]>
git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/decNumberLocal.h
1 /* ------------------------------------------------------------------ */
2 /* decNumber package local type, tuning, and macro definitions */
3 /* ------------------------------------------------------------------ */
4 /* Copyright (c) IBM Corporation, 2000-2012. All rights reserved. */
6 /* This software is made available under the terms of the */
7 /* ICU License -- ICU 1.8.1 and later. */
9 /* The description and User's Guide ("The decNumber C Library") for */
10 /* this software is called decNumber.pdf. This document is */
11 /* available, together with arithmetic and format specifications, */
12 /* testcases, and Web links, on the General Decimal Arithmetic page. */
14 /* Please send comments, suggestions, and corrections to the author: */
16 /* Mike Cowlishaw, IBM Fellow */
17 /* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */
18 /* ------------------------------------------------------------------ */
19 /* This header file is included by all modules in the decNumber */
20 /* library, and contains local type definitions, tuning parameters, */
21 /* etc. It should not need to be used by application programs. */
22 /* decNumber.h or one of decDouble (etc.) must be included first. */
23 /* ------------------------------------------------------------------ */
25 #if !defined(DECNUMBERLOC)
27 #define DECVERSION "decNumber 3.61" /* Package Version [16 max.] */
28 #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */
30 #include <stdlib.h> /* for abs */
31 #include <string.h> /* for memset, strcpy */
33 /* Conditional code flag -- set this to match hardware platform */
34 #if !defined(DECLITEND)
35 #define DECLITEND 1 /* 1=little-endian, 0=big-endian */
38 /* Conditional code flag -- set this to 1 for best performance */
39 #if !defined(DECUSE64)
40 #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */
43 /* Conditional check flags -- set these to 0 for best performance */
44 #if !defined(DECCHECK)
45 #define DECCHECK 0 /* 1 to enable robust checking */
47 #if !defined(DECALLOC)
48 #define DECALLOC 0 /* 1 to enable memory accounting */
50 #if !defined(DECTRACE)
51 #define DECTRACE 0 /* 1 to trace certain internals, etc. */
54 /* Tuning parameter for decNumber (arbitrary precision) module */
55 #if !defined(DECBUFFER)
56 #define DECBUFFER 36 /* Size basis for local buffers. This */
57 /* should be a common maximum precision */
58 /* rounded up to a multiple of 4; must */
59 /* be zero or positive. */
62 /* ---------------------------------------------------------------- */
63 /* Definitions for all modules (general-purpose) */
64 /* ---------------------------------------------------------------- */
66 /* Local names for common types -- for safety, decNumber modules do */
67 /* not use int or long directly. */
72 #define uShort uint16_t
75 #define Unit decNumberUnit
78 #define uLong uint64_t
81 /* Development-use definitions */
82 typedef long int LI
; /* for printf arguments only */
83 #define DECNOINT 0 /* 1 to check no internal use of 'int' */
86 /* if these interfere with your C includes, do not set DECNOINT */
87 #define int ? /* enable to ensure that plain C 'int' */
88 #define long ?? /* .. or 'long' types are not used */
91 /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */
92 /* (that is, sets w to be the high-order word of the 64-bit result; */
93 /* the low-order word is simply u*v.) */
94 /* This version is derived from Knuth via Hacker's Delight; */
95 /* it seems to optimize better than some others tried */
96 #define LONGMUL32HI(w, u, v) { \
97 uInt u0, u1, v0, v1, w0, w1, w2, t; \
98 u0=u & 0xffff; u1=u>>16; \
99 v0=v & 0xffff; v1=v>>16; \
101 t=u1*v0 + (w0>>16); \
102 w1=t & 0xffff; w2=t>>16; \
104 (w)=u1*v1 + w2 + (w1>>16);}
106 /* ROUNDUP -- round an integer up to a multiple of n */
107 #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n)
108 #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */
110 /* ROUNDDOWN -- round an integer down to a multiple of n */
111 #define ROUNDDOWN(i, n) (((i)/n)*n)
112 #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */
114 /* References to multi-byte sequences under different sizes; these */
115 /* require locally declared variables, but do not violate strict */
116 /* aliasing or alignment (as did the UINTAT simple cast to uInt). */
117 /* Variables needed are uswork, uiwork, etc. [so do not use at same */
118 /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */
120 /* Return a uInt, etc., from bytes starting at a char* or uByte* */
121 #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork)
122 #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork)
124 /* Store a uInt, etc., into bytes starting at a char* or uByte*. */
125 /* Returns i, evaluated, for convenience; has to use uiwork because */
126 /* i may be an expression. */
127 #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork)
128 #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork)
130 /* X10 and X100 -- multiply integer i by 10 or 100 */
131 /* [shifts are usually faster than multiply; could be conditional] */
132 #define X10(i) (((i)<<1)+((i)<<3))
133 #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6))
135 /* MAXI and MINI -- general max & min (not in ANSI) for integers */
136 #define MAXI(x,y) ((x)<(y)?(y):(x))
137 #define MINI(x,y) ((x)>(y)?(y):(x))
139 /* Useful constants */
140 #define BILLION 1000000000 /* 10**9 */
141 /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */
142 #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0')
145 /* ---------------------------------------------------------------- */
146 /* Definitions for arbitary-precision modules (only valid after */
147 /* decNumber.h has been included) */
148 /* ---------------------------------------------------------------- */
150 /* Limits and constants */
151 #define DECNUMMAXP 999999999 /* maximum precision code can handle */
152 #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */
153 #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */
154 #if (DECNUMMAXP != DEC_MAX_DIGITS)
155 #error Maximum digits mismatch
157 #if (DECNUMMAXE != DEC_MAX_EMAX)
158 #error Maximum exponent mismatch
160 #if (DECNUMMINE != DEC_MIN_EMIN)
161 #error Minimum exponent mismatch
164 /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */
165 /* digits, and D2UTABLE -- the initializer for the D2U table */
168 #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \
169 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \
170 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \
173 #define DECDPUNMAX 99
174 #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \
175 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \
176 18,19,19,20,20,21,21,22,22,23,23,24,24,25}
178 #define DECDPUNMAX 999
179 #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \
180 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \
181 13,14,14,14,15,15,15,16,16,16,17}
183 #define DECDPUNMAX 9999
184 #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \
185 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \
186 11,11,11,12,12,12,12,13}
188 #define DECDPUNMAX 99999
189 #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \
190 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \
193 #define DECDPUNMAX 999999
194 #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \
195 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \
198 #define DECDPUNMAX 9999999
199 #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \
200 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \
203 #define DECDPUNMAX 99999999
204 #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \
205 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \
208 #define DECDPUNMAX 999999999
209 #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \
210 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \
212 #elif defined(DECDPUN)
213 #error DECDPUN must be in the range 1-9
216 /* ----- Shared data (in decNumber.c) ----- */
217 /* Public lookup table used by the D2U macro (see below) */
219 /*extern const uByte d2utable[DECMAXD2U+1];*/
221 /* ----- Macros ----- */
222 /* ISZERO -- return true if decNumber dn is a zero */
223 /* [performance-critical in some situations] */
224 #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */
226 /* D2U -- return the number of Units needed to hold d digits */
227 /* (runtime version, with table lookaside for small d) */
229 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3))
231 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2))
233 #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN)
235 /* SD2U -- static D2U macro (for compile-time calculation) */
236 #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN)
238 /* MSUDIGITS -- returns digits in msu, from digits, calculated */
240 #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN)
242 /* D2N -- return the number of decNumber structs that would be */
243 /* needed to contain that number of digits (and the initial */
244 /* decNumber struct) safely. Note that one Unit is included in the */
245 /* initial structure. Used for allocating space that is aligned on */
246 /* a decNumber struct boundary. */
248 ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber))
250 /* TODIGIT -- macro to remove the leading digit from the unsigned */
251 /* integer u at column cut (counting from the right, LSD=0) and */
252 /* place it as an ASCII character into the character pointed to by */
253 /* c. Note that cut must be <= 9, and the maximum value for u is */
254 /* 2,000,000,000 (as is needed for negative exponents of */
255 /* subnormals). The unsigned integer pow is used as a temporary */
257 #define TODIGIT(u, cut, c, pow) { \
259 pow=DECPOWERS[cut]*2; \
262 if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
264 if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
267 if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
269 if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
272 /* ---------------------------------------------------------------- */
273 /* Definitions for fixed-precision modules (only valid after */
274 /* decSingle.h, decDouble.h, or decQuad.h has been included) */
275 /* ---------------------------------------------------------------- */
277 /* bcdnum -- a structure describing a format-independent finite */
278 /* number, whose coefficient is a string of bcd8 uBytes */
280 uByte
*msd
; /* -> most significant digit */
281 uByte
*lsd
; /* -> least ditto */
282 uInt sign
; /* 0=positive, DECFLOAT_Sign=negative */
283 Int exponent
; /* Unadjusted signed exponent (q), or */
284 /* DECFLOAT_NaN etc. for a special */
287 /* Test if exponent or bcdnum exponent must be a special, etc. */
288 #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp)
289 #define EXPISINF(exp) (exp==DECFLOAT_Inf)
290 #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN)
291 #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent))
293 /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */
294 /* (array) notation (the 0 word or byte contains the sign bit), */
295 /* automatically adjusting for endianness; similarly address a word */
296 /* in the next-wider format (decFloatWider, or dfw) */
297 #define DECWORDS (DECBYTES/4)
298 #define DECWWORDS (DECWBYTES/4)
300 #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)])
301 #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)])
302 #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)])
304 #define DFBYTE(df, off) ((df)->bytes[off])
305 #define DFWORD(df, off) ((df)->words[off])
306 #define DFWWORD(dfw, off) ((dfw)->words[off])
309 /* Tests for sign or specials, directly on DECFLOATs */
310 #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000)
311 #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000)
312 #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000)
313 #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000)
314 #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000)
315 #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000)
317 /* Shared lookup tables */
318 extern const uInt DECCOMBMSD
[64]; /* Combination field -> MSD */
319 extern const uInt DECCOMBFROM
[48]; /* exp+msd -> Combination */
321 /* Private generic (utility) routine */
322 #if DECCHECK || DECTRACE
323 extern void decShowNum(const bcdnum
*, const char *);
326 /* Format-dependent macros and constants */
329 /* Useful constants */
330 #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */
331 /* Top words for a zero */
332 #define SINGLEZERO 0x22500000
333 #define DOUBLEZERO 0x22380000
334 #define QUADZERO 0x22080000
335 /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */
337 /* Format-dependent common tests: */
338 /* DFISZERO -- test for (any) zero */
339 /* DFISCCZERO -- test for coefficient continuation being zero */
340 /* DFISCC01 -- test for coefficient contains only 0s and 1s */
341 /* DFISINT -- test for finite and exponent q=0 */
342 /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */
344 /* ZEROWORD is also defined here. */
345 /* In DFISZERO the first test checks the least-significant word */
346 /* (most likely to be non-zero); the penultimate tests MSD and */
347 /* DPDs in the signword, and the final test excludes specials and */
348 /* MSD>7. DFISINT similarly has to allow for the two forms of */
349 /* MSD codes. DFISUINT01 only has to allow for one form of MSD */
352 #define ZEROWORD SINGLEZERO
353 /* [test macros not needed except for Zero] */
354 #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \
355 && (DFWORD(df, 0)&0x60000000)!=0x60000000)
357 #define ZEROWORD DOUBLEZERO
358 #define DFISZERO(df) ((DFWORD(df, 1)==0 \
359 && (DFWORD(df, 0)&0x1c03ffff)==0 \
360 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
361 #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \
362 ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000)
363 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000)
364 #define DFISCCZERO(df) (DFWORD(df, 1)==0 \
365 && (DFWORD(df, 0)&0x0003ffff)==0)
366 #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \
367 && (DFWORD(df, 1)&~0x49124491)==0)
369 #define ZEROWORD QUADZERO
370 #define DFISZERO(df) ((DFWORD(df, 3)==0 \
371 && DFWORD(df, 2)==0 \
372 && DFWORD(df, 1)==0 \
373 && (DFWORD(df, 0)&0x1c003fff)==0 \
374 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
375 #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \
376 ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000)
377 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000)
378 #define DFISCCZERO(df) (DFWORD(df, 3)==0 \
379 && DFWORD(df, 2)==0 \
380 && DFWORD(df, 1)==0 \
381 && (DFWORD(df, 0)&0x00003fff)==0)
383 #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \
384 && (DFWORD(df, 1)&~0x44912449)==0 \
385 && (DFWORD(df, 2)&~0x12449124)==0 \
386 && (DFWORD(df, 3)&~0x49124491)==0)
389 /* Macros to test if a certain 10 bits of a uInt or pair of uInts */
390 /* are a canonical declet [higher or lower bits are ignored]. */
391 /* declet is at offset 0 (from the right) in a uInt: */
392 #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e)
393 /* declet is at offset k (a multiple of 2) in a uInt: */
394 #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \
395 || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
396 /* declet is at offset k (a multiple of 2) in a pair of uInts: */
397 /* [the top 2 bits will always be in the more-significant uInt] */
398 #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \
399 || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \
400 || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
402 /* Macro to test whether a full-length (length DECPMAX) BCD8 */
403 /* coefficient, starting at uByte u, is all zeros */
404 /* Test just the LSWord first, then the remainder as a sequence */
405 /* of tests in order to avoid same-level use of UBTOUI */
407 #define ISCOEFFZERO(u) ( \
408 UBTOUI((u)+DECPMAX-4)==0 \
409 && UBTOUS((u)+DECPMAX-6)==0 \
412 #define ISCOEFFZERO(u) ( \
413 UBTOUI((u)+DECPMAX-4)==0 \
414 && UBTOUI((u)+DECPMAX-8)==0 \
415 && UBTOUI((u)+DECPMAX-12)==0 \
418 #define ISCOEFFZERO(u) ( \
419 UBTOUI((u)+DECPMAX-4)==0 \
420 && UBTOUI((u)+DECPMAX-8)==0 \
421 && UBTOUI((u)+DECPMAX-12)==0 \
422 && UBTOUI((u)+DECPMAX-16)==0 \
423 && UBTOUI((u)+DECPMAX-20)==0 \
424 && UBTOUI((u)+DECPMAX-24)==0 \
425 && UBTOUI((u)+DECPMAX-28)==0 \
426 && UBTOUI((u)+DECPMAX-32)==0 \
430 /* Macros and masks for the exponent continuation field and MSD */
431 /* Get the exponent continuation from a decFloat *df as an Int */
432 #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL)))
433 /* Ditto, from the next-wider format */
434 #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL)))
435 /* Get the biased exponent similarly */
436 #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df)))
437 /* Get the unbiased exponent similarly */
438 #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS)
439 /* Get the MSD similarly (as uInt) */
440 #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26])
442 /* Compile-time computes of the exponent continuation field masks */
443 /* full exponent continuation field: */
444 #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
445 /* same, not including its first digit (the qNaN/sNaN selector): */
446 #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
448 /* Macros to decode the coefficient in a finite decFloat *df into */
449 /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */
451 /* In-line sequence to convert least significant 10 bits of uInt */
452 /* dpd to three BCD8 digits starting at uByte u. Note that an */
453 /* extra byte is written to the right of the three digits because */
454 /* four bytes are moved at a time for speed; the alternative */
455 /* macro moves exactly three bytes (usually slower). */
456 #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4)
457 #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3)
459 /* Decode the declets. After extracting each one, it is decoded */
460 /* to BCD8 using a table lookup (also used for variable-length */
461 /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */
462 /* length which is not used, here). Fixed-length 4-byte moves */
463 /* are fast, however, almost everywhere, and so are used except */
464 /* for the final three bytes (to avoid overrun). The code below */
465 /* is 36 instructions for Doubles and about 70 for Quads, even */
468 /* Two macros are defined for each format: */
469 /* GETCOEFF extracts the coefficient of the current format */
470 /* GETWCOEFF extracts the coefficient of the next-wider format. */
471 /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */
474 #define GETCOEFF(df, bcd) { \
475 uInt sourhi=DFWORD(df, 0); \
476 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
477 dpd2bcd8(bcd+1, sourhi>>10); \
478 dpd2bcd83(bcd+4, sourhi);}
479 #define GETWCOEFF(df, bcd) { \
480 uInt sourhi=DFWWORD(df, 0); \
481 uInt sourlo=DFWWORD(df, 1); \
482 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
483 dpd2bcd8(bcd+1, sourhi>>8); \
484 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
485 dpd2bcd8(bcd+7, sourlo>>20); \
486 dpd2bcd8(bcd+10, sourlo>>10); \
487 dpd2bcd83(bcd+13, sourlo);}
490 #define GETCOEFF(df, bcd) { \
491 uInt sourhi=DFWORD(df, 0); \
492 uInt sourlo=DFWORD(df, 1); \
493 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
494 dpd2bcd8(bcd+1, sourhi>>8); \
495 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
496 dpd2bcd8(bcd+7, sourlo>>20); \
497 dpd2bcd8(bcd+10, sourlo>>10); \
498 dpd2bcd83(bcd+13, sourlo);}
499 #define GETWCOEFF(df, bcd) { \
500 uInt sourhi=DFWWORD(df, 0); \
501 uInt sourmh=DFWWORD(df, 1); \
502 uInt sourml=DFWWORD(df, 2); \
503 uInt sourlo=DFWWORD(df, 3); \
504 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
505 dpd2bcd8(bcd+1, sourhi>>4); \
506 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
507 dpd2bcd8(bcd+7, sourmh>>16); \
508 dpd2bcd8(bcd+10, sourmh>>6); \
509 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
510 dpd2bcd8(bcd+16, sourml>>18); \
511 dpd2bcd8(bcd+19, sourml>>8); \
512 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
513 dpd2bcd8(bcd+25, sourlo>>20); \
514 dpd2bcd8(bcd+28, sourlo>>10); \
515 dpd2bcd83(bcd+31, sourlo);}
518 #define GETCOEFF(df, bcd) { \
519 uInt sourhi=DFWORD(df, 0); \
520 uInt sourmh=DFWORD(df, 1); \
521 uInt sourml=DFWORD(df, 2); \
522 uInt sourlo=DFWORD(df, 3); \
523 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
524 dpd2bcd8(bcd+1, sourhi>>4); \
525 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
526 dpd2bcd8(bcd+7, sourmh>>16); \
527 dpd2bcd8(bcd+10, sourmh>>6); \
528 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
529 dpd2bcd8(bcd+16, sourml>>18); \
530 dpd2bcd8(bcd+19, sourml>>8); \
531 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
532 dpd2bcd8(bcd+25, sourlo>>20); \
533 dpd2bcd8(bcd+28, sourlo>>10); \
534 dpd2bcd83(bcd+31, sourlo);}
536 #define GETWCOEFF(df, bcd) {??} /* [should never be used] */
539 /* Macros to decode the coefficient in a finite decFloat *df into */
540 /* a base-billion uInt array, with the least-significant */
541 /* 0-999999999 'digit' at offset 0. */
543 /* Decode the declets. After extracting each one, it is decoded */
544 /* to binary using a table lookup. Three tables are used; one */
545 /* the usual DPD to binary, the other two pre-multiplied by 1000 */
546 /* and 1000000 to avoid multiplication during decode. These */
547 /* tables can also be used for multiplying up the MSD as the DPD */
548 /* code for 0 through 9 is the identity. */
549 #define DPD2BIN0 DPD2BIN /* for prettier code */
552 #define GETCOEFFBILL(df, buf) { \
553 uInt sourhi=DFWORD(df, 0); \
554 (buf)[0]=DPD2BIN0[sourhi&0x3ff] \
555 +DPD2BINK[(sourhi>>10)&0x3ff] \
556 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
559 #define GETCOEFFBILL(df, buf) { \
560 uInt sourhi, sourlo; \
561 sourlo=DFWORD(df, 1); \
562 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
563 +DPD2BINK[(sourlo>>10)&0x3ff] \
564 +DPD2BINM[(sourlo>>20)&0x3ff]; \
565 sourhi=DFWORD(df, 0); \
566 (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \
567 +DPD2BINK[(sourhi>>8)&0x3ff] \
568 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
571 #define GETCOEFFBILL(df, buf) { \
572 uInt sourhi, sourmh, sourml, sourlo; \
573 sourlo=DFWORD(df, 3); \
574 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
575 +DPD2BINK[(sourlo>>10)&0x3ff] \
576 +DPD2BINM[(sourlo>>20)&0x3ff]; \
577 sourml=DFWORD(df, 2); \
578 (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \
579 +DPD2BINK[(sourml>>8)&0x3ff] \
580 +DPD2BINM[(sourml>>18)&0x3ff]; \
581 sourmh=DFWORD(df, 1); \
582 (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \
583 +DPD2BINK[(sourmh>>6)&0x3ff] \
584 +DPD2BINM[(sourmh>>16)&0x3ff]; \
585 sourhi=DFWORD(df, 0); \
586 (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \
587 +DPD2BINK[(sourhi>>4)&0x3ff] \
588 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
592 /* Macros to decode the coefficient in a finite decFloat *df into */
593 /* a base-thousand uInt array (of size DECLETS+1, to allow for */
594 /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/
596 /* Decode the declets. After extracting each one, it is decoded */
597 /* to binary using a table lookup. */
599 #define GETCOEFFTHOU(df, buf) { \
600 uInt sourhi=DFWORD(df, 0); \
601 (buf)[0]=DPD2BIN[sourhi&0x3ff]; \
602 (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \
603 (buf)[2]=DECCOMBMSD[sourhi>>26];}
606 #define GETCOEFFTHOU(df, buf) { \
607 uInt sourhi, sourlo; \
608 sourlo=DFWORD(df, 1); \
609 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
610 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
611 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
612 sourhi=DFWORD(df, 0); \
613 (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
614 (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \
615 (buf)[5]=DECCOMBMSD[sourhi>>26];}
618 #define GETCOEFFTHOU(df, buf) { \
619 uInt sourhi, sourmh, sourml, sourlo; \
620 sourlo=DFWORD(df, 3); \
621 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
622 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
623 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
624 sourml=DFWORD(df, 2); \
625 (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
626 (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \
627 (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \
628 sourmh=DFWORD(df, 1); \
629 (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
630 (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \
631 (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \
632 sourhi=DFWORD(df, 0); \
633 (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
634 (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \
635 (buf)[11]=DECCOMBMSD[sourhi>>26];}
639 /* Macros to decode the coefficient in a finite decFloat *df and */
640 /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */
641 /* After the addition then most significant 'digit' in the array */
642 /* might have a value larger then 10 (with a maximum of 19). */
644 #define ADDCOEFFTHOU(df, buf) { \
645 uInt sourhi=DFWORD(df, 0); \
646 (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \
647 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
648 (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \
649 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
650 (buf)[2]+=DECCOMBMSD[sourhi>>26];}
653 #define ADDCOEFFTHOU(df, buf) { \
654 uInt sourhi, sourlo; \
655 sourlo=DFWORD(df, 1); \
656 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
657 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
658 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
659 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
660 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
661 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
662 sourhi=DFWORD(df, 0); \
663 (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
664 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
665 (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \
666 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
667 (buf)[5]+=DECCOMBMSD[sourhi>>26];}
670 #define ADDCOEFFTHOU(df, buf) { \
671 uInt sourhi, sourmh, sourml, sourlo; \
672 sourlo=DFWORD(df, 3); \
673 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
674 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
675 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
676 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
677 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
678 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
679 sourml=DFWORD(df, 2); \
680 (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
681 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
682 (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \
683 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
684 (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \
685 if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \
686 sourmh=DFWORD(df, 1); \
687 (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
688 if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \
689 (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \
690 if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \
691 (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \
692 if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \
693 sourhi=DFWORD(df, 0); \
694 (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
695 if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \
696 (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \
697 if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \
698 (buf)[11]+=DECCOMBMSD[sourhi>>26];}
702 /* Set a decFloat to the maximum positive finite number (Nmax) */
704 #define DFSETNMAX(df) \
705 {DFWORD(df, 0)=0x77f3fcff;}
707 #define DFSETNMAX(df) \
708 {DFWORD(df, 0)=0x77fcff3f; \
709 DFWORD(df, 1)=0xcff3fcff;}
711 #define DFSETNMAX(df) \
712 {DFWORD(df, 0)=0x77ffcff3; \
713 DFWORD(df, 1)=0xfcff3fcf; \
714 DFWORD(df, 2)=0xf3fcff3f; \
715 DFWORD(df, 3)=0xcff3fcff;}
718 /* [end of format-dependent macros and constants] */
722 #error decNumberLocal included more than once