]>
git.saurik.com Git - apple/icu.git/blob - icuSources/test/intltest/astrotst.cpp
1 /********************************************************************
3 * Copyright (c) 1996-2014, International Business Machines Corporation and
4 * others. All Rights Reserved.
5 ********************************************************************/
7 /* Test CalendarAstronomer for C++ */
9 #include "unicode/utypes.h"
11 #include "unicode/locid.h"
13 #if !UCONFIG_NO_FORMATTING
17 #include "gregoimp.h" // for Math
18 #include "unicode/simpletz.h"
21 #define CASE(id,test) case id: name = #test; if (exec) { logln(#test "---"); logln((UnicodeString)""); test(); } break
23 AstroTest::AstroTest(): astro(NULL
), gc(NULL
) {
26 void AstroTest::runIndexedTest( int32_t index
, UBool exec
, const char* &name
, char* /*par*/ )
28 if (exec
) logln("TestSuite AstroTest");
31 CASE(0,TestSolarLongitude
);
32 CASE(1,TestLunarPosition
);
33 CASE(2,TestCoordinates
);
35 CASE(4,TestSunriseTimes
);
38 default: name
= ""; break;
44 #define ASSERT_OK(x) if(U_FAILURE(x)) { dataerrln("%s:%d: %s\n", __FILE__, __LINE__, u_errorName(x)); return; }
47 void AstroTest::initAstro(UErrorCode
&status
) {
48 if(U_FAILURE(status
)) return;
50 if((astro
!= NULL
) || (gc
!= NULL
)) {
51 dataerrln("Err: initAstro() called twice!");
53 if(U_SUCCESS(status
)) {
54 status
= U_INTERNAL_PROGRAM_ERROR
;
58 if(U_FAILURE(status
)) return;
60 astro
= new CalendarAstronomer();
61 gc
= Calendar::createInstance(TimeZone::getGMT()->clone(), status
);
64 void AstroTest::closeAstro(UErrorCode
&/*status*/) {
75 void AstroTest::TestSolarLongitude(void) {
76 UErrorCode status
= U_ZERO_ERROR
;
81 int32_t d
[5]; double f
;
83 { { 1980, 7, 27, 0, 00 }, 124.114347 },
84 { { 1988, 7, 27, 00, 00 }, 124.187732 }
88 for (uint32_t i
= 0; i
< sizeof(tests
)/sizeof(tests
[0]); i
++) {
90 gc
->set(tests
[i
].d
[0], tests
[i
].d
[1]-1, tests
[i
].d
[2], tests
[i
].d
[3], tests
[i
].d
[4]);
92 astro
->setDate(gc
->getTime(status
));
94 double longitude
= astro
->getSunLongitude();
96 CalendarAstronomer::Equatorial result
;
97 astro
->getSunPosition(result
);
98 logln((UnicodeString
)"Sun position is " + result
.toString() + (UnicodeString
)"; " /* + result.toHmsString()*/ + " Sun longitude is " + longitude
);
106 void AstroTest::TestLunarPosition(void) {
107 UErrorCode status
= U_ZERO_ERROR
;
111 static const double tests
[][7] = {
112 { 1979, 2, 26, 16, 00, 0, 0 }
116 for (int32_t i
= 0; i
< (int32_t)(sizeof(tests
)/sizeof(tests
[0])); i
++) {
118 gc
->set((int32_t)tests
[i
][0], (int32_t)tests
[i
][1]-1, (int32_t)tests
[i
][2], (int32_t)tests
[i
][3], (int32_t)tests
[i
][4]);
119 astro
->setDate(gc
->getTime(status
));
121 const CalendarAstronomer::Equatorial
& result
= astro
->getMoonPosition();
122 logln((UnicodeString
)"Moon position is " + result
.toString() + (UnicodeString
)"; " /* + result->toHmsString()*/);
131 void AstroTest::TestCoordinates(void) {
132 UErrorCode status
= U_ZERO_ERROR
;
136 CalendarAstronomer::Equatorial result
;
137 astro
->eclipticToEquatorial(result
, 139.686111 * CalendarAstronomer::PI
/ 180.0, 4.875278* CalendarAstronomer::PI
/ 180.0);
138 logln((UnicodeString
)"result is " + result
.toString() + (UnicodeString
)"; " /* + result.toHmsString()*/ );
145 void AstroTest::TestCoverage(void) {
146 UErrorCode status
= U_ZERO_ERROR
;
149 GregorianCalendar
*cal
= new GregorianCalendar(1958, UCAL_AUGUST
, 15,status
);
150 UDate then
= cal
->getTime(status
);
151 CalendarAstronomer
*myastro
= new CalendarAstronomer(then
);
154 //Latitude: 34 degrees 05' North
155 //Longitude: 118 degrees 22' West
156 double laLat
= 34 + 5./60, laLong
= 360 - (118 + 22./60);
157 CalendarAstronomer
*myastro2
= new CalendarAstronomer(laLong
, laLat
);
159 double eclLat
= laLat
* CalendarAstronomer::PI
/ 360;
160 double eclLong
= laLong
* CalendarAstronomer::PI
/ 360;
162 CalendarAstronomer::Ecliptic
ecl(eclLat
, eclLong
);
163 CalendarAstronomer::Equatorial eq
;
164 CalendarAstronomer::Horizon hor
;
166 logln("ecliptic: " + ecl
.toString());
167 CalendarAstronomer
*myastro3
= new CalendarAstronomer();
168 myastro3
->setJulianDay((4713 + 2000) * 365.25);
170 CalendarAstronomer
*astronomers
[] = {
171 myastro
, myastro2
, myastro3
, myastro2
// check cache
174 for (uint32_t i
= 0; i
< sizeof(astronomers
)/sizeof(astronomers
[0]); ++i
) {
175 CalendarAstronomer
*anAstro
= astronomers
[i
];
177 //logln("astro: " + astro);
178 logln((UnicodeString
)" date: " + anAstro
->getTime());
179 logln((UnicodeString
)" cent: " + anAstro
->getJulianCentury());
180 logln((UnicodeString
)" gw sidereal: " + anAstro
->getGreenwichSidereal());
181 logln((UnicodeString
)" loc sidereal: " + anAstro
->getLocalSidereal());
182 logln((UnicodeString
)" equ ecl: " + (anAstro
->eclipticToEquatorial(eq
,ecl
)).toString());
183 logln((UnicodeString
)" equ long: " + (anAstro
->eclipticToEquatorial(eq
, eclLong
)).toString());
184 logln((UnicodeString
)" horiz: " + (anAstro
->eclipticToHorizon(hor
, eclLong
)).toString());
185 logln((UnicodeString
)" sunrise: " + (anAstro
->getSunRiseSet(TRUE
)));
186 logln((UnicodeString
)" sunset: " + (anAstro
->getSunRiseSet(FALSE
)));
187 logln((UnicodeString
)" moon phase: " + anAstro
->getMoonPhase());
188 logln((UnicodeString
)" moonrise: " + (anAstro
->getMoonRiseSet(TRUE
)));
189 logln((UnicodeString
)" moonset: " + (anAstro
->getMoonRiseSet(FALSE
)));
190 logln((UnicodeString
)" prev summer solstice: " + (anAstro
->getSunTime(CalendarAstronomer::SUMMER_SOLSTICE(), FALSE
)));
191 logln((UnicodeString
)" next summer solstice: " + (anAstro
->getSunTime(CalendarAstronomer::SUMMER_SOLSTICE(), TRUE
)));
192 logln((UnicodeString
)" prev full moon: " + (anAstro
->getMoonTime(CalendarAstronomer::FULL_MOON(), FALSE
)));
193 logln((UnicodeString
)" next full moon: " + (anAstro
->getMoonTime(CalendarAstronomer::FULL_MOON(), TRUE
)));
207 void AstroTest::TestSunriseTimes(void) {
208 UErrorCode status
= U_ZERO_ERROR
;
212 // logln("Sunrise/Sunset times for San Jose, California, USA");
213 // CalendarAstronomer *astro2 = new CalendarAstronomer(-121.55, 37.20);
214 // TimeZone *tz = TimeZone::createTimeZone("America/Los_Angeles");
216 // We'll use a table generated by the UNSO website as our reference
217 // From: http://aa.usno.navy.mil/
218 //-Location: W079 25, N43 40
219 //-Rise and Set for the Sun for 2001
220 //-Zone: 4h West of Greenwich
254 logln("Sunrise/Sunset times for Toronto, Canada");
255 // long = 79 25", lat = 43 40"
256 CalendarAstronomer
*astro3
= new CalendarAstronomer(-(79+25/60), 43+40/60);
258 // As of ICU4J 2.8 the ICU4J time zones implement pass-through
259 // to the underlying JDK. Because of variation in the
260 // underlying JDKs, we have to use a fixed-offset
261 // SimpleTimeZone to get consistent behavior between JDKs.
262 // The offset we want is [-18000000, 3600000] (raw, dst).
265 // TimeZone tz = TimeZone.getTimeZone("America/Montreal");
266 TimeZone
*tz
= new SimpleTimeZone(-18000000 + 3600000, "Montreal(FIXED)");
268 GregorianCalendar
*cal
= new GregorianCalendar(tz
->clone(), Locale::getUS(), status
);
269 GregorianCalendar
*cal2
= new GregorianCalendar(tz
->clone(), Locale::getUS(), status
);
271 cal
->set(UCAL_YEAR
, 2001);
272 cal
->set(UCAL_MONTH
, UCAL_APRIL
);
273 cal
->set(UCAL_DAY_OF_MONTH
, 1);
274 cal
->set(UCAL_HOUR_OF_DAY
, 12); // must be near local noon for getSunRiseSet to work
276 DateFormat
*df_t
= DateFormat::createTimeInstance(DateFormat::MEDIUM
,Locale::getUS());
277 DateFormat
*df_d
= DateFormat::createDateInstance(DateFormat::MEDIUM
,Locale::getUS());
278 DateFormat
*df_dt
= DateFormat::createDateTimeInstance(DateFormat::MEDIUM
, DateFormat::MEDIUM
, Locale::getUS());
279 if(!df_t
|| !df_d
|| !df_dt
) {
280 dataerrln("couldn't create dateformats.");
283 df_t
->adoptTimeZone(tz
->clone());
284 df_d
->adoptTimeZone(tz
->clone());
285 df_dt
->adoptTimeZone(tz
->clone());
287 for (int32_t i
=0; i
< 30; i
++) {
289 astro3
->setDate(cal
->getTime(status
));
290 logln("getRiseSet(TRUE)\n");
291 UDate sunrise
= astro3
->getSunRiseSet(TRUE
);
292 logln("getRiseSet(FALSE)\n");
293 UDate sunset
= astro3
->getSunRiseSet(FALSE
);
294 logln("end of getRiseSet\n");
296 cal2
->setTime(cal
->getTime(status
), status
);
297 cal2
->set(UCAL_SECOND
, 0);
298 cal2
->set(UCAL_MILLISECOND
, 0);
300 cal2
->set(UCAL_HOUR_OF_DAY
, USNO
[4*i
+0]);
301 cal2
->set(UCAL_MINUTE
, USNO
[4*i
+1]);
302 UDate exprise
= cal2
->getTime(status
);
303 cal2
->set(UCAL_HOUR_OF_DAY
, USNO
[4*i
+2]);
304 cal2
->set(UCAL_MINUTE
, USNO
[4*i
+3]);
305 UDate expset
= cal2
->getTime(status
);
306 // Compute delta of what we got to the USNO data, in seconds
307 int32_t deltarise
= (int32_t)uprv_fabs((sunrise
- exprise
) / 1000);
308 int32_t deltaset
= (int32_t)uprv_fabs((sunset
- expset
) / 1000);
310 // Allow a deviation of 0..MAX_DEV seconds
311 // It would be nice to get down to 60 seconds, but at this
312 // point that appears to be impossible without a redo of the
313 // algorithm using something more advanced than Duffett-Smith.
314 int32_t MAX_DEV
= 180;
315 UnicodeString s1
, s2
, s3
, s4
, s5
;
316 if (deltarise
> MAX_DEV
|| deltaset
> MAX_DEV
) {
317 if (deltarise
> MAX_DEV
) {
318 errln("FAIL: (rise) " + df_d
->format(cal
->getTime(status
),s1
) +
319 ", Sunrise: " + df_dt
->format(sunrise
, s2
) +
320 " (USNO " + df_t
->format(exprise
,s3
) +
321 " d=" + deltarise
+ "s)");
323 logln(df_d
->format(cal
->getTime(status
),s1
) +
324 ", Sunrise: " + df_dt
->format(sunrise
,s2
) +
325 " (USNO " + df_t
->format(exprise
,s3
) + ")");
327 s1
.remove(); s2
.remove(); s3
.remove(); s4
.remove(); s5
.remove();
328 if (deltaset
> MAX_DEV
) {
329 errln("FAIL: (set) " + df_d
->format(cal
->getTime(status
),s1
) +
330 ", Sunset: " + df_dt
->format(sunset
,s2
) +
331 " (USNO " + df_t
->format(expset
,s3
) +
332 " d=" + deltaset
+ "s)");
334 logln(df_d
->format(cal
->getTime(status
),s1
) +
335 ", Sunset: " + df_dt
->format(sunset
,s2
) +
336 " (USNO " + df_t
->format(expset
,s3
) + ")");
339 logln(df_d
->format(cal
->getTime(status
),s1
) +
340 ", Sunrise: " + df_dt
->format(sunrise
,s2
) +
341 " (USNO " + df_t
->format(exprise
,s3
) + ")" +
342 ", Sunset: " + df_dt
->format(sunset
,s4
) +
343 " (USNO " + df_t
->format(expset
,s5
) + ")");
345 cal
->add(UCAL_DATE
, 1, status
);
348 // CalendarAstronomer a = new CalendarAstronomer(-(71+5/60), 42+37/60);
350 // cal.set(cal.YEAR, 1986);
351 // cal.set(cal.MONTH, cal.MARCH);
352 // cal.set(cal.DATE, 10);
353 // cal.set(cal.YEAR, 1988);
354 // cal.set(cal.MONTH, cal.JULY);
355 // cal.set(cal.DATE, 27);
356 // a.setDate(cal.getTime());
357 // long r = a.getSunRiseSet2(true);
371 void AstroTest::TestBasics(void) {
372 UErrorCode status
= U_ZERO_ERROR
;
374 if (U_FAILURE(status
)) {
375 dataerrln("Got error: %s", u_errorName(status
));
379 // Check that our JD computation is the same as the book's (p. 88)
380 GregorianCalendar
*cal3
= new GregorianCalendar(TimeZone::getGMT()->clone(), Locale::getUS(), status
);
381 DateFormat
*d3
= DateFormat::createDateTimeInstance(DateFormat::MEDIUM
,DateFormat::MEDIUM
,Locale::getUS());
382 d3
->setTimeZone(*TimeZone::getGMT());
384 cal3
->set(UCAL_YEAR
, 1980);
385 cal3
->set(UCAL_MONTH
, UCAL_JULY
);
386 cal3
->set(UCAL_DATE
, 2);
387 logln("cal3[a]=%.1lf, d=%d\n", cal3
->getTime(status
), cal3
->get(UCAL_JULIAN_DAY
,status
));
390 logln(UnicodeString("cal3[a] = ") + d3
->format(cal3
->getTime(status
),s
));
393 cal3
->set(UCAL_YEAR
, 1980);
394 cal3
->set(UCAL_MONTH
, UCAL_JULY
);
395 cal3
->set(UCAL_DATE
, 27);
396 logln("cal3=%.1lf, d=%d\n", cal3
->getTime(status
), cal3
->get(UCAL_JULIAN_DAY
,status
));
401 logln(UnicodeString("cal3 = ") + d3
->format(cal3
->getTime(status
),s
));
403 astro
->setTime(cal3
->getTime(status
));
404 double jd
= astro
->getJulianDay() - 2447891.5;
408 logln(d3
->format(cal3
->getTime(status
),s
) + " => " + jd
);
411 errln("FAIL: " + d3
->format(cal3
->getTime(status
), s
) + " => " + jd
+
412 ", expected " + exp
);
416 // cal3.set(cal3.YEAR, 1990);
417 // cal3.set(cal3.MONTH, Calendar.JANUARY);
418 // cal3.set(cal3.DATE, 1);
419 // cal3.add(cal3.DATE, -1);
420 // astro.setDate(cal3.getTime());
431 void AstroTest::TestMoonAge(void){
432 UErrorCode status
= U_ZERO_ERROR
;
436 // more testcases are around the date 05/20/2012
437 //ticket#3785 UDate ud0 = 1337557623000.0;
438 static const double testcase
[][10] = {{2012, 5, 20 , 16 , 48, 59},
439 {2012, 5, 20 , 16 , 47, 34},
440 {2012, 5, 21, 00, 00, 00},
441 {2012, 5, 20, 14, 55, 59},
442 {2012, 5, 21, 7, 40, 40},
443 {2023, 9, 25, 10,00, 00},
444 {2008, 7, 7, 15, 00, 33},
445 {1832, 9, 24, 2, 33, 41 },
446 {2016, 1, 31, 23, 59, 59},
447 {2099, 5, 20, 14, 55, 59}
449 // Moon phase angle - Got from http://www.moonsystem.to/checkupe.htm
450 static const double angle
[] = {356.8493418421329, 356.8386760059673, 0.09625415252237701, 355.9986960782416, 3.5714026601303317, 124.26906744384183, 53.50364630964228,
451 357.54163205513123, 268.41779281511094, 4.82340276581624};
452 static const double precision
= CalendarAstronomer::PI
/32;
453 for (int32_t i
= 0; i
< (int32_t)(sizeof(testcase
)/sizeof(testcase
[0])); i
++) {
455 logln((UnicodeString
)"CASE["+i
+"]: Year "+(int32_t)testcase
[i
][0]+" Month "+(int32_t)testcase
[i
][1]+" Day "+
456 (int32_t)testcase
[i
][2]+" Hour "+(int32_t)testcase
[i
][3]+" Minutes "+(int32_t)testcase
[i
][4]+
457 " Seconds "+(int32_t)testcase
[i
][5]);
458 gc
->set((int32_t)testcase
[i
][0], (int32_t)testcase
[i
][1]-1, (int32_t)testcase
[i
][2], (int32_t)testcase
[i
][3], (int32_t)testcase
[i
][4], (int32_t)testcase
[i
][5]);
459 astro
->setDate(gc
->getTime(status
));
460 double expectedAge
= (angle
[i
]*CalendarAstronomer::PI
)/180;
461 double got
= astro
->getMoonAge();
463 if(!(got
>expectedAge
-precision
&& got
<expectedAge
+precision
)){
464 errln((UnicodeString
)"FAIL: expected " + expectedAge
+
467 logln((UnicodeString
)"PASS: expected " + expectedAge
+
476 // TODO: try finding next new moon after 07/28/1984 16:00 GMT