2 **********************************************************************
3 * Copyright (C) 1999-2008, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 **********************************************************************
6 * Date Name Description
7 * 11/17/99 aliu Creation.
8 **********************************************************************
11 #include "unicode/utypes.h"
13 #if !UCONFIG_NO_TRANSLITERATION
15 #include "unicode/putil.h"
16 #include "unicode/translit.h"
17 #include "unicode/locid.h"
18 #include "unicode/msgfmt.h"
19 #include "unicode/rep.h"
20 #include "unicode/resbund.h"
21 #include "unicode/unifilt.h"
22 #include "unicode/uniset.h"
23 #include "unicode/uscript.h"
24 #include "unicode/strenum.h"
52 static const UChar TARGET_SEP
= 0x002D; /*-*/
53 static const UChar ID_DELIM
= 0x003B; /*;*/
54 static const UChar VARIANT_SEP
= 0x002F; // '/'
57 * Prefix for resource bundle key for the display name for a
58 * transliterator. The ID is appended to this to form the key.
59 * The resource bundle value should be a String.
61 static const char RB_DISPLAY_NAME_PREFIX
[] = "%Translit%%";
64 * Prefix for resource bundle key for the display name for a
65 * transliterator SCRIPT. The ID is appended to this to form the key.
66 * The resource bundle value should be a String.
68 static const char RB_SCRIPT_DISPLAY_NAME_PREFIX
[] = "%Translit%";
71 * Resource bundle key for display name pattern.
72 * The resource bundle value should be a String forming a
73 * MessageFormat pattern, e.g.:
74 * "{0,choice,0#|1#{1} Transliterator|2#{1} to {2} Transliterator}".
76 static const char RB_DISPLAY_NAME_PATTERN
[] = "TransliteratorNamePattern";
79 * Resource bundle key for the list of RuleBasedTransliterator IDs.
80 * The resource bundle value should be a String[] with each element
81 * being a valid ID. The ID will be appended to RB_RULE_BASED_PREFIX
82 * to obtain the class name in which the RB_RULE key will be sought.
84 static const char RB_RULE_BASED_IDS
[] = "RuleBasedTransliteratorIDs";
87 * The mutex controlling access to registry object.
89 static UMTX registryMutex
= 0;
92 * System transliterator registry; non-null when initialized.
94 static U_NAMESPACE_QUALIFIER TransliteratorRegistry
* registry
= 0;
96 // Macro to check/initialize the registry. ONLY USE WITHIN
97 // MUTEX. Avoids function call when registry is initialized.
98 #define HAVE_REGISTRY(status) (registry!=0 || initializeRegistry(status))
101 static const UChar EMPTY
[] = {0}; //""
105 UOBJECT_DEFINE_ABSTRACT_RTTI_IMPLEMENTATION(Transliterator
)
108 * Return TRUE if the given UTransPosition is valid for text of
111 static inline UBool
positionIsValid(UTransPosition
& index
, int32_t len
) {
112 return !(index
.contextStart
< 0 ||
113 index
.start
< index
.contextStart
||
114 index
.limit
< index
.start
||
115 index
.contextLimit
< index
.limit
||
116 len
< index
.contextLimit
);
120 * Default constructor.
121 * @param theID the string identifier for this transliterator
122 * @param theFilter the filter. Any character for which
123 * <tt>filter.contains()</tt> returns <tt>FALSE</tt> will not be
124 * altered by this transliterator. If <tt>filter</tt> is
125 * <tt>null</tt> then no filtering is applied.
127 Transliterator::Transliterator(const UnicodeString
& theID
,
128 UnicodeFilter
* adoptedFilter
) :
129 UObject(), ID(theID
), filter(adoptedFilter
),
130 maximumContextLength(0)
132 // NUL-terminate the ID string, which is a non-aliased copy.
134 ID
.truncate(ID
.length()-1);
140 Transliterator::~Transliterator() {
149 Transliterator::Transliterator(const Transliterator
& other
) :
150 UObject(other
), ID(other
.ID
), filter(0),
151 maximumContextLength(other
.maximumContextLength
)
153 // NUL-terminate the ID string, which is a non-aliased copy.
155 ID
.truncate(ID
.length()-1);
157 if (other
.filter
!= 0) {
158 // We own the filter, so we must have our own copy
159 filter
= (UnicodeFilter
*) other
.filter
->clone();
163 Transliterator
* Transliterator::clone() const {
168 * Assignment operator.
170 Transliterator
& Transliterator::operator=(const Transliterator
& other
) {
172 // NUL-terminate the ID string
173 ID
.getTerminatedBuffer();
175 maximumContextLength
= other
.maximumContextLength
;
176 adoptFilter((other
.filter
== 0) ? 0 : (UnicodeFilter
*) other
.filter
->clone());
181 * Transliterates a segment of a string. <code>Transliterator</code> API.
182 * @param text the string to be transliterated
183 * @param start the beginning index, inclusive; <code>0 <= start
185 * @param limit the ending index, exclusive; <code>start <= limit
186 * <= text.length()</code>.
187 * @return the new limit index, or -1
189 int32_t Transliterator::transliterate(Replaceable
& text
,
190 int32_t start
, int32_t limit
) const {
193 text
.length() < limit
) {
197 UTransPosition offsets
;
198 offsets
.contextStart
= start
;
199 offsets
.contextLimit
= limit
;
200 offsets
.start
= start
;
201 offsets
.limit
= limit
;
202 filteredTransliterate(text
, offsets
, FALSE
, TRUE
);
203 return offsets
.limit
;
207 * Transliterates an entire string in place. Convenience method.
208 * @param text the string to be transliterated
210 void Transliterator::transliterate(Replaceable
& text
) const {
211 transliterate(text
, 0, text
.length());
215 * Transliterates the portion of the text buffer that can be
216 * transliterated unambiguosly after new text has been inserted,
217 * typically as a result of a keyboard event. The new text in
218 * <code>insertion</code> will be inserted into <code>text</code>
219 * at <code>index.contextLimit</code>, advancing
220 * <code>index.contextLimit</code> by <code>insertion.length()</code>.
221 * Then the transliterator will try to transliterate characters of
222 * <code>text</code> between <code>index.start</code> and
223 * <code>index.contextLimit</code>. Characters before
224 * <code>index.start</code> will not be changed.
226 * <p>Upon return, values in <code>index</code> will be updated.
227 * <code>index.contextStart</code> will be advanced to the first
228 * character that future calls to this method will read.
229 * <code>index.start</code> and <code>index.contextLimit</code> will
230 * be adjusted to delimit the range of text that future calls to
231 * this method may change.
233 * <p>Typical usage of this method begins with an initial call
234 * with <code>index.contextStart</code> and <code>index.contextLimit</code>
235 * set to indicate the portion of <code>text</code> to be
236 * transliterated, and <code>index.start == index.contextStart</code>.
237 * Thereafter, <code>index</code> can be used without
238 * modification in future calls, provided that all changes to
239 * <code>text</code> are made via this method.
241 * <p>This method assumes that future calls may be made that will
242 * insert new text into the buffer. As a result, it only performs
243 * unambiguous transliterations. After the last call to this
244 * method, there may be untransliterated text that is waiting for
245 * more input to resolve an ambiguity. In order to perform these
246 * pending transliterations, clients should call {@link
247 * #finishKeyboardTransliteration} after the last call to this
248 * method has been made.
250 * @param text the buffer holding transliterated and untransliterated text
251 * @param index an array of three integers.
253 * <ul><li><code>index.contextStart</code>: the beginning index,
254 * inclusive; <code>0 <= index.contextStart <= index.contextLimit</code>.
256 * <li><code>index.contextLimit</code>: the ending index, exclusive;
257 * <code>index.contextStart <= index.contextLimit <= text.length()</code>.
258 * <code>insertion</code> is inserted at
259 * <code>index.contextLimit</code>.
261 * <li><code>index.start</code>: the next character to be
262 * considered for transliteration; <code>index.contextStart <=
263 * index.start <= index.contextLimit</code>. Characters before
264 * <code>index.start</code> will not be changed by future calls
265 * to this method.</ul>
267 * @param insertion text to be inserted and possibly
268 * transliterated into the translation buffer at
269 * <code>index.contextLimit</code>. If <code>null</code> then no text
274 * @see #handleTransliterate
275 * @exception IllegalArgumentException if <code>index</code>
278 void Transliterator::transliterate(Replaceable
& text
,
279 UTransPosition
& index
,
280 const UnicodeString
& insertion
,
281 UErrorCode
&status
) const {
282 _transliterate(text
, index
, &insertion
, status
);
286 * Transliterates the portion of the text buffer that can be
287 * transliterated unambiguosly after a new character has been
288 * inserted, typically as a result of a keyboard event. This is a
289 * convenience method; see {@link
290 * #transliterate(Replaceable, int[], String)} for details.
291 * @param text the buffer holding transliterated and
292 * untransliterated text
293 * @param index an array of three integers. See {@link
294 * #transliterate(Replaceable, int[], String)}.
295 * @param insertion text to be inserted and possibly
296 * transliterated into the translation buffer at
297 * <code>index.contextLimit</code>.
298 * @see #transliterate(Replaceable, int[], String)
300 void Transliterator::transliterate(Replaceable
& text
,
301 UTransPosition
& index
,
303 UErrorCode
& status
) const {
304 UnicodeString
str(insertion
);
305 _transliterate(text
, index
, &str
, status
);
309 * Transliterates the portion of the text buffer that can be
310 * transliterated unambiguosly. This is a convenience method; see
311 * {@link #transliterate(Replaceable, int[], String)} for
313 * @param text the buffer holding transliterated and
314 * untransliterated text
315 * @param index an array of three integers. See {@link
316 * #transliterate(Replaceable, int[], String)}.
317 * @see #transliterate(Replaceable, int[], String)
319 void Transliterator::transliterate(Replaceable
& text
,
320 UTransPosition
& index
,
321 UErrorCode
& status
) const {
322 _transliterate(text
, index
, 0, status
);
326 * Finishes any pending transliterations that were waiting for
327 * more characters. Clients should call this method as the last
328 * call after a sequence of one or more calls to
329 * <code>transliterate()</code>.
330 * @param text the buffer holding transliterated and
331 * untransliterated text.
332 * @param index the array of indices previously passed to {@link
335 void Transliterator::finishTransliteration(Replaceable
& text
,
336 UTransPosition
& index
) const {
337 if (!positionIsValid(index
, text
.length())) {
341 filteredTransliterate(text
, index
, FALSE
, TRUE
);
345 * This internal method does keyboard transliteration. If the
346 * 'insertion' is non-null then we append it to 'text' before
347 * proceeding. This method calls through to the pure virtual
348 * framework method handleTransliterate() to do the actual
351 void Transliterator::_transliterate(Replaceable
& text
,
352 UTransPosition
& index
,
353 const UnicodeString
* insertion
,
354 UErrorCode
&status
) const {
355 if (U_FAILURE(status
)) {
359 if (!positionIsValid(index
, text
.length())) {
360 status
= U_ILLEGAL_ARGUMENT_ERROR
;
364 // int32_t originalStart = index.contextStart;
365 if (insertion
!= 0) {
366 text
.handleReplaceBetween(index
.limit
, index
.limit
, *insertion
);
367 index
.limit
+= insertion
->length();
368 index
.contextLimit
+= insertion
->length();
371 if (index
.limit
> 0 &&
372 UTF_IS_LEAD(text
.charAt(index
.limit
- 1))) {
373 // Oops, there is a dangling lead surrogate in the buffer.
374 // This will break most transliterators, since they will
375 // assume it is part of a pair. Don't transliterate until
376 // more text comes in.
380 filteredTransliterate(text
, index
, TRUE
, TRUE
);
384 // I CAN'T DO what I'm attempting below now that the Kleene star
385 // operator is supported. For example, in the rule
387 // ([:Lu:]+) { x } > $1;
389 // what is the maximum context length? getMaximumContextLength()
390 // will return 1, but this is just the length of the ante context
391 // part of the pattern string -- 1 character, which is a standin
392 // for a Quantifier, which contains a StringMatcher, which
393 // contains a UnicodeSet.
395 // There is a complicated way to make this work again, and that's
396 // to add a "maximum left context" protocol into the
397 // UnicodeMatcher hierarchy. At present I'm not convinced this is
402 // The purpose of the code below is to keep the context small
403 // while doing incremental transliteration. When part of the left
404 // context (between contextStart and start) is no longer needed,
405 // we try to advance contextStart past that portion. We use the
406 // maximum context length to do so.
407 int32_t newCS
= index
.start
;
408 int32_t n
= getMaximumContextLength();
409 while (newCS
> originalStart
&& n
-- > 0) {
411 newCS
-= UTF_CHAR_LENGTH(text
.char32At(newCS
)) - 1;
413 index
.contextStart
= uprv_max(newCS
, originalStart
);
418 * This method breaks up the input text into runs of unfiltered
419 * characters. It passes each such run to
420 * <subclass>.handleTransliterate(). Subclasses that can handle the
421 * filter logic more efficiently themselves may override this method.
423 * All transliteration calls in this class go through this method.
425 void Transliterator::filteredTransliterate(Replaceable
& text
,
426 UTransPosition
& index
,
428 UBool rollback
) const {
429 // Short circuit path for transliterators with no filter in
430 // non-incremental mode.
431 if (filter
== 0 && !rollback
) {
432 handleTransliterate(text
, index
, incremental
);
436 //----------------------------------------------------------------------
437 // This method processes text in two groupings:
439 // RUNS -- A run is a contiguous group of characters which are contained
440 // in the filter for this transliterator (filter.contains(ch) == TRUE).
441 // Text outside of runs may appear as context but it is not modified.
442 // The start and limit Position values are narrowed to each run.
444 // PASSES (incremental only) -- To make incremental mode work correctly,
445 // each run is broken up into n passes, where n is the length (in code
446 // points) of the run. Each pass contains the first n characters. If a
447 // pass is completely transliterated, it is committed, and further passes
448 // include characters after the committed text. If a pass is blocked,
449 // and does not transliterate completely, then this method rolls back
450 // the changes made during the pass, extends the pass by one code point,
452 //----------------------------------------------------------------------
454 // globalLimit is the limit value for the entire operation. We
455 // set index.limit to the end of each unfiltered run before
456 // calling handleTransliterate(), so we need to maintain the real
457 // value of index.limit here. After each transliteration, we
458 // update globalLimit for insertions or deletions that have
460 int32_t globalLimit
= index
.limit
;
462 // If there is a non-null filter, then break the input text up. Say the
463 // input text has the form:
465 // where 'x' represents a filtered character (filter.contains('x') ==
466 // false). Then we break this up into:
468 // Each pass through the loop consumes a run of filtered
469 // characters (which are ignored) and a subsequent run of
470 // unfiltered characters (which are transliterated).
474 if (filter
!= NULL
) {
475 // Narrow the range to be transliterated to the first segment
476 // of unfiltered characters at or after index.start.
478 // Advance past filtered chars
480 while (index
.start
< globalLimit
&&
481 !filter
->contains(c
=text
.char32At(index
.start
))) {
482 index
.start
+= UTF_CHAR_LENGTH(c
);
485 // Find the end of this run of unfiltered chars
486 index
.limit
= index
.start
;
487 while (index
.limit
< globalLimit
&&
488 filter
->contains(c
=text
.char32At(index
.limit
))) {
489 index
.limit
+= UTF_CHAR_LENGTH(c
);
493 // Check to see if the unfiltered run is empty. This only
494 // happens at the end of the string when all the remaining
495 // characters are filtered.
496 if (index
.limit
== index
.start
) {
497 // assert(index.start == globalLimit);
501 // Is this run incremental? If there is additional
502 // filtered text (if limit < globalLimit) then we pass in
503 // an incremental value of FALSE to force the subclass to
504 // complete the transliteration for this run.
505 UBool isIncrementalRun
=
506 (index
.limit
< globalLimit
? FALSE
: incremental
);
510 // Implement rollback. To understand the need for rollback,
511 // consider the following transliterator:
515 // "v" is a compound of "t; NFD; u" with a filter [:Ll:]
517 // Now apply "c" to the input text "a". The result is "b". But if
518 // the transliteration is done incrementally, then the NFD holds
519 // things up after "t" has already transformed "a" to "A". When
520 // finishTransliterate() is called, "A" is _not_ processed because
521 // it gets excluded by the [:Ll:] filter, and the end result is "A"
522 // -- incorrect. The problem is that the filter is applied to a
523 // partially-transliterated result, when we only want it to apply to
524 // input text. Although this example hinges on a compound
525 // transliterator containing NFD and a specific filter, it can
526 // actually happen with any transliterator which may do a partial
527 // transformation in incremental mode into characters outside its
530 // To handle this, when in incremental mode we supply characters to
531 // handleTransliterate() in several passes. Each pass adds one more
532 // input character to the input text. That is, for input "ABCD", we
533 // first try "A", then "AB", then "ABC", and finally "ABCD". If at
534 // any point we block (upon return, start < limit) then we roll
535 // back. If at any point we complete the run (upon return start ==
536 // limit) then we commit that run.
538 if (rollback
&& isIncrementalRun
) {
540 int32_t runStart
= index
.start
;
541 int32_t runLimit
= index
.limit
;
542 int32_t runLength
= runLimit
- runStart
;
544 // Make a rollback copy at the end of the string
545 int32_t rollbackOrigin
= text
.length();
546 text
.copy(runStart
, runLimit
, rollbackOrigin
);
548 // Variables reflecting the commitment of completely
549 // transliterated text. passStart is the runStart, advanced
550 // past committed text. rollbackStart is the rollbackOrigin,
551 // advanced past rollback text that corresponds to committed
553 int32_t passStart
= runStart
;
554 int32_t rollbackStart
= rollbackOrigin
;
556 // The limit for each pass; we advance by one code point with
558 int32_t passLimit
= index
.start
;
560 // Total length, in 16-bit code units, of uncommitted text.
561 // This is the length to be rolled back.
562 int32_t uncommittedLength
= 0;
564 // Total delta (change in length) for all passes
565 int32_t totalDelta
= 0;
567 // PASS MAIN LOOP -- Start with a single character, and extend
568 // the text by one character at a time. Roll back partial
569 // transliterations and commit complete transliterations.
571 // Length of additional code point, either one or two
573 UTF_CHAR_LENGTH(text
.char32At(passLimit
));
574 passLimit
+= charLength
;
575 if (passLimit
> runLimit
) {
578 uncommittedLength
+= charLength
;
580 index
.limit
= passLimit
;
582 // Delegate to subclass for actual transliteration. Upon
583 // return, start will be updated to point after the
584 // transliterated text, and limit and contextLimit will be
585 // adjusted for length changes.
586 handleTransliterate(text
, index
, TRUE
);
588 delta
= index
.limit
- passLimit
; // change in length
590 // We failed to completely transliterate this pass.
591 // Roll back the text. Indices remain unchanged; reset
592 // them where necessary.
593 if (index
.start
!= index
.limit
) {
594 // Find the rollbackStart, adjusted for length changes
595 // and the deletion of partially transliterated text.
596 int32_t rs
= rollbackStart
+ delta
- (index
.limit
- passStart
);
598 // Delete the partially transliterated text
599 text
.handleReplaceBetween(passStart
, index
.limit
, EMPTY
);
601 // Copy the rollback text back
602 text
.copy(rs
, rs
+ uncommittedLength
, passStart
);
604 // Restore indices to their original values
605 index
.start
= passStart
;
606 index
.limit
= passLimit
;
607 index
.contextLimit
-= delta
;
610 // We did completely transliterate this pass. Update the
611 // commit indices to record how far we got. Adjust indices
612 // for length change.
614 // Move the pass indices past the committed text.
615 passStart
= passLimit
= index
.start
;
617 // Adjust the rollbackStart for length changes and move
618 // it past the committed text. All characters we've
619 // processed to this point are committed now, so zero
620 // out the uncommittedLength.
621 rollbackStart
+= delta
+ uncommittedLength
;
622 uncommittedLength
= 0;
624 // Adjust indices for length changes.
630 // Adjust overall limit and rollbackOrigin for insertions and
631 // deletions. Don't need to worry about contextLimit because
632 // handleTransliterate() maintains that.
633 rollbackOrigin
+= totalDelta
;
634 globalLimit
+= totalDelta
;
636 // Delete the rollback copy
637 text
.handleReplaceBetween(rollbackOrigin
, rollbackOrigin
+ runLength
, EMPTY
);
639 // Move start past committed text
640 index
.start
= passStart
;
644 // Delegate to subclass for actual transliteration.
645 int32_t limit
= index
.limit
;
646 handleTransliterate(text
, index
, isIncrementalRun
);
647 delta
= index
.limit
- limit
; // change in length
649 // In a properly written transliterator, start == limit after
650 // handleTransliterate() returns when incremental is false.
651 // Catch cases where the subclass doesn't do this, and throw
652 // an exception. (Just pinning start to limit is a bad idea,
653 // because what's probably happening is that the subclass
654 // isn't transliterating all the way to the end, and it should
655 // in non-incremental mode.)
656 if (!incremental
&& index
.start
!= index
.limit
) {
657 // We can't throw an exception, so just fudge things
658 index
.start
= index
.limit
;
661 // Adjust overall limit for insertions/deletions. Don't need
662 // to worry about contextLimit because handleTransliterate()
664 globalLimit
+= delta
;
667 if (filter
== NULL
|| isIncrementalRun
) {
671 // If we did completely transliterate this
672 // run, then repeat with the next unfiltered run.
675 // Start is valid where it is. Limit needs to be put back where
676 // it was, modulo adjustments for deletions/insertions.
677 index
.limit
= globalLimit
;
680 void Transliterator::filteredTransliterate(Replaceable
& text
,
681 UTransPosition
& index
,
682 UBool incremental
) const {
683 filteredTransliterate(text
, index
, incremental
, FALSE
);
687 * Method for subclasses to use to set the maximum context length.
688 * @see #getMaximumContextLength
690 void Transliterator::setMaximumContextLength(int32_t maxContextLength
) {
691 maximumContextLength
= maxContextLength
;
695 * Returns a programmatic identifier for this transliterator.
696 * If this identifier is passed to <code>getInstance()</code>, it
697 * will return this object, if it has been registered.
698 * @see #registerInstance
699 * @see #getAvailableIDs
701 const UnicodeString
& Transliterator::getID(void) const {
706 * Returns a name for this transliterator that is appropriate for
707 * display to the user in the default locale. See {@link
708 * #getDisplayName(Locale)} for details.
710 UnicodeString
& U_EXPORT2
Transliterator::getDisplayName(const UnicodeString
& ID
,
711 UnicodeString
& result
) {
712 return getDisplayName(ID
, Locale::getDefault(), result
);
716 * Returns a name for this transliterator that is appropriate for
717 * display to the user in the given locale. This name is taken
718 * from the locale resource data in the standard manner of the
719 * <code>java.text</code> package.
721 * <p>If no localized names exist in the system resource bundles,
722 * a name is synthesized using a localized
723 * <code>MessageFormat</code> pattern from the resource data. The
724 * arguments to this pattern are an integer followed by one or two
725 * strings. The integer is the number of strings, either 1 or 2.
726 * The strings are formed by splitting the ID for this
727 * transliterator at the first TARGET_SEP. If there is no TARGET_SEP, then the
728 * entire ID forms the only string.
729 * @param inLocale the Locale in which the display name should be
731 * @see java.text.MessageFormat
733 UnicodeString
& U_EXPORT2
Transliterator::getDisplayName(const UnicodeString
& id
,
734 const Locale
& inLocale
,
735 UnicodeString
& result
) {
736 UErrorCode status
= U_ZERO_ERROR
;
738 ResourceBundle
bundle(U_ICUDATA_TRANSLIT
, inLocale
, status
);
740 // Suspend checking status until later...
745 UnicodeString source
, target
, variant
;
747 TransliteratorIDParser::IDtoSTV(id
, source
, target
, variant
, sawSource
);
748 if (target
.length() < 1) {
749 // No target; malformed id
752 if (variant
.length() > 0) { // Change "Foo" to "/Foo"
753 variant
.insert(0, VARIANT_SEP
);
755 UnicodeString
ID(source
);
756 ID
.append(TARGET_SEP
).append(target
).append(variant
);
758 // build the char* key
759 if (uprv_isInvariantUString(ID
.getBuffer(), ID
.length())) {
761 uprv_strcpy(key
, RB_DISPLAY_NAME_PREFIX
);
762 int32_t length
=(int32_t)uprv_strlen(RB_DISPLAY_NAME_PREFIX
);
763 ID
.extract(0, (int32_t)(sizeof(key
)-length
), key
+length
, (int32_t)(sizeof(key
)-length
), US_INV
);
765 // Try to retrieve a UnicodeString from the bundle.
766 UnicodeString resString
= bundle
.getStringEx(key
, status
);
768 if (U_SUCCESS(status
) && resString
.length() != 0) {
769 return result
= resString
; // [sic] assign & return
772 #if !UCONFIG_NO_FORMATTING
773 // We have failed to get a name from the locale data. This is
774 // typical, since most transliterators will not have localized
775 // name data. The next step is to retrieve the MessageFormat
776 // pattern from the locale data and to use it to synthesize the
779 status
= U_ZERO_ERROR
;
780 resString
= bundle
.getStringEx(RB_DISPLAY_NAME_PATTERN
, status
);
782 if (U_SUCCESS(status
) && resString
.length() != 0) {
783 MessageFormat
msg(resString
, inLocale
, status
);
784 // Suspend checking status until later...
786 // We pass either 2 or 3 Formattable objects to msg.
789 args
[0].setLong(2); // # of args to follow
790 args
[1].setString(source
);
791 args
[2].setString(target
);
794 // Use display names for the scripts, if they exist
796 length
=(int32_t)uprv_strlen(RB_SCRIPT_DISPLAY_NAME_PREFIX
);
797 for (int j
=1; j
<=2; ++j
) {
798 status
= U_ZERO_ERROR
;
799 uprv_strcpy(key
, RB_SCRIPT_DISPLAY_NAME_PREFIX
);
800 args
[j
].getString(s
);
801 if (uprv_isInvariantUString(s
.getBuffer(), s
.length())) {
802 s
.extract(0, sizeof(key
)-length
-1, key
+length
, (int32_t)sizeof(key
)-length
-1, US_INV
);
804 resString
= bundle
.getStringEx(key
, status
);
806 if (U_SUCCESS(status
)) {
812 status
= U_ZERO_ERROR
;
813 FieldPosition pos
; // ignored by msg
814 msg
.format(args
, nargs
, result
, pos
, status
);
815 if (U_SUCCESS(status
)) {
816 result
.append(variant
);
823 // We should not reach this point unless there is something
824 // wrong with the build or the RB_DISPLAY_NAME_PATTERN has
825 // been deleted from the root RB_LOCALE_ELEMENTS resource.
831 * Returns the filter used by this transliterator, or <tt>null</tt>
832 * if this transliterator uses no filter. Caller musn't delete
835 const UnicodeFilter
* Transliterator::getFilter(void) const {
840 * Returns the filter used by this transliterator, or
841 * <tt>NULL</tt> if this transliterator uses no filter. The
842 * caller must eventually delete the result. After this call,
843 * this transliterator's filter is set to <tt>NULL</tt>.
845 UnicodeFilter
* Transliterator::orphanFilter(void) {
846 UnicodeFilter
*result
= filter
;
852 * Changes the filter used by this transliterator. If the filter
853 * is set to <tt>null</tt> then no filtering will occur.
855 * <p>Callers must take care if a transliterator is in use by
856 * multiple threads. The filter should not be changed by one
857 * thread while another thread may be transliterating.
859 void Transliterator::adoptFilter(UnicodeFilter
* filterToAdopt
) {
861 filter
= filterToAdopt
;
865 * Returns this transliterator's inverse. See the class
866 * documentation for details. This implementation simply inverts
867 * the two entities in the ID and attempts to retrieve the
868 * resulting transliterator. That is, if <code>getID()</code>
869 * returns "A-B", then this method will return the result of
870 * <code>getInstance("B-A")</code>, or <code>null</code> if that
873 * <p>This method does not take filtering into account. The
874 * returned transliterator will have no filter.
876 * <p>Subclasses with knowledge of their inverse may wish to
877 * override this method.
879 * @return a transliterator that is an inverse, not necessarily
880 * exact, of this transliterator, or <code>null</code> if no such
881 * transliterator is registered.
882 * @see #registerInstance
884 Transliterator
* Transliterator::createInverse(UErrorCode
& status
) const {
885 UParseError parseError
;
886 return Transliterator::createInstance(ID
, UTRANS_REVERSE
,parseError
,status
);
889 Transliterator
* U_EXPORT2
890 Transliterator::createInstance(const UnicodeString
& ID
,
894 UParseError parseError
;
895 return createInstance(ID
, dir
, parseError
, status
);
899 * Returns a <code>Transliterator</code> object given its ID.
900 * The ID must be either a system transliterator ID or a ID registered
901 * using <code>registerInstance()</code>.
903 * @param ID a valid ID, as enumerated by <code>getAvailableIDs()</code>
904 * @return A <code>Transliterator</code> object with the given ID
905 * @see #registerInstance
906 * @see #getAvailableIDs
909 Transliterator
* U_EXPORT2
910 Transliterator::createInstance(const UnicodeString
& ID
,
912 UParseError
& parseError
,
915 if (U_FAILURE(status
)) {
919 UnicodeString canonID
;
920 UVector
list(status
);
921 if (U_FAILURE(status
)) {
925 UnicodeSet
* globalFilter
;
926 // TODO add code for parseError...currently unused, but
927 // later may be used by parsing code...
928 if (!TransliteratorIDParser::parseCompoundID(ID
, dir
, canonID
, list
, globalFilter
)) {
929 status
= U_INVALID_ID
;
933 TransliteratorIDParser::instantiateList(list
, status
);
934 if (U_FAILURE(status
)) {
938 U_ASSERT(list
.size() > 0);
939 Transliterator
* t
= NULL
;
941 if (list
.size() > 1 || canonID
.indexOf(ID_DELIM
) >= 0) {
942 // [NOTE: If it's a compoundID, we instantiate a CompoundTransliterator even if it only
943 // has one child transliterator. This is so that toRules() will return the right thing
944 // (without any inactive ID), but our main ID still comes out correct. That is, if we
945 // instantiate "(Lower);Latin-Greek;", we want the rules to come out as "::Latin-Greek;"
946 // even though the ID is "(Lower);Latin-Greek;".
947 t
= new CompoundTransliterator(list
, parseError
, status
);
950 t
= (Transliterator
*)list
.elementAt(0);
952 // Check null pointer
955 if (globalFilter
!= NULL
) {
956 t
->adoptFilter(globalFilter
);
959 else if (U_SUCCESS(status
)) {
960 status
= U_MEMORY_ALLOCATION_ERROR
;
966 * Create a transliterator from a basic ID. This is an ID
967 * containing only the forward direction source, target, and
969 * @param id a basic ID of the form S-T or S-T/V.
970 * @return a newly created Transliterator or null if the ID is
973 Transliterator
* Transliterator::createBasicInstance(const UnicodeString
& id
,
974 const UnicodeString
* canon
) {
976 UErrorCode ec
= U_ZERO_ERROR
;
977 TransliteratorAlias
* alias
= 0;
978 Transliterator
* t
= 0;
980 umtx_init(®istryMutex
);
981 umtx_lock(®istryMutex
);
982 if (HAVE_REGISTRY(ec
)) {
983 t
= registry
->get(id
, alias
, ec
);
985 umtx_unlock(®istryMutex
);
993 // We may have not gotten a transliterator: Because we can't
994 // instantiate a transliterator from inside TransliteratorRegistry::
995 // get() (that would deadlock), we sometimes pass back an alias. This
996 // contains the data we need to finish the instantiation outside the
997 // registry mutex. The alias may, in turn, generate another alias, so
998 // we handle aliases in a loop. The max times through the loop is two.
1000 while (alias
!= 0) {
1002 // Rule-based aliases are handled with TransliteratorAlias::
1003 // parse(), followed by TransliteratorRegistry::reget().
1004 // Other aliases are handled with TransliteratorAlias::create().
1005 if (alias
->isRuleBased()) {
1007 TransliteratorParser
parser(ec
);
1008 alias
->parse(parser
, pe
, ec
);
1013 umtx_lock(®istryMutex
);
1014 if (HAVE_REGISTRY(ec
)) {
1015 t
= registry
->reget(id
, parser
, alias
, ec
);
1017 umtx_unlock(®istryMutex
);
1019 // Step 3. Loop back around!
1021 t
= alias
->create(pe
, ec
);
1026 if (U_FAILURE(ec
)) {
1034 if (t
!= NULL
&& canon
!= NULL
) {
1042 * Returns a <code>Transliterator</code> object constructed from
1043 * the given rule string. This will be a RuleBasedTransliterator,
1044 * if the rule string contains only rules, or a
1045 * CompoundTransliterator, if it contains ID blocks, or a
1046 * NullTransliterator, if it contains ID blocks which parse as
1047 * empty for the given direction.
1049 Transliterator
* U_EXPORT2
1050 Transliterator::createFromRules(const UnicodeString
& ID
,
1051 const UnicodeString
& rules
,
1052 UTransDirection dir
,
1053 UParseError
& parseError
,
1056 Transliterator
* t
= NULL
;
1058 TransliteratorParser
parser(status
);
1059 parser
.parse(rules
, dir
, parseError
, status
);
1061 if (U_FAILURE(status
)) {
1065 // NOTE: The logic here matches that in TransliteratorRegistry.
1066 if (parser
.idBlockVector
.size() == 0 && parser
.dataVector
.size() == 0) {
1067 t
= new NullTransliterator();
1069 else if (parser
.idBlockVector
.size() == 0 && parser
.dataVector
.size() == 1) {
1070 t
= new RuleBasedTransliterator(ID
, (TransliterationRuleData
*)parser
.dataVector
.orphanElementAt(0), TRUE
);
1072 else if (parser
.idBlockVector
.size() == 1 && parser
.dataVector
.size() == 0) {
1073 // idBlock, no data -- this is an alias. The ID has
1074 // been munged from reverse into forward mode, if
1075 // necessary, so instantiate the ID in the forward
1077 if (parser
.compoundFilter
!= NULL
) {
1078 UnicodeString filterPattern
;
1079 parser
.compoundFilter
->toPattern(filterPattern
, FALSE
);
1080 t
= createInstance(filterPattern
+ UnicodeString(ID_DELIM
)
1081 + *((UnicodeString
*)parser
.idBlockVector
.elementAt(0)), UTRANS_FORWARD
, parseError
, status
);
1084 t
= createInstance(*((UnicodeString
*)parser
.idBlockVector
.elementAt(0)), UTRANS_FORWARD
, parseError
, status
);
1092 UVector
transliterators(status
);
1093 int32_t passNumber
= 1;
1095 int32_t limit
= parser
.idBlockVector
.size();
1096 if (parser
.dataVector
.size() > limit
)
1097 limit
= parser
.dataVector
.size();
1099 for (int32_t i
= 0; i
< limit
; i
++) {
1100 if (i
< parser
.idBlockVector
.size()) {
1101 UnicodeString
* idBlock
= (UnicodeString
*)parser
.idBlockVector
.elementAt(i
);
1102 if (!idBlock
->isEmpty()) {
1103 Transliterator
* temp
= createInstance(*idBlock
, UTRANS_FORWARD
, parseError
, status
);
1104 if (temp
!= NULL
&& temp
->getDynamicClassID() != NullTransliterator::getStaticClassID())
1105 transliterators
.addElement(temp
, status
);
1110 if (!parser
.dataVector
.isEmpty()) {
1111 TransliterationRuleData
* data
= (TransliterationRuleData
*)parser
.dataVector
.orphanElementAt(0);
1112 RuleBasedTransliterator
* temprbt
= new RuleBasedTransliterator(UnicodeString(CompoundTransliterator::PASS_STRING
) + (passNumber
++),
1114 // Check if NULL before adding it to transliterators to avoid future usage of NULL pointer.
1115 if (temprbt
== NULL
) {
1116 status
= U_MEMORY_ALLOCATION_ERROR
;
1119 transliterators
.addElement(temprbt
, status
);
1123 t
= new CompoundTransliterator(transliterators
, passNumber
- 1, parseError
, status
);
1124 // Null pointer check
1127 t
->adoptFilter(parser
.orphanCompoundFilter());
1130 if (U_SUCCESS(status
) && t
== NULL
) {
1131 status
= U_MEMORY_ALLOCATION_ERROR
;
1136 UnicodeString
& Transliterator::toRules(UnicodeString
& rulesSource
,
1137 UBool escapeUnprintable
) const {
1138 // The base class implementation of toRules munges the ID into
1139 // the correct format. That is: foo => ::foo
1140 if (escapeUnprintable
) {
1141 rulesSource
.truncate(0);
1142 UnicodeString id
= getID();
1143 for (int32_t i
=0; i
<id
.length();) {
1144 UChar32 c
= id
.char32At(i
);
1145 if (!ICU_Utility::escapeUnprintable(rulesSource
, c
)) {
1146 rulesSource
.append(c
);
1148 i
+= UTF_CHAR_LENGTH(c
);
1151 rulesSource
= getID();
1153 // KEEP in sync with rbt_pars
1154 rulesSource
.insert(0, UNICODE_STRING_SIMPLE("::"));
1155 rulesSource
.append(ID_DELIM
);
1159 int32_t Transliterator::countElements() const {
1160 return (this->getDynamicClassID() ==
1161 CompoundTransliterator::getStaticClassID()) ?
1162 ((const CompoundTransliterator
*) this)->getCount() : 0;
1165 const Transliterator
& Transliterator::getElement(int32_t index
, UErrorCode
& ec
) const {
1166 if (U_FAILURE(ec
)) {
1169 const CompoundTransliterator
* cpd
=
1170 (this->getDynamicClassID() == CompoundTransliterator::getStaticClassID()) ?
1171 (const CompoundTransliterator
*) this : 0;
1172 int32_t n
= (cpd
== NULL
) ? 1 : cpd
->getCount();
1173 if (index
< 0 || index
>= n
) {
1174 ec
= U_INDEX_OUTOFBOUNDS_ERROR
;
1177 return (n
== 1) ? *this : cpd
->getTransliterator(index
);
1181 UnicodeSet
& Transliterator::getSourceSet(UnicodeSet
& result
) const {
1182 handleGetSourceSet(result
);
1183 if (filter
!= NULL
) {
1184 UnicodeSet
* filterSet
;
1185 UBool deleteFilterSet
= FALSE
;
1186 // Most, but not all filters will be UnicodeSets. Optimize for
1187 // the high-runner case.
1188 if (filter
->getDynamicClassID() == UnicodeSet::getStaticClassID()) {
1189 filterSet
= (UnicodeSet
*) filter
;
1191 filterSet
= new UnicodeSet();
1192 // Check null pointer
1193 if (filterSet
== NULL
) {
1196 deleteFilterSet
= TRUE
;
1197 filter
->addMatchSetTo(*filterSet
);
1199 result
.retainAll(*filterSet
);
1200 if (deleteFilterSet
) {
1207 void Transliterator::handleGetSourceSet(UnicodeSet
& result
) const {
1211 UnicodeSet
& Transliterator::getTargetSet(UnicodeSet
& result
) const {
1212 return result
.clear();
1215 // For public consumption
1216 void U_EXPORT2
Transliterator::registerFactory(const UnicodeString
& id
,
1217 Transliterator::Factory factory
,
1218 Transliterator::Token context
) {
1219 umtx_init(®istryMutex
);
1220 Mutex
lock(®istryMutex
);
1221 UErrorCode ec
= U_ZERO_ERROR
;
1222 if (HAVE_REGISTRY(ec
)) {
1223 _registerFactory(id
, factory
, context
);
1227 // To be called only by Transliterator subclasses that are called
1228 // to register themselves by initializeRegistry().
1229 void Transliterator::_registerFactory(const UnicodeString
& id
,
1230 Transliterator::Factory factory
,
1231 Transliterator::Token context
) {
1232 UErrorCode ec
= U_ZERO_ERROR
;
1233 registry
->put(id
, factory
, context
, TRUE
, ec
);
1236 // To be called only by Transliterator subclasses that are called
1237 // to register themselves by initializeRegistry().
1238 void Transliterator::_registerSpecialInverse(const UnicodeString
& target
,
1239 const UnicodeString
& inverseTarget
,
1240 UBool bidirectional
) {
1241 UErrorCode status
= U_ZERO_ERROR
;
1242 TransliteratorIDParser::registerSpecialInverse(target
, inverseTarget
, bidirectional
, status
);
1246 * Registers a instance <tt>obj</tt> of a subclass of
1247 * <code>Transliterator</code> with the system. This object must
1248 * implement the <tt>clone()</tt> method. When
1249 * <tt>getInstance()</tt> is called with an ID string that is
1250 * equal to <tt>obj.getID()</tt>, then <tt>obj.clone()</tt> is
1253 * @param obj an instance of subclass of
1254 * <code>Transliterator</code> that defines <tt>clone()</tt>
1258 void U_EXPORT2
Transliterator::registerInstance(Transliterator
* adoptedPrototype
) {
1259 umtx_init(®istryMutex
);
1260 Mutex
lock(®istryMutex
);
1261 UErrorCode ec
= U_ZERO_ERROR
;
1262 if (HAVE_REGISTRY(ec
)) {
1263 _registerInstance(adoptedPrototype
);
1267 void Transliterator::_registerInstance(Transliterator
* adoptedPrototype
) {
1268 UErrorCode ec
= U_ZERO_ERROR
;
1269 registry
->put(adoptedPrototype
, TRUE
, ec
);
1272 void U_EXPORT2
Transliterator::registerAlias(const UnicodeString
& aliasID
,
1273 const UnicodeString
& realID
) {
1274 umtx_init(®istryMutex
);
1275 Mutex
lock(®istryMutex
);
1276 UErrorCode ec
= U_ZERO_ERROR
;
1277 if (HAVE_REGISTRY(ec
)) {
1278 _registerAlias(aliasID
, realID
);
1282 void Transliterator::_registerAlias(const UnicodeString
& aliasID
,
1283 const UnicodeString
& realID
) {
1284 UErrorCode ec
= U_ZERO_ERROR
;
1285 registry
->put(aliasID
, realID
, FALSE
, TRUE
, ec
);
1289 * Unregisters a transliterator or class. This may be either
1290 * a system transliterator or a user transliterator or class.
1292 * @param ID the ID of the transliterator or class
1293 * @see #registerInstance
1296 void U_EXPORT2
Transliterator::unregister(const UnicodeString
& ID
) {
1297 umtx_init(®istryMutex
);
1298 Mutex
lock(®istryMutex
);
1299 UErrorCode ec
= U_ZERO_ERROR
;
1300 if (HAVE_REGISTRY(ec
)) {
1301 registry
->remove(ID
);
1306 * == OBSOLETE - remove in ICU 3.4 ==
1307 * Return the number of IDs currently registered with the system.
1308 * To retrieve the actual IDs, call getAvailableID(i) with
1309 * i from 0 to countAvailableIDs() - 1.
1311 int32_t U_EXPORT2
Transliterator::countAvailableIDs(void) {
1313 umtx_init(®istryMutex
);
1314 Mutex
lock(®istryMutex
);
1315 UErrorCode ec
= U_ZERO_ERROR
;
1316 if (HAVE_REGISTRY(ec
)) {
1317 retVal
= registry
->countAvailableIDs();
1323 * == OBSOLETE - remove in ICU 3.4 ==
1324 * Return the index-th available ID. index must be between 0
1325 * and countAvailableIDs() - 1, inclusive. If index is out of
1326 * range, the result of getAvailableID(0) is returned.
1328 const UnicodeString
& U_EXPORT2
Transliterator::getAvailableID(int32_t index
) {
1329 const UnicodeString
* result
= NULL
;
1330 umtx_init(®istryMutex
);
1331 umtx_lock(®istryMutex
);
1332 UErrorCode ec
= U_ZERO_ERROR
;
1333 if (HAVE_REGISTRY(ec
)) {
1334 result
= ®istry
->getAvailableID(index
);
1336 umtx_unlock(®istryMutex
);
1337 U_ASSERT(result
!= NULL
); // fail if no registry
1341 StringEnumeration
* U_EXPORT2
Transliterator::getAvailableIDs(UErrorCode
& ec
) {
1342 if (U_FAILURE(ec
)) return NULL
;
1343 StringEnumeration
* result
= NULL
;
1344 umtx_init(®istryMutex
);
1345 umtx_lock(®istryMutex
);
1346 if (HAVE_REGISTRY(ec
)) {
1347 result
= registry
->getAvailableIDs();
1349 umtx_unlock(®istryMutex
);
1350 if (result
== NULL
) {
1351 ec
= U_INTERNAL_TRANSLITERATOR_ERROR
;
1356 int32_t U_EXPORT2
Transliterator::countAvailableSources(void) {
1357 umtx_init(®istryMutex
);
1358 Mutex
lock(®istryMutex
);
1359 UErrorCode ec
= U_ZERO_ERROR
;
1360 return HAVE_REGISTRY(ec
) ? _countAvailableSources() : 0;
1363 UnicodeString
& U_EXPORT2
Transliterator::getAvailableSource(int32_t index
,
1364 UnicodeString
& result
) {
1365 umtx_init(®istryMutex
);
1366 Mutex
lock(®istryMutex
);
1367 UErrorCode ec
= U_ZERO_ERROR
;
1368 if (HAVE_REGISTRY(ec
)) {
1369 _getAvailableSource(index
, result
);
1374 int32_t U_EXPORT2
Transliterator::countAvailableTargets(const UnicodeString
& source
) {
1375 umtx_init(®istryMutex
);
1376 Mutex
lock(®istryMutex
);
1377 UErrorCode ec
= U_ZERO_ERROR
;
1378 return HAVE_REGISTRY(ec
) ? _countAvailableTargets(source
) : 0;
1381 UnicodeString
& U_EXPORT2
Transliterator::getAvailableTarget(int32_t index
,
1382 const UnicodeString
& source
,
1383 UnicodeString
& result
) {
1384 umtx_init(®istryMutex
);
1385 Mutex
lock(®istryMutex
);
1386 UErrorCode ec
= U_ZERO_ERROR
;
1387 if (HAVE_REGISTRY(ec
)) {
1388 _getAvailableTarget(index
, source
, result
);
1393 int32_t U_EXPORT2
Transliterator::countAvailableVariants(const UnicodeString
& source
,
1394 const UnicodeString
& target
) {
1395 umtx_init(®istryMutex
);
1396 Mutex
lock(®istryMutex
);
1397 UErrorCode ec
= U_ZERO_ERROR
;
1398 return HAVE_REGISTRY(ec
) ? _countAvailableVariants(source
, target
) : 0;
1401 UnicodeString
& U_EXPORT2
Transliterator::getAvailableVariant(int32_t index
,
1402 const UnicodeString
& source
,
1403 const UnicodeString
& target
,
1404 UnicodeString
& result
) {
1405 umtx_init(®istryMutex
);
1406 Mutex
lock(®istryMutex
);
1407 UErrorCode ec
= U_ZERO_ERROR
;
1408 if (HAVE_REGISTRY(ec
)) {
1409 _getAvailableVariant(index
, source
, target
, result
);
1414 int32_t Transliterator::_countAvailableSources(void) {
1415 return registry
->countAvailableSources();
1418 UnicodeString
& Transliterator::_getAvailableSource(int32_t index
,
1419 UnicodeString
& result
) {
1420 return registry
->getAvailableSource(index
, result
);
1423 int32_t Transliterator::_countAvailableTargets(const UnicodeString
& source
) {
1424 return registry
->countAvailableTargets(source
);
1427 UnicodeString
& Transliterator::_getAvailableTarget(int32_t index
,
1428 const UnicodeString
& source
,
1429 UnicodeString
& result
) {
1430 return registry
->getAvailableTarget(index
, source
, result
);
1433 int32_t Transliterator::_countAvailableVariants(const UnicodeString
& source
,
1434 const UnicodeString
& target
) {
1435 return registry
->countAvailableVariants(source
, target
);
1438 UnicodeString
& Transliterator::_getAvailableVariant(int32_t index
,
1439 const UnicodeString
& source
,
1440 const UnicodeString
& target
,
1441 UnicodeString
& result
) {
1442 return registry
->getAvailableVariant(index
, source
, target
, result
);
1445 #ifdef U_USE_DEPRECATED_TRANSLITERATOR_API
1448 * Method for subclasses to use to obtain a character in the given
1449 * string, with filtering.
1450 * @deprecated the new architecture provides filtering at the top
1451 * level. This method will be removed Dec 31 2001.
1453 UChar
Transliterator::filteredCharAt(const Replaceable
& text
, int32_t i
) const {
1455 const UnicodeFilter
* localFilter
= getFilter();
1456 return (localFilter
== 0) ? text
.charAt(i
) :
1457 (localFilter
->contains(c
= text
.charAt(i
)) ? c
: (UChar
)0xFFFE);
1463 * If the registry is initialized, return TRUE. If not, initialize it
1464 * and return TRUE. If the registry cannot be initialized, return
1467 * IMPORTANT: Upon entry, registryMutex must be LOCKED. The entirely
1468 * initialization is done with the lock held. There is NO REASON to
1469 * unlock, since no other thread that is waiting on the registryMutex
1470 * cannot itself proceed until the registry is initialized.
1472 UBool
Transliterator::initializeRegistry(UErrorCode
&status
) {
1473 if (registry
!= 0) {
1477 registry
= new TransliteratorRegistry(status
);
1478 if (registry
== 0 || U_FAILURE(status
)) {
1481 return FALSE
; // can't create registry, no recovery
1484 /* The following code parses the index table located in
1485 * icu/data/translit/root.txt. The index is an n x 4 table
1486 * that follows this format:
1489 * resource{"<resource>"}
1490 * direction{"<direction>"}
1495 * resource{"<resource>"}
1496 * direction{"<direction"}
1500 * alias{"<getInstanceArg"}
1502 * <id> is the ID of the system transliterator being defined. These
1503 * are public IDs enumerated by Transliterator.getAvailableIDs(),
1504 * unless the second field is "internal".
1506 * <resource> is a ResourceReader resource name. Currently these refer
1507 * to file names under com/ibm/text/resources. This string is passed
1508 * directly to ResourceReader, together with <encoding>.
1510 * <direction> is either "FORWARD" or "REVERSE".
1512 * <getInstanceArg> is a string to be passed directly to
1513 * Transliterator.getInstance(). The returned Transliterator object
1514 * then has its ID changed to <id> and is returned.
1516 * The extra blank field on "alias" lines is to make the array square.
1518 //static const char translit_index[] = "translit_index";
1520 UResourceBundle
*bundle
, *transIDs
, *colBund
;
1521 bundle
= ures_open(U_ICUDATA_TRANSLIT
, NULL
/*open default locale*/, &status
);
1522 transIDs
= ures_getByKey(bundle
, RB_RULE_BASED_IDS
, 0, &status
);
1524 int32_t row
, maxRows
;
1525 if (U_SUCCESS(status
)) {
1526 maxRows
= ures_getSize(transIDs
);
1527 for (row
= 0; row
< maxRows
; row
++) {
1528 colBund
= ures_getByIndex(transIDs
, row
, 0, &status
);
1529 if (U_SUCCESS(status
)) {
1530 UnicodeString
id(ures_getKey(colBund
), -1, US_INV
);
1531 UResourceBundle
* res
= ures_getNextResource(colBund
, NULL
, &status
);
1532 const char* typeStr
= ures_getKey(res
);
1534 u_charsToUChars(typeStr
, &type
, 1);
1536 if (U_SUCCESS(status
)) {
1538 const UChar
*resString
;
1542 // 'file' or 'internal';
1543 // row[2]=resource, row[3]=direction
1546 resString
= ures_getStringByKey(res
, "resource", &len
, &status
);
1547 UBool visible
= (type
== 0x0066 /*f*/);
1548 UTransDirection dir
=
1549 (ures_getUnicodeStringByKey(res
, "direction", &status
).charAt(0) ==
1551 UTRANS_FORWARD
: UTRANS_REVERSE
;
1552 registry
->put(id
, UnicodeString(TRUE
, resString
, len
), dir
, TRUE
, visible
, status
);
1556 // 'alias'; row[2]=createInstance argument
1557 resString
= ures_getString(res
, &len
, &status
);
1558 registry
->put(id
, UnicodeString(TRUE
, resString
, len
), TRUE
, TRUE
, status
);
1564 ures_close(colBund
);
1568 ures_close(transIDs
);
1571 // Manually add prototypes that the system knows about to the
1572 // cache. This is how new non-rule-based transliterators are
1573 // added to the system.
1575 // This is to allow for null pointer check
1576 NullTransliterator
* tempNullTranslit
= new NullTransliterator();
1577 LowercaseTransliterator
* tempLowercaseTranslit
= new LowercaseTransliterator();
1578 UppercaseTransliterator
* tempUppercaseTranslit
= new UppercaseTransliterator();
1579 TitlecaseTransliterator
* tempTitlecaseTranslit
= new TitlecaseTransliterator();
1580 UnicodeNameTransliterator
* tempUnicodeTranslit
= new UnicodeNameTransliterator();
1581 NameUnicodeTransliterator
* tempNameUnicodeTranslit
= new NameUnicodeTransliterator();
1582 #if !UCONFIG_NO_BREAK_ITERATION
1583 // TODO: could or should these transliterators be referenced polymorphically once constructed?
1584 BreakTransliterator
* tempBreakTranslit
= new BreakTransliterator();
1586 // Check for null pointers
1587 if (tempNullTranslit
== NULL
|| tempLowercaseTranslit
== NULL
|| tempUppercaseTranslit
== NULL
||
1588 tempTitlecaseTranslit
== NULL
|| tempUnicodeTranslit
== NULL
||
1589 #if !UCONFIG_NO_BREAK_ITERATION
1590 tempBreakTranslit
== NULL
||
1592 tempNameUnicodeTranslit
== NULL
)
1594 delete tempNullTranslit
;
1595 delete tempLowercaseTranslit
;
1596 delete tempUppercaseTranslit
;
1597 delete tempTitlecaseTranslit
;
1598 delete tempUnicodeTranslit
;
1599 delete tempNameUnicodeTranslit
;
1600 #if !UCONFIG_NO_BREAK_ITERATION
1601 delete tempBreakTranslit
;
1603 // Since there was an error, remove registry
1607 status
= U_MEMORY_ALLOCATION_ERROR
;
1611 registry
->put(tempNullTranslit
, TRUE
, status
);
1612 registry
->put(tempLowercaseTranslit
, TRUE
, status
);
1613 registry
->put(tempUppercaseTranslit
, TRUE
, status
);
1614 registry
->put(tempTitlecaseTranslit
, TRUE
, status
);
1615 registry
->put(tempUnicodeTranslit
, TRUE
, status
);
1616 registry
->put(tempNameUnicodeTranslit
, TRUE
, status
);
1617 #if !UCONFIG_NO_BREAK_ITERATION
1618 registry
->put(tempBreakTranslit
, FALSE
, status
); // FALSE means invisible.
1621 RemoveTransliterator::registerIDs(); // Must be within mutex
1622 EscapeTransliterator::registerIDs();
1623 UnescapeTransliterator::registerIDs();
1624 NormalizationTransliterator::registerIDs();
1625 AnyTransliterator::registerIDs();
1627 _registerSpecialInverse(UNICODE_STRING_SIMPLE("Null"),
1628 UNICODE_STRING_SIMPLE("Null"), FALSE
);
1629 _registerSpecialInverse(UNICODE_STRING_SIMPLE("Upper"),
1630 UNICODE_STRING_SIMPLE("Lower"), TRUE
);
1631 _registerSpecialInverse(UNICODE_STRING_SIMPLE("Title"),
1632 UNICODE_STRING_SIMPLE("Lower"), FALSE
);
1634 ucln_i18n_registerCleanup(UCLN_I18N_TRANSLITERATOR
, transliterator_cleanup
);
1641 // Defined in ucln_in.h:
1644 * Release all static memory held by transliterator. This will
1645 * necessarily invalidate any rule-based transliterators held by the
1646 * user, because RBTs hold pointers to common data objects.
1648 U_CFUNC UBool
transliterator_cleanup(void) {
1650 TransliteratorIDParser::cleanup();
1655 umtx_destroy(®istryMutex
);
1659 #endif /* #if !UCONFIG_NO_TRANSLITERATION */