4 // Copyright (C) 2002-2012 International Business Machines Corporation and others.
5 // All Rights Reserved.
7 // This file contains the ICU regular expression compiler, which is responsible
8 // for processing a regular expression pattern into the compiled form that
9 // is used by the match finding engine.
12 #include "unicode/utypes.h"
14 #if !UCONFIG_NO_REGULAR_EXPRESSIONS
16 #include "unicode/ustring.h"
17 #include "unicode/unistr.h"
18 #include "unicode/uniset.h"
19 #include "unicode/uchar.h"
20 #include "unicode/uchriter.h"
21 #include "unicode/parsepos.h"
22 #include "unicode/parseerr.h"
23 #include "unicode/regex.h"
24 #include "unicode/utf.h"
25 #include "unicode/utf16.h"
26 #include "patternprops.h"
37 #include "regexcst.h" // Contains state table for the regex pattern parser.
38 // generated by a Perl script.
48 //------------------------------------------------------------------------------
52 //------------------------------------------------------------------------------
53 RegexCompile::RegexCompile(RegexPattern
*rxp
, UErrorCode
&status
) :
54 fParenStack(status
), fSetStack(status
), fSetOpStack(status
)
56 // Lazy init of all shared global sets (needed for init()'s empty text)
57 RegexStaticSets::initGlobals(&status
);
68 fInBackslashQuote
= FALSE
;
69 fModeFlags
= fRXPat
->fFlags
| 0x80000000;
73 fMatchCloseParen
= -1;
75 if (U_SUCCESS(status
) && U_FAILURE(rxp
->fDeferredStatus
)) {
76 status
= rxp
->fDeferredStatus
;
80 static const UChar chAmp
= 0x26; // '&'
81 static const UChar chDash
= 0x2d; // '-'
84 //------------------------------------------------------------------------------
88 //------------------------------------------------------------------------------
89 RegexCompile::~RegexCompile() {
92 static inline void addCategory(UnicodeSet
*set
, int32_t value
, UErrorCode
& ec
) {
93 set
->addAll(UnicodeSet().applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK
, value
, ec
));
96 //------------------------------------------------------------------------------
98 // Compile regex pattern. The state machine for rexexp pattern parsing is here.
99 // The state tables are hand-written in the file regexcst.txt,
100 // and converted to the form used here by a perl
101 // script regexcst.pl
103 //------------------------------------------------------------------------------
104 void RegexCompile::compile(
105 const UnicodeString
&pat
, // Source pat to be compiled.
106 UParseError
&pp
, // Error position info
107 UErrorCode
&e
) // Error Code
109 fRXPat
->fPatternString
= new UnicodeString(pat
);
110 UText patternText
= UTEXT_INITIALIZER
;
111 utext_openConstUnicodeString(&patternText
, fRXPat
->fPatternString
, &e
);
114 compile(&patternText
, pp
, e
);
115 utext_close(&patternText
);
120 // compile, UText mode
121 // All the work is actually done here.
123 void RegexCompile::compile(
124 UText
*pat
, // Source pat to be compiled.
125 UParseError
&pp
, // Error position info
126 UErrorCode
&e
) // Error Code
131 fStack
[fStackPtr
] = 0;
133 if (U_FAILURE(*fStatus
)) {
137 // There should be no pattern stuff in the RegexPattern object. They can not be reused.
138 U_ASSERT(fRXPat
->fPattern
== NULL
|| utext_nativeLength(fRXPat
->fPattern
) == 0);
140 // Prepare the RegexPattern object to receive the compiled pattern.
141 fRXPat
->fPattern
= utext_clone(fRXPat
->fPattern
, pat
, FALSE
, TRUE
, fStatus
);
142 fRXPat
->fStaticSets
= RegexStaticSets::gStaticSets
->fPropSets
;
143 fRXPat
->fStaticSets8
= RegexStaticSets::gStaticSets
->fPropSets8
;
146 // Initialize the pattern scanning state machine
147 fPatternLength
= utext_nativeLength(pat
);
149 const RegexTableEl
*tableEl
;
151 // UREGEX_LITERAL force entire pattern to be treated as a literal string.
152 if (fModeFlags
& UREGEX_LITERAL
) {
156 nextChar(fC
); // Fetch the first char from the pattern string.
159 // Main loop for the regex pattern parsing state machine.
160 // Runs once per state transition.
161 // Each time through optionally performs, depending on the state table,
162 // - an advance to the the next pattern char
163 // - an action to be performed.
164 // - pushing or popping a state to/from the local state return stack.
165 // file regexcst.txt is the source for the state table. The logic behind
166 // recongizing the pattern syntax is there, not here.
169 // Bail out if anything has gone wrong.
170 // Regex pattern parsing stops on the first error encountered.
171 if (U_FAILURE(*fStatus
)) {
175 U_ASSERT(state
!= 0);
177 // Find the state table element that matches the input char from the pattern, or the
178 // class of the input character. Start with the first table row for this
179 // state, then linearly scan forward until we find a row that matches the
180 // character. The last row for each state always matches all characters, so
181 // the search will stop there, if not before.
183 tableEl
= &gRuleParseStateTable
[state
];
184 REGEX_SCAN_DEBUG_PRINTF(("char, line, col = (\'%c\', %d, %d) state=%s ",
185 fC
.fChar
, fLineNum
, fCharNum
, RegexStateNames
[state
]));
187 for (;;) { // loop through table rows belonging to this state, looking for one
188 // that matches the current input char.
189 REGEX_SCAN_DEBUG_PRINTF(("."));
190 if (tableEl
->fCharClass
< 127 && fC
.fQuoted
== FALSE
&& tableEl
->fCharClass
== fC
.fChar
) {
191 // Table row specified an individual character, not a set, and
192 // the input character is not quoted, and
193 // the input character matched it.
196 if (tableEl
->fCharClass
== 255) {
197 // Table row specified default, match anything character class.
200 if (tableEl
->fCharClass
== 254 && fC
.fQuoted
) {
201 // Table row specified "quoted" and the char was quoted.
204 if (tableEl
->fCharClass
== 253 && fC
.fChar
== (UChar32
)-1) {
205 // Table row specified eof and we hit eof on the input.
209 if (tableEl
->fCharClass
>= 128 && tableEl
->fCharClass
< 240 && // Table specs a char class &&
210 fC
.fQuoted
== FALSE
&& // char is not escaped &&
211 fC
.fChar
!= (UChar32
)-1) { // char is not EOF
212 U_ASSERT(tableEl
->fCharClass
<= 137);
213 if (RegexStaticSets::gStaticSets
->fRuleSets
[tableEl
->fCharClass
-128].contains(fC
.fChar
)) {
214 // Table row specified a character class, or set of characters,
215 // and the current char matches it.
220 // No match on this row, advance to the next row for this state,
223 REGEX_SCAN_DEBUG_PRINTF(("\n"));
226 // We've found the row of the state table that matches the current input
227 // character from the rules string.
228 // Perform any action specified by this row in the state table.
229 if (doParseActions(tableEl
->fAction
) == FALSE
) {
230 // Break out of the state machine loop if the
231 // the action signalled some kind of error, or
232 // the action was to exit, occurs on normal end-of-rules-input.
236 if (tableEl
->fPushState
!= 0) {
238 if (fStackPtr
>= kStackSize
) {
239 error(U_REGEX_INTERNAL_ERROR
);
240 REGEX_SCAN_DEBUG_PRINTF(("RegexCompile::parse() - state stack overflow.\n"));
243 fStack
[fStackPtr
] = tableEl
->fPushState
;
247 // NextChar. This is where characters are actually fetched from the pattern.
248 // Happens under control of the 'n' tag in the state table.
250 if (tableEl
->fNextChar
) {
254 // Get the next state from the table entry, or from the
255 // state stack if the next state was specified as "pop".
256 if (tableEl
->fNextState
!= 255) {
257 state
= tableEl
->fNextState
;
259 state
= fStack
[fStackPtr
];
262 // state stack underflow
263 // This will occur if the user pattern has mis-matched parentheses,
264 // with extra close parens.
267 error(U_REGEX_MISMATCHED_PAREN
);
273 if (U_FAILURE(*fStatus
)) {
274 // Bail out if the pattern had errors.
275 // Set stack cleanup: a successful compile would have left it empty,
276 // but errors can leave temporary sets hanging around.
277 while (!fSetStack
.empty()) {
278 delete (UnicodeSet
*)fSetStack
.pop();
284 // The pattern has now been read and processed, and the compiled code generated.
288 // Compute the number of digits requried for the largest capture group number.
290 fRXPat
->fMaxCaptureDigits
= 1;
292 int32_t groupCount
= fRXPat
->fGroupMap
->size();
293 while (n
<= groupCount
) {
294 fRXPat
->fMaxCaptureDigits
++;
299 // The pattern's fFrameSize so far has accumulated the requirements for
300 // storage for capture parentheses, counters, etc. that are encountered
301 // in the pattern. Add space for the two variables that are always
302 // present in the saved state: the input string position (int64_t) and
303 // the position in the compiled pattern.
305 fRXPat
->fFrameSize
+=RESTACKFRAME_HDRCOUNT
;
308 // Optimization pass 1: NOPs, back-references, and case-folding
313 // Get bounds for the minimum and maximum length of a string that this
314 // pattern can match. Used to avoid looking for matches in strings that
317 fRXPat
->fMinMatchLen
= minMatchLength(3, fRXPat
->fCompiledPat
->size()-1);
320 // Optimization pass 2: match start type
325 // Set up fast latin-1 range sets
327 int32_t numSets
= fRXPat
->fSets
->size();
328 fRXPat
->fSets8
= new Regex8BitSet
[numSets
];
329 // Null pointer check.
330 if (fRXPat
->fSets8
== NULL
) {
331 e
= *fStatus
= U_MEMORY_ALLOCATION_ERROR
;
335 for (i
=0; i
<numSets
; i
++) {
336 UnicodeSet
*s
= (UnicodeSet
*)fRXPat
->fSets
->elementAt(i
);
337 fRXPat
->fSets8
[i
].init(s
);
346 //------------------------------------------------------------------------------
348 // doParseAction Do some action during regex pattern parsing.
349 // Called by the parse state machine.
351 // Generation of the match engine PCode happens here, or
352 // in functions called from the parse actions defined here.
355 //------------------------------------------------------------------------------
356 UBool
RegexCompile::doParseActions(int32_t action
)
358 UBool returnVal
= TRUE
;
360 switch ((Regex_PatternParseAction
)action
) {
363 // Start of pattern compiles to:
364 //0 SAVE 2 Fall back to position of FAIL
366 //2 FAIL Stop if we ever reach here.
367 //3 NOP Dummy, so start of pattern looks the same as
368 // the start of an ( grouping.
369 //4 NOP Resreved, will be replaced by a save if there are
370 // OR | operators at the top level
371 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_STATE_SAVE
, 2), *fStatus
);
372 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_JMP
, 3), *fStatus
);
373 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_FAIL
, 0), *fStatus
);
375 // Standard open nonCapture paren action emits the two NOPs and
376 // sets up the paren stack frame.
377 doParseActions(doOpenNonCaptureParen
);
381 // We've scanned to the end of the pattern
382 // The end of pattern compiles to:
384 // which will stop the runtime match engine.
385 // Encountering end of pattern also behaves like a close paren,
386 // and forces fixups of the State Save at the beginning of the compiled pattern
387 // and of any OR operations at the top level.
390 if (fParenStack
.size() > 0) {
391 // Missing close paren in pattern.
392 error(U_REGEX_MISMATCHED_PAREN
);
395 // add the END operation to the compiled pattern.
396 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_END
, 0), *fStatus
);
398 // Terminate the pattern compilation state machine.
405 // Scanning a '|', as in (A|B)
407 // Generate code for any pending literals preceding the '|'
410 // Insert a SAVE operation at the start of the pattern section preceding
411 // this OR at this level. This SAVE will branch the match forward
412 // to the right hand side of the OR in the event that the left hand
413 // side fails to match and backtracks. Locate the position for the
414 // save from the location on the top of the parentheses stack.
415 int32_t savePosition
= fParenStack
.popi();
416 int32_t op
= (int32_t)fRXPat
->fCompiledPat
->elementAti(savePosition
);
417 U_ASSERT(URX_TYPE(op
) == URX_NOP
); // original contents of reserved location
418 op
= URX_BUILD(URX_STATE_SAVE
, fRXPat
->fCompiledPat
->size()+1);
419 fRXPat
->fCompiledPat
->setElementAt(op
, savePosition
);
421 // Append an JMP operation into the compiled pattern. The operand for
422 // the JMP will eventually be the location following the ')' for the
423 // group. This will be patched in later, when the ')' is encountered.
424 op
= URX_BUILD(URX_JMP
, 0);
425 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
427 // Push the position of the newly added JMP op onto the parentheses stack.
428 // This registers if for fixup when this block's close paren is encountered.
429 fParenStack
.push(fRXPat
->fCompiledPat
->size()-1, *fStatus
);
431 // Append a NOP to the compiled pattern. This is the slot reserved
432 // for a SAVE in the event that there is yet another '|' following
434 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_NOP
, 0), *fStatus
);
435 fParenStack
.push(fRXPat
->fCompiledPat
->size()-1, *fStatus
);
440 case doOpenCaptureParen
:
443 // - NOP, which later may be replaced by a save-state if the
444 // parenthesized group gets a * quantifier, followed by
445 // - START_CAPTURE n where n is stack frame offset to the capture group variables.
446 // - NOP, which may later be replaced by a save-state if there
447 // is an '|' alternation within the parens.
449 // Each capture group gets three slots in the save stack frame:
450 // 0: Capture Group start position (in input string being matched.)
451 // 1: Capture Group end position.
452 // 2: Start of Match-in-progress.
453 // The first two locations are for a completed capture group, and are
454 // referred to by back references and the like.
455 // The third location stores the capture start position when an START_CAPTURE is
456 // encountered. This will be promoted to a completed capture when (and if) the corresponding
457 // END_CAPTURE is encountered.
460 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_NOP
, 0), *fStatus
);
461 int32_t varsLoc
= fRXPat
->fFrameSize
; // Reserve three slots in match stack frame.
462 fRXPat
->fFrameSize
+= 3;
463 int32_t cop
= URX_BUILD(URX_START_CAPTURE
, varsLoc
);
464 fRXPat
->fCompiledPat
->addElement(cop
, *fStatus
);
465 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_NOP
, 0), *fStatus
);
467 // On the Parentheses stack, start a new frame and add the postions
468 // of the two NOPs. Depending on what follows in the pattern, the
469 // NOPs may be changed to SAVE_STATE or JMP ops, with a target
470 // address of the end of the parenthesized group.
471 fParenStack
.push(fModeFlags
, *fStatus
); // Match mode state
472 fParenStack
.push(capturing
, *fStatus
); // Frame type.
473 fParenStack
.push(fRXPat
->fCompiledPat
->size()-3, *fStatus
); // The first NOP location
474 fParenStack
.push(fRXPat
->fCompiledPat
->size()-1, *fStatus
); // The second NOP loc
476 // Save the mapping from group number to stack frame variable position.
477 fRXPat
->fGroupMap
->addElement(varsLoc
, *fStatus
);
481 case doOpenNonCaptureParen
:
482 // Open non-caputuring (grouping only) Paren.
484 // - NOP, which later may be replaced by a save-state if the
485 // parenthesized group gets a * quantifier, followed by
486 // - NOP, which may later be replaced by a save-state if there
487 // is an '|' alternation within the parens.
490 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_NOP
, 0), *fStatus
);
491 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_NOP
, 0), *fStatus
);
493 // On the Parentheses stack, start a new frame and add the postions
495 fParenStack
.push(fModeFlags
, *fStatus
); // Match mode state
496 fParenStack
.push(plain
, *fStatus
); // Begin a new frame.
497 fParenStack
.push(fRXPat
->fCompiledPat
->size()-2, *fStatus
); // The first NOP location
498 fParenStack
.push(fRXPat
->fCompiledPat
->size()-1, *fStatus
); // The second NOP loc
503 case doOpenAtomicParen
:
504 // Open Atomic Paren. (?>
506 // - NOP, which later may be replaced if the parenthesized group
507 // has a quantifier, followed by
508 // - STO_SP save state stack position, so it can be restored at the ")"
509 // - NOP, which may later be replaced by a save-state if there
510 // is an '|' alternation within the parens.
513 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_NOP
, 0), *fStatus
);
514 int32_t varLoc
= fRXPat
->fDataSize
; // Reserve a data location for saving the
515 fRXPat
->fDataSize
+= 1; // state stack ptr.
516 int32_t stoOp
= URX_BUILD(URX_STO_SP
, varLoc
);
517 fRXPat
->fCompiledPat
->addElement(stoOp
, *fStatus
);
518 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_NOP
, 0), *fStatus
);
520 // On the Parentheses stack, start a new frame and add the postions
521 // of the two NOPs. Depending on what follows in the pattern, the
522 // NOPs may be changed to SAVE_STATE or JMP ops, with a target
523 // address of the end of the parenthesized group.
524 fParenStack
.push(fModeFlags
, *fStatus
); // Match mode state
525 fParenStack
.push(atomic
, *fStatus
); // Frame type.
526 fParenStack
.push(fRXPat
->fCompiledPat
->size()-3, *fStatus
); // The first NOP
527 fParenStack
.push(fRXPat
->fCompiledPat
->size()-1, *fStatus
); // The second NOP
532 case doOpenLookAhead
:
533 // Positive Look-ahead (?= stuff )
535 // Note: Addition of transparent input regions, with the need to
536 // restore the original regions when failing out of a lookahead
537 // block, complicated this sequence. Some conbined opcodes
538 // might make sense - or might not, lookahead aren't that common.
540 // Caution: min match length optimization knows about this
541 // sequence; don't change without making updates there too.
544 // 1 START_LA dataLoc Saves SP, Input Pos
545 // 2. STATE_SAVE 4 on failure of lookahead, goto 4
546 // 3 JMP 6 continue ...
548 // 4. LA_END Look Ahead failed. Restore regions.
549 // 5. BACKTRACK and back track again.
551 // 6. NOP reserved for use by quantifiers on the block.
552 // Look-ahead can't have quantifiers, but paren stack
553 // compile time conventions require the slot anyhow.
554 // 7. NOP may be replaced if there is are '|' ops in the block.
555 // 8. code for parenthesized stuff.
558 // Two data slots are reserved, for saving the stack ptr and the input position.
561 int32_t dataLoc
= fRXPat
->fDataSize
;
562 fRXPat
->fDataSize
+= 2;
563 int32_t op
= URX_BUILD(URX_LA_START
, dataLoc
);
564 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
566 op
= URX_BUILD(URX_STATE_SAVE
, fRXPat
->fCompiledPat
->size()+ 2);
567 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
569 op
= URX_BUILD(URX_JMP
, fRXPat
->fCompiledPat
->size()+ 3);
570 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
572 op
= URX_BUILD(URX_LA_END
, dataLoc
);
573 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
575 op
= URX_BUILD(URX_BACKTRACK
, 0);
576 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
578 op
= URX_BUILD(URX_NOP
, 0);
579 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
580 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
582 // On the Parentheses stack, start a new frame and add the postions
584 fParenStack
.push(fModeFlags
, *fStatus
); // Match mode state
585 fParenStack
.push(lookAhead
, *fStatus
); // Frame type.
586 fParenStack
.push(fRXPat
->fCompiledPat
->size()-2, *fStatus
); // The first NOP location
587 fParenStack
.push(fRXPat
->fCompiledPat
->size()-1, *fStatus
); // The second NOP location
591 case doOpenLookAheadNeg
:
592 // Negated Lookahead. (?! stuff )
594 // 1. START_LA dataloc
595 // 2. SAVE_STATE 7 // Fail within look-ahead block restores to this state,
596 // // which continues with the match.
597 // 3. NOP // Std. Open Paren sequence, for possible '|'
598 // 4. code for parenthesized stuff.
599 // 5. END_LA // Cut back stack, remove saved state from step 2.
600 // 6. BACKTRACK // code in block succeeded, so neg. lookahead fails.
601 // 7. END_LA // Restore match region, in case look-ahead was using
602 // an alternate (transparent) region.
605 int32_t dataLoc
= fRXPat
->fDataSize
;
606 fRXPat
->fDataSize
+= 2;
607 int32_t op
= URX_BUILD(URX_LA_START
, dataLoc
);
608 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
610 op
= URX_BUILD(URX_STATE_SAVE
, 0); // dest address will be patched later.
611 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
613 op
= URX_BUILD(URX_NOP
, 0);
614 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
616 // On the Parentheses stack, start a new frame and add the postions
617 // of the StateSave and NOP.
618 fParenStack
.push(fModeFlags
, *fStatus
); // Match mode state
619 fParenStack
.push(negLookAhead
, *fStatus
); // Frame type
620 fParenStack
.push(fRXPat
->fCompiledPat
->size()-2, *fStatus
); // The STATE_SAVE location
621 fParenStack
.push(fRXPat
->fCompiledPat
->size()-1, *fStatus
); // The second NOP location
623 // Instructions #5 - #7 will be added when the ')' is encountered.
627 case doOpenLookBehind
:
629 // Compile a (?<= look-behind open paren.
632 // 0 URX_LB_START dataLoc
633 // 1 URX_LB_CONT dataLoc
636 // 4 URX_NOP Standard '(' boilerplate.
637 // 5 URX_NOP Reserved slot for use with '|' ops within (block).
638 // 6 <code for LookBehind expression>
639 // 7 URX_LB_END dataLoc # Check match len, restore input len
640 // 8 URX_LA_END dataLoc # Restore stack, input pos
642 // Allocate a block of matcher data, to contain (when running a match)
643 // 0: Stack ptr on entry
644 // 1: Input Index on entry
645 // 2: Start index of match current match attempt.
646 // 3: Original Input String len.
648 // Generate match code for any pending literals.
651 // Allocate data space
652 int32_t dataLoc
= fRXPat
->fDataSize
;
653 fRXPat
->fDataSize
+= 4;
656 int32_t op
= URX_BUILD(URX_LB_START
, dataLoc
);
657 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
660 op
= URX_BUILD(URX_LB_CONT
, dataLoc
);
661 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
662 fRXPat
->fCompiledPat
->addElement(0, *fStatus
); // MinMatchLength. To be filled later.
663 fRXPat
->fCompiledPat
->addElement(0, *fStatus
); // MaxMatchLength. To be filled later.
666 op
= URX_BUILD(URX_NOP
, 0);
667 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
668 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
670 // On the Parentheses stack, start a new frame and add the postions
671 // of the URX_LB_CONT and the NOP.
672 fParenStack
.push(fModeFlags
, *fStatus
); // Match mode state
673 fParenStack
.push(lookBehind
, *fStatus
); // Frame type
674 fParenStack
.push(fRXPat
->fCompiledPat
->size()-2, *fStatus
); // The first NOP location
675 fParenStack
.push(fRXPat
->fCompiledPat
->size()-1, *fStatus
); // The 2nd NOP location
677 // The final two instructions will be added when the ')' is encountered.
682 case doOpenLookBehindNeg
:
684 // Compile a (?<! negated look-behind open paren.
687 // 0 URX_LB_START dataLoc # Save entry stack, input len
688 // 1 URX_LBN_CONT dataLoc # Iterate possible match positions
692 // 5 URX_NOP Standard '(' boilerplate.
693 // 6 URX_NOP Reserved slot for use with '|' ops within (block).
694 // 7 <code for LookBehind expression>
695 // 8 URX_LBN_END dataLoc # Check match len, cause a FAIL
698 // Allocate a block of matcher data, to contain (when running a match)
699 // 0: Stack ptr on entry
700 // 1: Input Index on entry
701 // 2: Start index of match current match attempt.
702 // 3: Original Input String len.
704 // Generate match code for any pending literals.
707 // Allocate data space
708 int32_t dataLoc
= fRXPat
->fDataSize
;
709 fRXPat
->fDataSize
+= 4;
712 int32_t op
= URX_BUILD(URX_LB_START
, dataLoc
);
713 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
716 op
= URX_BUILD(URX_LBN_CONT
, dataLoc
);
717 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
718 fRXPat
->fCompiledPat
->addElement(0, *fStatus
); // MinMatchLength. To be filled later.
719 fRXPat
->fCompiledPat
->addElement(0, *fStatus
); // MaxMatchLength. To be filled later.
720 fRXPat
->fCompiledPat
->addElement(0, *fStatus
); // Continue Loc. To be filled later.
723 op
= URX_BUILD(URX_NOP
, 0);
724 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
725 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
727 // On the Parentheses stack, start a new frame and add the postions
728 // of the URX_LB_CONT and the NOP.
729 fParenStack
.push(fModeFlags
, *fStatus
); // Match mode state
730 fParenStack
.push(lookBehindN
, *fStatus
); // Frame type
731 fParenStack
.push(fRXPat
->fCompiledPat
->size()-2, *fStatus
); // The first NOP location
732 fParenStack
.push(fRXPat
->fCompiledPat
->size()-1, *fStatus
); // The 2nd NOP location
734 // The final two instructions will be added when the ')' is encountered.
738 case doConditionalExpr
:
739 // Conditionals such as (?(1)a:b)
741 // Perl inline-condtionals. (?{perl code}a|b) We're not perl, no way to do them.
742 error(U_REGEX_UNIMPLEMENTED
);
748 if (fParenStack
.size() <= 0) {
749 // Extra close paren, or missing open paren.
750 error(U_REGEX_MISMATCHED_PAREN
);
758 case doBadOpenParenType
:
760 error(U_REGEX_RULE_SYNTAX
);
764 case doMismatchedParenErr
:
765 error(U_REGEX_MISMATCHED_PAREN
);
769 // Normal '+' compiles to
770 // 1. stuff to be repeated (already built)
774 // Or, if the item to be repeated can match a zero length string,
775 // 1. STO_INP_LOC data-loc
776 // 2. body of stuff to be repeated
781 // Or, if the item to be repeated is simple
782 // 1. Item to be repeated.
783 // 2. LOOP_SR_I set number (assuming repeated item is a set ref)
784 // 3. LOOP_C stack location
786 int32_t topLoc
= blockTopLoc(FALSE
); // location of item #1
789 // Check for simple constructs, which may get special optimized code.
790 if (topLoc
== fRXPat
->fCompiledPat
->size() - 1) {
791 int32_t repeatedOp
= (int32_t)fRXPat
->fCompiledPat
->elementAti(topLoc
);
793 if (URX_TYPE(repeatedOp
) == URX_SETREF
) {
794 // Emit optimized code for [char set]+
795 int32_t loopOpI
= URX_BUILD(URX_LOOP_SR_I
, URX_VAL(repeatedOp
));
796 fRXPat
->fCompiledPat
->addElement(loopOpI
, *fStatus
);
797 frameLoc
= fRXPat
->fFrameSize
;
798 fRXPat
->fFrameSize
++;
799 int32_t loopOpC
= URX_BUILD(URX_LOOP_C
, frameLoc
);
800 fRXPat
->fCompiledPat
->addElement(loopOpC
, *fStatus
);
804 if (URX_TYPE(repeatedOp
) == URX_DOTANY
||
805 URX_TYPE(repeatedOp
) == URX_DOTANY_ALL
||
806 URX_TYPE(repeatedOp
) == URX_DOTANY_UNIX
) {
807 // Emit Optimized code for .+ operations.
808 int32_t loopOpI
= URX_BUILD(URX_LOOP_DOT_I
, 0);
809 if (URX_TYPE(repeatedOp
) == URX_DOTANY_ALL
) {
810 // URX_LOOP_DOT_I operand is a flag indicating ". matches any" mode.
813 if (fModeFlags
& UREGEX_UNIX_LINES
) {
816 fRXPat
->fCompiledPat
->addElement(loopOpI
, *fStatus
);
817 frameLoc
= fRXPat
->fFrameSize
;
818 fRXPat
->fFrameSize
++;
819 int32_t loopOpC
= URX_BUILD(URX_LOOP_C
, frameLoc
);
820 fRXPat
->fCompiledPat
->addElement(loopOpC
, *fStatus
);
828 // Check for minimum match length of zero, which requires
829 // extra loop-breaking code.
830 if (minMatchLength(topLoc
, fRXPat
->fCompiledPat
->size()-1) == 0) {
831 // Zero length match is possible.
832 // Emit the code sequence that can handle it.
834 frameLoc
= fRXPat
->fFrameSize
;
835 fRXPat
->fFrameSize
++;
837 int32_t op
= URX_BUILD(URX_STO_INP_LOC
, frameLoc
);
838 fRXPat
->fCompiledPat
->setElementAt(op
, topLoc
);
840 op
= URX_BUILD(URX_JMP_SAV_X
, topLoc
+1);
841 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
843 // Simpler code when the repeated body must match something non-empty
844 int32_t jmpOp
= URX_BUILD(URX_JMP_SAV
, topLoc
);
845 fRXPat
->fCompiledPat
->addElement(jmpOp
, *fStatus
);
851 // Non-greedy '+?' compiles to
852 // 1. stuff to be repeated (already built)
856 int32_t topLoc
= blockTopLoc(FALSE
);
857 int32_t saveStateOp
= URX_BUILD(URX_STATE_SAVE
, topLoc
);
858 fRXPat
->fCompiledPat
->addElement(saveStateOp
, *fStatus
);
864 // Normal (greedy) ? quantifier.
867 // 2. body of optional block
869 // Insert the state save into the compiled pattern, and we're done.
871 int32_t saveStateLoc
= blockTopLoc(TRUE
);
872 int32_t saveStateOp
= URX_BUILD(URX_STATE_SAVE
, fRXPat
->fCompiledPat
->size());
873 fRXPat
->fCompiledPat
->setElementAt(saveStateOp
, saveStateLoc
);
878 // Non-greedy ?? quantifier
881 // 2. body of optional block
885 // This code is less than ideal, with two jmps instead of one, because we can only
886 // insert one instruction at the top of the block being iterated.
888 int32_t jmp1_loc
= blockTopLoc(TRUE
);
889 int32_t jmp2_loc
= fRXPat
->fCompiledPat
->size();
891 int32_t jmp1_op
= URX_BUILD(URX_JMP
, jmp2_loc
+1);
892 fRXPat
->fCompiledPat
->setElementAt(jmp1_op
, jmp1_loc
);
894 int32_t jmp2_op
= URX_BUILD(URX_JMP
, jmp2_loc
+2);
895 fRXPat
->fCompiledPat
->addElement(jmp2_op
, *fStatus
);
897 int32_t save_op
= URX_BUILD(URX_STATE_SAVE
, jmp1_loc
+1);
898 fRXPat
->fCompiledPat
->addElement(save_op
, *fStatus
);
904 // Normal (greedy) * quantifier.
907 // 2. body of stuff being iterated over
911 // Or, if the body is a simple [Set],
912 // 1. LOOP_SR_I set number
913 // 2. LOOP_C stack location
916 // Or if this is a .*
917 // 1. LOOP_DOT_I (. matches all mode flag)
918 // 2. LOOP_C stack location
920 // Or, if the body can match a zero-length string, to inhibit infinite loops,
922 // 2. STO_INP_LOC data-loc
927 // location of item #1, the STATE_SAVE
928 int32_t topLoc
= blockTopLoc(FALSE
);
929 int32_t dataLoc
= -1;
931 // Check for simple *, where the construct being repeated
932 // compiled to single opcode, and might be optimizable.
933 if (topLoc
== fRXPat
->fCompiledPat
->size() - 1) {
934 int32_t repeatedOp
= (int32_t)fRXPat
->fCompiledPat
->elementAti(topLoc
);
936 if (URX_TYPE(repeatedOp
) == URX_SETREF
) {
937 // Emit optimized code for a [char set]*
938 int32_t loopOpI
= URX_BUILD(URX_LOOP_SR_I
, URX_VAL(repeatedOp
));
939 fRXPat
->fCompiledPat
->setElementAt(loopOpI
, topLoc
);
940 dataLoc
= fRXPat
->fFrameSize
;
941 fRXPat
->fFrameSize
++;
942 int32_t loopOpC
= URX_BUILD(URX_LOOP_C
, dataLoc
);
943 fRXPat
->fCompiledPat
->addElement(loopOpC
, *fStatus
);
947 if (URX_TYPE(repeatedOp
) == URX_DOTANY
||
948 URX_TYPE(repeatedOp
) == URX_DOTANY_ALL
||
949 URX_TYPE(repeatedOp
) == URX_DOTANY_UNIX
) {
950 // Emit Optimized code for .* operations.
951 int32_t loopOpI
= URX_BUILD(URX_LOOP_DOT_I
, 0);
952 if (URX_TYPE(repeatedOp
) == URX_DOTANY_ALL
) {
953 // URX_LOOP_DOT_I operand is a flag indicating . matches any mode.
956 if ((fModeFlags
& UREGEX_UNIX_LINES
) != 0) {
959 fRXPat
->fCompiledPat
->setElementAt(loopOpI
, topLoc
);
960 dataLoc
= fRXPat
->fFrameSize
;
961 fRXPat
->fFrameSize
++;
962 int32_t loopOpC
= URX_BUILD(URX_LOOP_C
, dataLoc
);
963 fRXPat
->fCompiledPat
->addElement(loopOpC
, *fStatus
);
968 // Emit general case code for this *
969 // The optimizations did not apply.
971 int32_t saveStateLoc
= blockTopLoc(TRUE
);
972 int32_t jmpOp
= URX_BUILD(URX_JMP_SAV
, saveStateLoc
+1);
974 // Check for minimum match length of zero, which requires
975 // extra loop-breaking code.
976 if (minMatchLength(saveStateLoc
, fRXPat
->fCompiledPat
->size()-1) == 0) {
977 insertOp(saveStateLoc
);
978 dataLoc
= fRXPat
->fFrameSize
;
979 fRXPat
->fFrameSize
++;
981 int32_t op
= URX_BUILD(URX_STO_INP_LOC
, dataLoc
);
982 fRXPat
->fCompiledPat
->setElementAt(op
, saveStateLoc
+1);
983 jmpOp
= URX_BUILD(URX_JMP_SAV_X
, saveStateLoc
+2);
986 // Locate the position in the compiled pattern where the match will continue
987 // after completing the *. (4 or 5 in the comment above)
988 int32_t continueLoc
= fRXPat
->fCompiledPat
->size()+1;
990 // Put together the save state op store it into the compiled code.
991 int32_t saveStateOp
= URX_BUILD(URX_STATE_SAVE
, continueLoc
);
992 fRXPat
->fCompiledPat
->setElementAt(saveStateOp
, saveStateLoc
);
994 // Append the URX_JMP_SAV or URX_JMPX operation to the compiled pattern.
995 fRXPat
->fCompiledPat
->addElement(jmpOp
, *fStatus
);
1000 // Non-greedy *? quantifier
1003 // 2. body of stuff being iterated over
1007 int32_t jmpLoc
= blockTopLoc(TRUE
); // loc 1.
1008 int32_t saveLoc
= fRXPat
->fCompiledPat
->size(); // loc 3.
1009 int32_t jmpOp
= URX_BUILD(URX_JMP
, saveLoc
);
1010 int32_t stateSaveOp
= URX_BUILD(URX_STATE_SAVE
, jmpLoc
+1);
1011 fRXPat
->fCompiledPat
->setElementAt(jmpOp
, jmpLoc
);
1012 fRXPat
->fCompiledPat
->addElement(stateSaveOp
, *fStatus
);
1017 case doIntervalInit
:
1018 // The '{' opening an interval quantifier was just scanned.
1019 // Init the counter varaiables that will accumulate the values as the digits
1022 fIntervalUpper
= -1;
1025 case doIntevalLowerDigit
:
1026 // Scanned a digit from the lower value of an {lower,upper} interval
1028 int32_t digitValue
= u_charDigitValue(fC
.fChar
);
1029 U_ASSERT(digitValue
>= 0);
1030 fIntervalLow
= fIntervalLow
*10 + digitValue
;
1031 if (fIntervalLow
< 0) {
1032 error(U_REGEX_NUMBER_TOO_BIG
);
1037 case doIntervalUpperDigit
:
1038 // Scanned a digit from the upper value of an {lower,upper} interval
1040 if (fIntervalUpper
< 0) {
1043 int32_t digitValue
= u_charDigitValue(fC
.fChar
);
1044 U_ASSERT(digitValue
>= 0);
1045 fIntervalUpper
= fIntervalUpper
*10 + digitValue
;
1046 if (fIntervalUpper
< 0) {
1047 error(U_REGEX_NUMBER_TOO_BIG
);
1052 case doIntervalSame
:
1053 // Scanned a single value interval like {27}. Upper = Lower.
1054 fIntervalUpper
= fIntervalLow
;
1058 // Finished scanning a normal {lower,upper} interval. Generate the code for it.
1059 if (compileInlineInterval() == FALSE
) {
1060 compileInterval(URX_CTR_INIT
, URX_CTR_LOOP
);
1064 case doPossessiveInterval
:
1065 // Finished scanning a Possessive {lower,upper}+ interval. Generate the code for it.
1067 // Remember the loc for the top of the block being looped over.
1068 // (Can not reserve a slot in the compiled pattern at this time, because
1069 // compileInterval needs to reserve also, and blockTopLoc can only reserve
1071 int32_t topLoc
= blockTopLoc(FALSE
);
1073 // Produce normal looping code.
1074 compileInterval(URX_CTR_INIT
, URX_CTR_LOOP
);
1076 // Surround the just-emitted normal looping code with a STO_SP ... LD_SP
1077 // just as if the loop was inclosed in atomic parentheses.
1079 // First the STO_SP before the start of the loop
1081 int32_t varLoc
= fRXPat
->fDataSize
; // Reserve a data location for saving the
1082 fRXPat
->fDataSize
+= 1; // state stack ptr.
1083 int32_t op
= URX_BUILD(URX_STO_SP
, varLoc
);
1084 fRXPat
->fCompiledPat
->setElementAt(op
, topLoc
);
1086 int32_t loopOp
= (int32_t)fRXPat
->fCompiledPat
->popi();
1087 U_ASSERT(URX_TYPE(loopOp
) == URX_CTR_LOOP
&& URX_VAL(loopOp
) == topLoc
);
1088 loopOp
++; // point LoopOp after the just-inserted STO_SP
1089 fRXPat
->fCompiledPat
->push(loopOp
, *fStatus
);
1091 // Then the LD_SP after the end of the loop
1092 op
= URX_BUILD(URX_LD_SP
, varLoc
);
1093 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
1099 // Finished scanning a non-greedy {lower,upper}? interval. Generate the code for it.
1100 compileInterval(URX_CTR_INIT_NG
, URX_CTR_LOOP_NG
);
1103 case doIntervalError
:
1104 error(U_REGEX_BAD_INTERVAL
);
1108 // We've just scanned a "normal" character from the pattern,
1109 literalChar(fC
.fChar
);
1113 case doEscapedLiteralChar
:
1114 // We've just scanned an backslashed escaped character with no
1115 // special meaning. It represents itself.
1116 if ((fModeFlags
& UREGEX_ERROR_ON_UNKNOWN_ESCAPES
) != 0 &&
1117 ((fC
.fChar
>= 0x41 && fC
.fChar
<= 0x5A) || // in [A-Z]
1118 (fC
.fChar
>= 0x61 && fC
.fChar
<= 0x7a))) { // in [a-z]
1119 error(U_REGEX_BAD_ESCAPE_SEQUENCE
);
1121 literalChar(fC
.fChar
);
1126 // scanned a ".", match any single character.
1130 if (fModeFlags
& UREGEX_DOTALL
) {
1131 op
= URX_BUILD(URX_DOTANY_ALL
, 0);
1132 } else if (fModeFlags
& UREGEX_UNIX_LINES
) {
1133 op
= URX_BUILD(URX_DOTANY_UNIX
, 0);
1135 op
= URX_BUILD(URX_DOTANY
, 0);
1137 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
1145 if ( (fModeFlags
& UREGEX_MULTILINE
) == 0 && (fModeFlags
& UREGEX_UNIX_LINES
) == 0) {
1147 } else if ((fModeFlags
& UREGEX_MULTILINE
) != 0 && (fModeFlags
& UREGEX_UNIX_LINES
) == 0) {
1149 } else if ((fModeFlags
& UREGEX_MULTILINE
) == 0 && (fModeFlags
& UREGEX_UNIX_LINES
) != 0) {
1150 op
= URX_CARET
; // Only testing true start of input.
1151 } else if ((fModeFlags
& UREGEX_MULTILINE
) != 0 && (fModeFlags
& UREGEX_UNIX_LINES
) != 0) {
1152 op
= URX_CARET_M_UNIX
;
1154 fRXPat
->fCompiledPat
->addElement(URX_BUILD(op
, 0), *fStatus
);
1162 if ( (fModeFlags
& UREGEX_MULTILINE
) == 0 && (fModeFlags
& UREGEX_UNIX_LINES
) == 0) {
1164 } else if ((fModeFlags
& UREGEX_MULTILINE
) != 0 && (fModeFlags
& UREGEX_UNIX_LINES
) == 0) {
1166 } else if ((fModeFlags
& UREGEX_MULTILINE
) == 0 && (fModeFlags
& UREGEX_UNIX_LINES
) != 0) {
1168 } else if ((fModeFlags
& UREGEX_MULTILINE
) != 0 && (fModeFlags
& UREGEX_UNIX_LINES
) != 0) {
1171 fRXPat
->fCompiledPat
->addElement(URX_BUILD(op
, 0), *fStatus
);
1177 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_CARET
, 0), *fStatus
);
1182 #if UCONFIG_NO_BREAK_ITERATION==1
1183 if (fModeFlags
& UREGEX_UWORD
) {
1184 error(U_UNSUPPORTED_ERROR
);
1188 int32_t op
= (fModeFlags
& UREGEX_UWORD
)? URX_BACKSLASH_BU
: URX_BACKSLASH_B
;
1189 fRXPat
->fCompiledPat
->addElement(URX_BUILD(op
, 1), *fStatus
);
1195 #if UCONFIG_NO_BREAK_ITERATION==1
1196 if (fModeFlags
& UREGEX_UWORD
) {
1197 error(U_UNSUPPORTED_ERROR
);
1201 int32_t op
= (fModeFlags
& UREGEX_UWORD
)? URX_BACKSLASH_BU
: URX_BACKSLASH_B
;
1202 fRXPat
->fCompiledPat
->addElement(URX_BUILD(op
, 0), *fStatus
);
1208 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_BACKSLASH_D
, 1), *fStatus
);
1213 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_BACKSLASH_D
, 0), *fStatus
);
1218 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_BACKSLASH_G
, 0), *fStatus
);
1223 fRXPat
->fCompiledPat
->addElement(
1224 URX_BUILD(URX_STAT_SETREF_N
, URX_ISSPACE_SET
), *fStatus
);
1229 fRXPat
->fCompiledPat
->addElement(
1230 URX_BUILD(URX_STATIC_SETREF
, URX_ISSPACE_SET
), *fStatus
);
1235 fRXPat
->fCompiledPat
->addElement(
1236 URX_BUILD(URX_STAT_SETREF_N
, URX_ISWORD_SET
), *fStatus
);
1241 fRXPat
->fCompiledPat
->addElement(
1242 URX_BUILD(URX_STATIC_SETREF
, URX_ISWORD_SET
), *fStatus
);
1247 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_BACKSLASH_X
, 0), *fStatus
);
1253 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_DOLLAR
, 0), *fStatus
);
1258 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_BACKSLASH_Z
, 0), *fStatus
);
1262 error(U_REGEX_BAD_ESCAPE_SEQUENCE
);
1273 UnicodeSet
*theSet
= scanProp();
1280 UChar32 c
= scanNamedChar();
1287 // BackReference. Somewhat unusual in that the front-end can not completely parse
1288 // the regular expression, because the number of digits to be consumed
1289 // depends on the number of capture groups that have been defined. So
1290 // we have to do it here instead.
1292 int32_t numCaptureGroups
= fRXPat
->fGroupMap
->size();
1293 int32_t groupNum
= 0;
1294 UChar32 c
= fC
.fChar
;
1297 // Loop once per digit, for max allowed number of digits in a back reference.
1298 int32_t digit
= u_charDigitValue(c
);
1299 groupNum
= groupNum
* 10 + digit
;
1300 if (groupNum
>= numCaptureGroups
) {
1304 if (RegexStaticSets::gStaticSets
->fRuleDigitsAlias
->contains(c
) == FALSE
) {
1310 // Scan of the back reference in the source regexp is complete. Now generate
1311 // the compiled code for it.
1312 // Because capture groups can be forward-referenced by back-references,
1313 // we fill the operand with the capture group number. At the end
1314 // of compilation, it will be changed to the variable's location.
1315 U_ASSERT(groupNum
> 0); // Shouldn't happen. '\0' begins an octal escape sequence,
1316 // and shouldn't enter this code path at all.
1319 if (fModeFlags
& UREGEX_CASE_INSENSITIVE
) {
1320 op
= URX_BUILD(URX_BACKREF_I
, groupNum
);
1322 op
= URX_BUILD(URX_BACKREF
, groupNum
);
1324 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
1329 case doPossessivePlus
:
1330 // Possessive ++ quantifier.
1333 // 2. body of stuff being iterated over
1339 // Note: TODO: This is pretty inefficient. A mass of saved state is built up
1340 // then unconditionally discarded. Perhaps introduce a new opcode. Ticket 6056
1344 int32_t topLoc
= blockTopLoc(TRUE
);
1345 int32_t stoLoc
= fRXPat
->fDataSize
;
1346 fRXPat
->fDataSize
++; // Reserve the data location for storing save stack ptr.
1347 int32_t op
= URX_BUILD(URX_STO_SP
, stoLoc
);
1348 fRXPat
->fCompiledPat
->setElementAt(op
, topLoc
);
1350 // Emit the STATE_SAVE
1351 op
= URX_BUILD(URX_STATE_SAVE
, fRXPat
->fCompiledPat
->size()+2);
1352 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
1355 op
= URX_BUILD(URX_JMP
, topLoc
+1);
1356 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
1359 op
= URX_BUILD(URX_LD_SP
, stoLoc
);
1360 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
1364 case doPossessiveStar
:
1365 // Possessive *+ quantifier.
1369 // 3. body of stuff being iterated over
1373 // TODO: do something to cut back the state stack each time through the loop.
1375 // Reserve two slots at the top of the block.
1376 int32_t topLoc
= blockTopLoc(TRUE
);
1380 int32_t stoLoc
= fRXPat
->fDataSize
;
1381 fRXPat
->fDataSize
++; // Reserve the data location for storing save stack ptr.
1382 int32_t op
= URX_BUILD(URX_STO_SP
, stoLoc
);
1383 fRXPat
->fCompiledPat
->setElementAt(op
, topLoc
);
1385 // Emit the SAVE_STATE 5
1386 int32_t L7
= fRXPat
->fCompiledPat
->size()+1;
1387 op
= URX_BUILD(URX_STATE_SAVE
, L7
);
1388 fRXPat
->fCompiledPat
->setElementAt(op
, topLoc
+1);
1390 // Append the JMP operation.
1391 op
= URX_BUILD(URX_JMP
, topLoc
+1);
1392 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
1394 // Emit the LD_SP loc
1395 op
= URX_BUILD(URX_LD_SP
, stoLoc
);
1396 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
1400 case doPossessiveOpt
:
1401 // Possessive ?+ quantifier.
1405 // 3. body of optional block
1410 // Reserve two slots at the top of the block.
1411 int32_t topLoc
= blockTopLoc(TRUE
);
1415 int32_t stoLoc
= fRXPat
->fDataSize
;
1416 fRXPat
->fDataSize
++; // Reserve the data location for storing save stack ptr.
1417 int32_t op
= URX_BUILD(URX_STO_SP
, stoLoc
);
1418 fRXPat
->fCompiledPat
->setElementAt(op
, topLoc
);
1420 // Emit the SAVE_STATE
1421 int32_t continueLoc
= fRXPat
->fCompiledPat
->size()+1;
1422 op
= URX_BUILD(URX_STATE_SAVE
, continueLoc
);
1423 fRXPat
->fCompiledPat
->setElementAt(op
, topLoc
+1);
1426 op
= URX_BUILD(URX_LD_SP
, stoLoc
);
1427 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
1432 case doBeginMatchMode
:
1433 fNewModeFlags
= fModeFlags
;
1434 fSetModeFlag
= TRUE
;
1437 case doMatchMode
: // (?i) and similar
1441 case 0x69: /* 'i' */ bit
= UREGEX_CASE_INSENSITIVE
; break;
1442 case 0x64: /* 'd' */ bit
= UREGEX_UNIX_LINES
; break;
1443 case 0x6d: /* 'm' */ bit
= UREGEX_MULTILINE
; break;
1444 case 0x73: /* 's' */ bit
= UREGEX_DOTALL
; break;
1445 case 0x75: /* 'u' */ bit
= 0; /* Unicode casing */ break;
1446 case 0x77: /* 'w' */ bit
= UREGEX_UWORD
; break;
1447 case 0x78: /* 'x' */ bit
= UREGEX_COMMENTS
; break;
1448 case 0x2d: /* '-' */ fSetModeFlag
= FALSE
; break;
1450 U_ASSERT(FALSE
); // Should never happen. Other chars are filtered out
1454 fNewModeFlags
|= bit
;
1456 fNewModeFlags
&= ~bit
;
1461 case doSetMatchMode
:
1462 // Emit code to match any pending literals, using the not-yet changed match mode.
1465 // We've got a (?i) or similar. The match mode is being changed, but
1466 // the change is not scoped to a parenthesized block.
1467 U_ASSERT(fNewModeFlags
< 0);
1468 fModeFlags
= fNewModeFlags
;
1473 case doMatchModeParen
:
1474 // We've got a (?i: or similar. Begin a parenthesized block, save old
1475 // mode flags so they can be restored at the close of the block.
1478 // - NOP, which later may be replaced by a save-state if the
1479 // parenthesized group gets a * quantifier, followed by
1480 // - NOP, which may later be replaced by a save-state if there
1481 // is an '|' alternation within the parens.
1484 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_NOP
, 0), *fStatus
);
1485 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_NOP
, 0), *fStatus
);
1487 // On the Parentheses stack, start a new frame and add the postions
1488 // of the two NOPs (a normal non-capturing () frame, except for the
1489 // saving of the orignal mode flags.)
1490 fParenStack
.push(fModeFlags
, *fStatus
);
1491 fParenStack
.push(flags
, *fStatus
); // Frame Marker
1492 fParenStack
.push(fRXPat
->fCompiledPat
->size()-2, *fStatus
); // The first NOP
1493 fParenStack
.push(fRXPat
->fCompiledPat
->size()-1, *fStatus
); // The second NOP
1495 // Set the current mode flags to the new values.
1496 U_ASSERT(fNewModeFlags
< 0);
1497 fModeFlags
= fNewModeFlags
;
1502 error(U_REGEX_INVALID_FLAG
);
1505 case doSuppressComments
:
1506 // We have just scanned a '(?'. We now need to prevent the character scanner from
1507 // treating a '#' as a to-the-end-of-line comment.
1508 // (This Perl compatibility just gets uglier and uglier to do...)
1509 fEOLComments
= FALSE
;
1515 UnicodeSet
*set
= (UnicodeSet
*)fSetStack
.peek();
1522 UnicodeSet
*set
= (UnicodeSet
*)fSetStack
.peek();
1527 case doSetBackslash_s
:
1529 UnicodeSet
*set
= (UnicodeSet
*)fSetStack
.peek();
1530 set
->addAll(*RegexStaticSets::gStaticSets
->fPropSets
[URX_ISSPACE_SET
]);
1534 case doSetBackslash_S
:
1536 UnicodeSet
*set
= (UnicodeSet
*)fSetStack
.peek();
1537 UnicodeSet
SSet(*RegexStaticSets::gStaticSets
->fPropSets
[URX_ISSPACE_SET
]);
1543 case doSetBackslash_d
:
1545 UnicodeSet
*set
= (UnicodeSet
*)fSetStack
.peek();
1546 // TODO - make a static set, ticket 6058.
1547 addCategory(set
, U_GC_ND_MASK
, *fStatus
);
1551 case doSetBackslash_D
:
1553 UnicodeSet
*set
= (UnicodeSet
*)fSetStack
.peek();
1555 // TODO - make a static set, ticket 6058.
1556 digits
.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK
, U_GC_ND_MASK
, *fStatus
);
1557 digits
.complement();
1558 set
->addAll(digits
);
1562 case doSetBackslash_w
:
1564 UnicodeSet
*set
= (UnicodeSet
*)fSetStack
.peek();
1565 set
->addAll(*RegexStaticSets::gStaticSets
->fPropSets
[URX_ISWORD_SET
]);
1569 case doSetBackslash_W
:
1571 UnicodeSet
*set
= (UnicodeSet
*)fSetStack
.peek();
1572 UnicodeSet
SSet(*RegexStaticSets::gStaticSets
->fPropSets
[URX_ISWORD_SET
]);
1580 fSetStack
.push(new UnicodeSet(), *fStatus
);
1581 fSetOpStack
.push(setStart
, *fStatus
);
1582 if ((fModeFlags
& UREGEX_CASE_INSENSITIVE
) != 0) {
1583 fSetOpStack
.push(setCaseClose
, *fStatus
);
1587 case doSetBeginDifference1
:
1588 // We have scanned something like [[abc]-[
1589 // Set up a new UnicodeSet for the set beginning with the just-scanned '['
1590 // Push a Difference operator, which will cause the new set to be subtracted from what
1591 // went before once it is created.
1592 setPushOp(setDifference1
);
1593 fSetOpStack
.push(setStart
, *fStatus
);
1594 if ((fModeFlags
& UREGEX_CASE_INSENSITIVE
) != 0) {
1595 fSetOpStack
.push(setCaseClose
, *fStatus
);
1599 case doSetBeginIntersection1
:
1600 // We have scanned something like [[abc]&[
1601 // Need both the '&' operator and the open '[' operator.
1602 setPushOp(setIntersection1
);
1603 fSetOpStack
.push(setStart
, *fStatus
);
1604 if ((fModeFlags
& UREGEX_CASE_INSENSITIVE
) != 0) {
1605 fSetOpStack
.push(setCaseClose
, *fStatus
);
1609 case doSetBeginUnion
:
1610 // We have scanned something like [[abc][
1611 // Need to handle the union operation explicitly [[abc] | [
1612 setPushOp(setUnion
);
1613 fSetOpStack
.push(setStart
, *fStatus
);
1614 if ((fModeFlags
& UREGEX_CASE_INSENSITIVE
) != 0) {
1615 fSetOpStack
.push(setCaseClose
, *fStatus
);
1619 case doSetDifference2
:
1620 // We have scanned something like [abc--
1621 // Consider this to unambiguously be a set difference operator.
1622 setPushOp(setDifference2
);
1626 // Have encountered the ']' that closes a set.
1627 // Force the evaluation of any pending operations within this set,
1628 // leave the completed set on the top of the set stack.
1630 U_ASSERT(fSetOpStack
.peeki()==setStart
);
1636 // Finished a complete set expression, including all nested sets.
1637 // The close bracket has already triggered clearing out pending set operators,
1638 // the operator stack should be empty and the operand stack should have just
1639 // one entry, the result set.
1640 U_ASSERT(fSetOpStack
.empty());
1641 UnicodeSet
*theSet
= (UnicodeSet
*)fSetStack
.pop();
1642 U_ASSERT(fSetStack
.empty());
1647 case doSetIntersection2
:
1648 // Have scanned something like [abc&&
1649 setPushOp(setIntersection2
);
1653 // Union the just-scanned literal character into the set being built.
1654 // This operation is the highest precedence set operation, so we can always do
1655 // it immediately, without waiting to see what follows. It is necessary to perform
1656 // any pending '-' or '&' operation first, because these have the same precedence
1657 // as union-ing in a literal'
1660 UnicodeSet
*s
= (UnicodeSet
*)fSetStack
.peek();
1662 fLastSetLiteral
= fC
.fChar
;
1666 case doSetLiteralEscaped
:
1667 // A back-slash escaped literal character was encountered.
1668 // Processing is the same as with setLiteral, above, with the addition of
1669 // the optional check for errors on escaped ASCII letters.
1671 if ((fModeFlags
& UREGEX_ERROR_ON_UNKNOWN_ESCAPES
) != 0 &&
1672 ((fC
.fChar
>= 0x41 && fC
.fChar
<= 0x5A) || // in [A-Z]
1673 (fC
.fChar
>= 0x61 && fC
.fChar
<= 0x7a))) { // in [a-z]
1674 error(U_REGEX_BAD_ESCAPE_SEQUENCE
);
1677 UnicodeSet
*s
= (UnicodeSet
*)fSetStack
.peek();
1679 fLastSetLiteral
= fC
.fChar
;
1683 case doSetNamedChar
:
1684 // Scanning a \N{UNICODE CHARACTER NAME}
1685 // Aside from the source of the character, the processing is identical to doSetLiteral,
1688 UChar32 c
= scanNamedChar();
1690 UnicodeSet
*s
= (UnicodeSet
*)fSetStack
.peek();
1692 fLastSetLiteral
= c
;
1696 case doSetNamedRange
:
1697 // We have scanned literal-\N{CHAR NAME}. Add the range to the set.
1698 // The left character is already in the set, and is saved in fLastSetLiteral.
1699 // The right side needs to be picked up, the scan is at the 'N'.
1700 // Lower Limit > Upper limit being an error matches both Java
1701 // and ICU UnicodeSet behavior.
1703 UChar32 c
= scanNamedChar();
1704 if (U_SUCCESS(*fStatus
) && fLastSetLiteral
> c
) {
1705 error(U_REGEX_INVALID_RANGE
);
1707 UnicodeSet
*s
= (UnicodeSet
*)fSetStack
.peek();
1708 s
->add(fLastSetLiteral
, c
);
1709 fLastSetLiteral
= c
;
1715 // Scanned a '^' at the start of a set.
1716 // Push the negation operator onto the set op stack.
1717 // A twist for case-insensitive matching:
1718 // the case closure operation must happen _before_ negation.
1719 // But the case closure operation will already be on the stack if it's required.
1720 // This requires checking for case closure, and swapping the stack order
1721 // if it is present.
1723 int32_t tosOp
= fSetOpStack
.peeki();
1724 if (tosOp
== setCaseClose
) {
1726 fSetOpStack
.push(setNegation
, *fStatus
);
1727 fSetOpStack
.push(setCaseClose
, *fStatus
);
1729 fSetOpStack
.push(setNegation
, *fStatus
);
1734 case doSetNoCloseError
:
1735 error(U_REGEX_MISSING_CLOSE_BRACKET
);
1739 error(U_REGEX_RULE_SYNTAX
); // -- or && at the end of a set. Illegal.
1742 case doSetPosixProp
:
1744 UnicodeSet
*s
= scanPosixProp();
1746 UnicodeSet
*tos
= (UnicodeSet
*)fSetStack
.peek();
1749 } // else error. scanProp() reported the error status already.
1754 // Scanned a \p \P within [brackets].
1756 UnicodeSet
*s
= scanProp();
1758 UnicodeSet
*tos
= (UnicodeSet
*)fSetStack
.peek();
1761 } // else error. scanProp() reported the error status already.
1767 // We have scanned literal-literal. Add the range to the set.
1768 // The left character is already in the set, and is saved in fLastSetLiteral.
1769 // The right side is the current character.
1770 // Lower Limit > Upper limit being an error matches both Java
1771 // and ICU UnicodeSet behavior.
1773 if (fLastSetLiteral
> fC
.fChar
) {
1774 error(U_REGEX_INVALID_RANGE
);
1776 UnicodeSet
*s
= (UnicodeSet
*)fSetStack
.peek();
1777 s
->add(fLastSetLiteral
, fC
.fChar
);
1783 error(U_REGEX_INTERNAL_ERROR
);
1787 if (U_FAILURE(*fStatus
)) {
1796 //------------------------------------------------------------------------------
1798 // literalChar We've encountered a literal character from the pattern,
1799 // or an escape sequence that reduces to a character.
1800 // Add it to the string containing all literal chars/strings from
1803 //------------------------------------------------------------------------------
1804 void RegexCompile::literalChar(UChar32 c
) {
1805 fLiteralChars
.append(c
);
1809 //------------------------------------------------------------------------------
1811 // fixLiterals When compiling something that can follow a literal
1812 // string in a pattern, emit the code to match the
1813 // accumulated literal string.
1815 // Optionally, split the last char of the string off into
1816 // a single "ONE_CHAR" operation, so that quantifiers can
1817 // apply to that char alone. Example: abc*
1818 // The * must apply to the 'c' only.
1820 //------------------------------------------------------------------------------
1821 void RegexCompile::fixLiterals(UBool split
) {
1822 int32_t op
= 0; // An op from/for the compiled pattern.
1824 // If no literal characters have been scanned but not yet had code generated
1825 // for them, nothing needs to be done.
1826 if (fLiteralChars
.length() == 0) {
1830 int32_t indexOfLastCodePoint
= fLiteralChars
.moveIndex32(fLiteralChars
.length(), -1);
1831 UChar32 lastCodePoint
= fLiteralChars
.char32At(indexOfLastCodePoint
);
1833 // Split: We need to ensure that the last item in the compiled pattern
1834 // refers only to the last literal scanned in the pattern, so that
1835 // quantifiers (*, +, etc.) affect only it, and not a longer string.
1836 // Split before case folding for case insensitive matches.
1839 fLiteralChars
.truncate(indexOfLastCodePoint
);
1840 fixLiterals(FALSE
); // Recursive call, emit code to match the first part of the string.
1841 // Note that the truncated literal string may be empty, in which case
1842 // nothing will be emitted.
1844 literalChar(lastCodePoint
); // Re-add the last code point as if it were a new literal.
1845 fixLiterals(FALSE
); // Second recursive call, code for the final code point.
1849 // If we are doing case-insensitive matching, case fold the string. This may expand
1850 // the string, e.g. the German sharp-s turns into "ss"
1851 if (fModeFlags
& UREGEX_CASE_INSENSITIVE
) {
1852 fLiteralChars
.foldCase();
1853 indexOfLastCodePoint
= fLiteralChars
.moveIndex32(fLiteralChars
.length(), -1);
1854 lastCodePoint
= fLiteralChars
.char32At(indexOfLastCodePoint
);
1857 if (indexOfLastCodePoint
== 0) {
1858 // Single character, emit a URX_ONECHAR op to match it.
1859 if ((fModeFlags
& UREGEX_CASE_INSENSITIVE
) &&
1860 u_hasBinaryProperty(lastCodePoint
, UCHAR_CASE_SENSITIVE
)) {
1861 op
= URX_BUILD(URX_ONECHAR_I
, lastCodePoint
);
1863 op
= URX_BUILD(URX_ONECHAR
, lastCodePoint
);
1865 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
1867 // Two or more chars, emit a URX_STRING to match them.
1868 if (fModeFlags
& UREGEX_CASE_INSENSITIVE
) {
1869 op
= URX_BUILD(URX_STRING_I
, fRXPat
->fLiteralText
.length());
1871 // TODO here: add optimization to split case sensitive strings of length two
1872 // into two single char ops, for efficiency.
1873 op
= URX_BUILD(URX_STRING
, fRXPat
->fLiteralText
.length());
1875 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
1876 op
= URX_BUILD(URX_STRING_LEN
, fLiteralChars
.length());
1877 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
1879 // Add this string into the accumulated strings of the compiled pattern.
1880 fRXPat
->fLiteralText
.append(fLiteralChars
);
1883 fLiteralChars
.remove();
1891 //------------------------------------------------------------------------------
1893 // insertOp() Insert a slot for a new opcode into the already
1894 // compiled pattern code.
1896 // Fill the slot with a NOP. Our caller will replace it
1897 // with what they really wanted.
1899 //------------------------------------------------------------------------------
1900 void RegexCompile::insertOp(int32_t where
) {
1901 UVector64
*code
= fRXPat
->fCompiledPat
;
1902 U_ASSERT(where
>0 && where
< code
->size());
1904 int32_t nop
= URX_BUILD(URX_NOP
, 0);
1905 code
->insertElementAt(nop
, where
, *fStatus
);
1907 // Walk through the pattern, looking for any ops with targets that
1908 // were moved down by the insert. Fix them.
1910 for (loc
=0; loc
<code
->size(); loc
++) {
1911 int32_t op
= (int32_t)code
->elementAti(loc
);
1912 int32_t opType
= URX_TYPE(op
);
1913 int32_t opValue
= URX_VAL(op
);
1914 if ((opType
== URX_JMP
||
1915 opType
== URX_JMPX
||
1916 opType
== URX_STATE_SAVE
||
1917 opType
== URX_CTR_LOOP
||
1918 opType
== URX_CTR_LOOP_NG
||
1919 opType
== URX_JMP_SAV
||
1920 opType
== URX_JMP_SAV_X
||
1921 opType
== URX_RELOC_OPRND
) && opValue
> where
) {
1922 // Target location for this opcode is after the insertion point and
1923 // needs to be incremented to adjust for the insertion.
1925 op
= URX_BUILD(opType
, opValue
);
1926 code
->setElementAt(op
, loc
);
1930 // Now fix up the parentheses stack. All positive values in it are locations in
1931 // the compiled pattern. (Negative values are frame boundaries, and don't need fixing.)
1932 for (loc
=0; loc
<fParenStack
.size(); loc
++) {
1933 int32_t x
= fParenStack
.elementAti(loc
);
1934 U_ASSERT(x
< code
->size());
1937 fParenStack
.setElementAt(x
, loc
);
1941 if (fMatchCloseParen
> where
) {
1944 if (fMatchOpenParen
> where
) {
1951 //------------------------------------------------------------------------------
1953 // blockTopLoc() Find or create a location in the compiled pattern
1954 // at the start of the operation or block that has
1955 // just been compiled. Needed when a quantifier (* or
1956 // whatever) appears, and we need to add an operation
1957 // at the start of the thing being quantified.
1959 // (Parenthesized Blocks) have a slot with a NOP that
1960 // is reserved for this purpose. .* or similar don't
1961 // and a slot needs to be added.
1963 // parameter reserveLoc : TRUE - ensure that there is space to add an opcode
1964 // at the returned location.
1965 // FALSE - just return the address,
1966 // do not reserve a location there.
1968 //------------------------------------------------------------------------------
1969 int32_t RegexCompile::blockTopLoc(UBool reserveLoc
) {
1971 fixLiterals(TRUE
); // Emit code for any pending literals.
1972 // If last item was a string, emit separate op for the its last char.
1973 if (fRXPat
->fCompiledPat
->size() == fMatchCloseParen
)
1975 // The item just processed is a parenthesized block.
1976 theLoc
= fMatchOpenParen
; // A slot is already reserved for us.
1977 U_ASSERT(theLoc
> 0);
1978 U_ASSERT(URX_TYPE(((uint32_t)fRXPat
->fCompiledPat
->elementAti(theLoc
))) == URX_NOP
);
1981 // Item just compiled is a single thing, a ".", or a single char, a string or a set reference.
1982 // No slot for STATE_SAVE was pre-reserved in the compiled code.
1983 // We need to make space now.
1984 theLoc
= fRXPat
->fCompiledPat
->size()-1;
1985 int32_t opAtTheLoc
= (int32_t)fRXPat
->fCompiledPat
->elementAti(theLoc
);
1986 if (URX_TYPE(opAtTheLoc
) == URX_STRING_LEN
) {
1987 // Strings take two opcode, we want the position of the first one.
1988 // We can have a string at this point if a single character case-folded to two.
1992 int32_t nop
= URX_BUILD(URX_NOP
, 0);
1993 fRXPat
->fCompiledPat
->insertElementAt(nop
, theLoc
, *fStatus
);
2001 //------------------------------------------------------------------------------
2003 // handleCloseParen When compiling a close paren, we need to go back
2004 // and fix up any JMP or SAVE operations within the
2005 // parenthesized block that need to target the end
2006 // of the block. The locations of these are kept on
2007 // the paretheses stack.
2009 // This function is called both when encountering a
2010 // real ) and at the end of the pattern.
2012 //------------------------------------------------------------------------------
2013 void RegexCompile::handleCloseParen() {
2016 if (fParenStack
.size() <= 0) {
2017 error(U_REGEX_MISMATCHED_PAREN
);
2021 // Emit code for any pending literals.
2024 // Fixup any operations within the just-closed parenthesized group
2025 // that need to reference the end of the (block).
2026 // (The first one popped from the stack is an unused slot for
2027 // alternation (OR) state save, but applying the fixup to it does no harm.)
2029 patIdx
= fParenStack
.popi();
2031 // value < 0 flags the start of the frame on the paren stack.
2034 U_ASSERT(patIdx
>0 && patIdx
<= fRXPat
->fCompiledPat
->size());
2035 patOp
= (int32_t)fRXPat
->fCompiledPat
->elementAti(patIdx
);
2036 U_ASSERT(URX_VAL(patOp
) == 0); // Branch target for JMP should not be set.
2037 patOp
|= fRXPat
->fCompiledPat
->size(); // Set it now.
2038 fRXPat
->fCompiledPat
->setElementAt(patOp
, patIdx
);
2039 fMatchOpenParen
= patIdx
;
2042 // At the close of any parenthesized block, restore the match mode flags to
2043 // the value they had at the open paren. Saved value is
2044 // at the top of the paren stack.
2045 fModeFlags
= fParenStack
.popi();
2046 U_ASSERT(fModeFlags
< 0);
2048 // DO any additional fixups, depending on the specific kind of
2049 // parentesized grouping this is
2054 // No additional fixups required.
2055 // (Grouping-only parentheses)
2058 // Capturing Parentheses.
2059 // Insert a End Capture op into the pattern.
2060 // The frame offset of the variables for this cg is obtained from the
2061 // start capture op and put it into the end-capture op.
2063 int32_t captureOp
= (int32_t)fRXPat
->fCompiledPat
->elementAti(fMatchOpenParen
+1);
2064 U_ASSERT(URX_TYPE(captureOp
) == URX_START_CAPTURE
);
2066 int32_t frameVarLocation
= URX_VAL(captureOp
);
2067 int32_t endCaptureOp
= URX_BUILD(URX_END_CAPTURE
, frameVarLocation
);
2068 fRXPat
->fCompiledPat
->addElement(endCaptureOp
, *fStatus
);
2072 // Atomic Parenthesis.
2073 // Insert a LD_SP operation to restore the state stack to the position
2074 // it was when the atomic parens were entered.
2076 int32_t stoOp
= (int32_t)fRXPat
->fCompiledPat
->elementAti(fMatchOpenParen
+1);
2077 U_ASSERT(URX_TYPE(stoOp
) == URX_STO_SP
);
2078 int32_t stoLoc
= URX_VAL(stoOp
);
2079 int32_t ldOp
= URX_BUILD(URX_LD_SP
, stoLoc
);
2080 fRXPat
->fCompiledPat
->addElement(ldOp
, *fStatus
);
2086 int32_t startOp
= (int32_t)fRXPat
->fCompiledPat
->elementAti(fMatchOpenParen
-5);
2087 U_ASSERT(URX_TYPE(startOp
) == URX_LA_START
);
2088 int32_t dataLoc
= URX_VAL(startOp
);
2089 int32_t op
= URX_BUILD(URX_LA_END
, dataLoc
);
2090 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
2096 // See comment at doOpenLookAheadNeg
2097 int32_t startOp
= (int32_t)fRXPat
->fCompiledPat
->elementAti(fMatchOpenParen
-1);
2098 U_ASSERT(URX_TYPE(startOp
) == URX_LA_START
);
2099 int32_t dataLoc
= URX_VAL(startOp
);
2100 int32_t op
= URX_BUILD(URX_LA_END
, dataLoc
);
2101 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
2102 op
= URX_BUILD(URX_BACKTRACK
, 0);
2103 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
2104 op
= URX_BUILD(URX_LA_END
, dataLoc
);
2105 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
2107 // Patch the URX_SAVE near the top of the block.
2108 // The destination of the SAVE is the final LA_END that was just added.
2109 int32_t saveOp
= (int32_t)fRXPat
->fCompiledPat
->elementAti(fMatchOpenParen
);
2110 U_ASSERT(URX_TYPE(saveOp
) == URX_STATE_SAVE
);
2111 int32_t dest
= fRXPat
->fCompiledPat
->size()-1;
2112 saveOp
= URX_BUILD(URX_STATE_SAVE
, dest
);
2113 fRXPat
->fCompiledPat
->setElementAt(saveOp
, fMatchOpenParen
);
2119 // See comment at doOpenLookBehind.
2121 // Append the URX_LB_END and URX_LA_END to the compiled pattern.
2122 int32_t startOp
= (int32_t)fRXPat
->fCompiledPat
->elementAti(fMatchOpenParen
-4);
2123 U_ASSERT(URX_TYPE(startOp
) == URX_LB_START
);
2124 int32_t dataLoc
= URX_VAL(startOp
);
2125 int32_t op
= URX_BUILD(URX_LB_END
, dataLoc
);
2126 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
2127 op
= URX_BUILD(URX_LA_END
, dataLoc
);
2128 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
2130 // Determine the min and max bounds for the length of the
2131 // string that the pattern can match.
2132 // An unbounded upper limit is an error.
2133 int32_t patEnd
= fRXPat
->fCompiledPat
->size() - 1;
2134 int32_t minML
= minMatchLength(fMatchOpenParen
, patEnd
);
2135 int32_t maxML
= maxMatchLength(fMatchOpenParen
, patEnd
);
2136 if (maxML
== INT32_MAX
) {
2137 error(U_REGEX_LOOK_BEHIND_LIMIT
);
2140 U_ASSERT(minML
<= maxML
);
2142 // Insert the min and max match len bounds into the URX_LB_CONT op that
2143 // appears at the top of the look-behind block, at location fMatchOpenParen+1
2144 fRXPat
->fCompiledPat
->setElementAt(minML
, fMatchOpenParen
-2);
2145 fRXPat
->fCompiledPat
->setElementAt(maxML
, fMatchOpenParen
-1);
2154 // See comment at doOpenLookBehindNeg.
2156 // Append the URX_LBN_END to the compiled pattern.
2157 int32_t startOp
= (int32_t)fRXPat
->fCompiledPat
->elementAti(fMatchOpenParen
-5);
2158 U_ASSERT(URX_TYPE(startOp
) == URX_LB_START
);
2159 int32_t dataLoc
= URX_VAL(startOp
);
2160 int32_t op
= URX_BUILD(URX_LBN_END
, dataLoc
);
2161 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
2163 // Determine the min and max bounds for the length of the
2164 // string that the pattern can match.
2165 // An unbounded upper limit is an error.
2166 int32_t patEnd
= fRXPat
->fCompiledPat
->size() - 1;
2167 int32_t minML
= minMatchLength(fMatchOpenParen
, patEnd
);
2168 int32_t maxML
= maxMatchLength(fMatchOpenParen
, patEnd
);
2169 if (maxML
== INT32_MAX
) {
2170 error(U_REGEX_LOOK_BEHIND_LIMIT
);
2173 U_ASSERT(minML
<= maxML
);
2175 // Insert the min and max match len bounds into the URX_LB_CONT op that
2176 // appears at the top of the look-behind block, at location fMatchOpenParen+1
2177 fRXPat
->fCompiledPat
->setElementAt(minML
, fMatchOpenParen
-3);
2178 fRXPat
->fCompiledPat
->setElementAt(maxML
, fMatchOpenParen
-2);
2180 // Insert the pattern location to continue at after a successful match
2181 // as the last operand of the URX_LBN_CONT
2182 op
= URX_BUILD(URX_RELOC_OPRND
, fRXPat
->fCompiledPat
->size());
2183 fRXPat
->fCompiledPat
->setElementAt(op
, fMatchOpenParen
-1);
2193 // remember the next location in the compiled pattern.
2194 // The compilation of Quantifiers will look at this to see whether its looping
2195 // over a parenthesized block or a single item
2196 fMatchCloseParen
= fRXPat
->fCompiledPat
->size();
2201 //------------------------------------------------------------------------------
2203 // compileSet Compile the pattern operations for a reference to a
2206 //------------------------------------------------------------------------------
2207 void RegexCompile::compileSet(UnicodeSet
*theSet
)
2209 if (theSet
== NULL
) {
2212 // Remove any strings from the set.
2213 // There shoudn't be any, but just in case.
2214 // (Case Closure can add them; if we had a simple case closure avaialble that
2215 // ignored strings, that would be better.)
2216 theSet
->removeAllStrings();
2217 int32_t setSize
= theSet
->size();
2222 // Set of no elements. Always fails to match.
2223 fRXPat
->fCompiledPat
->addElement(URX_BUILD(URX_BACKTRACK
, 0), *fStatus
);
2230 // The set contains only a single code point. Put it into
2231 // the compiled pattern as a single char operation rather
2232 // than a set, and discard the set itself.
2233 literalChar(theSet
->charAt(0));
2240 // The set contains two or more chars. (the normal case)
2241 // Put it into the compiled pattern as a set.
2242 int32_t setNumber
= fRXPat
->fSets
->size();
2243 fRXPat
->fSets
->addElement(theSet
, *fStatus
);
2244 int32_t setOp
= URX_BUILD(URX_SETREF
, setNumber
);
2245 fRXPat
->fCompiledPat
->addElement(setOp
, *fStatus
);
2251 //------------------------------------------------------------------------------
2253 // compileInterval Generate the code for a {min, max} style interval quantifier.
2254 // Except for the specific opcodes used, the code is the same
2255 // for all three types (greedy, non-greedy, possessive) of
2256 // intervals. The opcodes are supplied as parameters.
2258 // The code for interval loops has this form:
2259 // 0 CTR_INIT counter loc (in stack frame)
2260 // 1 5 patt address of CTR_LOOP at bottom of block
2262 // 3 max count (-1 for unbounded)
2263 // 4 ... block to be iterated over
2267 //------------------------------------------------------------------------------
2268 void RegexCompile::compileInterval(int32_t InitOp
, int32_t LoopOp
)
2270 // The CTR_INIT op at the top of the block with the {n,m} quantifier takes
2271 // four slots in the compiled code. Reserve them.
2272 int32_t topOfBlock
= blockTopLoc(TRUE
);
2273 insertOp(topOfBlock
);
2274 insertOp(topOfBlock
);
2275 insertOp(topOfBlock
);
2277 // The operands for the CTR_INIT opcode include the index in the matcher data
2278 // of the counter. Allocate it now.
2279 int32_t counterLoc
= fRXPat
->fFrameSize
;
2280 fRXPat
->fFrameSize
++;
2282 int32_t op
= URX_BUILD(InitOp
, counterLoc
);
2283 fRXPat
->fCompiledPat
->setElementAt(op
, topOfBlock
);
2285 // The second operand of CTR_INIT is the location following the end of the loop.
2286 // Must put in as a URX_RELOC_OPRND so that the value will be adjusted if the
2287 // compilation of something later on causes the code to grow and the target
2288 // position to move.
2289 int32_t loopEnd
= fRXPat
->fCompiledPat
->size();
2290 op
= URX_BUILD(URX_RELOC_OPRND
, loopEnd
);
2291 fRXPat
->fCompiledPat
->setElementAt(op
, topOfBlock
+1);
2293 // Followed by the min and max counts.
2294 fRXPat
->fCompiledPat
->setElementAt(fIntervalLow
, topOfBlock
+2);
2295 fRXPat
->fCompiledPat
->setElementAt(fIntervalUpper
, topOfBlock
+3);
2297 // Apend the CTR_LOOP op. The operand is the location of the CTR_INIT op.
2298 // Goes at end of the block being looped over, so just append to the code so far.
2299 op
= URX_BUILD(LoopOp
, topOfBlock
);
2300 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
2302 if ((fIntervalLow
& 0xff000000) != 0 ||
2303 (fIntervalUpper
> 0 && (fIntervalUpper
& 0xff000000) != 0)) {
2304 error(U_REGEX_NUMBER_TOO_BIG
);
2307 if (fIntervalLow
> fIntervalUpper
&& fIntervalUpper
!= -1) {
2308 error(U_REGEX_MAX_LT_MIN
);
2314 UBool
RegexCompile::compileInlineInterval() {
2315 if (fIntervalUpper
> 10 || fIntervalUpper
< fIntervalLow
) {
2316 // Too big to inline. Fail, which will cause looping code to be generated.
2317 // (Upper < Lower picks up unbounded upper and errors, both.)
2321 int32_t topOfBlock
= blockTopLoc(FALSE
);
2322 if (fIntervalUpper
== 0) {
2323 // Pathological case. Attempt no matches, as if the block doesn't exist.
2324 fRXPat
->fCompiledPat
->setSize(topOfBlock
);
2328 if (topOfBlock
!= fRXPat
->fCompiledPat
->size()-1 && fIntervalUpper
!= 1) {
2329 // The thing being repeated is not a single op, but some
2330 // more complex block. Do it as a loop, not inlines.
2331 // Note that things "repeated" a max of once are handled as inline, because
2332 // the one copy of the code already generated is just fine.
2336 // Pick up the opcode that is to be repeated
2338 int32_t op
= (int32_t)fRXPat
->fCompiledPat
->elementAti(topOfBlock
);
2340 // Compute the pattern location where the inline sequence
2341 // will end, and set up the state save op that will be needed.
2343 int32_t endOfSequenceLoc
= fRXPat
->fCompiledPat
->size()-1
2344 + fIntervalUpper
+ (fIntervalUpper
-fIntervalLow
);
2345 int32_t saveOp
= URX_BUILD(URX_STATE_SAVE
, endOfSequenceLoc
);
2346 if (fIntervalLow
== 0) {
2347 insertOp(topOfBlock
);
2348 fRXPat
->fCompiledPat
->setElementAt(saveOp
, topOfBlock
);
2353 // Loop, emitting the op for the thing being repeated each time.
2354 // Loop starts at 1 because one instance of the op already exists in the pattern,
2355 // it was put there when it was originally encountered.
2357 for (i
=1; i
<fIntervalUpper
; i
++ ) {
2358 if (i
== fIntervalLow
) {
2359 fRXPat
->fCompiledPat
->addElement(saveOp
, *fStatus
);
2361 if (i
> fIntervalLow
) {
2362 fRXPat
->fCompiledPat
->addElement(saveOp
, *fStatus
);
2364 fRXPat
->fCompiledPat
->addElement(op
, *fStatus
);
2371 //------------------------------------------------------------------------------
2373 // matchStartType Determine how a match can start.
2374 // Used to optimize find() operations.
2376 // Operation is very similar to minMatchLength(). Walk the compiled
2377 // pattern, keeping an on-going minimum-match-length. For any
2378 // op where the min match coming in is zero, add that ops possible
2379 // starting matches to the possible starts for the overall pattern.
2381 //------------------------------------------------------------------------------
2382 void RegexCompile::matchStartType() {
2383 if (U_FAILURE(*fStatus
)) {
2388 int32_t loc
; // Location in the pattern of the current op being processed.
2389 int32_t op
; // The op being processed
2390 int32_t opType
; // The opcode type of the op
2391 int32_t currentLen
= 0; // Minimum length of a match to this point (loc) in the pattern
2392 int32_t numInitialStrings
= 0; // Number of strings encountered that could match at start.
2394 UBool atStart
= TRUE
; // True if no part of the pattern yet encountered
2395 // could have advanced the position in a match.
2396 // (Maximum match length so far == 0)
2398 // forwardedLength is a vector holding minimum-match-length values that
2399 // are propagated forward in the pattern by JMP or STATE_SAVE operations.
2400 // It must be one longer than the pattern being checked because some ops
2401 // will jmp to a end-of-block+1 location from within a block, and we must
2402 // count those when checking the block.
2403 int32_t end
= fRXPat
->fCompiledPat
->size();
2404 UVector32
forwardedLength(end
+1, *fStatus
);
2405 forwardedLength
.setSize(end
+1);
2406 for (loc
=3; loc
<end
; loc
++) {
2407 forwardedLength
.setElementAt(INT32_MAX
, loc
);
2410 for (loc
= 3; loc
<end
; loc
++) {
2411 op
= (int32_t)fRXPat
->fCompiledPat
->elementAti(loc
);
2412 opType
= URX_TYPE(op
);
2414 // The loop is advancing linearly through the pattern.
2415 // If the op we are now at was the destination of a branch in the pattern,
2416 // and that path has a shorter minimum length than the current accumulated value,
2417 // replace the current accumulated value.
2418 if (forwardedLength
.elementAti(loc
) < currentLen
) {
2419 currentLen
= forwardedLength
.elementAti(loc
);
2420 U_ASSERT(currentLen
>=0 && currentLen
< INT32_MAX
);
2424 // Ops that don't change the total length matched
2425 case URX_RESERVED_OP
:
2428 case URX_STRING_LEN
:
2430 case URX_START_CAPTURE
:
2431 case URX_END_CAPTURE
:
2432 case URX_BACKSLASH_B
:
2433 case URX_BACKSLASH_BU
:
2434 case URX_BACKSLASH_G
:
2435 case URX_BACKSLASH_Z
:
2440 case URX_RELOC_OPRND
:
2441 case URX_STO_INP_LOC
:
2442 case URX_BACKREF
: // BackRef. Must assume that it might be a zero length match
2445 case URX_STO_SP
: // Setup for atomic or possessive blocks. Doesn't change what can match.
2451 fRXPat
->fStartType
= START_START
;
2456 case URX_CARET_M_UNIX
:
2458 fRXPat
->fStartType
= START_LINE
;
2463 if (currentLen
== 0) {
2464 // This character could appear at the start of a match.
2465 // Add it to the set of possible starting characters.
2466 fRXPat
->fInitialChars
->add(URX_VAL(op
));
2467 numInitialStrings
+= 2;
2475 if (currentLen
== 0) {
2476 int32_t sn
= URX_VAL(op
);
2477 U_ASSERT(sn
> 0 && sn
< fRXPat
->fSets
->size());
2478 const UnicodeSet
*s
= (UnicodeSet
*)fRXPat
->fSets
->elementAt(sn
);
2479 fRXPat
->fInitialChars
->addAll(*s
);
2480 numInitialStrings
+= 2;
2487 // [Set]*, like a SETREF, above, in what it can match,
2488 // but may not match at all, so currentLen is not incremented.
2489 if (currentLen
== 0) {
2490 int32_t sn
= URX_VAL(op
);
2491 U_ASSERT(sn
> 0 && sn
< fRXPat
->fSets
->size());
2492 const UnicodeSet
*s
= (UnicodeSet
*)fRXPat
->fSets
->elementAt(sn
);
2493 fRXPat
->fInitialChars
->addAll(*s
);
2494 numInitialStrings
+= 2;
2499 case URX_LOOP_DOT_I
:
2500 if (currentLen
== 0) {
2501 // .* at the start of a pattern.
2502 // Any character can begin the match.
2503 fRXPat
->fInitialChars
->clear();
2504 fRXPat
->fInitialChars
->complement();
2505 numInitialStrings
+= 2;
2511 case URX_STATIC_SETREF
:
2512 if (currentLen
== 0) {
2513 int32_t sn
= URX_VAL(op
);
2514 U_ASSERT(sn
>0 && sn
<URX_LAST_SET
);
2515 const UnicodeSet
*s
= fRXPat
->fStaticSets
[sn
];
2516 fRXPat
->fInitialChars
->addAll(*s
);
2517 numInitialStrings
+= 2;
2525 case URX_STAT_SETREF_N
:
2526 if (currentLen
== 0) {
2527 int32_t sn
= URX_VAL(op
);
2528 const UnicodeSet
*s
= fRXPat
->fStaticSets
[sn
];
2531 fRXPat
->fInitialChars
->addAll(sc
);
2532 numInitialStrings
+= 2;
2540 case URX_BACKSLASH_D
:
2542 if (currentLen
== 0) {
2544 s
.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK
, U_GC_ND_MASK
, *fStatus
);
2545 if (URX_VAL(op
) != 0) {
2548 fRXPat
->fInitialChars
->addAll(s
);
2549 numInitialStrings
+= 2;
2557 // Case Insensitive Single Character.
2558 if (currentLen
== 0) {
2559 UChar32 c
= URX_VAL(op
);
2560 if (u_hasBinaryProperty(c
, UCHAR_CASE_SENSITIVE
)) {
2562 // Disable optimizations on first char of match.
2563 // TODO: Compute the set of chars that case fold to this char, or to
2564 // a string that begins with this char.
2565 // For simple case folding, this code worked:
2566 // UnicodeSet s(c, c);
2567 // s.closeOver(USET_CASE_INSENSITIVE);
2568 // fRXPat->fInitialChars->addAll(s);
2570 fRXPat
->fInitialChars
->clear();
2571 fRXPat
->fInitialChars
->complement();
2573 // Char has no case variants. Just add it as-is to the
2574 // set of possible starting chars.
2575 fRXPat
->fInitialChars
->add(c
);
2577 numInitialStrings
+= 2;
2584 case URX_BACKSLASH_X
: // Grahpeme Cluster. Minimum is 1, max unbounded.
2585 case URX_DOTANY_ALL
: // . matches one or two.
2587 case URX_DOTANY_UNIX
:
2588 if (currentLen
== 0) {
2589 // These constructs are all bad news when they appear at the start
2590 // of a match. Any character can begin the match.
2591 fRXPat
->fInitialChars
->clear();
2592 fRXPat
->fInitialChars
->complement();
2593 numInitialStrings
+= 2;
2601 loc
++; // Except for extra operand on URX_JMPX, same as URX_JMP.
2604 int32_t jmpDest
= URX_VAL(op
);
2605 if (jmpDest
< loc
) {
2606 // Loop of some kind. Can safely ignore, the worst that will happen
2607 // is that we understate the true minimum length
2608 currentLen
= forwardedLength
.elementAti(loc
+1);
2611 // Forward jump. Propagate the current min length to the target loc of the jump.
2612 U_ASSERT(jmpDest
<= end
+1);
2613 if (forwardedLength
.elementAti(jmpDest
) > currentLen
) {
2614 forwardedLength
.setElementAt(currentLen
, jmpDest
);
2623 // Combo of state save to the next loc, + jmp backwards.
2624 // Net effect on min. length computation is nothing.
2629 // Fails are kind of like a branch, except that the min length was
2630 // propagated already, by the state save.
2631 currentLen
= forwardedLength
.elementAti(loc
+1);
2636 case URX_STATE_SAVE
:
2638 // State Save, for forward jumps, propagate the current minimum.
2639 // of the state save.
2640 int32_t jmpDest
= URX_VAL(op
);
2641 if (jmpDest
> loc
) {
2642 if (currentLen
< forwardedLength
.elementAti(jmpDest
)) {
2643 forwardedLength
.setElementAt(currentLen
, jmpDest
);
2656 int32_t stringLenOp
= (int32_t)fRXPat
->fCompiledPat
->elementAti(loc
);
2657 int32_t stringLen
= URX_VAL(stringLenOp
);
2658 U_ASSERT(URX_TYPE(stringLenOp
) == URX_STRING_LEN
);
2659 U_ASSERT(stringLenOp
>= 2);
2660 if (currentLen
== 0) {
2661 // Add the starting character of this string to the set of possible starting
2662 // characters for this pattern.
2663 int32_t stringStartIdx
= URX_VAL(op
);
2664 UChar32 c
= fRXPat
->fLiteralText
.char32At(stringStartIdx
);
2665 fRXPat
->fInitialChars
->add(c
);
2667 // Remember this string. After the entire pattern has been checked,
2668 // if nothing else is identified that can start a match, we'll use it.
2669 numInitialStrings
++;
2670 fRXPat
->fInitialStringIdx
= stringStartIdx
;
2671 fRXPat
->fInitialStringLen
= stringLen
;
2674 currentLen
+= stringLen
;
2681 // Case-insensitive string. Unlike exact-match strings, we won't
2682 // attempt a string search for possible match positions. But we
2683 // do update the set of possible starting characters.
2685 int32_t stringLenOp
= (int32_t)fRXPat
->fCompiledPat
->elementAti(loc
);
2686 int32_t stringLen
= URX_VAL(stringLenOp
);
2687 U_ASSERT(URX_TYPE(stringLenOp
) == URX_STRING_LEN
);
2688 U_ASSERT(stringLenOp
>= 2);
2689 if (currentLen
== 0) {
2690 // Add the starting character of this string to the set of possible starting
2691 // characters for this pattern.
2692 int32_t stringStartIdx
= URX_VAL(op
);
2693 UChar32 c
= fRXPat
->fLiteralText
.char32At(stringStartIdx
);
2696 // TODO: compute correct set of starting chars for full case folding.
2697 // For the moment, say any char can start.
2698 // s.closeOver(USET_CASE_INSENSITIVE);
2702 fRXPat
->fInitialChars
->addAll(s
);
2703 numInitialStrings
+= 2; // Matching on an initial string not possible.
2705 currentLen
+= stringLen
;
2711 case URX_CTR_INIT_NG
:
2713 // Loop Init Ops. These don't change the min length, but they are 4 word ops
2714 // so location must be updated accordingly.
2716 // If the min loop count == 0
2717 // move loc forwards to the end of the loop, skipping over the body.
2718 // If the min count is > 0,
2719 // continue normal processing of the body of the loop.
2720 int32_t loopEndLoc
= (int32_t)fRXPat
->fCompiledPat
->elementAti(loc
+1);
2721 loopEndLoc
= URX_VAL(loopEndLoc
);
2722 int32_t minLoopCount
= (int32_t)fRXPat
->fCompiledPat
->elementAti(loc
+2);
2723 if (minLoopCount
== 0) {
2724 // Min Loop Count of 0, treat like a forward branch and
2725 // move the current minimum length up to the target
2726 // (end of loop) location.
2727 U_ASSERT(loopEndLoc
<= end
+1);
2728 if (forwardedLength
.elementAti(loopEndLoc
) > currentLen
) {
2729 forwardedLength
.setElementAt(currentLen
, loopEndLoc
);
2732 loc
+=3; // Skips over operands of CTR_INIT
2739 case URX_CTR_LOOP_NG
:
2741 // The jump is conditional, backwards only.
2746 // More loop ops. These state-save to themselves.
2747 // don't change the minimum match
2755 // Look-around. Scan forward until the matching look-ahead end,
2756 // without processing the look-around block. This is overly pessimistic.
2758 // Keep track of the nesting depth of look-around blocks. Boilerplate code for
2759 // lookahead contains two LA_END instructions, so count goes up by two
2760 // for each LA_START.
2761 int32_t depth
= (opType
== URX_LA_START
? 2: 1);
2764 op
= (int32_t)fRXPat
->fCompiledPat
->elementAti(loc
);
2765 if (URX_TYPE(op
) == URX_LA_START
) {
2768 if (URX_TYPE(op
) == URX_LB_START
) {
2771 if (URX_TYPE(op
) == URX_LA_END
|| URX_TYPE(op
)==URX_LBN_END
) {
2777 if (URX_TYPE(op
) == URX_STATE_SAVE
) {
2778 // Need this because neg lookahead blocks will FAIL to outside
2780 int32_t jmpDest
= URX_VAL(op
);
2781 if (jmpDest
> loc
) {
2782 if (currentLen
< forwardedLength
.elementAti(jmpDest
)) {
2783 forwardedLength
.setElementAt(currentLen
, jmpDest
);
2787 U_ASSERT(loc
<= end
);
2797 U_ASSERT(FALSE
); // Shouldn't get here. These ops should be
2798 // consumed by the scan in URX_LA_START and LB_START
2809 // We have finished walking through the ops. Check whether some forward jump
2810 // propagated a shorter length to location end+1.
2811 if (forwardedLength
.elementAti(end
+1) < currentLen
) {
2812 currentLen
= forwardedLength
.elementAti(end
+1);
2816 fRXPat
->fInitialChars8
->init(fRXPat
->fInitialChars
);
2819 // Sort out what we should check for when looking for candidate match start positions.
2820 // In order of preference,
2821 // 1. Start of input text buffer.
2822 // 2. A literal string.
2823 // 3. Start of line in multi-line mode.
2824 // 4. A single literal character.
2825 // 5. A character from a set of characters.
2827 if (fRXPat
->fStartType
== START_START
) {
2828 // Match only at the start of an input text string.
2829 // start type is already set. We're done.
2830 } else if (numInitialStrings
== 1 && fRXPat
->fMinMatchLen
> 0) {
2831 // Match beginning only with a literal string.
2832 UChar32 c
= fRXPat
->fLiteralText
.char32At(fRXPat
->fInitialStringIdx
);
2833 U_ASSERT(fRXPat
->fInitialChars
->contains(c
));
2834 fRXPat
->fStartType
= START_STRING
;
2835 fRXPat
->fInitialChar
= c
;
2836 } else if (fRXPat
->fStartType
== START_LINE
) {
2837 // Match at start of line in Multi-Line mode.
2838 // Nothing to do here; everything is already set.
2839 } else if (fRXPat
->fMinMatchLen
== 0) {
2840 // Zero length match possible. We could start anywhere.
2841 fRXPat
->fStartType
= START_NO_INFO
;
2842 } else if (fRXPat
->fInitialChars
->size() == 1) {
2843 // All matches begin with the same char.
2844 fRXPat
->fStartType
= START_CHAR
;
2845 fRXPat
->fInitialChar
= fRXPat
->fInitialChars
->charAt(0);
2846 U_ASSERT(fRXPat
->fInitialChar
!= (UChar32
)-1);
2847 } else if (fRXPat
->fInitialChars
->contains((UChar32
)0, (UChar32
)0x10ffff) == FALSE
&&
2848 fRXPat
->fMinMatchLen
> 0) {
2849 // Matches start with a set of character smaller than the set of all chars.
2850 fRXPat
->fStartType
= START_SET
;
2852 // Matches can start with anything
2853 fRXPat
->fStartType
= START_NO_INFO
;
2861 //------------------------------------------------------------------------------
2863 // minMatchLength Calculate the length of the shortest string that could
2864 // match the specified pattern.
2865 // Length is in 16 bit code units, not code points.
2867 // The calculated length may not be exact. The returned
2868 // value may be shorter than the actual minimum; it must
2871 // start and end are the range of p-code operations to be
2872 // examined. The endpoints are included in the range.
2874 //------------------------------------------------------------------------------
2875 int32_t RegexCompile::minMatchLength(int32_t start
, int32_t end
) {
2876 if (U_FAILURE(*fStatus
)) {
2880 U_ASSERT(start
<= end
);
2881 U_ASSERT(end
< fRXPat
->fCompiledPat
->size());
2887 int32_t currentLen
= 0;
2890 // forwardedLength is a vector holding minimum-match-length values that
2891 // are propagated forward in the pattern by JMP or STATE_SAVE operations.
2892 // It must be one longer than the pattern being checked because some ops
2893 // will jmp to a end-of-block+1 location from within a block, and we must
2894 // count those when checking the block.
2895 UVector32
forwardedLength(end
+2, *fStatus
);
2896 forwardedLength
.setSize(end
+2);
2897 for (loc
=start
; loc
<=end
+1; loc
++) {
2898 forwardedLength
.setElementAt(INT32_MAX
, loc
);
2901 for (loc
= start
; loc
<=end
; loc
++) {
2902 op
= (int32_t)fRXPat
->fCompiledPat
->elementAti(loc
);
2903 opType
= URX_TYPE(op
);
2905 // The loop is advancing linearly through the pattern.
2906 // If the op we are now at was the destination of a branch in the pattern,
2907 // and that path has a shorter minimum length than the current accumulated value,
2908 // replace the current accumulated value.
2909 // U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); // MinLength == INT32_MAX for some
2910 // no-match-possible cases.
2911 if (forwardedLength
.elementAti(loc
) < currentLen
) {
2912 currentLen
= forwardedLength
.elementAti(loc
);
2913 U_ASSERT(currentLen
>=0 && currentLen
< INT32_MAX
);
2917 // Ops that don't change the total length matched
2918 case URX_RESERVED_OP
:
2920 case URX_STRING_LEN
:
2922 case URX_START_CAPTURE
:
2923 case URX_END_CAPTURE
:
2924 case URX_BACKSLASH_B
:
2925 case URX_BACKSLASH_BU
:
2926 case URX_BACKSLASH_G
:
2927 case URX_BACKSLASH_Z
:
2933 case URX_RELOC_OPRND
:
2934 case URX_STO_INP_LOC
:
2936 case URX_CARET_M_UNIX
:
2937 case URX_BACKREF
: // BackRef. Must assume that it might be a zero length match
2940 case URX_STO_SP
: // Setup for atomic or possessive blocks. Doesn't change what can match.
2948 // Ops that match a minimum of one character (one or two 16 bit code units.)
2951 case URX_STATIC_SETREF
:
2952 case URX_STAT_SETREF_N
:
2954 case URX_BACKSLASH_D
:
2956 case URX_BACKSLASH_X
: // Grahpeme Cluster. Minimum is 1, max unbounded.
2957 case URX_DOTANY_ALL
: // . matches one or two.
2959 case URX_DOTANY_UNIX
:
2965 loc
++; // URX_JMPX has an extra operand, ignored here,
2966 // otherwise processed identically to URX_JMP.
2969 int32_t jmpDest
= URX_VAL(op
);
2970 if (jmpDest
< loc
) {
2971 // Loop of some kind. Can safely ignore, the worst that will happen
2972 // is that we understate the true minimum length
2973 currentLen
= forwardedLength
.elementAti(loc
+1);
2975 // Forward jump. Propagate the current min length to the target loc of the jump.
2976 U_ASSERT(jmpDest
<= end
+1);
2977 if (forwardedLength
.elementAti(jmpDest
) > currentLen
) {
2978 forwardedLength
.setElementAt(currentLen
, jmpDest
);
2986 // Back-tracks are kind of like a branch, except that the min length was
2987 // propagated already, by the state save.
2988 currentLen
= forwardedLength
.elementAti(loc
+1);
2993 case URX_STATE_SAVE
:
2995 // State Save, for forward jumps, propagate the current minimum.
2996 // of the state save.
2997 int32_t jmpDest
= URX_VAL(op
);
2998 if (jmpDest
> loc
) {
2999 if (currentLen
< forwardedLength
.elementAti(jmpDest
)) {
3000 forwardedLength
.setElementAt(currentLen
, jmpDest
);
3010 int32_t stringLenOp
= (int32_t)fRXPat
->fCompiledPat
->elementAti(loc
);
3011 currentLen
+= URX_VAL(stringLenOp
);
3019 // TODO: with full case folding, matching input text may be shorter than
3020 // the string we have here. More smarts could put some bounds on it.
3021 // Assume a min length of one for now. A min length of zero causes
3022 // optimization failures for a pattern like "string"+
3023 // currentLen += URX_VAL(stringLenOp);
3029 case URX_CTR_INIT_NG
:
3032 // If the min loop count == 0
3033 // move loc forwards to the end of the loop, skipping over the body.
3034 // If the min count is > 0,
3035 // continue normal processing of the body of the loop.
3036 int32_t loopEndLoc
= (int32_t)fRXPat
->fCompiledPat
->elementAti(loc
+1);
3037 loopEndLoc
= URX_VAL(loopEndLoc
);
3038 int32_t minLoopCount
= (int32_t)fRXPat
->fCompiledPat
->elementAti(loc
+2);
3039 if (minLoopCount
== 0) {
3042 loc
+=3; // Skips over operands of CTR_INIT
3049 case URX_CTR_LOOP_NG
:
3051 // The jump is conditional, backwards only.
3055 case URX_LOOP_DOT_I
:
3057 // More loop ops. These state-save to themselves.
3058 // don't change the minimum match - could match nothing at all.
3065 // Look-around. Scan forward until the matching look-ahead end,
3066 // without processing the look-around block. This is overly pessimistic for look-ahead,
3067 // it assumes that the look-ahead match might be zero-length.
3068 // TODO: Positive lookahead could recursively do the block, then continue
3069 // with the longer of the block or the value coming in. Ticket 6060
3070 int32_t depth
= (opType
== URX_LA_START
? 2: 1);;
3073 op
= (int32_t)fRXPat
->fCompiledPat
->elementAti(loc
);
3074 if (URX_TYPE(op
) == URX_LA_START
) {
3075 // The boilerplate for look-ahead includes two LA_END insturctions,
3076 // Depth will be decremented by each one when it is seen.
3079 if (URX_TYPE(op
) == URX_LB_START
) {
3082 if (URX_TYPE(op
) == URX_LA_END
) {
3088 if (URX_TYPE(op
)==URX_LBN_END
) {
3094 if (URX_TYPE(op
) == URX_STATE_SAVE
) {
3095 // Need this because neg lookahead blocks will FAIL to outside
3097 int32_t jmpDest
= URX_VAL(op
);
3098 if (jmpDest
> loc
) {
3099 if (currentLen
< forwardedLength
.elementAti(jmpDest
)) {
3100 forwardedLength
.setElementAt(currentLen
, jmpDest
);
3104 U_ASSERT(loc
<= end
);
3114 // Only come here if the matching URX_LA_START or URX_LB_START was not in the
3115 // range being sized, which happens when measuring size of look-behind blocks.
3124 // We have finished walking through the ops. Check whether some forward jump
3125 // propagated a shorter length to location end+1.
3126 if (forwardedLength
.elementAti(end
+1) < currentLen
) {
3127 currentLen
= forwardedLength
.elementAti(end
+1);
3128 U_ASSERT(currentLen
>=0 && currentLen
< INT32_MAX
);
3134 // Increment with overflow check.
3135 // val and delta will both be positive.
3137 static int32_t safeIncrement(int32_t val
, int32_t delta
) {
3138 if (INT32_MAX
- val
> delta
) {
3146 //------------------------------------------------------------------------------
3148 // maxMatchLength Calculate the length of the longest string that could
3149 // match the specified pattern.
3150 // Length is in 16 bit code units, not code points.
3152 // The calculated length may not be exact. The returned
3153 // value may be longer than the actual maximum; it must
3154 // never be shorter.
3156 //------------------------------------------------------------------------------
3157 int32_t RegexCompile::maxMatchLength(int32_t start
, int32_t end
) {
3158 if (U_FAILURE(*fStatus
)) {
3161 U_ASSERT(start
<= end
);
3162 U_ASSERT(end
< fRXPat
->fCompiledPat
->size());
3168 int32_t currentLen
= 0;
3169 UVector32
forwardedLength(end
+1, *fStatus
);
3170 forwardedLength
.setSize(end
+1);
3172 for (loc
=start
; loc
<=end
; loc
++) {
3173 forwardedLength
.setElementAt(0, loc
);
3176 for (loc
= start
; loc
<=end
; loc
++) {
3177 op
= (int32_t)fRXPat
->fCompiledPat
->elementAti(loc
);
3178 opType
= URX_TYPE(op
);
3180 // The loop is advancing linearly through the pattern.
3181 // If the op we are now at was the destination of a branch in the pattern,
3182 // and that path has a longer maximum length than the current accumulated value,
3183 // replace the current accumulated value.
3184 if (forwardedLength
.elementAti(loc
) > currentLen
) {
3185 currentLen
= forwardedLength
.elementAti(loc
);
3189 // Ops that don't change the total length matched
3190 case URX_RESERVED_OP
:
3192 case URX_STRING_LEN
:
3194 case URX_START_CAPTURE
:
3195 case URX_END_CAPTURE
:
3196 case URX_BACKSLASH_B
:
3197 case URX_BACKSLASH_BU
:
3198 case URX_BACKSLASH_G
:
3199 case URX_BACKSLASH_Z
:
3205 case URX_RELOC_OPRND
:
3206 case URX_STO_INP_LOC
:
3208 case URX_CARET_M_UNIX
:
3210 case URX_STO_SP
: // Setup for atomic or possessive blocks. Doesn't change what can match.
3220 // Ops that increase that cause an unbounded increase in the length
3221 // of a matched string, or that increase it a hard to characterize way.
3222 // Call the max length unbounded, and stop further checking.
3223 case URX_BACKREF
: // BackRef. Must assume that it might be a zero length match
3225 case URX_BACKSLASH_X
: // Grahpeme Cluster. Minimum is 1, max unbounded.
3226 currentLen
= INT32_MAX
;
3230 // Ops that match a max of one character (possibly two 16 bit code units.)
3232 case URX_STATIC_SETREF
:
3233 case URX_STAT_SETREF_N
:
3235 case URX_BACKSLASH_D
:
3237 case URX_DOTANY_ALL
:
3239 case URX_DOTANY_UNIX
:
3240 currentLen
= safeIncrement(currentLen
, 2);
3243 // Single literal character. Increase current max length by one or two,
3244 // depending on whether the char is in the supplementary range.
3246 currentLen
= safeIncrement(currentLen
, 1);
3247 if (URX_VAL(op
) > 0x10000) {
3248 currentLen
= safeIncrement(currentLen
, 1);
3259 int32_t jmpDest
= URX_VAL(op
);
3260 if (jmpDest
< loc
) {
3261 // Loop of some kind. Max match length is unbounded.
3262 currentLen
= INT32_MAX
;
3264 // Forward jump. Propagate the current min length to the target loc of the jump.
3265 if (forwardedLength
.elementAti(jmpDest
) < currentLen
) {
3266 forwardedLength
.setElementAt(currentLen
, jmpDest
);
3274 // back-tracks are kind of like a branch, except that the max length was
3275 // propagated already, by the state save.
3276 currentLen
= forwardedLength
.elementAti(loc
+1);
3280 case URX_STATE_SAVE
:
3282 // State Save, for forward jumps, propagate the current minimum.
3283 // of the state save.
3284 // For backwards jumps, they create a loop, maximum
3285 // match length is unbounded.
3286 int32_t jmpDest
= URX_VAL(op
);
3287 if (jmpDest
> loc
) {
3288 if (currentLen
> forwardedLength
.elementAti(jmpDest
)) {
3289 forwardedLength
.setElementAt(currentLen
, jmpDest
);
3292 currentLen
= INT32_MAX
;
3303 int32_t stringLenOp
= (int32_t)fRXPat
->fCompiledPat
->elementAti(loc
);
3304 currentLen
= safeIncrement(currentLen
, URX_VAL(stringLenOp
));
3309 // TODO: This code assumes that any user string that matches will be no longer
3310 // than our compiled string, with case insensitive matching.
3311 // Our compiled string has been case-folded already.
3313 // Any matching user string will have no more code points than our
3314 // compiled (folded) string. Folding may add code points, but
3317 // There is a potential problem if a supplemental code point
3318 // case-folds to a BMP code point. In this case our compiled string
3319 // could be shorter (in code units) than a matching user string.
3321 // At this time (Unicode 6.1) there are no such characters, and this case
3322 // is not being handled. A test, intltest regex/Bug9283, will fail if
3323 // any problematic characters are added to Unicode.
3325 // If this happens, we can make a set of the BMP chars that the
3326 // troublesome supplementals fold to, scan our string, and bump the
3327 // currentLen one extra for each that is found.
3331 int32_t stringLenOp
= (int32_t)fRXPat
->fCompiledPat
->elementAti(loc
);
3332 currentLen
= safeIncrement(currentLen
, URX_VAL(stringLenOp
));
3337 case URX_CTR_INIT_NG
:
3339 case URX_CTR_LOOP_NG
:
3341 case URX_LOOP_DOT_I
:
3343 // For anything to do with loops, make the match length unbounded.
3344 // Note: INIT instructions are multi-word. Can ignore because
3345 // INT32_MAX length will stop the per-instruction loop.
3346 currentLen
= INT32_MAX
;
3353 // Look-ahead. Just ignore, treat the look-ahead block as if
3354 // it were normal pattern. Gives a too-long match length,
3355 // but good enough for now.
3358 // End of look-ahead ops should always be consumed by the processing at
3359 // the URX_LA_START op.
3365 // Look-behind. Scan forward until the matching look-around end,
3366 // without processing the look-behind block.
3370 op
= (int32_t)fRXPat
->fCompiledPat
->elementAti(loc
);
3371 if (URX_TYPE(op
) == URX_LA_START
|| URX_TYPE(op
) == URX_LB_START
) {
3374 if (URX_TYPE(op
) == URX_LA_END
|| URX_TYPE(op
)==URX_LBN_END
) {
3380 U_ASSERT(loc
< end
);
3390 if (currentLen
== INT32_MAX
) {
3391 // The maximum length is unbounded.
3392 // Stop further processing of the pattern.
3402 //------------------------------------------------------------------------------
3404 // stripNOPs Remove any NOP operations from the compiled pattern code.
3405 // Extra NOPs are inserted for some constructs during the initial
3406 // code generation to provide locations that may be patched later.
3407 // Many end up unneeded, and are removed by this function.
3409 // In order to minimize the number of passes through the pattern,
3410 // back-reference fixup is also performed here (adjusting
3411 // back-reference operands to point to the correct frame offsets).
3413 //------------------------------------------------------------------------------
3414 void RegexCompile::stripNOPs() {
3416 if (U_FAILURE(*fStatus
)) {
3420 int32_t end
= fRXPat
->fCompiledPat
->size();
3421 UVector32
deltas(end
, *fStatus
);
3423 // Make a first pass over the code, computing the amount that things
3424 // will be offset at each location in the original code.
3427 for (loc
=0; loc
<end
; loc
++) {
3428 deltas
.addElement(d
, *fStatus
);
3429 int32_t op
= (int32_t)fRXPat
->fCompiledPat
->elementAti(loc
);
3430 if (URX_TYPE(op
) == URX_NOP
) {
3435 UnicodeString caseStringBuffer
;
3437 // Make a second pass over the code, removing the NOPs by moving following
3438 // code up, and patching operands that refer to code locations that
3439 // are being moved. The array of offsets from the first step is used
3440 // to compute the new operand values.
3443 for (src
=0; src
<end
; src
++) {
3444 int32_t op
= (int32_t)fRXPat
->fCompiledPat
->elementAti(src
);
3445 int32_t opType
= URX_TYPE(op
);
3450 case URX_STATE_SAVE
:
3453 case URX_CTR_LOOP_NG
:
3454 case URX_RELOC_OPRND
:
3458 // These are instructions with operands that refer to code locations.
3460 int32_t operandAddress
= URX_VAL(op
);
3461 U_ASSERT(operandAddress
>=0 && operandAddress
<deltas
.size());
3462 int32_t fixedOperandAddress
= operandAddress
- deltas
.elementAti(operandAddress
);
3463 op
= URX_BUILD(opType
, fixedOperandAddress
);
3464 fRXPat
->fCompiledPat
->setElementAt(op
, dst
);
3472 int32_t where
= URX_VAL(op
);
3473 if (where
> fRXPat
->fGroupMap
->size()) {
3474 error(U_REGEX_INVALID_BACK_REF
);
3477 where
= fRXPat
->fGroupMap
->elementAti(where
-1);
3478 op
= URX_BUILD(opType
, where
);
3479 fRXPat
->fCompiledPat
->setElementAt(op
, dst
);
3482 fRXPat
->fNeedsAltInput
= TRUE
;
3485 case URX_RESERVED_OP
:
3486 case URX_RESERVED_OP_N
:
3491 case URX_STRING_LEN
:
3492 case URX_START_CAPTURE
:
3493 case URX_END_CAPTURE
:
3494 case URX_STATIC_SETREF
:
3495 case URX_STAT_SETREF_N
:
3499 case URX_BACKSLASH_B
:
3500 case URX_BACKSLASH_BU
:
3501 case URX_BACKSLASH_G
:
3502 case URX_BACKSLASH_X
:
3503 case URX_BACKSLASH_Z
:
3504 case URX_DOTANY_ALL
:
3505 case URX_BACKSLASH_D
:
3509 case URX_CTR_INIT_NG
:
3510 case URX_DOTANY_UNIX
:
3513 case URX_STO_INP_LOC
:
3520 case URX_CARET_M_UNIX
:
3527 case URX_LOOP_DOT_I
:
3531 // These instructions are unaltered by the relocation.
3532 fRXPat
->fCompiledPat
->setElementAt(op
, dst
);
3537 // Some op is unaccounted for.
3539 error(U_REGEX_INTERNAL_ERROR
);
3543 fRXPat
->fCompiledPat
->setSize(dst
);
3549 //------------------------------------------------------------------------------
3551 // Error Report a rule parse error.
3552 // Only report it if no previous error has been recorded.
3554 //------------------------------------------------------------------------------
3555 void RegexCompile::error(UErrorCode e
) {
3556 if (U_SUCCESS(*fStatus
)) {
3558 // Hmm. fParseErr (UParseError) line & offset fields are int32_t in public
3559 // API (see common/unicode/parseerr.h), while fLineNum and fCharNum are
3560 // int64_t. If the values of the latter are out of range for the former,
3561 // set them to the appropriate "field not supported" values.
3562 if (fLineNum
> 0x7FFFFFFF) {
3563 fParseErr
->line
= 0;
3564 fParseErr
->offset
= -1;
3565 } else if (fCharNum
> 0x7FFFFFFF) {
3566 fParseErr
->line
= (int32_t)fLineNum
;
3567 fParseErr
->offset
= -1;
3569 fParseErr
->line
= (int32_t)fLineNum
;
3570 fParseErr
->offset
= (int32_t)fCharNum
;
3573 UErrorCode status
= U_ZERO_ERROR
; // throwaway status for extracting context
3575 // Fill in the context.
3576 // Note: extractBetween() pins supplied indicies to the string bounds.
3577 uprv_memset(fParseErr
->preContext
, 0, sizeof(fParseErr
->preContext
));
3578 uprv_memset(fParseErr
->postContext
, 0, sizeof(fParseErr
->postContext
));
3579 utext_extract(fRXPat
->fPattern
, fScanIndex
-U_PARSE_CONTEXT_LEN
+1, fScanIndex
, fParseErr
->preContext
, U_PARSE_CONTEXT_LEN
, &status
);
3580 utext_extract(fRXPat
->fPattern
, fScanIndex
, fScanIndex
+U_PARSE_CONTEXT_LEN
-1, fParseErr
->postContext
, U_PARSE_CONTEXT_LEN
, &status
);
3586 // Assorted Unicode character constants.
3587 // Numeric because there is no portable way to enter them as literals.
3590 static const UChar chCR
= 0x0d; // New lines, for terminating comments.
3591 static const UChar chLF
= 0x0a; // Line Feed
3592 static const UChar chPound
= 0x23; // '#', introduces a comment.
3593 static const UChar chDigit0
= 0x30; // '0'
3594 static const UChar chDigit7
= 0x37; // '9'
3595 static const UChar chColon
= 0x3A; // ':'
3596 static const UChar chE
= 0x45; // 'E'
3597 static const UChar chQ
= 0x51; // 'Q'
3598 //static const UChar chN = 0x4E; // 'N'
3599 static const UChar chP
= 0x50; // 'P'
3600 static const UChar chBackSlash
= 0x5c; // '\' introduces a char escape
3601 //static const UChar chLBracket = 0x5b; // '['
3602 static const UChar chRBracket
= 0x5d; // ']'
3603 static const UChar chUp
= 0x5e; // '^'
3604 static const UChar chLowerP
= 0x70;
3605 static const UChar chLBrace
= 0x7b; // '{'
3606 static const UChar chRBrace
= 0x7d; // '}'
3607 static const UChar chNEL
= 0x85; // NEL newline variant
3608 static const UChar chLS
= 0x2028; // Unicode Line Separator
3611 //------------------------------------------------------------------------------
3613 // nextCharLL Low Level Next Char from the regex pattern.
3614 // Get a char from the string, keep track of input position
3615 // for error reporting.
3617 //------------------------------------------------------------------------------
3618 UChar32
RegexCompile::nextCharLL() {
3621 if (fPeekChar
!= -1) {
3627 // assume we're already in the right place
3628 ch
= UTEXT_NEXT32(fRXPat
->fPattern
);
3629 if (ch
== U_SENTINEL
) {
3636 (ch
== chLF
&& fLastChar
!= chCR
)) {
3637 // Character is starting a new line. Bump up the line number, and
3638 // reset the column to 0.
3643 // Character is not starting a new line. Except in the case of a
3644 // LF following a CR, increment the column position.
3653 //------------------------------------------------------------------------------
3655 // peekCharLL Low Level Character Scanning, sneak a peek at the next
3656 // character without actually getting it.
3658 //------------------------------------------------------------------------------
3659 UChar32
RegexCompile::peekCharLL() {
3660 if (fPeekChar
== -1) {
3661 fPeekChar
= nextCharLL();
3667 //------------------------------------------------------------------------------
3669 // nextChar for pattern scanning. At this level, we handle stripping
3670 // out comments and processing some backslash character escapes.
3671 // The rest of the pattern grammar is handled at the next level up.
3673 //------------------------------------------------------------------------------
3674 void RegexCompile::nextChar(RegexPatternChar
&c
) {
3676 fScanIndex
= UTEXT_GETNATIVEINDEX(fRXPat
->fPattern
);
3677 c
.fChar
= nextCharLL();
3682 if ((c
.fChar
==chBackSlash
&& peekCharLL()==chE
&& ((fModeFlags
& UREGEX_LITERAL
) == 0)) ||
3683 c
.fChar
== (UChar32
)-1) {
3684 fQuoteMode
= FALSE
; // Exit quote mode,
3685 nextCharLL(); // discard the E
3686 nextChar(c
); // recurse to get the real next char
3689 else if (fInBackslashQuote
) {
3690 // The current character immediately follows a '\'
3691 // Don't check for any further escapes, just return it as-is.
3692 // Don't set c.fQuoted, because that would prevent the state machine from
3693 // dispatching on the character.
3694 fInBackslashQuote
= FALSE
;
3698 // We are not in a \Q quoted region \E of the source.
3700 if (fModeFlags
& UREGEX_COMMENTS
) {
3702 // We are in free-spacing and comments mode.
3703 // Scan through any white space and comments, until we
3704 // reach a significant character or the end of inut.
3706 if (c
.fChar
== (UChar32
)-1) {
3707 break; // End of Input
3709 if (c
.fChar
== chPound
&& fEOLComments
== TRUE
) {
3710 // Start of a comment. Consume the rest of it, until EOF or a new line
3712 c
.fChar
= nextCharLL();
3713 if (c
.fChar
== (UChar32
)-1 || // EOF
3722 // TODO: check what Java & Perl do with non-ASCII white spaces. Ticket 6061.
3723 if (PatternProps::isWhiteSpace(c
.fChar
) == FALSE
) {
3726 c
.fChar
= nextCharLL();
3731 // check for backslash escaped characters.
3733 if (c
.fChar
== chBackSlash
) {
3734 int64_t pos
= UTEXT_GETNATIVEINDEX(fRXPat
->fPattern
);
3735 if (RegexStaticSets::gStaticSets
->fUnescapeCharSet
.contains(peekCharLL())) {
3737 // A '\' sequence that is handled by ICU's standard unescapeAt function.
3738 // Includes \uxxxx, \n, \r, many others.
3739 // Return the single equivalent character.
3741 nextCharLL(); // get & discard the peeked char.
3744 if (UTEXT_FULL_TEXT_IN_CHUNK(fRXPat
->fPattern
, fPatternLength
)) {
3745 int32_t endIndex
= (int32_t)pos
;
3746 c
.fChar
= u_unescapeAt(uregex_ucstr_unescape_charAt
, &endIndex
, (int32_t)fPatternLength
, (void *)fRXPat
->fPattern
->chunkContents
);
3748 if (endIndex
== pos
) {
3749 error(U_REGEX_BAD_ESCAPE_SEQUENCE
);
3751 fCharNum
+= endIndex
- pos
;
3752 UTEXT_SETNATIVEINDEX(fRXPat
->fPattern
, endIndex
);
3755 struct URegexUTextUnescapeCharContext context
= U_REGEX_UTEXT_UNESCAPE_CONTEXT(fRXPat
->fPattern
);
3757 UTEXT_SETNATIVEINDEX(fRXPat
->fPattern
, pos
);
3758 c
.fChar
= u_unescapeAt(uregex_utext_unescape_charAt
, &offset
, INT32_MAX
, &context
);
3761 error(U_REGEX_BAD_ESCAPE_SEQUENCE
);
3762 } else if (context
.lastOffset
== offset
) {
3763 UTEXT_PREVIOUS32(fRXPat
->fPattern
);
3764 } else if (context
.lastOffset
!= offset
-1) {
3765 utext_moveIndex32(fRXPat
->fPattern
, offset
- context
.lastOffset
- 1);
3770 else if (peekCharLL() == chDigit0
) {
3771 // Octal Escape, using Java Regexp Conventions
3772 // which are \0 followed by 1-3 octal digits.
3773 // Different from ICU Unescape handling of Octal, which does not
3774 // require the leading 0.
3775 // Java also has the convention of only consuming 2 octal digits if
3776 // the three digit number would be > 0xff
3779 nextCharLL(); // Consume the initial 0.
3781 for (index
=0; index
<3; index
++) {
3782 int32_t ch
= peekCharLL();
3783 if (ch
<chDigit0
|| ch
>chDigit7
) {
3785 // \0 is not followed by any octal digits.
3786 error(U_REGEX_BAD_ESCAPE_SEQUENCE
);
3792 if (c
.fChar
<= 255) {
3795 // The last digit made the number too big. Forget we saw it.
3801 else if (peekCharLL() == chQ
) {
3802 // "\Q" enter quote mode, which will continue until "\E"
3804 nextCharLL(); // discard the 'Q'.
3805 nextChar(c
); // recurse to get the real next char.
3809 // We are in a '\' escape that will be handled by the state table scanner.
3810 // Just return the backslash, but remember that the following char is to
3811 // be taken literally.
3812 fInBackslashQuote
= TRUE
;
3817 // re-enable # to end-of-line comments, in case they were disabled.
3818 // They are disabled by the parser upon seeing '(?', but this lasts for
3819 // the fetching of the next character only.
3820 fEOLComments
= TRUE
;
3822 // putc(c.fChar, stdout);
3827 //------------------------------------------------------------------------------
3830 // Get a UChar32 from a \N{UNICODE CHARACTER NAME} in the pattern.
3832 // The scan position will be at the 'N'. On return
3833 // the scan position should be just after the '}'
3835 // Return the UChar32
3837 //------------------------------------------------------------------------------
3838 UChar32
RegexCompile::scanNamedChar() {
3839 if (U_FAILURE(*fStatus
)) {
3844 if (fC
.fChar
!= chLBrace
) {
3845 error(U_REGEX_PROPERTY_SYNTAX
);
3849 UnicodeString charName
;
3852 if (fC
.fChar
== chRBrace
) {
3855 if (fC
.fChar
== -1) {
3856 error(U_REGEX_PROPERTY_SYNTAX
);
3859 charName
.append(fC
.fChar
);
3863 if (!uprv_isInvariantUString(charName
.getBuffer(), charName
.length()) ||
3864 (uint32_t)charName
.length()>=sizeof(name
)) {
3865 // All Unicode character names have only invariant characters.
3866 // The API to get a character, given a name, accepts only char *, forcing us to convert,
3867 // which requires this error check
3868 error(U_REGEX_PROPERTY_SYNTAX
);
3871 charName
.extract(0, charName
.length(), name
, sizeof(name
), US_INV
);
3873 UChar32 theChar
= u_charFromName(U_UNICODE_CHAR_NAME
, name
, fStatus
);
3874 if (U_FAILURE(*fStatus
)) {
3875 error(U_REGEX_PROPERTY_SYNTAX
);
3878 nextChar(fC
); // Continue overall regex pattern processing with char after the '}'
3882 //------------------------------------------------------------------------------
3884 // scanProp Construct a UnicodeSet from the text at the current scan
3885 // position, which will be of the form \p{whaterver}
3887 // The scan position will be at the 'p' or 'P'. On return
3888 // the scan position should be just after the '}'
3890 // Return a UnicodeSet, constructed from the \P pattern,
3891 // or NULL if the pattern is invalid.
3893 //------------------------------------------------------------------------------
3894 UnicodeSet
*RegexCompile::scanProp() {
3895 UnicodeSet
*uset
= NULL
;
3897 if (U_FAILURE(*fStatus
)) {
3900 U_ASSERT(fC
.fChar
== chLowerP
|| fC
.fChar
== chP
);
3901 UBool negated
= (fC
.fChar
== chP
);
3903 UnicodeString propertyName
;
3905 if (fC
.fChar
!= chLBrace
) {
3906 error(U_REGEX_PROPERTY_SYNTAX
);
3911 if (fC
.fChar
== chRBrace
) {
3914 if (fC
.fChar
== -1) {
3915 // Hit the end of the input string without finding the closing '}'
3916 error(U_REGEX_PROPERTY_SYNTAX
);
3919 propertyName
.append(fC
.fChar
);
3921 uset
= createSetForProperty(propertyName
, negated
);
3922 nextChar(fC
); // Move input scan to position following the closing '}'
3926 //------------------------------------------------------------------------------
3928 // scanPosixProp Construct a UnicodeSet from the text at the current scan
3929 // position, which is expected be of the form [:property expression:]
3931 // The scan position will be at the opening ':'. On return
3932 // the scan position must be on the closing ']'
3934 // Return a UnicodeSet constructed from the pattern,
3935 // or NULL if this is not a valid POSIX-style set expression.
3936 // If not a property expression, restore the initial scan position
3937 // (to the opening ':')
3939 // Note: the opening '[:' is not sufficient to guarantee that
3940 // this is a [:property:] expression.
3941 // [:'+=,] is a perfectly good ordinary set expression that
3942 // happens to include ':' as one of its characters.
3944 //------------------------------------------------------------------------------
3945 UnicodeSet
*RegexCompile::scanPosixProp() {
3946 UnicodeSet
*uset
= NULL
;
3948 if (U_FAILURE(*fStatus
)) {
3952 U_ASSERT(fC
.fChar
== chColon
);
3954 // Save the scanner state.
3955 // TODO: move this into the scanner, with the state encapsulated in some way. Ticket 6062
3956 int64_t savedScanIndex
= fScanIndex
;
3957 int64_t savedNextIndex
= UTEXT_GETNATIVEINDEX(fRXPat
->fPattern
);
3958 UBool savedQuoteMode
= fQuoteMode
;
3959 UBool savedInBackslashQuote
= fInBackslashQuote
;
3960 UBool savedEOLComments
= fEOLComments
;
3961 int64_t savedLineNum
= fLineNum
;
3962 int64_t savedCharNum
= fCharNum
;
3963 UChar32 savedLastChar
= fLastChar
;
3964 UChar32 savedPeekChar
= fPeekChar
;
3965 RegexPatternChar savedfC
= fC
;
3967 // Scan for a closing ]. A little tricky because there are some perverse
3968 // edge cases possible. "[:abc\Qdef:] \E]" is a valid non-property expression,
3969 // ending on the second closing ].
3971 UnicodeString propName
;
3972 UBool negated
= FALSE
;
3974 // Check for and consume the '^' in a negated POSIX property, e.g. [:^Letter:]
3976 if (fC
.fChar
== chUp
) {
3981 // Scan for the closing ":]", collecting the property name along the way.
3982 UBool sawPropSetTerminator
= FALSE
;
3984 propName
.append(fC
.fChar
);
3986 if (fC
.fQuoted
|| fC
.fChar
== -1) {
3987 // Escaped characters or end of input - either says this isn't a [:Property:]
3990 if (fC
.fChar
== chColon
) {
3992 if (fC
.fChar
== chRBracket
) {
3993 sawPropSetTerminator
= TRUE
;
3999 if (sawPropSetTerminator
) {
4000 uset
= createSetForProperty(propName
, negated
);
4005 // Restore the original scan position.
4006 // The main scanner will retry the input as a normal set expression,
4007 // not a [:Property:] expression.
4008 fScanIndex
= savedScanIndex
;
4009 fQuoteMode
= savedQuoteMode
;
4010 fInBackslashQuote
= savedInBackslashQuote
;
4011 fEOLComments
= savedEOLComments
;
4012 fLineNum
= savedLineNum
;
4013 fCharNum
= savedCharNum
;
4014 fLastChar
= savedLastChar
;
4015 fPeekChar
= savedPeekChar
;
4017 UTEXT_SETNATIVEINDEX(fRXPat
->fPattern
, savedNextIndex
);
4022 static inline void addIdentifierIgnorable(UnicodeSet
*set
, UErrorCode
& ec
) {
4023 set
->add(0, 8).add(0x0e, 0x1b).add(0x7f, 0x9f);
4024 addCategory(set
, U_GC_CF_MASK
, ec
);
4028 // Create a Unicode Set from a Unicode Property expression.
4029 // This is common code underlying both \p{...} ane [:...:] expressions.
4030 // Includes trying the Java "properties" that aren't supported as
4031 // normal ICU UnicodeSet properties
4033 static const UChar posSetPrefix
[] = {0x5b, 0x5c, 0x70, 0x7b, 0}; // "[\p{"
4034 static const UChar negSetPrefix
[] = {0x5b, 0x5c, 0x50, 0x7b, 0}; // "[\P{"
4035 UnicodeSet
*RegexCompile::createSetForProperty(const UnicodeString
&propName
, UBool negated
) {
4036 UnicodeString setExpr
;
4038 uint32_t usetFlags
= 0;
4040 if (U_FAILURE(*fStatus
)) {
4045 // First try the property as we received it
4048 setExpr
.append(negSetPrefix
, -1);
4050 setExpr
.append(posSetPrefix
, -1);
4052 setExpr
.append(propName
);
4053 setExpr
.append(chRBrace
);
4054 setExpr
.append(chRBracket
);
4055 if (fModeFlags
& UREGEX_CASE_INSENSITIVE
) {
4056 usetFlags
|= USET_CASE_INSENSITIVE
;
4058 set
= new UnicodeSet(setExpr
, usetFlags
, NULL
, *fStatus
);
4059 if (U_SUCCESS(*fStatus
)) {
4066 // The property as it was didn't work.
4068 // Do [:word:]. It is not recognized as a property by UnicodeSet. "word" not standard POSIX
4069 // or standard Java, but many other regular expression packages do recognize it.
4071 if (propName
.caseCompare(UNICODE_STRING_SIMPLE("word"), 0) == 0) {
4072 *fStatus
= U_ZERO_ERROR
;
4073 set
= new UnicodeSet(*(fRXPat
->fStaticSets
[URX_ISWORD_SET
]));
4075 *fStatus
= U_MEMORY_ALLOCATION_ERROR
;
4086 // InGreek -> InGreek or Coptic, that being the official Unicode name for that block.
4087 // InCombiningMarksforSymbols -> InCombiningDiacriticalMarksforSymbols.
4089 // Note on Spaces: either "InCombiningMarksForSymbols" or "InCombining Marks for Symbols"
4090 // is accepted by Java. The property part of the name is compared
4091 // case-insenstively. The spaces must be exactly as shown, either
4092 // all there, or all omitted, with exactly one at each position
4093 // if they are present. From checking against JDK 1.6
4095 // This code should be removed when ICU properties support the Java compatibility names
4098 UnicodeString mPropName
= propName
;
4099 if (mPropName
.caseCompare(UNICODE_STRING_SIMPLE("InGreek"), 0) == 0) {
4100 mPropName
= UNICODE_STRING_SIMPLE("InGreek and Coptic");
4102 if (mPropName
.caseCompare(UNICODE_STRING_SIMPLE("InCombining Marks for Symbols"), 0) == 0 ||
4103 mPropName
.caseCompare(UNICODE_STRING_SIMPLE("InCombiningMarksforSymbols"), 0) == 0) {
4104 mPropName
= UNICODE_STRING_SIMPLE("InCombining Diacritical Marks for Symbols");
4106 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("all")) == 0) {
4107 mPropName
= UNICODE_STRING_SIMPLE("javaValidCodePoint");
4110 // See if the property looks like a Java "InBlockName", which
4111 // we will recast as "Block=BlockName"
4113 static const UChar IN
[] = {0x49, 0x6E, 0}; // "In"
4114 static const UChar BLOCK
[] = {0x42, 0x6C, 0x6f, 0x63, 0x6b, 0x3d, 00}; // "Block="
4115 if (mPropName
.startsWith(IN
, 2) && propName
.length()>=3) {
4116 setExpr
.truncate(4); // Leaves "[\p{", or "[\P{"
4117 setExpr
.append(BLOCK
, -1);
4118 setExpr
.append(UnicodeString(mPropName
, 2)); // Property with the leading "In" removed.
4119 setExpr
.append(chRBrace
);
4120 setExpr
.append(chRBracket
);
4121 *fStatus
= U_ZERO_ERROR
;
4122 set
= new UnicodeSet(setExpr
, usetFlags
, NULL
, *fStatus
);
4123 if (U_SUCCESS(*fStatus
)) {
4130 if (propName
.startsWith(UNICODE_STRING_SIMPLE("java")) ||
4131 propName
.compare(UNICODE_STRING_SIMPLE("all")) == 0)
4133 UErrorCode localStatus
= U_ZERO_ERROR
;
4135 set
= new UnicodeSet();
4137 // Try the various Java specific properties.
4138 // These all begin with "java"
4140 if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaDefined")) == 0) {
4141 addCategory(set
, U_GC_CN_MASK
, localStatus
);
4144 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaDigit")) == 0) {
4145 addCategory(set
, U_GC_ND_MASK
, localStatus
);
4147 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaIdentifierIgnorable")) == 0) {
4148 addIdentifierIgnorable(set
, localStatus
);
4150 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaISOControl")) == 0) {
4151 set
->add(0, 0x1F).add(0x7F, 0x9F);
4153 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaJavaIdentifierPart")) == 0) {
4154 addCategory(set
, U_GC_L_MASK
, localStatus
);
4155 addCategory(set
, U_GC_SC_MASK
, localStatus
);
4156 addCategory(set
, U_GC_PC_MASK
, localStatus
);
4157 addCategory(set
, U_GC_ND_MASK
, localStatus
);
4158 addCategory(set
, U_GC_NL_MASK
, localStatus
);
4159 addCategory(set
, U_GC_MC_MASK
, localStatus
);
4160 addCategory(set
, U_GC_MN_MASK
, localStatus
);
4161 addIdentifierIgnorable(set
, localStatus
);
4163 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaJavaIdentifierStart")) == 0) {
4164 addCategory(set
, U_GC_L_MASK
, localStatus
);
4165 addCategory(set
, U_GC_NL_MASK
, localStatus
);
4166 addCategory(set
, U_GC_SC_MASK
, localStatus
);
4167 addCategory(set
, U_GC_PC_MASK
, localStatus
);
4169 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaLetter")) == 0) {
4170 addCategory(set
, U_GC_L_MASK
, localStatus
);
4172 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaLetterOrDigit")) == 0) {
4173 addCategory(set
, U_GC_L_MASK
, localStatus
);
4174 addCategory(set
, U_GC_ND_MASK
, localStatus
);
4176 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaLowerCase")) == 0) {
4177 addCategory(set
, U_GC_LL_MASK
, localStatus
);
4179 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaMirrored")) == 0) {
4180 set
->applyIntPropertyValue(UCHAR_BIDI_MIRRORED
, 1, localStatus
);
4182 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaSpaceChar")) == 0) {
4183 addCategory(set
, U_GC_Z_MASK
, localStatus
);
4185 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaSupplementaryCodePoint")) == 0) {
4186 set
->add(0x10000, UnicodeSet::MAX_VALUE
);
4188 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaTitleCase")) == 0) {
4189 addCategory(set
, U_GC_LT_MASK
, localStatus
);
4191 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaUnicodeIdentifierStart")) == 0) {
4192 addCategory(set
, U_GC_L_MASK
, localStatus
);
4193 addCategory(set
, U_GC_NL_MASK
, localStatus
);
4195 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaUnicodeIdentifierPart")) == 0) {
4196 addCategory(set
, U_GC_L_MASK
, localStatus
);
4197 addCategory(set
, U_GC_PC_MASK
, localStatus
);
4198 addCategory(set
, U_GC_ND_MASK
, localStatus
);
4199 addCategory(set
, U_GC_NL_MASK
, localStatus
);
4200 addCategory(set
, U_GC_MC_MASK
, localStatus
);
4201 addCategory(set
, U_GC_MN_MASK
, localStatus
);
4202 addIdentifierIgnorable(set
, localStatus
);
4204 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaUpperCase")) == 0) {
4205 addCategory(set
, U_GC_LU_MASK
, localStatus
);
4207 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaValidCodePoint")) == 0) {
4208 set
->add(0, UnicodeSet::MAX_VALUE
);
4210 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("javaWhitespace")) == 0) {
4211 addCategory(set
, U_GC_Z_MASK
, localStatus
);
4212 set
->removeAll(UnicodeSet().add(0xa0).add(0x2007).add(0x202f));
4213 set
->add(9, 0x0d).add(0x1c, 0x1f);
4215 else if (mPropName
.compare(UNICODE_STRING_SIMPLE("all")) == 0) {
4216 set
->add(0, UnicodeSet::MAX_VALUE
);
4219 if (U_SUCCESS(localStatus
) && !set
->isEmpty()) {
4220 *fStatus
= U_ZERO_ERROR
;
4221 if (usetFlags
& USET_CASE_INSENSITIVE
) {
4222 set
->closeOver(USET_CASE_INSENSITIVE
);
4239 // SetEval Part of the evaluation of [set expressions].
4240 // Perform any pending (stacked) operations with precedence
4241 // equal or greater to that of the next operator encountered
4242 // in the expression.
4244 void RegexCompile::setEval(int32_t nextOp
) {
4245 UnicodeSet
*rightOperand
= NULL
;
4246 UnicodeSet
*leftOperand
= NULL
;
4248 U_ASSERT(fSetOpStack
.empty()==FALSE
);
4249 int32_t pendingSetOperation
= fSetOpStack
.peeki();
4250 if ((pendingSetOperation
&0xffff0000) < (nextOp
&0xffff0000)) {
4254 U_ASSERT(fSetStack
.empty() == FALSE
);
4255 rightOperand
= (UnicodeSet
*)fSetStack
.peek();
4256 switch (pendingSetOperation
) {
4258 rightOperand
->complement();
4261 // TODO: need a simple close function. Ticket 6065
4262 rightOperand
->closeOver(USET_CASE_INSENSITIVE
);
4263 rightOperand
->removeAllStrings();
4265 case setDifference1
:
4266 case setDifference2
:
4268 leftOperand
= (UnicodeSet
*)fSetStack
.peek();
4269 leftOperand
->removeAll(*rightOperand
);
4270 delete rightOperand
;
4272 case setIntersection1
:
4273 case setIntersection2
:
4275 leftOperand
= (UnicodeSet
*)fSetStack
.peek();
4276 leftOperand
->retainAll(*rightOperand
);
4277 delete rightOperand
;
4281 leftOperand
= (UnicodeSet
*)fSetStack
.peek();
4282 leftOperand
->addAll(*rightOperand
);
4283 delete rightOperand
;
4292 void RegexCompile::setPushOp(int32_t op
) {
4294 fSetOpStack
.push(op
, *fStatus
);
4295 fSetStack
.push(new UnicodeSet(), *fStatus
);
4299 #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS