending on where we start. Since
1643 // the result is cached and there is typically a non-dictionary break
1644 // within a small number of words, there should be little performance impact.
1645 if (category & 0x4000) {
1646 if (reverse) {
1647 do {
1648 utext_next32(fText); // TODO: recast to work directly with postincrement.
1649 c = utext_current32(fText);
1650 UTRIE_GET16(&fData->fTrie, c, category);
1651 } while (c != U_SENTINEL && (category & 0x4000));
1652 // Back up to the last dictionary character
1653 rangeEnd = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1654 if (c == U_SENTINEL) {
1655 // c = fText->last32();
1656 // TODO: why was this if needed?
1657 c = UTEXT_PREVIOUS32(fText);
1658 }
1659 else {
1660 c = UTEXT_PREVIOUS32(fText);
1661 }
1662 }
1663 else {
1664 do {
1665 c = UTEXT_PREVIOUS32(fText);
1666 UTRIE_GET16(&fData->fTrie, c, category);
1667 }
1668 while (c != U_SENTINEL && (category & 0x4000));
1669 // Back up to the last dictionary character
1670 if (c == U_SENTINEL) {
1671 // c = fText->first32();
1672 c = utext_current32(fText);
1673 }
1674 else {
1675 utext_next32(fText);
1676 c = utext_current32(fText);
1677 }
1678 rangeStart = (int32_t)UTEXT_GETNATIVEINDEX(fText);;
1679 }
1680 UTRIE_GET16(&fData->fTrie, c, category);
1681 }
1682
1683 // Loop through the text, looking for ranges of dictionary characters.
1684 // For each span, find the appropriate break engine, and ask it to find
1685 // any breaks within the span.
1686 // Note: we always do this in the forward direction, so that the break
1687 // cache is built in the right order.
1688 if (reverse) {
1689 utext_setNativeIndex(fText, rangeStart);
1690 c = utext_current32(fText);
1691 UTRIE_GET16(&fData->fTrie, c, category);
1692 }
1693 while(U_SUCCESS(status)) {
1694 while((current = (int32_t)UTEXT_GETNATIVEINDEX(fText)) < rangeEnd && (category & 0x4000) == 0) {
1695 utext_next32(fText); // TODO: tweak for post-increment operation
1696 c = utext_current32(fText);
1697 UTRIE_GET16(&fData->fTrie, c, category);
1698 }
1699 if (current >= rangeEnd) {
1700 break;
1701 }
1702
1703 // We now have a dictionary character. Get the appropriate language object
1704 // to deal with it.
1705 const LanguageBreakEngine *lbe = getLanguageBreakEngine(c);
1706
1707 // Ask the language object if there are any breaks. It will leave the text
1708 // pointer on the other side of its range, ready to search for the next one.
1709 if (lbe != NULL) {
1710 foundBreakCount += lbe->findBreaks(fText, rangeStart, rangeEnd, FALSE, fBreakType, breaks);
1711 }
1712
1713 // Reload the loop variables for the next go-round
1714 c = utext_current32(fText);
1715 UTRIE_GET16(&fData->fTrie, c, category);
1716 }
1717
1718 // If we found breaks, build a new break cache. The first and last entries must
1719 // be the original starting and ending position.
1720 if (foundBreakCount > 0) {
1721 U_ASSERT(foundBreakCount == breaks.size());
1722 int32_t totalBreaks = foundBreakCount;
1723 if (startPos < breaks.elementAti(0)) {
1724 totalBreaks += 1;
1725 }
1726 if (endPos > breaks.peeki()) {
1727 totalBreaks += 1;
1728 }
1729 fCachedBreakPositions = (int32_t *)uprv_malloc(totalBreaks * sizeof(int32_t));
1730 if (fCachedBreakPositions != NULL) {
1731 int32_t out = 0;
1732 fNumCachedBreakPositions = totalBreaks;
1733 if (startPos < breaks.elementAti(0)) {
1734 fCachedBreakPositions[out++] = startPos;
1735 }
1736 for (int32_t i = 0; i < foundBreakCount; ++i) {
1737 fCachedBreakPositions[out++] = breaks.elementAti(i);
1738 }
1739 if (endPos > fCachedBreakPositions[out-1]) {
1740 fCachedBreakPositions[out] = endPos;
1741 }
1742 // If there are breaks, then by definition, we are replacing the original
1743 // proposed break by one of the breaks we found. Use following() and
1744 // preceding() to do the work. They should never recurse in this case.
1745 if (reverse) {
1746 return preceding(endPos);
1747 }
1748 else {
1749 return following(startPos);
1750 }
1751 }
1752 // If the allocation failed, just fall through to the "no breaks found" case.
1753 }
1754
1755 // If we get here, there were no language-based breaks. Set the text pointer
1756 // to the original proposed break.
1757 utext_setNativeIndex(fText, reverse ? startPos : endPos);
1758 return (reverse ? startPos : endPos);
1759 }
1760
1761 U_NAMESPACE_END
1762
1763
1764 static icu::UStack *gLanguageBreakFactories = NULL;
1765 static icu::UInitOnce gLanguageBreakFactoriesInitOnce = U_INITONCE_INITIALIZER;
1766
1767 /**
1768 * Release all static memory held by breakiterator.
1769 */
1770 U_CDECL_BEGIN
1771 static UBool U_CALLCONV breakiterator_cleanup_dict(void) {
1772 if (gLanguageBreakFactories) {
1773 delete gLanguageBreakFactories;
1774 gLanguageBreakFactories = NULL;
1775 }
1776 gLanguageBreakFactoriesInitOnce.reset();
1777 return TRUE;
1778 }
1779 U_CDECL_END
1780
1781 U_CDECL_BEGIN
1782 static void U_CALLCONV _deleteFactory(void *obj) {
1783 delete (icu::LanguageBreakFactory *) obj;
1784 }
1785 U_CDECL_END
1786 U_NAMESPACE_BEGIN
1787
1788 static void U_CALLCONV initLanguageFactories() {
1789 UErrorCode status = U_ZERO_ERROR;
1790 U_ASSERT(gLanguageBreakFactories == NULL);
1791 gLanguageBreakFactories = new UStack(_deleteFactory, NULL, status);
1792 if (gLanguageBreakFactories != NULL && U_SUCCESS(status)) {
1793 ICULanguageBreakFactory *builtIn = new ICULanguageBreakFactory(status);
1794 gLanguageBreakFactories->push(builtIn, status);
1795 #ifdef U_LOCAL_SERVICE_HOOK
1796 LanguageBreakFactory *extra = (LanguageBreakFactory *)uprv_svc_hook("languageBreakFactory", &status);
1797 if (extra != NULL) {
1798 gLanguageBreakFactories->push(extra, status);
1799 }
1800 #endif
1801 }
1802 ucln_common_registerCleanup(UCLN_COMMON_BREAKITERATOR_DICT, breakiterator_cleanup_dict);
1803 }
1804
1805
1806 static const LanguageBreakEngine*
1807 getLanguageBreakEngineFromFactory(UChar32 c, int32_t breakType)
1808 {
1809 umtx_initOnce(gLanguageBreakFactoriesInitOnce, &initLanguageFactories);
1810 if (gLanguageBreakFactories == NULL) {
1811 return NULL;
1812 }
1813
1814 int32_t i = gLanguageBreakFactories->size();
1815 const LanguageBreakEngine *lbe = NULL;
1816 while (--i >= 0) {
1817 LanguageBreakFactory *factory = (LanguageBreakFactory *)(gLanguageBreakFactories->elementAt(i));
1818 lbe = factory->getEngineFor(c, breakType);
1819 if (lbe != NULL) {
1820 break;
1821 }
1822 }
1823 return lbe;
1824 }
1825
1826
1827 //-------------------------------------------------------------------------------
1828 //
1829 // getLanguageBreakEngine Find an appropriate LanguageBreakEngine for the
1830 // the character c.
1831 //
1832 //-------------------------------------------------------------------------------
1833 const LanguageBreakEngine *
1834 RuleBasedBreakIterator::getLanguageBreakEngine(UChar32 c) {
1835 const LanguageBreakEngine *lbe = NULL;
1836 UErrorCode status = U_ZERO_ERROR;
1837
1838 if (fLanguageBreakEngines == NULL) {
1839 fLanguageBreakEngines = new UStack(status);
1840 if (fLanguageBreakEngines == NULL || U_FAILURE(status)) {
1841 delete fLanguageBreakEngines;
1842 fLanguageBreakEngines = 0;
1843 return NULL;
1844 }
1845 }
1846
1847 int32_t i = fLanguageBreakEngines->size();
1848 while (--i >= 0) {
1849 lbe = (const LanguageBreakEngine *)(fLanguageBreakEngines->elementAt(i));
1850 if (lbe->handles(c, fBreakType)) {
1851 return lbe;
1852 }
1853 }
1854
1855 // No existing dictionary took the character. See if a factory wants to
1856 // give us a new LanguageBreakEngine for this character.
1857 lbe = getLanguageBreakEngineFromFactory(c, fBreakType);
1858
1859 // If we got one, use it and push it on our stack.
1860 if (lbe != NULL) {
1861 fLanguageBreakEngines->push((void *)lbe, status);
1862 // Even if we can't remember it, we can keep looking it up, so
1863 // return it even if the push fails.
1864 return lbe;
1865 }
1866
1867 // No engine is forthcoming for this character. Add it to the
1868 // reject set. Create the reject break engine if needed.
1869 if (fUnhandledBreakEngine == NULL) {
1870 fUnhandledBreakEngine = new UnhandledEngine(status);
1871 if (U_SUCCESS(status) && fUnhandledBreakEngine == NULL) {
1872 status = U_MEMORY_ALLOCATION_ERROR;
1873 }
1874 // Put it last so that scripts for which we have an engine get tried
1875 // first.
1876 fLanguageBreakEngines->insertElementAt(fUnhandledBreakEngine, 0, status);
1877 // If we can't insert it, or creation failed, get rid of it
1878 if (U_FAILURE(status)) {
1879 delete fUnhandledBreakEngine;
1880 fUnhandledBreakEngine = 0;
1881 return NULL;
1882 }
1883 }
1884
1885 // Tell the reject engine about the character; at its discretion, it may
1886 // add more than just the one character.
1887 fUnhandledBreakEngine->handleCharacter(c, fBreakType);
1888
1889 return fUnhandledBreakEngine;
1890 }
1891
1892
1893
1894 /*int32_t RuleBasedBreakIterator::getBreakType() const {
1895 return fBreakType;
1896 }*/
1897
1898 void RuleBasedBreakIterator::setBreakType(int32_t type) {
1899 fBreakType = type;
1900 reset();
1901 }
1902
1903 U_NAMESPACE_END
1904
1905 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */