1 /************************************************************************
2 * Copyright (C) 1996-2006, International Business Machines Corporation *
3 * and others. All Rights Reserved. *
4 ************************************************************************
5 * 2003-nov-07 srl Port from Java
10 #if !UCONFIG_NO_FORMATTING
12 #include "unicode/calendar.h"
15 #include "unicode/putil.h"
20 #include <stdio.h> // for toString()
23 # include "uresimp.h" // for debugging
25 static void debug_astro_loc(const char *f
, int32_t l
)
27 fprintf(stderr
, "%s:%d: ", f
, l
);
30 static void debug_astro_msg(const char *pat
, ...)
34 vfprintf(stderr
, pat
, ap
);
37 #include "unicode/datefmt.h"
38 #include "unicode/ustring.h"
39 static const char * debug_astro_date(UDate d
) {
40 static char gStrBuf
[1024];
41 static DateFormat
*df
= NULL
;
43 df
= DateFormat::createDateTimeInstance(DateFormat::MEDIUM
, DateFormat::MEDIUM
, Locale::getUS());
44 df
->adoptTimeZone(TimeZone::getGMT()->clone());
48 u_austrncpy(gStrBuf
,str
.getTerminatedBuffer(),sizeof(gStrBuf
)-1);
52 // must use double parens, i.e.: U_DEBUG_ASTRO_MSG(("four is: %d",4));
53 #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;}
55 #define U_DEBUG_ASTRO_MSG(x)
58 static inline UBool
isINVALID(double d
) {
59 return(uprv_isNaN(d
));
62 static UMTX ccLock
= NULL
;
65 static UBool
calendar_astro_cleanup(void) {
66 umtx_destroy(&ccLock
);
74 * The number of standard hours in one sidereal day.
75 * Approximately 24.93.
77 * @deprecated ICU 2.4. This class may be removed or modified.
79 #define SIDEREAL_DAY (23.93446960027)
82 * The number of sidereal hours in one mean solar day.
83 * Approximately 24.07.
85 * @deprecated ICU 2.4. This class may be removed or modified.
87 #define SOLAR_DAY (24.065709816)
90 * The average number of solar days from one new moon to the next. This is the time
91 * it takes for the moon to return the same ecliptic longitude as the sun.
92 * It is longer than the sidereal month because the sun's longitude increases
93 * during the year due to the revolution of the earth around the sun.
94 * Approximately 29.53.
96 * @see #SIDEREAL_MONTH
98 * @deprecated ICU 2.4. This class may be removed or modified.
100 const double CalendarAstronomer::SYNODIC_MONTH
= 29.530588853;
103 * The average number of days it takes
104 * for the moon to return to the same ecliptic longitude relative to the
105 * stellar background. This is referred to as the sidereal month.
106 * It is shorter than the synodic month due to
107 * the revolution of the earth around the sun.
108 * Approximately 27.32.
110 * @see #SYNODIC_MONTH
112 * @deprecated ICU 2.4. This class may be removed or modified.
114 #define SIDEREAL_MONTH 27.32166
117 * The average number number of days between successive vernal equinoxes.
118 * Due to the precession of the earth's
119 * axis, this is not precisely the same as the sidereal year.
120 * Approximately 365.24
122 * @see #SIDEREAL_YEAR
124 * @deprecated ICU 2.4. This class may be removed or modified.
126 #define TROPICAL_YEAR 365.242191
129 * The average number of days it takes
130 * for the sun to return to the same position against the fixed stellar
131 * background. This is the duration of one orbit of the earth about the sun
132 * as it would appear to an outside observer.
133 * Due to the precession of the earth's
134 * axis, this is not precisely the same as the tropical year.
135 * Approximately 365.25.
137 * @see #TROPICAL_YEAR
139 * @deprecated ICU 2.4. This class may be removed or modified.
141 #define SIDEREAL_YEAR 365.25636
143 //-------------------------------------------------------------------------
144 // Time-related constants
145 //-------------------------------------------------------------------------
148 * The number of milliseconds in one second.
150 * @deprecated ICU 2.4. This class may be removed or modified.
152 #define SECOND_MS U_MILLIS_PER_SECOND
155 * The number of milliseconds in one minute.
157 * @deprecated ICU 2.4. This class may be removed or modified.
159 #define MINUTE_MS U_MILLIS_PER_MINUTE
162 * The number of milliseconds in one hour.
164 * @deprecated ICU 2.4. This class may be removed or modified.
166 #define HOUR_MS U_MILLIS_PER_HOUR
169 * The number of milliseconds in one day.
171 * @deprecated ICU 2.4. This class may be removed or modified.
173 #define DAY_MS U_MILLIS_PER_DAY
176 * The start of the julian day numbering scheme used by astronomers, which
177 * is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds
178 * since 1/1/1970 AD (Gregorian), a negative number.
179 * Note that julian day numbers and
180 * the Julian calendar are <em>not</em> the same thing. Also note that
181 * julian days start at <em>noon</em>, not midnight.
183 * @deprecated ICU 2.4. This class may be removed or modified.
185 #define JULIAN_EPOCH_MS -210866760000000.0
189 * Milliseconds value for 0.0 January 2000 AD.
191 #define EPOCH_2000_MS 946598400000.0
193 //-------------------------------------------------------------------------
194 // Assorted private data used for conversions
195 //-------------------------------------------------------------------------
197 // My own copies of these so compilers are more likely to optimize them away
198 const double CalendarAstronomer::PI
= 3.14159265358979323846;
200 #define CalendarAstronomer_PI2 (CalendarAstronomer::PI*2.0)
201 #define RAD_HOUR ( 12 / CalendarAstronomer::PI ) // radians -> hours
202 #define DEG_RAD ( CalendarAstronomer::PI / 180 ) // degrees -> radians
203 #define RAD_DEG ( 180 / CalendarAstronomer::PI ) // radians -> degrees
205 //-------------------------------------------------------------------------
207 //-------------------------------------------------------------------------
210 * Construct a new <code>CalendarAstronomer</code> object that is initialized to
211 * the current date and time.
213 * @deprecated ICU 2.4. This class may be removed or modified.
215 CalendarAstronomer::CalendarAstronomer():
216 fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE
) {
221 * Construct a new <code>CalendarAstronomer</code> object that is initialized to
222 * the specified date and time.
224 * @deprecated ICU 2.4. This class may be removed or modified.
226 CalendarAstronomer::CalendarAstronomer(UDate d
): fTime(d
), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE
) {
231 * Construct a new <code>CalendarAstronomer</code> object with the given
232 * latitude and longitude. The object's time is set to the current
235 * @param longitude The desired longitude, in <em>degrees</em> east of
236 * the Greenwich meridian.
238 * @param latitude The desired latitude, in <em>degrees</em>. Positive
239 * values signify North, negative South.
241 * @see java.util.Date#getTime()
243 * @deprecated ICU 2.4. This class may be removed or modified.
245 CalendarAstronomer::CalendarAstronomer(double longitude
, double latitude
) :
246 fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE
) {
247 fLongitude
= normPI(longitude
* (double)DEG_RAD
);
248 fLatitude
= normPI(latitude
* (double)DEG_RAD
);
249 fGmtOffset
= (double)(fLongitude
* 24. * (double)HOUR_MS
/ (double)CalendarAstronomer_PI2
);
253 CalendarAstronomer::~CalendarAstronomer()
257 //-------------------------------------------------------------------------
258 // Time and date getters and setters
259 //-------------------------------------------------------------------------
262 * Set the current date and time of this <code>CalendarAstronomer</code> object. All
263 * astronomical calculations are performed based on this time setting.
265 * @param aTime the date and time, expressed as the number of milliseconds since
266 * 1/1/1970 0:00 GMT (Gregorian).
271 * @deprecated ICU 2.4. This class may be removed or modified.
273 void CalendarAstronomer::setTime(UDate aTime
) {
275 U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime
, debug_astro_date(aTime
+fGmtOffset
)));
280 * Set the current date and time of this <code>CalendarAstronomer</code> object. All
281 * astronomical calculations are performed based on this time setting.
283 * @param jdn the desired time, expressed as a "julian day number",
284 * which is the number of elapsed days since
285 * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day
286 * numbers start at <em>noon</em>. To get the jdn for
287 * the corresponding midnight, subtract 0.5.
290 * @see #JULIAN_EPOCH_MS
292 * @deprecated ICU 2.4. This class may be removed or modified.
294 void CalendarAstronomer::setJulianDay(double jdn
) {
295 fTime
= (double)(jdn
* DAY_MS
) + JULIAN_EPOCH_MS
;
301 * Get the current time of this <code>CalendarAstronomer</code> object,
302 * represented as the number of milliseconds since
303 * 1/1/1970 AD 0:00 GMT (Gregorian).
308 * @deprecated ICU 2.4. This class may be removed or modified.
310 UDate
CalendarAstronomer::getTime() {
315 * Get the current time of this <code>CalendarAstronomer</code> object,
316 * expressed as a "julian day number", which is the number of elapsed
317 * days since 1/1/4713 BC (Julian), 12:00 GMT.
320 * @see #JULIAN_EPOCH_MS
322 * @deprecated ICU 2.4. This class may be removed or modified.
324 double CalendarAstronomer::getJulianDay() {
325 if (isINVALID(julianDay
)) {
326 julianDay
= (fTime
- (double)JULIAN_EPOCH_MS
) / (double)DAY_MS
;
332 * Return this object's time expressed in julian centuries:
333 * the number of centuries after 1/1/1900 AD, 12:00 GMT
337 * @deprecated ICU 2.4. This class may be removed or modified.
339 double CalendarAstronomer::getJulianCentury() {
340 if (isINVALID(julianCentury
)) {
341 julianCentury
= (getJulianDay() - 2415020.0) / 36525.0;
343 return julianCentury
;
347 * Returns the current Greenwich sidereal time, measured in hours
349 * @deprecated ICU 2.4. This class may be removed or modified.
351 double CalendarAstronomer::getGreenwichSidereal() {
352 if (isINVALID(siderealTime
)) {
353 // See page 86 of "Practial Astronomy with your Calculator",
354 // by Peter Duffet-Smith, for details on the algorithm.
356 double UT
= normalize(fTime
/(double)HOUR_MS
, 24.);
358 siderealTime
= normalize(getSiderealOffset() + UT
*1.002737909, 24.);
363 double CalendarAstronomer::getSiderealOffset() {
364 if (isINVALID(siderealT0
)) {
365 double JD
= uprv_floor(getJulianDay() - 0.5) + 0.5;
366 double S
= JD
- 2451545.0;
367 double T
= S
/ 36525.0;
368 siderealT0
= normalize(6.697374558 + 2400.051336*T
+ 0.000025862*T
*T
, 24);
374 * Returns the current local sidereal time, measured in hours
376 * @deprecated ICU 2.4. This class may be removed or modified.
378 double CalendarAstronomer::getLocalSidereal() {
379 return normalize(getGreenwichSidereal() + (fGmtOffset
/(double)HOUR_MS
), 24.);
383 * Converts local sidereal time to Universal Time.
385 * @param lst The Local Sidereal Time, in hours since sidereal midnight
386 * on this object's current date.
388 * @return The corresponding Universal Time, in milliseconds since
391 double CalendarAstronomer::lstToUT(double lst
) {
392 // Convert to local mean time
393 double lt
= normalize((lst
- getSiderealOffset()) * 0.9972695663, 24);
395 // Then find local midnight on this day
396 double base
= (DAY_MS
* Math::floorDivide(fTime
+ fGmtOffset
,(double)DAY_MS
)) - fGmtOffset
;
398 //out(" lt =" + lt + " hours");
399 //out(" base=" + new Date(base));
401 return base
+ (long)(lt
* HOUR_MS
);
405 //-------------------------------------------------------------------------
406 // Coordinate transformations, all based on the current time of this object
407 //-------------------------------------------------------------------------
410 * Convert from ecliptic to equatorial coordinates.
412 * @param ecliptic A point in the sky in ecliptic coordinates.
413 * @return The corresponding point in equatorial coordinates.
415 * @deprecated ICU 2.4. This class may be removed or modified.
417 CalendarAstronomer::Equatorial
& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial
& result
, const CalendarAstronomer::Ecliptic
& ecliptic
)
419 return eclipticToEquatorial(result
, ecliptic
.longitude
, ecliptic
.latitude
);
423 * Convert from ecliptic to equatorial coordinates.
425 * @param eclipLong The ecliptic longitude
426 * @param eclipLat The ecliptic latitude
428 * @return The corresponding point in equatorial coordinates.
430 * @deprecated ICU 2.4. This class may be removed or modified.
432 CalendarAstronomer::Equatorial
& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial
& result
, double eclipLong
, double eclipLat
)
434 // See page 42 of "Practial Astronomy with your Calculator",
435 // by Peter Duffet-Smith, for details on the algorithm.
437 double obliq
= eclipticObliquity();
438 double sinE
= ::sin(obliq
);
439 double cosE
= cos(obliq
);
441 double sinL
= ::sin(eclipLong
);
442 double cosL
= cos(eclipLong
);
444 double sinB
= ::sin(eclipLat
);
445 double cosB
= cos(eclipLat
);
446 double tanB
= tan(eclipLat
);
448 result
.set(atan2(sinL
*cosE
- tanB
*sinE
, cosL
),
449 asin(sinB
*cosE
+ cosB
*sinE
*sinL
) );
454 * Convert from ecliptic longitude to equatorial coordinates.
456 * @param eclipLong The ecliptic longitude
458 * @return The corresponding point in equatorial coordinates.
460 * @deprecated ICU 2.4. This class may be removed or modified.
462 CalendarAstronomer::Equatorial
& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial
& result
, double eclipLong
)
464 return eclipticToEquatorial(result
, eclipLong
, 0); // TODO: optimize
469 * @deprecated ICU 2.4. This class may be removed or modified.
471 CalendarAstronomer::Horizon
& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon
& result
, double eclipLong
)
473 Equatorial equatorial
;
474 eclipticToEquatorial(equatorial
, eclipLong
);
476 double H
= getLocalSidereal()*CalendarAstronomer::PI
/12 - equatorial
.ascension
; // Hour-angle
478 double sinH
= ::sin(H
);
479 double cosH
= cos(H
);
480 double sinD
= ::sin(equatorial
.declination
);
481 double cosD
= cos(equatorial
.declination
);
482 double sinL
= ::sin(fLatitude
);
483 double cosL
= cos(fLatitude
);
485 double altitude
= asin(sinD
*sinL
+ cosD
*cosL
*cosH
);
486 double azimuth
= atan2(-cosD
*cosL
*sinH
, sinD
- sinL
* ::sin(altitude
));
488 result
.set(azimuth
, altitude
);
493 //-------------------------------------------------------------------------
495 //-------------------------------------------------------------------------
498 // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
499 // Angles are in radians (after multiplying by CalendarAstronomer::PI/180)
501 #define JD_EPOCH 2447891.5 // Julian day of epoch
503 #define SUN_ETA_G (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch
504 #define SUN_OMEGA_G (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee
505 #define SUN_E 0.016713 // Eccentricity of orbit
506 //double sunR0 1.495585e8 // Semi-major axis in KM
507 //double sunTheta0 (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0
509 // The following three methods, which compute the sun parameters
510 // given above for an arbitrary epoch (whatever time the object is
511 // set to), make only a small difference as compared to using the
512 // above constants. E.g., Sunset times might differ by ~12
513 // seconds. Furthermore, the eta-g computation is befuddled by
514 // Duffet-Smith's incorrect coefficients (p.86). I've corrected
515 // the first-order coefficient but the others may be off too - no
516 // way of knowing without consulting another source.
519 // * Return the sun's ecliptic longitude at perigee for the current time.
520 // * See Duffett-Smith, p. 86.
523 // private double getSunOmegaG() {
524 // double T = getJulianCentury();
525 // return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
529 // * Return the sun's ecliptic longitude for the current time.
530 // * See Duffett-Smith, p. 86.
533 // private double getSunEtaG() {
534 // double T = getJulianCentury();
535 // //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
537 // // The above line is from Duffett-Smith, and yields manifestly wrong
538 // // results. The below constant is derived empirically to match the
539 // // constant he gives for the 1990 EPOCH.
541 // return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
545 // * Return the sun's eccentricity of orbit for the current time.
546 // * See Duffett-Smith, p. 86.
549 // private double getSunE() {
550 // double T = getJulianCentury();
551 // return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
555 * The longitude of the sun at the time specified by this object.
556 * The longitude is measured in radians along the ecliptic
557 * from the "first point of Aries," the point at which the ecliptic
558 * crosses the earth's equatorial plane at the vernal equinox.
560 * Currently, this method uses an approximation of the two-body Kepler's
561 * equation for the earth and the sun. It does not take into account the
562 * perturbations caused by the other planets, the moon, etc.
564 * @deprecated ICU 2.4. This class may be removed or modified.
566 double CalendarAstronomer::getSunLongitude()
568 // See page 86 of "Practial Astronomy with your Calculator",
569 // by Peter Duffet-Smith, for details on the algorithm.
571 if (isINVALID(sunLongitude
)) {
572 getSunLongitude(getJulianDay(), sunLongitude
, meanAnomalySun
);
578 * TODO Make this public when the entire class is package-private.
580 /*public*/ void CalendarAstronomer::getSunLongitude(double jDay
, double &longitude
, double &meanAnomaly
)
582 // See page 86 of "Practial Astronomy with your Calculator",
583 // by Peter Duffet-Smith, for details on the algorithm.
585 double day
= jDay
- JD_EPOCH
; // Days since epoch
587 // Find the angular distance the sun in a fictitious
588 // circular orbit has travelled since the epoch.
589 double epochAngle
= norm2PI(CalendarAstronomer_PI2
/TROPICAL_YEAR
*day
);
591 // The epoch wasn't at the sun's perigee; find the angular distance
592 // since perigee, which is called the "mean anomaly"
593 meanAnomaly
= norm2PI(epochAngle
+ SUN_ETA_G
- SUN_OMEGA_G
);
595 // Now find the "true anomaly", e.g. the real solar longitude
596 // by solving Kepler's equation for an elliptical orbit
597 // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different
598 // equations; omega_g is to be correct.
599 longitude
= norm2PI(trueAnomaly(meanAnomaly
, SUN_E
) + SUN_OMEGA_G
);
603 * The position of the sun at this object's current date and time,
604 * in equatorial coordinates.
606 * @deprecated ICU 2.4. This class may be removed or modified.
608 CalendarAstronomer::Equatorial
& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial
& result
) {
609 return eclipticToEquatorial(result
, getSunLongitude(), 0);
614 * Constant representing the vernal equinox.
615 * For use with {@link #getSunTime getSunTime}.
616 * Note: In this case, "vernal" refers to the northern hemisphere's seasons.
618 * @deprecated ICU 2.4. This class may be removed or modified.
620 /*double CalendarAstronomer::VERNAL_EQUINOX() {
625 * Constant representing the summer solstice.
626 * For use with {@link #getSunTime getSunTime}.
627 * Note: In this case, "summer" refers to the northern hemisphere's seasons.
629 * @deprecated ICU 2.4. This class may be removed or modified.
631 double CalendarAstronomer::SUMMER_SOLSTICE() {
632 return (CalendarAstronomer::PI
/2);
636 * Constant representing the autumnal equinox.
637 * For use with {@link #getSunTime getSunTime}.
638 * Note: In this case, "autumn" refers to the northern hemisphere's seasons.
640 * @deprecated ICU 2.4. This class may be removed or modified.
642 /*double CalendarAstronomer::AUTUMN_EQUINOX() {
643 return (CalendarAstronomer::PI);
647 * Constant representing the winter solstice.
648 * For use with {@link #getSunTime getSunTime}.
649 * Note: In this case, "winter" refers to the northern hemisphere's seasons.
651 * @deprecated ICU 2.4. This class may be removed or modified.
653 /*double CalendarAstronomer::WINTER_SOLSTICE() {
654 return ((CalendarAstronomer::PI*3)/2);
657 CalendarAstronomer::AngleFunc::~AngleFunc() {}
660 * Find the next time at which the sun's ecliptic longitude will have
663 * @deprecated ICU 2.4. This class may be removed or modified.
665 class SunTimeAngleFunc
: public CalendarAstronomer::AngleFunc
{
667 virtual double eval(CalendarAstronomer
& a
) { return a
.getSunLongitude(); }
670 UDate
CalendarAstronomer::getSunTime(double desired
, UBool next
)
672 SunTimeAngleFunc func
;
673 return timeOfAngle( func
,
680 CalendarAstronomer::CoordFunc::~CoordFunc() {}
682 class RiseSetCoordFunc
: public CalendarAstronomer::CoordFunc
{
684 virtual void eval(CalendarAstronomer::Equatorial
& result
, CalendarAstronomer
&a
) { a
.getSunPosition(result
); }
687 UDate
CalendarAstronomer::getSunRiseSet(UBool rise
)
691 // Make a rough guess: 6am or 6pm local time on the current day
692 double noon
= Math::floorDivide(fTime
+ fGmtOffset
, (double)DAY_MS
)*DAY_MS
- fGmtOffset
+ (12*HOUR_MS
);
694 U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon
, debug_astro_date(noon
+fGmtOffset
), fGmtOffset
));
695 setTime(noon
+ ((rise
? -6 : 6) * HOUR_MS
));
696 U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise
? -6. : 6.) * HOUR_MS
)));
698 RiseSetCoordFunc func
;
699 double t
= riseOrSet(func
,
701 .533 * DEG_RAD
, // Angular Diameter
702 34. /60.0 * DEG_RAD
, // Refraction correction
703 MINUTE_MS
/ 12.); // Desired accuracy
709 // Commented out - currently unused. ICU 2.6, Alan
710 // //-------------------------------------------------------------------------
711 // // Alternate Sun Rise/Set
712 // // See Duffett-Smith p.93
713 // //-------------------------------------------------------------------------
715 // // This yields worse results (as compared to USNO data) than getSunRiseSet().
717 // * TODO Make this when the entire class is package-private.
719 // /*public*/ long getSunRiseSet2(boolean rise) {
720 // // 1. Calculate coordinates of the sun's center for midnight
721 // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
722 // double[] sl = getSunLongitude(jd);// double lambda1 = sl[0];
723 // Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
725 // // 2. Add ... to lambda to get position 24 hours later
726 // double lambda2 = lambda1 + 0.985647*DEG_RAD;
727 // Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
729 // // 3. Calculate LSTs of rising and setting for these two positions
730 // double tanL = ::tan(fLatitude);
731 // double H = ::acos(-tanL * ::tan(pos1.declination));
732 // double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2;
733 // double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2;
734 // H = ::acos(-tanL * ::tan(pos2.declination));
735 // double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
736 // double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
737 // if (lst1r > 24) lst1r -= 24;
738 // if (lst1s > 24) lst1s -= 24;
739 // if (lst2r > 24) lst2r -= 24;
740 // if (lst2s > 24) lst2s -= 24;
742 // // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2.
743 // double gst1r = lstToGst(lst1r);
744 // double gst1s = lstToGst(lst1s);
745 // double gst2r = lstToGst(lst2r);
746 // double gst2s = lstToGst(lst2s);
747 // if (gst1r > gst2r) gst2r += 24;
748 // if (gst1s > gst2s) gst2s += 24;
750 // // 5. Calculate GST at 0h UT of this date
751 // double t00 = utToGst(0);
753 // // 6. Calculate GST at 0h on the observer's longitude
754 // double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
755 // double t00p = t00 - offset*1.002737909;
756 // if (t00p < 0) t00p += 24; // do NOT normalize
759 // if (gst1r < t00p) {
763 // if (gst1s < t00p) {
769 // double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
770 // double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
772 // // 9. Correct for parallax, refraction, and sun's diameter
773 // double dec = (pos1.declination + pos2.declination) / 2;
774 // double psi = ::acos(sin(fLatitude) / cos(dec));
775 // double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
776 // double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG;
777 // double delta_t = 240 * y / cos(dec) / 3600; // hours
779 // // 10. Add correction to GSTs, subtract from GSTr
783 // // 11. Convert GST to UT and then to local civil time
784 // double ut = gstToUt(rise ? gstr : gsts);
785 // //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
786 // long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
787 // return midnight + (long) (ut * 3600000);
790 // Commented out - currently unused. ICU 2.6, Alan
792 // * Convert local sidereal time to Greenwich sidereal time.
793 // * Section 15. Duffett-Smith p.21
794 // * @param lst in hours (0..24)
795 // * @return GST in hours (0..24)
797 // double lstToGst(double lst) {
798 // double delta = fLongitude * 24 / CalendarAstronomer_PI2;
799 // return normalize(lst - delta, 24);
802 // Commented out - currently unused. ICU 2.6, Alan
804 // * Convert UT to GST on this date.
805 // * Section 12. Duffett-Smith p.17
806 // * @param ut in hours
807 // * @return GST in hours
809 // double utToGst(double ut) {
810 // return normalize(getT0() + ut*1.002737909, 24);
813 // Commented out - currently unused. ICU 2.6, Alan
815 // * Convert GST to UT on this date.
816 // * Section 13. Duffett-Smith p.18
817 // * @param gst in hours
818 // * @return UT in hours
820 // double gstToUt(double gst) {
821 // return normalize(gst - getT0(), 24) * 0.9972695663;
824 // Commented out - currently unused. ICU 2.6, Alan
826 // // Common computation for UT <=> GST
828 // // Find JD for 0h UT
829 // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
831 // double s = jd - 2451545.0;
832 // double t = s / 36525.0;
833 // double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
837 // Commented out - currently unused. ICU 2.6, Alan
838 // //-------------------------------------------------------------------------
839 // // Alternate Sun Rise/Set
840 // // See sci.astro FAQ
841 // // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
842 // //-------------------------------------------------------------------------
844 // // Note: This method appears to produce inferior accuracy as
845 // // compared to getSunRiseSet().
848 // * TODO Make this when the entire class is package-private.
850 // /*public*/ long getSunRiseSet3(boolean rise) {
852 // // Compute day number for 0.0 Jan 2000 epoch
853 // double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
855 // // Now compute the Local Sidereal Time, LST:
857 // double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/
858 // fLongitude*RAD_DEG;
860 // // (east long. positive). Note that LST is here expressed in degrees,
861 // // where 15 degrees corresponds to one hour. Since LST really is an angle,
862 // // it's convenient to use one unit---degrees---throughout.
864 // // COMPUTING THE SUN'S POSITION
865 // // ----------------------------
867 // // To be able to compute the Sun's rise/set times, you need to be able to
868 // // compute the Sun's position at any time. First compute the "day
869 // // number" d as outlined above, for the desired moment. Next compute:
871 // double oblecl = 23.4393 - 3.563E-7 * d;
873 // double w = 282.9404 + 4.70935E-5 * d;
874 // double M = 356.0470 + 0.9856002585 * d;
875 // double e = 0.016709 - 1.151E-9 * d;
877 // // This is the obliquity of the ecliptic, plus some of the elements of
878 // // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
879 // // argument of perihelion, M = mean anomaly, e = eccentricity.
880 // // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
881 // // true, this is still an accurate approximation). Next compute E, the
882 // // eccentric anomaly:
884 // double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) );
886 // // where E and M are in degrees. This is it---no further iterations are
887 // // needed because we know e has a sufficiently small value. Next compute
888 // // the true anomaly, v, and the distance, r:
890 // /* r * cos(v) = */ double A = cos(E*DEG_RAD) - e;
891 // /* r * ::sin(v) = */ double B = ::sqrt(1 - e*e) * ::sin(E*DEG_RAD);
895 // // r = sqrt( A*A + B*B )
896 // double v = ::atan2( B, A )*RAD_DEG;
898 // // The Sun's true longitude, slon, can now be computed:
900 // double slon = v + w;
902 // // Since the Sun is always at the ecliptic (or at least very very close to
903 // // it), we can use simplified formulae to convert slon (the Sun's ecliptic
904 // // longitude) to sRA and sDec (the Sun's RA and Dec):
906 // // ::sin(slon) * cos(oblecl)
907 // // tan(sRA) = -------------------------
910 // // ::sin(sDec) = ::sin(oblecl) * ::sin(slon)
912 // // As was the case when computing az, the Azimuth, if possible use an
913 // // atan2() function to compute sRA.
915 // double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG;
917 // double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD);
918 // double sDec = ::asin(sin_sDec)*RAD_DEG;
920 // // COMPUTING RISE AND SET TIMES
921 // // ----------------------------
923 // // To compute when an object rises or sets, you must compute when it
924 // // passes the meridian and the HA of rise/set. Then the rise time is
925 // // the meridian time minus HA for rise/set, and the set time is the
926 // // meridian time plus the HA for rise/set.
928 // // To find the meridian time, compute the Local Sidereal Time at 0h local
929 // // time (or 0h UT if you prefer to work in UT) as outlined above---name
930 // // that quantity LST0. The Meridian Time, MT, will now be:
933 // double MT = normalize(sRA - LST, 360);
935 // // where "RA" is the object's Right Ascension (in degrees!). If negative,
936 // // add 360 deg to MT. If the object is the Sun, leave the time as it is,
937 // // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
938 // // sidereal to solar time. Now, compute HA for rise/set, name that
941 // // ::sin(h0) - ::sin(lat) * ::sin(Dec)
942 // // cos(HA0) = ---------------------------------
943 // // cos(lat) * cos(Dec)
945 // // where h0 is the altitude selected to represent rise/set. For a purely
946 // // mathematical horizon, set h0 = 0 and simplify to:
948 // // cos(HA0) = - tan(lat) * tan(Dec)
950 // // If you want to account for refraction on the atmosphere, set h0 = -35/60
951 // // degrees (-35 arc minutes), and if you want to compute the rise/set times
952 // // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
954 // double h0 = -50/60 * DEG_RAD;
956 // double HA0 = ::acos(
957 // (sin(h0) - ::sin(fLatitude) * sin_sDec) /
958 // (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG;
960 // // When HA0 has been computed, leave it as it is for the Sun but multiply
961 // // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
962 // // solar time. Finally compute:
964 // // Rise time = MT - HA0
965 // // Set time = MT + HA0
967 // // convert the times from degrees to hours by dividing by 15.
969 // // If you'd like to check that your calculations are accurate or just
970 // // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
971 // // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.
973 // double result = MT + (rise ? -HA0 : HA0); // in degrees
975 // // Find UT midnight on this day
976 // long midnight = DAY_MS * (time / DAY_MS);
978 // return midnight + (long) (result * 3600000 / 15);
981 //-------------------------------------------------------------------------
983 //-------------------------------------------------------------------------
985 #define moonL0 (318.351648 * CalendarAstronomer::PI/180 ) // Mean long. at epoch
986 #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 ) // Mean long. of perigee
987 #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 ) // Mean long. of node
988 #define moonI ( 5.145366 * CalendarAstronomer::PI/180 ) // Inclination of orbit
989 #define moonE ( 0.054900 ) // Eccentricity of orbit
991 // These aren't used right now
992 #define moonA ( 3.84401e5 ) // semi-major axis (km)
993 #define moonT0 ( 0.5181 * CalendarAstronomer::PI/180 ) // Angular size at distance A
994 #define moonPi ( 0.9507 * CalendarAstronomer::PI/180 ) // Parallax at distance A
997 * The position of the moon at the time set on this
998 * object, in equatorial coordinates.
1000 * @deprecated ICU 2.4. This class may be removed or modified.
1002 const CalendarAstronomer::Equatorial
& CalendarAstronomer::getMoonPosition()
1005 // See page 142 of "Practial Astronomy with your Calculator",
1006 // by Peter Duffet-Smith, for details on the algorithm.
1008 if (moonPositionSet
== FALSE
) {
1009 // Calculate the solar longitude. Has the side effect of
1010 // filling in "meanAnomalySun" as well.
1014 // Find the # of days since the epoch of our orbital parameters.
1015 // TODO: Convert the time of day portion into ephemeris time
1017 double day
= getJulianDay() - JD_EPOCH
; // Days since epoch
1019 // Calculate the mean longitude and anomaly of the moon, based on
1020 // a circular orbit. Similar to the corresponding solar calculation.
1021 double meanLongitude
= norm2PI(13.1763966*PI
/180*day
+ moonL0
);
1022 meanAnomalyMoon
= norm2PI(meanLongitude
- 0.1114041*PI
/180 * day
- moonP0
);
1025 // Calculate the following corrections:
1026 // Evection: the sun's gravity affects the moon's eccentricity
1027 // Annual Eqn: variation in the effect due to earth-sun distance
1028 // A3: correction factor (for ???)
1030 double evection
= 1.2739*PI
/180 * ::sin(2 * (meanLongitude
- sunLongitude
)
1032 double annual
= 0.1858*PI
/180 * ::sin(meanAnomalySun
);
1033 double a3
= 0.3700*PI
/180 * ::sin(meanAnomalySun
);
1035 meanAnomalyMoon
+= evection
- annual
- a3
;
1038 // More correction factors:
1039 // center equation of the center correction
1040 // a4 yet another error correction (???)
1042 // TODO: Skip the equation of the center correction and solve Kepler's eqn?
1044 double center
= 6.2886*PI
/180 * ::sin(meanAnomalyMoon
);
1045 double a4
= 0.2140*PI
/180 * ::sin(2 * meanAnomalyMoon
);
1047 // Now find the moon's corrected longitude
1048 moonLongitude
= meanLongitude
+ evection
+ center
- annual
+ a4
;
1051 // And finally, find the variation, caused by the fact that the sun's
1052 // gravitational pull on the moon varies depending on which side of
1053 // the earth the moon is on
1055 double variation
= 0.6583*CalendarAstronomer::PI
/180 * ::sin(2*(moonLongitude
- sunLongitude
));
1057 moonLongitude
+= variation
;
1060 // What we've calculated so far is the moon's longitude in the plane
1061 // of its own orbit. Now map to the ecliptic to get the latitude
1062 // and longitude. First we need to find the longitude of the ascending
1063 // node, the position on the ecliptic where it is crossed by the moon's
1064 // orbit as it crosses from the southern to the northern hemisphere.
1066 double nodeLongitude
= norm2PI(moonN0
- 0.0529539*PI
/180 * day
);
1068 nodeLongitude
-= 0.16*PI
/180 * ::sin(meanAnomalySun
);
1070 double y
= ::sin(moonLongitude
- nodeLongitude
);
1071 double x
= cos(moonLongitude
- nodeLongitude
);
1073 moonEclipLong
= ::atan2(y
*cos(moonI
), x
) + nodeLongitude
;
1074 double moonEclipLat
= ::asin(y
* ::sin(moonI
));
1076 eclipticToEquatorial(moonPosition
, moonEclipLong
, moonEclipLat
);
1077 moonPositionSet
= TRUE
;
1079 return moonPosition
;
1083 * The "age" of the moon at the time specified in this object.
1084 * This is really the angle between the
1085 * current ecliptic longitudes of the sun and the moon,
1086 * measured in radians.
1088 * @see #getMoonPhase
1090 * @deprecated ICU 2.4. This class may be removed or modified.
1092 double CalendarAstronomer::getMoonAge() {
1093 // See page 147 of "Practial Astronomy with your Calculator",
1094 // by Peter Duffet-Smith, for details on the algorithm.
1096 // Force the moon's position to be calculated. We're going to use
1097 // some the intermediate results cached during that calculation.
1101 return norm2PI(moonEclipLong
- sunLongitude
);
1105 * Calculate the phase of the moon at the time set in this object.
1106 * The returned phase is a <code>double</code> in the range
1107 * <code>0 <= phase < 1</code>, interpreted as follows:
1109 * <li>0.00: New moon
1110 * <li>0.25: First quarter
1111 * <li>0.50: Full moon
1112 * <li>0.75: Last quarter
1117 * @deprecated ICU 2.4. This class may be removed or modified.
1119 double CalendarAstronomer::getMoonPhase() {
1120 // See page 147 of "Practial Astronomy with your Calculator",
1121 // by Peter Duffet-Smith, for details on the algorithm.
1122 return 0.5 * (1 - cos(getMoonAge()));
1126 * Constant representing a new moon.
1127 * For use with {@link #getMoonTime getMoonTime}
1129 * @deprecated ICU 2.4. This class may be removed or modified.
1131 /*const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
1132 return CalendarAstronomer::MoonAge(0);
1136 * Constant representing the moon's first quarter.
1137 * For use with {@link #getMoonTime getMoonTime}
1139 * @deprecated ICU 2.4. This class may be removed or modified.
1141 /*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() {
1142 return CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2);
1146 * Constant representing a full moon.
1147 * For use with {@link #getMoonTime getMoonTime}
1149 * @deprecated ICU 2.4. This class may be removed or modified.
1151 const CalendarAstronomer::MoonAge
CalendarAstronomer::FULL_MOON() {
1152 return CalendarAstronomer::MoonAge(CalendarAstronomer::PI
);
1155 * Constant representing the moon's last quarter.
1156 * For use with {@link #getMoonTime getMoonTime}
1158 * @deprecated ICU 2.4. This class may be removed or modified.
1161 class MoonTimeAngleFunc
: public CalendarAstronomer::AngleFunc
{
1163 virtual double eval(CalendarAstronomer
&a
) { return a
.getMoonAge(); }
1166 /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() {
1167 return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
1171 * Find the next or previous time at which the Moon's ecliptic
1172 * longitude will have the desired value.
1174 * @param desired The desired longitude.
1175 * @param next <tt>true</tt> if the next occurrance of the phase
1176 * is desired, <tt>false</tt> for the previous occurrance.
1178 * @deprecated ICU 2.4. This class may be removed or modified.
1180 UDate
CalendarAstronomer::getMoonTime(double desired
, UBool next
)
1182 MoonTimeAngleFunc func
;
1183 return timeOfAngle( func
,
1191 * Find the next or previous time at which the moon will be in the
1194 * @param desired The desired phase of the moon.
1195 * @param next <tt>true</tt> if the next occurrance of the phase
1196 * is desired, <tt>false</tt> for the previous occurrance.
1198 * @deprecated ICU 2.4. This class may be removed or modified.
1200 UDate
CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge
& desired
, UBool next
) {
1201 return getMoonTime(desired
.value
, next
);
1204 class MoonRiseSetCoordFunc
: public CalendarAstronomer::CoordFunc
{
1206 virtual void eval(CalendarAstronomer::Equatorial
& result
, CalendarAstronomer
&a
) { result
= a
.getMoonPosition(); }
1210 * Returns the time (GMT) of sunrise or sunset on the local date to which
1211 * this calendar is currently set.
1213 * @deprecated ICU 2.4. This class may be removed or modified.
1215 UDate
CalendarAstronomer::getMoonRiseSet(UBool rise
)
1217 MoonRiseSetCoordFunc func
;
1218 return riseOrSet(func
,
1220 .533 * DEG_RAD
, // Angular Diameter
1221 34 /60.0 * DEG_RAD
, // Refraction correction
1222 MINUTE_MS
); // Desired accuracy
1225 //-------------------------------------------------------------------------
1226 // Interpolation methods for finding the time at which a given event occurs
1227 //-------------------------------------------------------------------------
1229 UDate
CalendarAstronomer::timeOfAngle(AngleFunc
& func
, double desired
,
1230 double periodDays
, double epsilon
, UBool next
)
1232 // Find the value of the function at the current time
1233 double lastAngle
= func
.eval(*this);
1235 // Find out how far we are from the desired angle
1236 double deltaAngle
= norm2PI(desired
- lastAngle
) ;
1238 // Using the average period, estimate the next (or previous) time at
1239 // which the desired angle occurs.
1240 double deltaT
= (deltaAngle
+ (next
? 0.0 : - CalendarAstronomer_PI2
)) * (periodDays
*DAY_MS
) / CalendarAstronomer_PI2
;
1242 double lastDeltaT
= deltaT
; // Liu
1243 UDate startTime
= fTime
; // Liu
1245 setTime(fTime
+ uprv_ceil(deltaT
));
1247 // Now iterate until we get the error below epsilon. Throughout
1248 // this loop we use normPI to get values in the range -Pi to Pi,
1249 // since we're using them as correction factors rather than absolute angles.
1251 // Evaluate the function at the time we've estimated
1252 double angle
= func
.eval(*this);
1254 // Find the # of milliseconds per radian at this point on the curve
1255 double factor
= uprv_fabs(deltaT
/ normPI(angle
-lastAngle
));
1257 // Correct the time estimate based on how far off the angle is
1258 deltaT
= normPI(desired
- angle
) * factor
;
1262 // If abs(deltaT) begins to diverge we need to quit this loop.
1263 // This only appears to happen when attempting to locate, for
1264 // example, a new moon on the day of the new moon. E.g.:
1266 // This result is correct:
1267 // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=
1268 // Sun Jul 22 10:57:41 CST 1990
1270 // But attempting to make the same call a day earlier causes deltaT
1272 // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->
1273 // 1.3649828540224032E9
1274 // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=
1275 // Sun Jul 08 13:56:15 CST 1990
1277 // As a temporary solution, we catch this specific condition and
1278 // adjust our start time by one eighth period days (either forward
1279 // or backward) and try again.
1281 if (uprv_fabs(deltaT
) > uprv_fabs(lastDeltaT
)) {
1282 double delta
= uprv_ceil (periodDays
* DAY_MS
/ 8.0);
1283 setTime(startTime
+ (next
? delta
: -delta
));
1284 return timeOfAngle(func
, desired
, periodDays
, epsilon
, next
);
1287 lastDeltaT
= deltaT
;
1290 setTime(fTime
+ uprv_ceil(deltaT
));
1292 while (uprv_fabs(deltaT
) > epsilon
);
1297 UDate
CalendarAstronomer::riseOrSet(CoordFunc
& func
, UBool rise
,
1298 double diameter
, double refraction
,
1302 double tanL
= ::tan(fLatitude
);
1307 // Calculate the object's position at the current time, then use that
1308 // position to calculate the time of rising or setting. The position
1309 // will be different at that time, so iterate until the error is allowable.
1311 U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n",
1312 rise
?"T":"F", diameter
, refraction
, epsilon
));
1314 // See "Practical Astronomy With Your Calculator, section 33.
1315 func
.eval(pos
, *this);
1316 double angle
= ::acos(-tanL
* ::tan(pos
.declination
));
1317 double lst
= ((rise
? CalendarAstronomer_PI2
-angle
: angle
) + pos
.ascension
) * 24 / CalendarAstronomer_PI2
;
1319 // Convert from LST to Universal Time.
1320 UDate newTime
= lstToUT( lst
);
1322 deltaT
= newTime
- fTime
;
1324 U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf, A=%.3lf/D=%.3lf\n",
1325 count
, deltaT
, angle
, lst
, pos
.ascension
, pos
.declination
));
1327 while (++ count
< 5 && uprv_fabs(deltaT
) > epsilon
);
1329 // Calculate the correction due to refraction and the object's angular diameter
1330 double cosD
= ::cos(pos
.declination
);
1331 double psi
= ::acos(sin(fLatitude
) / cosD
);
1332 double x
= diameter
/ 2 + refraction
;
1333 double y
= ::asin(sin(x
) / ::sin(psi
));
1334 long delta
= (long)((240 * y
* RAD_DEG
/ cosD
)*SECOND_MS
);
1336 return fTime
+ (rise
? -delta
: delta
);
1340 * Find the "true anomaly" (longitude) of an object from
1341 * its mean anomaly and the eccentricity of its orbit. This uses
1342 * an iterative solution to Kepler's equation.
1344 * @param meanAnomaly The object's longitude calculated as if it were in
1345 * a regular, circular orbit, measured in radians
1346 * from the point of perigee.
1348 * @param eccentricity The eccentricity of the orbit
1350 * @return The true anomaly (longitude) measured in radians
1352 double CalendarAstronomer::trueAnomaly(double meanAnomaly
, double eccentricity
)
1354 // First, solve Kepler's equation iteratively
1355 // Duffett-Smith, p.90
1357 double E
= meanAnomaly
;
1359 delta
= E
- eccentricity
* ::sin(E
) - meanAnomaly
;
1360 E
= E
- delta
/ (1 - eccentricity
* ::cos(E
));
1362 while (uprv_fabs(delta
) > 1e-5); // epsilon = 1e-5 rad
1364 return 2.0 * ::atan( ::tan(E
/2) * ::sqrt( (1+eccentricity
)
1365 /(1-eccentricity
) ) );
1369 * Return the obliquity of the ecliptic (the angle between the ecliptic
1370 * and the earth's equator) at the current time. This varies due to
1371 * the precession of the earth's axis.
1373 * @return the obliquity of the ecliptic relative to the equator,
1374 * measured in radians.
1376 double CalendarAstronomer::eclipticObliquity() {
1377 if (isINVALID(eclipObliquity
)) {
1378 const double epoch
= 2451545.0; // 2000 AD, January 1.5
1380 double T
= (getJulianDay() - epoch
) / 36525;
1382 eclipObliquity
= 23.439292
1385 + 0.00181/3600 * T
*T
*T
;
1387 eclipObliquity
*= DEG_RAD
;
1389 return eclipObliquity
;
1393 //-------------------------------------------------------------------------
1395 //-------------------------------------------------------------------------
1396 void CalendarAstronomer::clearCache() {
1397 const double INVALID
= uprv_getNaN();
1399 julianDay
= INVALID
;
1400 julianCentury
= INVALID
;
1401 sunLongitude
= INVALID
;
1402 meanAnomalySun
= INVALID
;
1403 moonLongitude
= INVALID
;
1404 moonEclipLong
= INVALID
;
1405 meanAnomalyMoon
= INVALID
;
1406 eclipObliquity
= INVALID
;
1407 siderealTime
= INVALID
;
1408 siderealT0
= INVALID
;
1409 moonPositionSet
= FALSE
;
1412 //private static void out(String s) {
1413 // System.out.println(s);
1416 //private static String deg(double rad) {
1417 // return Double.toString(rad * RAD_DEG);
1420 //private static String hours(long ms) {
1421 // return Double.toString((double)ms / HOUR_MS) + " hours";
1426 * @deprecated ICU 2.4. This class may be removed or modified.
1428 /*UDate CalendarAstronomer::local(UDate localMillis) {
1430 TimeZone *tz = TimeZone::createDefault();
1433 UErrorCode status = U_ZERO_ERROR;
1434 tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status);
1436 return localMillis - rawOffset;
1439 // Debugging functions
1440 UnicodeString
CalendarAstronomer::Ecliptic::toString() const
1442 #ifdef U_DEBUG_ASTRO
1444 sprintf(tmp
, "[%.5f,%.5f]", longitude
*RAD_DEG
, latitude
*RAD_DEG
);
1445 return UnicodeString(tmp
, "");
1447 return UnicodeString();
1451 UnicodeString
CalendarAstronomer::Equatorial::toString() const
1453 #ifdef U_DEBUG_ASTRO
1455 sprintf(tmp
, "%f,%f",
1456 (ascension
*RAD_DEG
), (declination
*RAD_DEG
));
1457 return UnicodeString(tmp
, "");
1459 return UnicodeString();
1463 UnicodeString
CalendarAstronomer::Horizon::toString() const
1465 #ifdef U_DEBUG_ASTRO
1467 sprintf(tmp
, "[%.5f,%.5f]", altitude
*RAD_DEG
, azimuth
*RAD_DEG
);
1468 return UnicodeString(tmp
, "");
1470 return UnicodeString();
1475 // static private String radToHms(double angle) {
1476 // int hrs = (int) (angle*RAD_HOUR);
1477 // int min = (int)((angle*RAD_HOUR - hrs) * 60);
1478 // int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600);
1480 // return Integer.toString(hrs) + "h" + min + "m" + sec + "s";
1483 // static private String radToDms(double angle) {
1484 // int deg = (int) (angle*RAD_DEG);
1485 // int min = (int)((angle*RAD_DEG - deg) * 60);
1486 // int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600);
1488 // return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\"";
1491 // =============== Calendar Cache ================
1493 void CalendarCache::createCache(CalendarCache
** cache
, UErrorCode
& status
) {
1494 ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR
, calendar_astro_cleanup
);
1496 status
= U_MEMORY_ALLOCATION_ERROR
;
1498 *cache
= new CalendarCache(32, status
);
1499 if(U_FAILURE(status
)) {
1506 int32_t CalendarCache::get(CalendarCache
** cache
, int32_t key
, UErrorCode
&status
) {
1509 if(U_FAILURE(status
)) {
1514 if(*cache
== NULL
) {
1515 createCache(cache
, status
);
1516 if(U_FAILURE(status
)) {
1517 umtx_unlock(&ccLock
);
1522 res
= uhash_igeti((*cache
)->fTable
, key
);
1523 U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache
)->fTable
, key
, res
));
1525 umtx_unlock(&ccLock
);
1529 void CalendarCache::put(CalendarCache
** cache
, int32_t key
, int32_t value
, UErrorCode
&status
) {
1530 if(U_FAILURE(status
)) {
1535 if(*cache
== NULL
) {
1536 createCache(cache
, status
);
1537 if(U_FAILURE(status
)) {
1538 umtx_unlock(&ccLock
);
1543 uhash_iputi((*cache
)->fTable
, key
, value
, &status
);
1544 U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache
)->fTable
, key
, value
));
1546 umtx_unlock(&ccLock
);
1549 CalendarCache::CalendarCache(int32_t size
, UErrorCode
&status
) {
1550 fTable
= uhash_openSize(uhash_hashLong
, uhash_compareLong
, NULL
, size
, &status
);
1551 U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable
));
1554 CalendarCache::~CalendarCache() {
1555 if(fTable
!= NULL
) {
1556 U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable
));
1557 uhash_close(fTable
);
1563 #endif // !UCONFIG_NO_FORMATTING