]> git.saurik.com Git - apple/icu.git/blob - icuSources/common/normalizer2impl.cpp
ICU-62108.0.1.tar.gz
[apple/icu.git] / icuSources / common / normalizer2impl.cpp
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 *
6 * Copyright (C) 2009-2014, International Business Machines
7 * Corporation and others. All Rights Reserved.
8 *
9 *******************************************************************************
10 * file name: normalizer2impl.cpp
11 * encoding: UTF-8
12 * tab size: 8 (not used)
13 * indentation:4
14 *
15 * created on: 2009nov22
16 * created by: Markus W. Scherer
17 */
18
19 #include "unicode/utypes.h"
20
21 #if !UCONFIG_NO_NORMALIZATION
22
23 #include "unicode/bytestream.h"
24 #include "unicode/edits.h"
25 #include "unicode/normalizer2.h"
26 #include "unicode/stringoptions.h"
27 #include "unicode/udata.h"
28 #include "unicode/ustring.h"
29 #include "unicode/utf16.h"
30 #include "unicode/utf8.h"
31 #include "bytesinkutil.h"
32 #include "cmemory.h"
33 #include "mutex.h"
34 #include "normalizer2impl.h"
35 #include "putilimp.h"
36 #include "uassert.h"
37 #include "uset_imp.h"
38 #include "utrie2.h"
39 #include "uvector.h"
40
41 U_NAMESPACE_BEGIN
42
43 namespace {
44
45 /**
46 * UTF-8 lead byte for minNoMaybeCP.
47 * Can be lower than the actual lead byte for c.
48 * Typically U+0300 for NFC/NFD, U+00A0 for NFKC/NFKD, U+0041 for NFKC_Casefold.
49 */
50 inline uint8_t leadByteForCP(UChar32 c) {
51 if (c <= 0x7f) {
52 return (uint8_t)c;
53 } else if (c <= 0x7ff) {
54 return (uint8_t)(0xc0+(c>>6));
55 } else {
56 // Should not occur because ccc(U+0300)!=0.
57 return 0xe0;
58 }
59 }
60
61 /**
62 * Returns the code point from one single well-formed UTF-8 byte sequence
63 * between cpStart and cpLimit.
64 *
65 * UTrie2 UTF-8 macros do not assemble whole code points (for efficiency).
66 * When we do need the code point, we call this function.
67 * We should not need it for normalization-inert data (norm16==0).
68 * Illegal sequences yield the error value norm16==0 just like real normalization-inert code points.
69 */
70 UChar32 codePointFromValidUTF8(const uint8_t *cpStart, const uint8_t *cpLimit) {
71 // Similar to U8_NEXT_UNSAFE(s, i, c).
72 U_ASSERT(cpStart < cpLimit);
73 uint8_t c = *cpStart;
74 switch(cpLimit-cpStart) {
75 case 1:
76 return c;
77 case 2:
78 return ((c&0x1f)<<6) | (cpStart[1]&0x3f);
79 case 3:
80 // no need for (c&0xf) because the upper bits are truncated after <<12 in the cast to (UChar)
81 return (UChar)((c<<12) | ((cpStart[1]&0x3f)<<6) | (cpStart[2]&0x3f));
82 case 4:
83 return ((c&7)<<18) | ((cpStart[1]&0x3f)<<12) | ((cpStart[2]&0x3f)<<6) | (cpStart[3]&0x3f);
84 default:
85 U_ASSERT(FALSE); // Should not occur.
86 return U_SENTINEL;
87 }
88 }
89
90 /**
91 * Returns the last code point in [start, p[ if it is valid and in U+1000..U+D7FF.
92 * Otherwise returns a negative value.
93 */
94 UChar32 previousHangulOrJamo(const uint8_t *start, const uint8_t *p) {
95 if ((p - start) >= 3) {
96 p -= 3;
97 uint8_t l = *p;
98 uint8_t t1, t2;
99 if (0xe1 <= l && l <= 0xed &&
100 (t1 = (uint8_t)(p[1] - 0x80)) <= 0x3f &&
101 (t2 = (uint8_t)(p[2] - 0x80)) <= 0x3f &&
102 (l < 0xed || t1 <= 0x1f)) {
103 return ((l & 0xf) << 12) | (t1 << 6) | t2;
104 }
105 }
106 return U_SENTINEL;
107 }
108
109 /**
110 * Returns the offset from the Jamo T base if [src, limit[ starts with a single Jamo T code point.
111 * Otherwise returns a negative value.
112 */
113 int32_t getJamoTMinusBase(const uint8_t *src, const uint8_t *limit) {
114 // Jamo T: E1 86 A8..E1 87 82
115 if ((limit - src) >= 3 && *src == 0xe1) {
116 if (src[1] == 0x86) {
117 uint8_t t = src[2];
118 // The first Jamo T is U+11A8 but JAMO_T_BASE is 11A7.
119 // Offset 0 does not correspond to any conjoining Jamo.
120 if (0xa8 <= t && t <= 0xbf) {
121 return t - 0xa7;
122 }
123 } else if (src[1] == 0x87) {
124 uint8_t t = src[2];
125 if ((int8_t)t <= (int8_t)0x82) {
126 return t - (0xa7 - 0x40);
127 }
128 }
129 }
130 return -1;
131 }
132
133 void
134 appendCodePointDelta(const uint8_t *cpStart, const uint8_t *cpLimit, int32_t delta,
135 ByteSink &sink, Edits *edits) {
136 char buffer[U8_MAX_LENGTH];
137 int32_t length;
138 int32_t cpLength = (int32_t)(cpLimit - cpStart);
139 if (cpLength == 1) {
140 // The builder makes ASCII map to ASCII.
141 buffer[0] = (uint8_t)(*cpStart + delta);
142 length = 1;
143 } else {
144 int32_t trail = *(cpLimit-1) + delta;
145 if (0x80 <= trail && trail <= 0xbf) {
146 // The delta only changes the last trail byte.
147 --cpLimit;
148 length = 0;
149 do { buffer[length++] = *cpStart++; } while (cpStart < cpLimit);
150 buffer[length++] = (uint8_t)trail;
151 } else {
152 // Decode the code point, add the delta, re-encode.
153 UChar32 c = codePointFromValidUTF8(cpStart, cpLimit) + delta;
154 length = 0;
155 U8_APPEND_UNSAFE(buffer, length, c);
156 }
157 }
158 if (edits != nullptr) {
159 edits->addReplace(cpLength, length);
160 }
161 sink.Append(buffer, length);
162 }
163
164 } // namespace
165
166 // ReorderingBuffer -------------------------------------------------------- ***
167
168 ReorderingBuffer::ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest,
169 UErrorCode &errorCode) :
170 impl(ni), str(dest),
171 start(str.getBuffer(8)), reorderStart(start), limit(start),
172 remainingCapacity(str.getCapacity()), lastCC(0) {
173 if (start == nullptr && U_SUCCESS(errorCode)) {
174 // getBuffer() already did str.setToBogus()
175 errorCode = U_MEMORY_ALLOCATION_ERROR;
176 }
177 }
178
179 UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) {
180 int32_t length=str.length();
181 start=str.getBuffer(destCapacity);
182 if(start==NULL) {
183 // getBuffer() already did str.setToBogus()
184 errorCode=U_MEMORY_ALLOCATION_ERROR;
185 return FALSE;
186 }
187 limit=start+length;
188 remainingCapacity=str.getCapacity()-length;
189 reorderStart=start;
190 if(start==limit) {
191 lastCC=0;
192 } else {
193 setIterator();
194 lastCC=previousCC();
195 // Set reorderStart after the last code point with cc<=1 if there is one.
196 if(lastCC>1) {
197 while(previousCC()>1) {}
198 }
199 reorderStart=codePointLimit;
200 }
201 return TRUE;
202 }
203
204 UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit) const {
205 int32_t length=(int32_t)(limit-start);
206 return
207 length==(int32_t)(otherLimit-otherStart) &&
208 0==u_memcmp(start, otherStart, length);
209 }
210
211 UBool ReorderingBuffer::equals(const uint8_t *otherStart, const uint8_t *otherLimit) const {
212 U_ASSERT((otherLimit - otherStart) <= INT32_MAX); // ensured by caller
213 int32_t length = (int32_t)(limit - start);
214 int32_t otherLength = (int32_t)(otherLimit - otherStart);
215 // For equal strings, UTF-8 is at least as long as UTF-16, and at most three times as long.
216 if (otherLength < length || (otherLength / 3) > length) {
217 return FALSE;
218 }
219 // Compare valid strings from between normalization boundaries.
220 // (Invalid sequences are normalization-inert.)
221 for (int32_t i = 0, j = 0;;) {
222 if (i >= length) {
223 return j >= otherLength;
224 } else if (j >= otherLength) {
225 return FALSE;
226 }
227 // Not at the end of either string yet.
228 UChar32 c, other;
229 U16_NEXT_UNSAFE(start, i, c);
230 U8_NEXT_UNSAFE(otherStart, j, other);
231 if (c != other) {
232 return FALSE;
233 }
234 }
235 }
236
237 UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) {
238 if(remainingCapacity<2 && !resize(2, errorCode)) {
239 return FALSE;
240 }
241 if(lastCC<=cc || cc==0) {
242 limit[0]=U16_LEAD(c);
243 limit[1]=U16_TRAIL(c);
244 limit+=2;
245 lastCC=cc;
246 if(cc<=1) {
247 reorderStart=limit;
248 }
249 } else {
250 insert(c, cc);
251 }
252 remainingCapacity-=2;
253 return TRUE;
254 }
255
256 UBool ReorderingBuffer::append(const UChar *s, int32_t length,
257 uint8_t leadCC, uint8_t trailCC,
258 UErrorCode &errorCode) {
259 if(length==0) {
260 return TRUE;
261 }
262 if(remainingCapacity<length && !resize(length, errorCode)) {
263 return FALSE;
264 }
265 remainingCapacity-=length;
266 if(lastCC<=leadCC || leadCC==0) {
267 if(trailCC<=1) {
268 reorderStart=limit+length;
269 } else if(leadCC<=1) {
270 reorderStart=limit+1; // Ok if not a code point boundary.
271 }
272 const UChar *sLimit=s+length;
273 do { *limit++=*s++; } while(s!=sLimit);
274 lastCC=trailCC;
275 } else {
276 int32_t i=0;
277 UChar32 c;
278 U16_NEXT(s, i, length, c);
279 insert(c, leadCC); // insert first code point
280 while(i<length) {
281 U16_NEXT(s, i, length, c);
282 if(i<length) {
283 // s must be in NFD, otherwise we need to use getCC().
284 leadCC=Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c));
285 } else {
286 leadCC=trailCC;
287 }
288 append(c, leadCC, errorCode);
289 }
290 }
291 return TRUE;
292 }
293
294 UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) {
295 int32_t cpLength=U16_LENGTH(c);
296 if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) {
297 return FALSE;
298 }
299 remainingCapacity-=cpLength;
300 if(cpLength==1) {
301 *limit++=(UChar)c;
302 } else {
303 limit[0]=U16_LEAD(c);
304 limit[1]=U16_TRAIL(c);
305 limit+=2;
306 }
307 lastCC=0;
308 reorderStart=limit;
309 return TRUE;
310 }
311
312 UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode) {
313 if(s==sLimit) {
314 return TRUE;
315 }
316 int32_t length=(int32_t)(sLimit-s);
317 if(remainingCapacity<length && !resize(length, errorCode)) {
318 return FALSE;
319 }
320 u_memcpy(limit, s, length);
321 limit+=length;
322 remainingCapacity-=length;
323 lastCC=0;
324 reorderStart=limit;
325 return TRUE;
326 }
327
328 void ReorderingBuffer::remove() {
329 reorderStart=limit=start;
330 remainingCapacity=str.getCapacity();
331 lastCC=0;
332 }
333
334 void ReorderingBuffer::removeSuffix(int32_t suffixLength) {
335 if(suffixLength<(limit-start)) {
336 limit-=suffixLength;
337 remainingCapacity+=suffixLength;
338 } else {
339 limit=start;
340 remainingCapacity=str.getCapacity();
341 }
342 lastCC=0;
343 reorderStart=limit;
344 }
345
346 UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) {
347 int32_t reorderStartIndex=(int32_t)(reorderStart-start);
348 int32_t length=(int32_t)(limit-start);
349 str.releaseBuffer(length);
350 int32_t newCapacity=length+appendLength;
351 int32_t doubleCapacity=2*str.getCapacity();
352 if(newCapacity<doubleCapacity) {
353 newCapacity=doubleCapacity;
354 }
355 if(newCapacity<256) {
356 newCapacity=256;
357 }
358 start=str.getBuffer(newCapacity);
359 if(start==NULL) {
360 // getBuffer() already did str.setToBogus()
361 errorCode=U_MEMORY_ALLOCATION_ERROR;
362 return FALSE;
363 }
364 reorderStart=start+reorderStartIndex;
365 limit=start+length;
366 remainingCapacity=str.getCapacity()-length;
367 return TRUE;
368 }
369
370 void ReorderingBuffer::skipPrevious() {
371 codePointLimit=codePointStart;
372 UChar c=*--codePointStart;
373 if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) {
374 --codePointStart;
375 }
376 }
377
378 uint8_t ReorderingBuffer::previousCC() {
379 codePointLimit=codePointStart;
380 if(reorderStart>=codePointStart) {
381 return 0;
382 }
383 UChar32 c=*--codePointStart;
384 UChar c2;
385 if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) {
386 --codePointStart;
387 c=U16_GET_SUPPLEMENTARY(c2, c);
388 }
389 return impl.getCCFromYesOrMaybeCP(c);
390 }
391
392 // Inserts c somewhere before the last character.
393 // Requires 0<cc<lastCC which implies reorderStart<limit.
394 void ReorderingBuffer::insert(UChar32 c, uint8_t cc) {
395 for(setIterator(), skipPrevious(); previousCC()>cc;) {}
396 // insert c at codePointLimit, after the character with prevCC<=cc
397 UChar *q=limit;
398 UChar *r=limit+=U16_LENGTH(c);
399 do {
400 *--r=*--q;
401 } while(codePointLimit!=q);
402 writeCodePoint(q, c);
403 if(cc<=1) {
404 reorderStart=r;
405 }
406 }
407
408 // Normalizer2Impl --------------------------------------------------------- ***
409
410 struct CanonIterData : public UMemory {
411 CanonIterData(UErrorCode &errorCode);
412 ~CanonIterData();
413 void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode);
414 UTrie2 *trie;
415 UVector canonStartSets; // contains UnicodeSet *
416 };
417
418 Normalizer2Impl::~Normalizer2Impl() {
419 delete fCanonIterData;
420 }
421
422 void
423 Normalizer2Impl::init(const int32_t *inIndexes, const UTrie2 *inTrie,
424 const uint16_t *inExtraData, const uint8_t *inSmallFCD) {
425 minDecompNoCP=inIndexes[IX_MIN_DECOMP_NO_CP];
426 minCompNoMaybeCP=inIndexes[IX_MIN_COMP_NO_MAYBE_CP];
427 minLcccCP=inIndexes[IX_MIN_LCCC_CP];
428
429 minYesNo=inIndexes[IX_MIN_YES_NO];
430 minYesNoMappingsOnly=inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY];
431 minNoNo=inIndexes[IX_MIN_NO_NO];
432 minNoNoCompBoundaryBefore=inIndexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE];
433 minNoNoCompNoMaybeCC=inIndexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC];
434 minNoNoEmpty=inIndexes[IX_MIN_NO_NO_EMPTY];
435 limitNoNo=inIndexes[IX_LIMIT_NO_NO];
436 minMaybeYes=inIndexes[IX_MIN_MAYBE_YES];
437 U_ASSERT((minMaybeYes&7)==0); // 8-aligned for noNoDelta bit fields
438 centerNoNoDelta=(minMaybeYes>>DELTA_SHIFT)-MAX_DELTA-1;
439
440 normTrie=inTrie;
441
442 maybeYesCompositions=inExtraData;
443 extraData=maybeYesCompositions+((MIN_NORMAL_MAYBE_YES-minMaybeYes)>>OFFSET_SHIFT);
444
445 smallFCD=inSmallFCD;
446 }
447
448 class LcccContext {
449 public:
450 LcccContext(const Normalizer2Impl &ni, UnicodeSet &s) : impl(ni), set(s) {}
451
452 void handleRange(UChar32 start, UChar32 end, uint16_t norm16) {
453 if (norm16 > Normalizer2Impl::MIN_NORMAL_MAYBE_YES &&
454 norm16 != Normalizer2Impl::JAMO_VT) {
455 set.add(start, end);
456 } else if (impl.minNoNoCompNoMaybeCC <= norm16 && norm16 < impl.limitNoNo) {
457 uint16_t fcd16=impl.getFCD16(start);
458 if(fcd16>0xff) { set.add(start, end); }
459 }
460 }
461
462 private:
463 const Normalizer2Impl &impl;
464 UnicodeSet &set;
465 };
466
467 namespace {
468
469 struct PropertyStartsContext {
470 PropertyStartsContext(const Normalizer2Impl &ni, const USetAdder *adder)
471 : impl(ni), sa(adder) {}
472
473 const Normalizer2Impl &impl;
474 const USetAdder *sa;
475 };
476
477 } // namespace
478
479 U_CDECL_BEGIN
480
481 static UBool U_CALLCONV
482 enumLcccRange(const void *context, UChar32 start, UChar32 end, uint32_t value) {
483 ((LcccContext *)context)->handleRange(start, end, (uint16_t)value);
484 return TRUE;
485 }
486
487 static UBool U_CALLCONV
488 enumNorm16PropertyStartsRange(const void *context, UChar32 start, UChar32 end, uint32_t value) {
489 /* add the start code point to the USet */
490 const PropertyStartsContext *ctx=(const PropertyStartsContext *)context;
491 const USetAdder *sa=ctx->sa;
492 sa->add(sa->set, start);
493 if (start != end && ctx->impl.isAlgorithmicNoNo((uint16_t)value) &&
494 (value & Normalizer2Impl::DELTA_TCCC_MASK) > Normalizer2Impl::DELTA_TCCC_1) {
495 // Range of code points with same-norm16-value algorithmic decompositions.
496 // They might have different non-zero FCD16 values.
497 uint16_t prevFCD16=ctx->impl.getFCD16(start);
498 while(++start<=end) {
499 uint16_t fcd16=ctx->impl.getFCD16(start);
500 if(fcd16!=prevFCD16) {
501 sa->add(sa->set, start);
502 prevFCD16=fcd16;
503 }
504 }
505 }
506 return TRUE;
507 }
508
509 static UBool U_CALLCONV
510 enumPropertyStartsRange(const void *context, UChar32 start, UChar32 /*end*/, uint32_t /*value*/) {
511 /* add the start code point to the USet */
512 const USetAdder *sa=(const USetAdder *)context;
513 sa->add(sa->set, start);
514 return TRUE;
515 }
516
517 static uint32_t U_CALLCONV
518 segmentStarterMapper(const void * /*context*/, uint32_t value) {
519 return value&CANON_NOT_SEGMENT_STARTER;
520 }
521
522 U_CDECL_END
523
524 void
525 Normalizer2Impl::addLcccChars(UnicodeSet &set) const {
526 LcccContext context(*this, set);
527 utrie2_enum(normTrie, NULL, enumLcccRange, &context);
528 }
529
530 void
531 Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const {
532 /* add the start code point of each same-value range of each trie */
533 PropertyStartsContext context(*this, sa);
534 utrie2_enum(normTrie, NULL, enumNorm16PropertyStartsRange, &context);
535
536 /* add Hangul LV syllables and LV+1 because of skippables */
537 for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) {
538 sa->add(sa->set, c);
539 sa->add(sa->set, c+1);
540 }
541 sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */
542 }
543
544 void
545 Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const {
546 /* add the start code point of each same-value range of the canonical iterator data trie */
547 if(ensureCanonIterData(errorCode)) {
548 // currently only used for the SEGMENT_STARTER property
549 utrie2_enum(fCanonIterData->trie, segmentStarterMapper, enumPropertyStartsRange, sa);
550 }
551 }
552
553 const UChar *
554 Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src,
555 UChar32 minNeedDataCP,
556 ReorderingBuffer *buffer,
557 UErrorCode &errorCode) const {
558 // Make some effort to support NUL-terminated strings reasonably.
559 // Take the part of the fast quick check loop that does not look up
560 // data and check the first part of the string.
561 // After this prefix, determine the string length to simplify the rest
562 // of the code.
563 const UChar *prevSrc=src;
564 UChar c;
565 while((c=*src++)<minNeedDataCP && c!=0) {}
566 // Back out the last character for full processing.
567 // Copy this prefix.
568 if(--src!=prevSrc) {
569 if(buffer!=NULL) {
570 buffer->appendZeroCC(prevSrc, src, errorCode);
571 }
572 }
573 return src;
574 }
575
576 UnicodeString &
577 Normalizer2Impl::decompose(const UnicodeString &src, UnicodeString &dest,
578 UErrorCode &errorCode) const {
579 if(U_FAILURE(errorCode)) {
580 dest.setToBogus();
581 return dest;
582 }
583 const UChar *sArray=src.getBuffer();
584 if(&dest==&src || sArray==NULL) {
585 errorCode=U_ILLEGAL_ARGUMENT_ERROR;
586 dest.setToBogus();
587 return dest;
588 }
589 decompose(sArray, sArray+src.length(), dest, src.length(), errorCode);
590 return dest;
591 }
592
593 void
594 Normalizer2Impl::decompose(const UChar *src, const UChar *limit,
595 UnicodeString &dest,
596 int32_t destLengthEstimate,
597 UErrorCode &errorCode) const {
598 if(destLengthEstimate<0 && limit!=NULL) {
599 destLengthEstimate=(int32_t)(limit-src);
600 }
601 dest.remove();
602 ReorderingBuffer buffer(*this, dest);
603 if(buffer.init(destLengthEstimate, errorCode)) {
604 decompose(src, limit, &buffer, errorCode);
605 }
606 }
607
608 // Dual functionality:
609 // buffer!=NULL: normalize
610 // buffer==NULL: isNormalized/spanQuickCheckYes
611 const UChar *
612 Normalizer2Impl::decompose(const UChar *src, const UChar *limit,
613 ReorderingBuffer *buffer,
614 UErrorCode &errorCode) const {
615 UChar32 minNoCP=minDecompNoCP;
616 if(limit==NULL) {
617 src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode);
618 if(U_FAILURE(errorCode)) {
619 return src;
620 }
621 limit=u_strchr(src, 0);
622 }
623
624 const UChar *prevSrc;
625 UChar32 c=0;
626 uint16_t norm16=0;
627
628 // only for quick check
629 const UChar *prevBoundary=src;
630 uint8_t prevCC=0;
631
632 for(;;) {
633 // count code units below the minimum or with irrelevant data for the quick check
634 for(prevSrc=src; src!=limit;) {
635 if( (c=*src)<minNoCP ||
636 isMostDecompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c))
637 ) {
638 ++src;
639 } else if(!U16_IS_SURROGATE(c)) {
640 break;
641 } else {
642 UChar c2;
643 if(U16_IS_SURROGATE_LEAD(c)) {
644 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
645 c=U16_GET_SUPPLEMENTARY(c, c2);
646 }
647 } else /* trail surrogate */ {
648 if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
649 --src;
650 c=U16_GET_SUPPLEMENTARY(c2, c);
651 }
652 }
653 if(isMostDecompYesAndZeroCC(norm16=getNorm16(c))) {
654 src+=U16_LENGTH(c);
655 } else {
656 break;
657 }
658 }
659 }
660 // copy these code units all at once
661 if(src!=prevSrc) {
662 if(buffer!=NULL) {
663 if(!buffer->appendZeroCC(prevSrc, src, errorCode)) {
664 break;
665 }
666 } else {
667 prevCC=0;
668 prevBoundary=src;
669 }
670 }
671 if(src==limit) {
672 break;
673 }
674
675 // Check one above-minimum, relevant code point.
676 src+=U16_LENGTH(c);
677 if(buffer!=NULL) {
678 if(!decompose(c, norm16, *buffer, errorCode)) {
679 break;
680 }
681 } else {
682 if(isDecompYes(norm16)) {
683 uint8_t cc=getCCFromYesOrMaybe(norm16);
684 if(prevCC<=cc || cc==0) {
685 prevCC=cc;
686 if(cc<=1) {
687 prevBoundary=src;
688 }
689 continue;
690 }
691 }
692 return prevBoundary; // "no" or cc out of order
693 }
694 }
695 return src;
696 }
697
698 // Decompose a short piece of text which is likely to contain characters that
699 // fail the quick check loop and/or where the quick check loop's overhead
700 // is unlikely to be amortized.
701 // Called by the compose() and makeFCD() implementations.
702 const UChar *
703 Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit,
704 UBool stopAtCompBoundary, UBool onlyContiguous,
705 ReorderingBuffer &buffer, UErrorCode &errorCode) const {
706 if (U_FAILURE(errorCode)) {
707 return nullptr;
708 }
709 while(src<limit) {
710 if (stopAtCompBoundary && *src < minCompNoMaybeCP) {
711 return src;
712 }
713 const UChar *prevSrc = src;
714 UChar32 c;
715 uint16_t norm16;
716 UTRIE2_U16_NEXT16(normTrie, src, limit, c, norm16);
717 if (stopAtCompBoundary && norm16HasCompBoundaryBefore(norm16)) {
718 return prevSrc;
719 }
720 if(!decompose(c, norm16, buffer, errorCode)) {
721 return nullptr;
722 }
723 if (stopAtCompBoundary && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
724 return src;
725 }
726 }
727 return src;
728 }
729
730 UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16,
731 ReorderingBuffer &buffer,
732 UErrorCode &errorCode) const {
733 // get the decomposition and the lead and trail cc's
734 if (norm16 >= limitNoNo) {
735 if (isMaybeOrNonZeroCC(norm16)) {
736 return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode);
737 }
738 // Maps to an isCompYesAndZeroCC.
739 c=mapAlgorithmic(c, norm16);
740 norm16=getNorm16(c);
741 }
742 if (norm16 < minYesNo) {
743 // c does not decompose
744 return buffer.append(c, 0, errorCode);
745 } else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
746 // Hangul syllable: decompose algorithmically
747 UChar jamos[3];
748 return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode);
749 }
750 // c decomposes, get everything from the variable-length extra data
751 const uint16_t *mapping=getMapping(norm16);
752 uint16_t firstUnit=*mapping;
753 int32_t length=firstUnit&MAPPING_LENGTH_MASK;
754 uint8_t leadCC, trailCC;
755 trailCC=(uint8_t)(firstUnit>>8);
756 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
757 leadCC=(uint8_t)(*(mapping-1)>>8);
758 } else {
759 leadCC=0;
760 }
761 return buffer.append((const UChar *)mapping+1, length, leadCC, trailCC, errorCode);
762 }
763
764 const uint8_t *
765 Normalizer2Impl::decomposeShort(const uint8_t *src, const uint8_t *limit,
766 UBool stopAtCompBoundary, UBool onlyContiguous,
767 ReorderingBuffer &buffer, UErrorCode &errorCode) const {
768 if (U_FAILURE(errorCode)) {
769 return nullptr;
770 }
771 while (src < limit) {
772 const uint8_t *prevSrc = src;
773 uint16_t norm16;
774 UTRIE2_U8_NEXT16(normTrie, src, limit, norm16);
775 // Get the decomposition and the lead and trail cc's.
776 UChar32 c = U_SENTINEL;
777 if (norm16 >= limitNoNo) {
778 if (isMaybeOrNonZeroCC(norm16)) {
779 // No boundaries around this character.
780 c = codePointFromValidUTF8(prevSrc, src);
781 if (!buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode)) {
782 return nullptr;
783 }
784 continue;
785 }
786 // Maps to an isCompYesAndZeroCC.
787 if (stopAtCompBoundary) {
788 return prevSrc;
789 }
790 c = codePointFromValidUTF8(prevSrc, src);
791 c = mapAlgorithmic(c, norm16);
792 norm16 = getNorm16(c);
793 } else if (stopAtCompBoundary && norm16 < minNoNoCompNoMaybeCC) {
794 return prevSrc;
795 }
796 // norm16!=INERT guarantees that [prevSrc, src[ is valid UTF-8.
797 // We do not see invalid UTF-8 here because
798 // its norm16==INERT is normalization-inert,
799 // so it gets copied unchanged in the fast path,
800 // and we stop the slow path where invalid UTF-8 begins.
801 U_ASSERT(norm16 != INERT);
802 if (norm16 < minYesNo) {
803 if (c < 0) {
804 c = codePointFromValidUTF8(prevSrc, src);
805 }
806 // does not decompose
807 if (!buffer.append(c, 0, errorCode)) {
808 return nullptr;
809 }
810 } else if (isHangulLV(norm16) || isHangulLVT(norm16)) {
811 // Hangul syllable: decompose algorithmically
812 if (c < 0) {
813 c = codePointFromValidUTF8(prevSrc, src);
814 }
815 char16_t jamos[3];
816 if (!buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode)) {
817 return nullptr;
818 }
819 } else {
820 // The character decomposes, get everything from the variable-length extra data.
821 const uint16_t *mapping = getMapping(norm16);
822 uint16_t firstUnit = *mapping;
823 int32_t length = firstUnit & MAPPING_LENGTH_MASK;
824 uint8_t trailCC = (uint8_t)(firstUnit >> 8);
825 uint8_t leadCC;
826 if (firstUnit & MAPPING_HAS_CCC_LCCC_WORD) {
827 leadCC = (uint8_t)(*(mapping-1) >> 8);
828 } else {
829 leadCC = 0;
830 }
831 if (!buffer.append((const char16_t *)mapping+1, length, leadCC, trailCC, errorCode)) {
832 return nullptr;
833 }
834 }
835 if (stopAtCompBoundary && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
836 return src;
837 }
838 }
839 return src;
840 }
841
842 const UChar *
843 Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const {
844 uint16_t norm16;
845 if(c<minDecompNoCP || isMaybeOrNonZeroCC(norm16=getNorm16(c))) {
846 // c does not decompose
847 return nullptr;
848 }
849 const UChar *decomp = nullptr;
850 if(isDecompNoAlgorithmic(norm16)) {
851 // Maps to an isCompYesAndZeroCC.
852 c=mapAlgorithmic(c, norm16);
853 decomp=buffer;
854 length=0;
855 U16_APPEND_UNSAFE(buffer, length, c);
856 // The mapping might decompose further.
857 norm16 = getNorm16(c);
858 }
859 if (norm16 < minYesNo) {
860 return decomp;
861 } else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
862 // Hangul syllable: decompose algorithmically
863 length=Hangul::decompose(c, buffer);
864 return buffer;
865 }
866 // c decomposes, get everything from the variable-length extra data
867 const uint16_t *mapping=getMapping(norm16);
868 length=*mapping&MAPPING_LENGTH_MASK;
869 return (const UChar *)mapping+1;
870 }
871
872 // The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1
873 // so that a raw mapping fits that consists of one unit ("rm0")
874 // plus all but the first two code units of the normal mapping.
875 // The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK.
876 const UChar *
877 Normalizer2Impl::getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const {
878 uint16_t norm16;
879 if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) {
880 // c does not decompose
881 return NULL;
882 } else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
883 // Hangul syllable: decompose algorithmically
884 Hangul::getRawDecomposition(c, buffer);
885 length=2;
886 return buffer;
887 } else if(isDecompNoAlgorithmic(norm16)) {
888 c=mapAlgorithmic(c, norm16);
889 length=0;
890 U16_APPEND_UNSAFE(buffer, length, c);
891 return buffer;
892 }
893 // c decomposes, get everything from the variable-length extra data
894 const uint16_t *mapping=getMapping(norm16);
895 uint16_t firstUnit=*mapping;
896 int32_t mLength=firstUnit&MAPPING_LENGTH_MASK; // length of normal mapping
897 if(firstUnit&MAPPING_HAS_RAW_MAPPING) {
898 // Read the raw mapping from before the firstUnit and before the optional ccc/lccc word.
899 // Bit 7=MAPPING_HAS_CCC_LCCC_WORD
900 const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1;
901 uint16_t rm0=*rawMapping;
902 if(rm0<=MAPPING_LENGTH_MASK) {
903 length=rm0;
904 return (const UChar *)rawMapping-rm0;
905 } else {
906 // Copy the normal mapping and replace its first two code units with rm0.
907 buffer[0]=(UChar)rm0;
908 u_memcpy(buffer+1, (const UChar *)mapping+1+2, mLength-2);
909 length=mLength-1;
910 return buffer;
911 }
912 } else {
913 length=mLength;
914 return (const UChar *)mapping+1;
915 }
916 }
917
918 void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit,
919 UBool doDecompose,
920 UnicodeString &safeMiddle,
921 ReorderingBuffer &buffer,
922 UErrorCode &errorCode) const {
923 buffer.copyReorderableSuffixTo(safeMiddle);
924 if(doDecompose) {
925 decompose(src, limit, &buffer, errorCode);
926 return;
927 }
928 // Just merge the strings at the boundary.
929 ForwardUTrie2StringIterator iter(normTrie, src, limit);
930 uint8_t firstCC, prevCC, cc;
931 firstCC=prevCC=cc=getCC(iter.next16());
932 while(cc!=0) {
933 prevCC=cc;
934 cc=getCC(iter.next16());
935 };
936 if(limit==NULL) { // appendZeroCC() needs limit!=NULL
937 limit=u_strchr(iter.codePointStart, 0);
938 }
939
940 if (buffer.append(src, (int32_t)(iter.codePointStart-src), firstCC, prevCC, errorCode)) {
941 buffer.appendZeroCC(iter.codePointStart, limit, errorCode);
942 }
943 }
944
945 UBool Normalizer2Impl::hasDecompBoundaryBefore(UChar32 c) const {
946 return c < minLcccCP || (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) ||
947 norm16HasDecompBoundaryBefore(getNorm16(c));
948 }
949
950 UBool Normalizer2Impl::norm16HasDecompBoundaryBefore(uint16_t norm16) const {
951 if (norm16 < minNoNoCompNoMaybeCC) {
952 return TRUE;
953 }
954 if (norm16 >= limitNoNo) {
955 return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT;
956 }
957 // c decomposes, get everything from the variable-length extra data
958 const uint16_t *mapping=getMapping(norm16);
959 uint16_t firstUnit=*mapping;
960 // TRUE if leadCC==0 (hasFCDBoundaryBefore())
961 return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0;
962 }
963
964 UBool Normalizer2Impl::hasDecompBoundaryAfter(UChar32 c) const {
965 if (c < minDecompNoCP) {
966 return TRUE;
967 }
968 if (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) {
969 return TRUE;
970 }
971 return norm16HasDecompBoundaryAfter(getNorm16(c));
972 }
973
974 UBool Normalizer2Impl::norm16HasDecompBoundaryAfter(uint16_t norm16) const {
975 if(norm16 <= minYesNo || isHangulLVT(norm16)) {
976 return TRUE;
977 }
978 if (norm16 >= limitNoNo) {
979 if (isMaybeOrNonZeroCC(norm16)) {
980 return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT;
981 }
982 // Maps to an isCompYesAndZeroCC.
983 return (norm16 & DELTA_TCCC_MASK) <= DELTA_TCCC_1;
984 }
985 // c decomposes, get everything from the variable-length extra data
986 const uint16_t *mapping=getMapping(norm16);
987 uint16_t firstUnit=*mapping;
988 // decomp after-boundary: same as hasFCDBoundaryAfter(),
989 // fcd16<=1 || trailCC==0
990 if(firstUnit>0x1ff) {
991 return FALSE; // trailCC>1
992 }
993 if(firstUnit<=0xff) {
994 return TRUE; // trailCC==0
995 }
996 // if(trailCC==1) test leadCC==0, same as checking for before-boundary
997 // TRUE if leadCC==0 (hasFCDBoundaryBefore())
998 return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0;
999 }
1000
1001 /*
1002 * Finds the recomposition result for
1003 * a forward-combining "lead" character,
1004 * specified with a pointer to its compositions list,
1005 * and a backward-combining "trail" character.
1006 *
1007 * If the lead and trail characters combine, then this function returns
1008 * the following "compositeAndFwd" value:
1009 * Bits 21..1 composite character
1010 * Bit 0 set if the composite is a forward-combining starter
1011 * otherwise it returns -1.
1012 *
1013 * The compositions list has (trail, compositeAndFwd) pair entries,
1014 * encoded as either pairs or triples of 16-bit units.
1015 * The last entry has the high bit of its first unit set.
1016 *
1017 * The list is sorted by ascending trail characters (there are no duplicates).
1018 * A linear search is used.
1019 *
1020 * See normalizer2impl.h for a more detailed description
1021 * of the compositions list format.
1022 */
1023 int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) {
1024 uint16_t key1, firstUnit;
1025 if(trail<COMP_1_TRAIL_LIMIT) {
1026 // trail character is 0..33FF
1027 // result entry may have 2 or 3 units
1028 key1=(uint16_t)(trail<<1);
1029 while(key1>(firstUnit=*list)) {
1030 list+=2+(firstUnit&COMP_1_TRIPLE);
1031 }
1032 if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
1033 if(firstUnit&COMP_1_TRIPLE) {
1034 return ((int32_t)list[1]<<16)|list[2];
1035 } else {
1036 return list[1];
1037 }
1038 }
1039 } else {
1040 // trail character is 3400..10FFFF
1041 // result entry has 3 units
1042 key1=(uint16_t)(COMP_1_TRAIL_LIMIT+
1043 (((trail>>COMP_1_TRAIL_SHIFT))&
1044 ~COMP_1_TRIPLE));
1045 uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT);
1046 uint16_t secondUnit;
1047 for(;;) {
1048 if(key1>(firstUnit=*list)) {
1049 list+=2+(firstUnit&COMP_1_TRIPLE);
1050 } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
1051 if(key2>(secondUnit=list[1])) {
1052 if(firstUnit&COMP_1_LAST_TUPLE) {
1053 break;
1054 } else {
1055 list+=3;
1056 }
1057 } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) {
1058 return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2];
1059 } else {
1060 break;
1061 }
1062 } else {
1063 break;
1064 }
1065 }
1066 }
1067 return -1;
1068 }
1069
1070 /**
1071 * @param list some character's compositions list
1072 * @param set recursively receives the composites from these compositions
1073 */
1074 void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const {
1075 uint16_t firstUnit;
1076 int32_t compositeAndFwd;
1077 do {
1078 firstUnit=*list;
1079 if((firstUnit&COMP_1_TRIPLE)==0) {
1080 compositeAndFwd=list[1];
1081 list+=2;
1082 } else {
1083 compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2];
1084 list+=3;
1085 }
1086 UChar32 composite=compositeAndFwd>>1;
1087 if((compositeAndFwd&1)!=0) {
1088 addComposites(getCompositionsListForComposite(getNorm16(composite)), set);
1089 }
1090 set.add(composite);
1091 } while((firstUnit&COMP_1_LAST_TUPLE)==0);
1092 }
1093
1094 /*
1095 * Recomposes the buffer text starting at recomposeStartIndex
1096 * (which is in NFD - decomposed and canonically ordered),
1097 * and truncates the buffer contents.
1098 *
1099 * Note that recomposition never lengthens the text:
1100 * Any character consists of either one or two code units;
1101 * a composition may contain at most one more code unit than the original starter,
1102 * while the combining mark that is removed has at least one code unit.
1103 */
1104 void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex,
1105 UBool onlyContiguous) const {
1106 UChar *p=buffer.getStart()+recomposeStartIndex;
1107 UChar *limit=buffer.getLimit();
1108 if(p==limit) {
1109 return;
1110 }
1111
1112 UChar *starter, *pRemove, *q, *r;
1113 const uint16_t *compositionsList;
1114 UChar32 c, compositeAndFwd;
1115 uint16_t norm16;
1116 uint8_t cc, prevCC;
1117 UBool starterIsSupplementary;
1118
1119 // Some of the following variables are not used until we have a forward-combining starter
1120 // and are only initialized now to avoid compiler warnings.
1121 compositionsList=NULL; // used as indicator for whether we have a forward-combining starter
1122 starter=NULL;
1123 starterIsSupplementary=FALSE;
1124 prevCC=0;
1125
1126 for(;;) {
1127 UTRIE2_U16_NEXT16(normTrie, p, limit, c, norm16);
1128 cc=getCCFromYesOrMaybe(norm16);
1129 if( // this character combines backward and
1130 isMaybe(norm16) &&
1131 // we have seen a starter that combines forward and
1132 compositionsList!=NULL &&
1133 // the backward-combining character is not blocked
1134 (prevCC<cc || prevCC==0)
1135 ) {
1136 if(isJamoVT(norm16)) {
1137 // c is a Jamo V/T, see if we can compose it with the previous character.
1138 if(c<Hangul::JAMO_T_BASE) {
1139 // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
1140 UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE);
1141 if(prev<Hangul::JAMO_L_COUNT) {
1142 pRemove=p-1;
1143 UChar syllable=(UChar)
1144 (Hangul::HANGUL_BASE+
1145 (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))*
1146 Hangul::JAMO_T_COUNT);
1147 UChar t;
1148 if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) {
1149 ++p;
1150 syllable+=t; // The next character was a Jamo T.
1151 }
1152 *starter=syllable;
1153 // remove the Jamo V/T
1154 q=pRemove;
1155 r=p;
1156 while(r<limit) {
1157 *q++=*r++;
1158 }
1159 limit=q;
1160 p=pRemove;
1161 }
1162 }
1163 /*
1164 * No "else" for Jamo T:
1165 * Since the input is in NFD, there are no Hangul LV syllables that
1166 * a Jamo T could combine with.
1167 * All Jamo Ts are combined above when handling Jamo Vs.
1168 */
1169 if(p==limit) {
1170 break;
1171 }
1172 compositionsList=NULL;
1173 continue;
1174 } else if((compositeAndFwd=combine(compositionsList, c))>=0) {
1175 // The starter and the combining mark (c) do combine.
1176 UChar32 composite=compositeAndFwd>>1;
1177
1178 // Replace the starter with the composite, remove the combining mark.
1179 pRemove=p-U16_LENGTH(c); // pRemove & p: start & limit of the combining mark
1180 if(starterIsSupplementary) {
1181 if(U_IS_SUPPLEMENTARY(composite)) {
1182 // both are supplementary
1183 starter[0]=U16_LEAD(composite);
1184 starter[1]=U16_TRAIL(composite);
1185 } else {
1186 *starter=(UChar)composite;
1187 // The composite is shorter than the starter,
1188 // move the intermediate characters forward one.
1189 starterIsSupplementary=FALSE;
1190 q=starter+1;
1191 r=q+1;
1192 while(r<pRemove) {
1193 *q++=*r++;
1194 }
1195 --pRemove;
1196 }
1197 } else if(U_IS_SUPPLEMENTARY(composite)) {
1198 // The composite is longer than the starter,
1199 // move the intermediate characters back one.
1200 starterIsSupplementary=TRUE;
1201 ++starter; // temporarily increment for the loop boundary
1202 q=pRemove;
1203 r=++pRemove;
1204 while(starter<q) {
1205 *--r=*--q;
1206 }
1207 *starter=U16_TRAIL(composite);
1208 *--starter=U16_LEAD(composite); // undo the temporary increment
1209 } else {
1210 // both are on the BMP
1211 *starter=(UChar)composite;
1212 }
1213
1214 /* remove the combining mark by moving the following text over it */
1215 if(pRemove<p) {
1216 q=pRemove;
1217 r=p;
1218 while(r<limit) {
1219 *q++=*r++;
1220 }
1221 limit=q;
1222 p=pRemove;
1223 }
1224 // Keep prevCC because we removed the combining mark.
1225
1226 if(p==limit) {
1227 break;
1228 }
1229 // Is the composite a starter that combines forward?
1230 if(compositeAndFwd&1) {
1231 compositionsList=
1232 getCompositionsListForComposite(getNorm16(composite));
1233 } else {
1234 compositionsList=NULL;
1235 }
1236
1237 // We combined; continue with looking for compositions.
1238 continue;
1239 }
1240 }
1241
1242 // no combination this time
1243 prevCC=cc;
1244 if(p==limit) {
1245 break;
1246 }
1247
1248 // If c did not combine, then check if it is a starter.
1249 if(cc==0) {
1250 // Found a new starter.
1251 if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL) {
1252 // It may combine with something, prepare for it.
1253 if(U_IS_BMP(c)) {
1254 starterIsSupplementary=FALSE;
1255 starter=p-1;
1256 } else {
1257 starterIsSupplementary=TRUE;
1258 starter=p-2;
1259 }
1260 }
1261 } else if(onlyContiguous) {
1262 // FCC: no discontiguous compositions; any intervening character blocks.
1263 compositionsList=NULL;
1264 }
1265 }
1266 buffer.setReorderingLimit(limit);
1267 }
1268
1269 UChar32
1270 Normalizer2Impl::composePair(UChar32 a, UChar32 b) const {
1271 uint16_t norm16=getNorm16(a); // maps an out-of-range 'a' to inert norm16=0
1272 const uint16_t *list;
1273 if(isInert(norm16)) {
1274 return U_SENTINEL;
1275 } else if(norm16<minYesNoMappingsOnly) {
1276 // a combines forward.
1277 if(isJamoL(norm16)) {
1278 b-=Hangul::JAMO_V_BASE;
1279 if(0<=b && b<Hangul::JAMO_V_COUNT) {
1280 return
1281 (Hangul::HANGUL_BASE+
1282 ((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)*
1283 Hangul::JAMO_T_COUNT);
1284 } else {
1285 return U_SENTINEL;
1286 }
1287 } else if(isHangulLV(norm16)) {
1288 b-=Hangul::JAMO_T_BASE;
1289 if(0<b && b<Hangul::JAMO_T_COUNT) { // not b==0!
1290 return a+b;
1291 } else {
1292 return U_SENTINEL;
1293 }
1294 } else {
1295 // 'a' has a compositions list in extraData
1296 list=getMapping(norm16);
1297 if(norm16>minYesNo) { // composite 'a' has both mapping & compositions list
1298 list+= // mapping pointer
1299 1+ // +1 to skip the first unit with the mapping length
1300 (*list&MAPPING_LENGTH_MASK); // + mapping length
1301 }
1302 }
1303 } else if(norm16<minMaybeYes || MIN_NORMAL_MAYBE_YES<=norm16) {
1304 return U_SENTINEL;
1305 } else {
1306 list=getCompositionsListForMaybe(norm16);
1307 }
1308 if(b<0 || 0x10ffff<b) { // combine(list, b) requires a valid code point b
1309 return U_SENTINEL;
1310 }
1311 #if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC
1312 return combine(list, b)>>1;
1313 #else
1314 int32_t compositeAndFwd=combine(list, b);
1315 return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL;
1316 #endif
1317 }
1318
1319 // Very similar to composeQuickCheck(): Make the same changes in both places if relevant.
1320 // doCompose: normalize
1321 // !doCompose: isNormalized (buffer must be empty and initialized)
1322 UBool
1323 Normalizer2Impl::compose(const UChar *src, const UChar *limit,
1324 UBool onlyContiguous,
1325 UBool doCompose,
1326 ReorderingBuffer &buffer,
1327 UErrorCode &errorCode) const {
1328 const UChar *prevBoundary=src;
1329 UChar32 minNoMaybeCP=minCompNoMaybeCP;
1330 if(limit==NULL) {
1331 src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP,
1332 doCompose ? &buffer : NULL,
1333 errorCode);
1334 if(U_FAILURE(errorCode)) {
1335 return FALSE;
1336 }
1337 limit=u_strchr(src, 0);
1338 if (prevBoundary != src) {
1339 if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) {
1340 prevBoundary = src;
1341 } else {
1342 buffer.removeSuffix(1);
1343 prevBoundary = --src;
1344 }
1345 }
1346 }
1347
1348 for (;;) {
1349 // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
1350 // or with (compYes && ccc==0) properties.
1351 const UChar *prevSrc;
1352 UChar32 c = 0;
1353 uint16_t norm16 = 0;
1354 for (;;) {
1355 if (src == limit) {
1356 if (prevBoundary != limit && doCompose) {
1357 buffer.appendZeroCC(prevBoundary, limit, errorCode);
1358 }
1359 return TRUE;
1360 }
1361 if( (c=*src)<minNoMaybeCP ||
1362 isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c))
1363 ) {
1364 ++src;
1365 } else {
1366 prevSrc = src++;
1367 if(!U16_IS_SURROGATE(c)) {
1368 break;
1369 } else {
1370 UChar c2;
1371 if(U16_IS_SURROGATE_LEAD(c)) {
1372 if(src!=limit && U16_IS_TRAIL(c2=*src)) {
1373 ++src;
1374 c=U16_GET_SUPPLEMENTARY(c, c2);
1375 }
1376 } else /* trail surrogate */ {
1377 if(prevBoundary<prevSrc && U16_IS_LEAD(c2=*(prevSrc-1))) {
1378 --prevSrc;
1379 c=U16_GET_SUPPLEMENTARY(c2, c);
1380 }
1381 }
1382 if(!isCompYesAndZeroCC(norm16=getNorm16(c))) {
1383 break;
1384 }
1385 }
1386 }
1387 }
1388 // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
1389 // The current character is either a "noNo" (has a mapping)
1390 // or a "maybeYes" (combines backward)
1391 // or a "yesYes" with ccc!=0.
1392 // It is not a Hangul syllable or Jamo L because those have "yes" properties.
1393
1394 // Medium-fast path: Handle cases that do not require full decomposition and recomposition.
1395 if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes
1396 if (!doCompose) {
1397 return FALSE;
1398 }
1399 // Fast path for mapping a character that is immediately surrounded by boundaries.
1400 // In this case, we need not decompose around the current character.
1401 if (isDecompNoAlgorithmic(norm16)) {
1402 // Maps to a single isCompYesAndZeroCC character
1403 // which also implies hasCompBoundaryBefore.
1404 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1405 hasCompBoundaryBefore(src, limit)) {
1406 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1407 break;
1408 }
1409 if(!buffer.append(mapAlgorithmic(c, norm16), 0, errorCode)) {
1410 break;
1411 }
1412 prevBoundary = src;
1413 continue;
1414 }
1415 } else if (norm16 < minNoNoCompBoundaryBefore) {
1416 // The mapping is comp-normalized which also implies hasCompBoundaryBefore.
1417 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1418 hasCompBoundaryBefore(src, limit)) {
1419 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1420 break;
1421 }
1422 const UChar *mapping = reinterpret_cast<const UChar *>(getMapping(norm16));
1423 int32_t length = *mapping++ & MAPPING_LENGTH_MASK;
1424 if(!buffer.appendZeroCC(mapping, mapping + length, errorCode)) {
1425 break;
1426 }
1427 prevBoundary = src;
1428 continue;
1429 }
1430 } else if (norm16 >= minNoNoEmpty) {
1431 // The current character maps to nothing.
1432 // Simply omit it from the output if there is a boundary before _or_ after it.
1433 // The character itself implies no boundaries.
1434 if (hasCompBoundaryBefore(src, limit) ||
1435 hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) {
1436 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1437 break;
1438 }
1439 prevBoundary = src;
1440 continue;
1441 }
1442 }
1443 // Other "noNo" type, or need to examine more text around this character:
1444 // Fall through to the slow path.
1445 } else if (isJamoVT(norm16) && prevBoundary != prevSrc) {
1446 UChar prev=*(prevSrc-1);
1447 if(c<Hangul::JAMO_T_BASE) {
1448 // The current character is a Jamo Vowel,
1449 // compose with previous Jamo L and following Jamo T.
1450 UChar l = (UChar)(prev-Hangul::JAMO_L_BASE);
1451 if(l<Hangul::JAMO_L_COUNT) {
1452 if (!doCompose) {
1453 return FALSE;
1454 }
1455 int32_t t;
1456 if (src != limit &&
1457 0 < (t = ((int32_t)*src - Hangul::JAMO_T_BASE)) &&
1458 t < Hangul::JAMO_T_COUNT) {
1459 // The next character is a Jamo T.
1460 ++src;
1461 } else if (hasCompBoundaryBefore(src, limit)) {
1462 // No Jamo T follows, not even via decomposition.
1463 t = 0;
1464 } else {
1465 t = -1;
1466 }
1467 if (t >= 0) {
1468 UChar32 syllable = Hangul::HANGUL_BASE +
1469 (l*Hangul::JAMO_V_COUNT + (c-Hangul::JAMO_V_BASE)) *
1470 Hangul::JAMO_T_COUNT + t;
1471 --prevSrc; // Replace the Jamo L as well.
1472 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1473 break;
1474 }
1475 if(!buffer.appendBMP((UChar)syllable, 0, errorCode)) {
1476 break;
1477 }
1478 prevBoundary = src;
1479 continue;
1480 }
1481 // If we see L+V+x where x!=T then we drop to the slow path,
1482 // decompose and recompose.
1483 // This is to deal with NFKC finding normal L and V but a
1484 // compatibility variant of a T.
1485 // We need to either fully compose that combination here
1486 // (which would complicate the code and may not work with strange custom data)
1487 // or use the slow path.
1488 }
1489 } else if (Hangul::isHangulLV(prev)) {
1490 // The current character is a Jamo Trailing consonant,
1491 // compose with previous Hangul LV that does not contain a Jamo T.
1492 if (!doCompose) {
1493 return FALSE;
1494 }
1495 UChar32 syllable = prev + c - Hangul::JAMO_T_BASE;
1496 --prevSrc; // Replace the Hangul LV as well.
1497 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1498 break;
1499 }
1500 if(!buffer.appendBMP((UChar)syllable, 0, errorCode)) {
1501 break;
1502 }
1503 prevBoundary = src;
1504 continue;
1505 }
1506 // No matching context, or may need to decompose surrounding text first:
1507 // Fall through to the slow path.
1508 } else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC
1509 // One or more combining marks that do not combine-back:
1510 // Check for canonical order, copy unchanged if ok and
1511 // if followed by a character with a boundary-before.
1512 uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0
1513 if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) {
1514 // Fails FCD test, need to decompose and contiguously recompose.
1515 if (!doCompose) {
1516 return FALSE;
1517 }
1518 } else {
1519 // If !onlyContiguous (not FCC), then we ignore the tccc of
1520 // the previous character which passed the quick check "yes && ccc==0" test.
1521 const UChar *nextSrc;
1522 uint16_t n16;
1523 for (;;) {
1524 if (src == limit) {
1525 if (doCompose) {
1526 buffer.appendZeroCC(prevBoundary, limit, errorCode);
1527 }
1528 return TRUE;
1529 }
1530 uint8_t prevCC = cc;
1531 nextSrc = src;
1532 UTRIE2_U16_NEXT16(normTrie, nextSrc, limit, c, n16);
1533 if (n16 >= MIN_YES_YES_WITH_CC) {
1534 cc = getCCFromNormalYesOrMaybe(n16);
1535 if (prevCC > cc) {
1536 if (!doCompose) {
1537 return FALSE;
1538 }
1539 break;
1540 }
1541 } else {
1542 break;
1543 }
1544 src = nextSrc;
1545 }
1546 // src is after the last in-order combining mark.
1547 // If there is a boundary here, then we continue with no change.
1548 if (norm16HasCompBoundaryBefore(n16)) {
1549 if (isCompYesAndZeroCC(n16)) {
1550 src = nextSrc;
1551 }
1552 continue;
1553 }
1554 // Use the slow path. There is no boundary in [prevSrc, src[.
1555 }
1556 }
1557
1558 // Slow path: Find the nearest boundaries around the current character,
1559 // decompose and recompose.
1560 if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) {
1561 const UChar *p = prevSrc;
1562 UTRIE2_U16_PREV16(normTrie, prevBoundary, p, c, norm16);
1563 if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
1564 prevSrc = p;
1565 }
1566 }
1567 if (doCompose && prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1568 break;
1569 }
1570 int32_t recomposeStartIndex=buffer.length();
1571 // We know there is not a boundary here.
1572 decomposeShort(prevSrc, src, FALSE /* !stopAtCompBoundary */, onlyContiguous,
1573 buffer, errorCode);
1574 // Decompose until the next boundary.
1575 src = decomposeShort(src, limit, TRUE /* stopAtCompBoundary */, onlyContiguous,
1576 buffer, errorCode);
1577 if (U_FAILURE(errorCode)) {
1578 break;
1579 }
1580 if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals()
1581 errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
1582 return TRUE;
1583 }
1584 recompose(buffer, recomposeStartIndex, onlyContiguous);
1585 if(!doCompose) {
1586 if(!buffer.equals(prevSrc, src)) {
1587 return FALSE;
1588 }
1589 buffer.remove();
1590 }
1591 prevBoundary=src;
1592 }
1593 return TRUE;
1594 }
1595
1596 // Very similar to compose(): Make the same changes in both places if relevant.
1597 // pQCResult==NULL: spanQuickCheckYes
1598 // pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES)
1599 const UChar *
1600 Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit,
1601 UBool onlyContiguous,
1602 UNormalizationCheckResult *pQCResult) const {
1603 const UChar *prevBoundary=src;
1604 UChar32 minNoMaybeCP=minCompNoMaybeCP;
1605 if(limit==NULL) {
1606 UErrorCode errorCode=U_ZERO_ERROR;
1607 src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL, errorCode);
1608 limit=u_strchr(src, 0);
1609 if (prevBoundary != src) {
1610 if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) {
1611 prevBoundary = src;
1612 } else {
1613 prevBoundary = --src;
1614 }
1615 }
1616 }
1617
1618 for(;;) {
1619 // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
1620 // or with (compYes && ccc==0) properties.
1621 const UChar *prevSrc;
1622 UChar32 c = 0;
1623 uint16_t norm16 = 0;
1624 for (;;) {
1625 if(src==limit) {
1626 return src;
1627 }
1628 if( (c=*src)<minNoMaybeCP ||
1629 isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c))
1630 ) {
1631 ++src;
1632 } else {
1633 prevSrc = src++;
1634 if(!U16_IS_SURROGATE(c)) {
1635 break;
1636 } else {
1637 UChar c2;
1638 if(U16_IS_SURROGATE_LEAD(c)) {
1639 if(src!=limit && U16_IS_TRAIL(c2=*src)) {
1640 ++src;
1641 c=U16_GET_SUPPLEMENTARY(c, c2);
1642 }
1643 } else /* trail surrogate */ {
1644 if(prevBoundary<prevSrc && U16_IS_LEAD(c2=*(prevSrc-1))) {
1645 --prevSrc;
1646 c=U16_GET_SUPPLEMENTARY(c2, c);
1647 }
1648 }
1649 if(!isCompYesAndZeroCC(norm16=getNorm16(c))) {
1650 break;
1651 }
1652 }
1653 }
1654 }
1655 // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
1656 // The current character is either a "noNo" (has a mapping)
1657 // or a "maybeYes" (combines backward)
1658 // or a "yesYes" with ccc!=0.
1659 // It is not a Hangul syllable or Jamo L because those have "yes" properties.
1660
1661 uint16_t prevNorm16 = INERT;
1662 if (prevBoundary != prevSrc) {
1663 if (norm16HasCompBoundaryBefore(norm16)) {
1664 prevBoundary = prevSrc;
1665 } else {
1666 const UChar *p = prevSrc;
1667 uint16_t n16;
1668 UTRIE2_U16_PREV16(normTrie, prevBoundary, p, c, n16);
1669 if (norm16HasCompBoundaryAfter(n16, onlyContiguous)) {
1670 prevBoundary = prevSrc;
1671 } else {
1672 prevBoundary = p;
1673 prevNorm16 = n16;
1674 }
1675 }
1676 }
1677
1678 if(isMaybeOrNonZeroCC(norm16)) {
1679 uint8_t cc=getCCFromYesOrMaybe(norm16);
1680 if (onlyContiguous /* FCC */ && cc != 0 &&
1681 getTrailCCFromCompYesAndZeroCC(prevNorm16) > cc) {
1682 // The [prevBoundary..prevSrc[ character
1683 // passed the quick check "yes && ccc==0" test
1684 // but is out of canonical order with the current combining mark.
1685 } else {
1686 // If !onlyContiguous (not FCC), then we ignore the tccc of
1687 // the previous character which passed the quick check "yes && ccc==0" test.
1688 const UChar *nextSrc;
1689 for (;;) {
1690 if (norm16 < MIN_YES_YES_WITH_CC) {
1691 if (pQCResult != nullptr) {
1692 *pQCResult = UNORM_MAYBE;
1693 } else {
1694 return prevBoundary;
1695 }
1696 }
1697 if (src == limit) {
1698 return src;
1699 }
1700 uint8_t prevCC = cc;
1701 nextSrc = src;
1702 UTRIE2_U16_NEXT16(normTrie, nextSrc, limit, c, norm16);
1703 if (isMaybeOrNonZeroCC(norm16)) {
1704 cc = getCCFromYesOrMaybe(norm16);
1705 if (!(prevCC <= cc || cc == 0)) {
1706 break;
1707 }
1708 } else {
1709 break;
1710 }
1711 src = nextSrc;
1712 }
1713 // src is after the last in-order combining mark.
1714 if (isCompYesAndZeroCC(norm16)) {
1715 prevBoundary = src;
1716 src = nextSrc;
1717 continue;
1718 }
1719 }
1720 }
1721 if(pQCResult!=NULL) {
1722 *pQCResult=UNORM_NO;
1723 }
1724 return prevBoundary;
1725 }
1726 }
1727
1728 void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit,
1729 UBool doCompose,
1730 UBool onlyContiguous,
1731 UnicodeString &safeMiddle,
1732 ReorderingBuffer &buffer,
1733 UErrorCode &errorCode) const {
1734 if(!buffer.isEmpty()) {
1735 const UChar *firstStarterInSrc=findNextCompBoundary(src, limit, onlyContiguous);
1736 if(src!=firstStarterInSrc) {
1737 const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(),
1738 buffer.getLimit(), onlyContiguous);
1739 int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastStarterInDest);
1740 UnicodeString middle(lastStarterInDest, destSuffixLength);
1741 buffer.removeSuffix(destSuffixLength);
1742 safeMiddle=middle;
1743 middle.append(src, (int32_t)(firstStarterInSrc-src));
1744 const UChar *middleStart=middle.getBuffer();
1745 compose(middleStart, middleStart+middle.length(), onlyContiguous,
1746 TRUE, buffer, errorCode);
1747 if(U_FAILURE(errorCode)) {
1748 return;
1749 }
1750 src=firstStarterInSrc;
1751 }
1752 }
1753 if(doCompose) {
1754 compose(src, limit, onlyContiguous, TRUE, buffer, errorCode);
1755 } else {
1756 if(limit==NULL) { // appendZeroCC() needs limit!=NULL
1757 limit=u_strchr(src, 0);
1758 }
1759 buffer.appendZeroCC(src, limit, errorCode);
1760 }
1761 }
1762
1763 UBool
1764 Normalizer2Impl::composeUTF8(uint32_t options, UBool onlyContiguous,
1765 const uint8_t *src, const uint8_t *limit,
1766 ByteSink *sink, Edits *edits, UErrorCode &errorCode) const {
1767 U_ASSERT(limit != nullptr);
1768 UnicodeString s16;
1769 uint8_t minNoMaybeLead = leadByteForCP(minCompNoMaybeCP);
1770 const uint8_t *prevBoundary = src;
1771
1772 for (;;) {
1773 // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
1774 // or with (compYes && ccc==0) properties.
1775 const uint8_t *prevSrc;
1776 uint16_t norm16 = 0;
1777 for (;;) {
1778 if (src == limit) {
1779 if (prevBoundary != limit && sink != nullptr) {
1780 ByteSinkUtil::appendUnchanged(prevBoundary, limit,
1781 *sink, options, edits, errorCode);
1782 }
1783 return TRUE;
1784 }
1785 if (*src < minNoMaybeLead) {
1786 ++src;
1787 } else {
1788 prevSrc = src;
1789 UTRIE2_U8_NEXT16(normTrie, src, limit, norm16);
1790 if (!isCompYesAndZeroCC(norm16)) {
1791 break;
1792 }
1793 }
1794 }
1795 // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
1796 // The current character is either a "noNo" (has a mapping)
1797 // or a "maybeYes" (combines backward)
1798 // or a "yesYes" with ccc!=0.
1799 // It is not a Hangul syllable or Jamo L because those have "yes" properties.
1800
1801 // Medium-fast path: Handle cases that do not require full decomposition and recomposition.
1802 if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes
1803 if (sink == nullptr) {
1804 return FALSE;
1805 }
1806 // Fast path for mapping a character that is immediately surrounded by boundaries.
1807 // In this case, we need not decompose around the current character.
1808 if (isDecompNoAlgorithmic(norm16)) {
1809 // Maps to a single isCompYesAndZeroCC character
1810 // which also implies hasCompBoundaryBefore.
1811 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1812 hasCompBoundaryBefore(src, limit)) {
1813 if (prevBoundary != prevSrc &&
1814 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1815 *sink, options, edits, errorCode)) {
1816 break;
1817 }
1818 appendCodePointDelta(prevSrc, src, getAlgorithmicDelta(norm16), *sink, edits);
1819 prevBoundary = src;
1820 continue;
1821 }
1822 } else if (norm16 < minNoNoCompBoundaryBefore) {
1823 // The mapping is comp-normalized which also implies hasCompBoundaryBefore.
1824 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1825 hasCompBoundaryBefore(src, limit)) {
1826 if (prevBoundary != prevSrc &&
1827 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1828 *sink, options, edits, errorCode)) {
1829 break;
1830 }
1831 const uint16_t *mapping = getMapping(norm16);
1832 int32_t length = *mapping++ & MAPPING_LENGTH_MASK;
1833 if (!ByteSinkUtil::appendChange(prevSrc, src, (const UChar *)mapping, length,
1834 *sink, edits, errorCode)) {
1835 break;
1836 }
1837 prevBoundary = src;
1838 continue;
1839 }
1840 } else if (norm16 >= minNoNoEmpty) {
1841 // The current character maps to nothing.
1842 // Simply omit it from the output if there is a boundary before _or_ after it.
1843 // The character itself implies no boundaries.
1844 if (hasCompBoundaryBefore(src, limit) ||
1845 hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) {
1846 if (prevBoundary != prevSrc &&
1847 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1848 *sink, options, edits, errorCode)) {
1849 break;
1850 }
1851 if (edits != nullptr) {
1852 edits->addReplace((int32_t)(src - prevSrc), 0);
1853 }
1854 prevBoundary = src;
1855 continue;
1856 }
1857 }
1858 // Other "noNo" type, or need to examine more text around this character:
1859 // Fall through to the slow path.
1860 } else if (isJamoVT(norm16)) {
1861 // Jamo L: E1 84 80..92
1862 // Jamo V: E1 85 A1..B5
1863 // Jamo T: E1 86 A8..E1 87 82
1864 U_ASSERT((src - prevSrc) == 3 && *prevSrc == 0xe1);
1865 UChar32 prev = previousHangulOrJamo(prevBoundary, prevSrc);
1866 if (prevSrc[1] == 0x85) {
1867 // The current character is a Jamo Vowel,
1868 // compose with previous Jamo L and following Jamo T.
1869 UChar32 l = prev - Hangul::JAMO_L_BASE;
1870 if ((uint32_t)l < Hangul::JAMO_L_COUNT) {
1871 if (sink == nullptr) {
1872 return FALSE;
1873 }
1874 int32_t t = getJamoTMinusBase(src, limit);
1875 if (t >= 0) {
1876 // The next character is a Jamo T.
1877 src += 3;
1878 } else if (hasCompBoundaryBefore(src, limit)) {
1879 // No Jamo T follows, not even via decomposition.
1880 t = 0;
1881 }
1882 if (t >= 0) {
1883 UChar32 syllable = Hangul::HANGUL_BASE +
1884 (l*Hangul::JAMO_V_COUNT + (prevSrc[2]-0xa1)) *
1885 Hangul::JAMO_T_COUNT + t;
1886 prevSrc -= 3; // Replace the Jamo L as well.
1887 if (prevBoundary != prevSrc &&
1888 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1889 *sink, options, edits, errorCode)) {
1890 break;
1891 }
1892 ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits);
1893 prevBoundary = src;
1894 continue;
1895 }
1896 // If we see L+V+x where x!=T then we drop to the slow path,
1897 // decompose and recompose.
1898 // This is to deal with NFKC finding normal L and V but a
1899 // compatibility variant of a T.
1900 // We need to either fully compose that combination here
1901 // (which would complicate the code and may not work with strange custom data)
1902 // or use the slow path.
1903 }
1904 } else if (Hangul::isHangulLV(prev)) {
1905 // The current character is a Jamo Trailing consonant,
1906 // compose with previous Hangul LV that does not contain a Jamo T.
1907 if (sink == nullptr) {
1908 return FALSE;
1909 }
1910 UChar32 syllable = prev + getJamoTMinusBase(prevSrc, src);
1911 prevSrc -= 3; // Replace the Hangul LV as well.
1912 if (prevBoundary != prevSrc &&
1913 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1914 *sink, options, edits, errorCode)) {
1915 break;
1916 }
1917 ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits);
1918 prevBoundary = src;
1919 continue;
1920 }
1921 // No matching context, or may need to decompose surrounding text first:
1922 // Fall through to the slow path.
1923 } else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC
1924 // One or more combining marks that do not combine-back:
1925 // Check for canonical order, copy unchanged if ok and
1926 // if followed by a character with a boundary-before.
1927 uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0
1928 if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) {
1929 // Fails FCD test, need to decompose and contiguously recompose.
1930 if (sink == nullptr) {
1931 return FALSE;
1932 }
1933 } else {
1934 // If !onlyContiguous (not FCC), then we ignore the tccc of
1935 // the previous character which passed the quick check "yes && ccc==0" test.
1936 const uint8_t *nextSrc;
1937 uint16_t n16;
1938 for (;;) {
1939 if (src == limit) {
1940 if (sink != nullptr) {
1941 ByteSinkUtil::appendUnchanged(prevBoundary, limit,
1942 *sink, options, edits, errorCode);
1943 }
1944 return TRUE;
1945 }
1946 uint8_t prevCC = cc;
1947 nextSrc = src;
1948 UTRIE2_U8_NEXT16(normTrie, nextSrc, limit, n16);
1949 if (n16 >= MIN_YES_YES_WITH_CC) {
1950 cc = getCCFromNormalYesOrMaybe(n16);
1951 if (prevCC > cc) {
1952 if (sink == nullptr) {
1953 return FALSE;
1954 }
1955 break;
1956 }
1957 } else {
1958 break;
1959 }
1960 src = nextSrc;
1961 }
1962 // src is after the last in-order combining mark.
1963 // If there is a boundary here, then we continue with no change.
1964 if (norm16HasCompBoundaryBefore(n16)) {
1965 if (isCompYesAndZeroCC(n16)) {
1966 src = nextSrc;
1967 }
1968 continue;
1969 }
1970 // Use the slow path. There is no boundary in [prevSrc, src[.
1971 }
1972 }
1973
1974 // Slow path: Find the nearest boundaries around the current character,
1975 // decompose and recompose.
1976 if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) {
1977 const uint8_t *p = prevSrc;
1978 UTRIE2_U8_PREV16(normTrie, prevBoundary, p, norm16);
1979 if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
1980 prevSrc = p;
1981 }
1982 }
1983 ReorderingBuffer buffer(*this, s16, errorCode);
1984 if (U_FAILURE(errorCode)) {
1985 break;
1986 }
1987 // We know there is not a boundary here.
1988 decomposeShort(prevSrc, src, FALSE /* !stopAtCompBoundary */, onlyContiguous,
1989 buffer, errorCode);
1990 // Decompose until the next boundary.
1991 src = decomposeShort(src, limit, TRUE /* stopAtCompBoundary */, onlyContiguous,
1992 buffer, errorCode);
1993 if (U_FAILURE(errorCode)) {
1994 break;
1995 }
1996 if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals()
1997 errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
1998 return TRUE;
1999 }
2000 recompose(buffer, 0, onlyContiguous);
2001 if (!buffer.equals(prevSrc, src)) {
2002 if (sink == nullptr) {
2003 return FALSE;
2004 }
2005 if (prevBoundary != prevSrc &&
2006 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
2007 *sink, options, edits, errorCode)) {
2008 break;
2009 }
2010 if (!ByteSinkUtil::appendChange(prevSrc, src, buffer.getStart(), buffer.length(),
2011 *sink, edits, errorCode)) {
2012 break;
2013 }
2014 prevBoundary = src;
2015 }
2016 }
2017 return TRUE;
2018 }
2019
2020 UBool Normalizer2Impl::hasCompBoundaryBefore(const UChar *src, const UChar *limit) const {
2021 if (src == limit || *src < minCompNoMaybeCP) {
2022 return TRUE;
2023 }
2024 UChar32 c;
2025 uint16_t norm16;
2026 UTRIE2_U16_NEXT16(normTrie, src, limit, c, norm16);
2027 return norm16HasCompBoundaryBefore(norm16);
2028 }
2029
2030 UBool Normalizer2Impl::hasCompBoundaryBefore(const uint8_t *src, const uint8_t *limit) const {
2031 if (src == limit) {
2032 return TRUE;
2033 }
2034 uint16_t norm16;
2035 UTRIE2_U8_NEXT16(normTrie, src, limit, norm16);
2036 return norm16HasCompBoundaryBefore(norm16);
2037 }
2038
2039 UBool Normalizer2Impl::hasCompBoundaryAfter(const UChar *start, const UChar *p,
2040 UBool onlyContiguous) const {
2041 if (start == p) {
2042 return TRUE;
2043 }
2044 UChar32 c;
2045 uint16_t norm16;
2046 UTRIE2_U16_PREV16(normTrie, start, p, c, norm16);
2047 return norm16HasCompBoundaryAfter(norm16, onlyContiguous);
2048 }
2049
2050 UBool Normalizer2Impl::hasCompBoundaryAfter(const uint8_t *start, const uint8_t *p,
2051 UBool onlyContiguous) const {
2052 if (start == p) {
2053 return TRUE;
2054 }
2055 uint16_t norm16;
2056 UTRIE2_U8_PREV16(normTrie, start, p, norm16);
2057 return norm16HasCompBoundaryAfter(norm16, onlyContiguous);
2058 }
2059
2060 const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const UChar *p,
2061 UBool onlyContiguous) const {
2062 BackwardUTrie2StringIterator iter(normTrie, start, p);
2063 for(;;) {
2064 uint16_t norm16=iter.previous16();
2065 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
2066 return iter.codePointLimit;
2067 }
2068 if (hasCompBoundaryBefore(iter.codePoint, norm16)) {
2069 return iter.codePointStart;
2070 }
2071 }
2072 }
2073
2074 const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *limit,
2075 UBool onlyContiguous) const {
2076 ForwardUTrie2StringIterator iter(normTrie, p, limit);
2077 for(;;) {
2078 uint16_t norm16=iter.next16();
2079 if (hasCompBoundaryBefore(iter.codePoint, norm16)) {
2080 return iter.codePointStart;
2081 }
2082 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
2083 return iter.codePointLimit;
2084 }
2085 }
2086 }
2087
2088 uint8_t Normalizer2Impl::getPreviousTrailCC(const UChar *start, const UChar *p) const {
2089 if (start == p) {
2090 return 0;
2091 }
2092 int32_t i = (int32_t)(p - start);
2093 UChar32 c;
2094 U16_PREV(start, 0, i, c);
2095 return (uint8_t)getFCD16(c);
2096 }
2097
2098 uint8_t Normalizer2Impl::getPreviousTrailCC(const uint8_t *start, const uint8_t *p) const {
2099 if (start == p) {
2100 return 0;
2101 }
2102 int32_t i = (int32_t)(p - start);
2103 UChar32 c;
2104 U8_PREV(start, 0, i, c);
2105 return (uint8_t)getFCD16(c);
2106 }
2107
2108 // Note: normalizer2impl.cpp r30982 (2011-nov-27)
2109 // still had getFCDTrie() which built and cached an FCD trie.
2110 // That provided faster access to FCD data than getFCD16FromNormData()
2111 // but required synchronization and consumed some 10kB of heap memory
2112 // in any process that uses FCD (e.g., via collation).
2113 // minDecompNoCP etc. and smallFCD[] are intended to help with any loss of performance,
2114 // at least for ASCII & CJK.
2115
2116 // Gets the FCD value from the regular normalization data.
2117 uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const {
2118 uint16_t norm16=getNorm16(c);
2119 if (norm16 >= limitNoNo) {
2120 if(norm16>=MIN_NORMAL_MAYBE_YES) {
2121 // combining mark
2122 norm16=getCCFromNormalYesOrMaybe(norm16);
2123 return norm16|(norm16<<8);
2124 } else if(norm16>=minMaybeYes) {
2125 return 0;
2126 } else { // isDecompNoAlgorithmic(norm16)
2127 uint16_t deltaTrailCC = norm16 & DELTA_TCCC_MASK;
2128 if (deltaTrailCC <= DELTA_TCCC_1) {
2129 return deltaTrailCC >> OFFSET_SHIFT;
2130 }
2131 // Maps to an isCompYesAndZeroCC.
2132 c=mapAlgorithmic(c, norm16);
2133 norm16=getNorm16(c);
2134 }
2135 }
2136 if(norm16<=minYesNo || isHangulLVT(norm16)) {
2137 // no decomposition or Hangul syllable, all zeros
2138 return 0;
2139 }
2140 // c decomposes, get everything from the variable-length extra data
2141 const uint16_t *mapping=getMapping(norm16);
2142 uint16_t firstUnit=*mapping;
2143 norm16=firstUnit>>8; // tccc
2144 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
2145 norm16|=*(mapping-1)&0xff00; // lccc
2146 }
2147 return norm16;
2148 }
2149
2150 // Dual functionality:
2151 // buffer!=NULL: normalize
2152 // buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes
2153 const UChar *
2154 Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit,
2155 ReorderingBuffer *buffer,
2156 UErrorCode &errorCode) const {
2157 // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1.
2158 // Similar to the prevBoundary in the compose() implementation.
2159 const UChar *prevBoundary=src;
2160 int32_t prevFCD16=0;
2161 if(limit==NULL) {
2162 src=copyLowPrefixFromNulTerminated(src, minLcccCP, buffer, errorCode);
2163 if(U_FAILURE(errorCode)) {
2164 return src;
2165 }
2166 if(prevBoundary<src) {
2167 prevBoundary=src;
2168 // We know that the previous character's lccc==0.
2169 // Fetching the fcd16 value was deferred for this below-U+0300 code point.
2170 prevFCD16=getFCD16(*(src-1));
2171 if(prevFCD16>1) {
2172 --prevBoundary;
2173 }
2174 }
2175 limit=u_strchr(src, 0);
2176 }
2177
2178 // Note: In this function we use buffer->appendZeroCC() because we track
2179 // the lead and trail combining classes here, rather than leaving it to
2180 // the ReorderingBuffer.
2181 // The exception is the call to decomposeShort() which uses the buffer
2182 // in the normal way.
2183
2184 const UChar *prevSrc;
2185 UChar32 c=0;
2186 uint16_t fcd16=0;
2187
2188 for(;;) {
2189 // count code units with lccc==0
2190 for(prevSrc=src; src!=limit;) {
2191 if((c=*src)<minLcccCP) {
2192 prevFCD16=~c;
2193 ++src;
2194 } else if(!singleLeadMightHaveNonZeroFCD16(c)) {
2195 prevFCD16=0;
2196 ++src;
2197 } else {
2198 if(U16_IS_SURROGATE(c)) {
2199 UChar c2;
2200 if(U16_IS_SURROGATE_LEAD(c)) {
2201 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
2202 c=U16_GET_SUPPLEMENTARY(c, c2);
2203 }
2204 } else /* trail surrogate */ {
2205 if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
2206 --src;
2207 c=U16_GET_SUPPLEMENTARY(c2, c);
2208 }
2209 }
2210 }
2211 if((fcd16=getFCD16FromNormData(c))<=0xff) {
2212 prevFCD16=fcd16;
2213 src+=U16_LENGTH(c);
2214 } else {
2215 break;
2216 }
2217 }
2218 }
2219 // copy these code units all at once
2220 if(src!=prevSrc) {
2221 if(buffer!=NULL && !buffer->appendZeroCC(prevSrc, src, errorCode)) {
2222 break;
2223 }
2224 if(src==limit) {
2225 break;
2226 }
2227 prevBoundary=src;
2228 // We know that the previous character's lccc==0.
2229 if(prevFCD16<0) {
2230 // Fetching the fcd16 value was deferred for this below-minLcccCP code point.
2231 UChar32 prev=~prevFCD16;
2232 if(prev<minDecompNoCP) {
2233 prevFCD16=0;
2234 } else {
2235 prevFCD16=getFCD16FromNormData(prev);
2236 if(prevFCD16>1) {
2237 --prevBoundary;
2238 }
2239 }
2240 } else {
2241 const UChar *p=src-1;
2242 if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) {
2243 --p;
2244 // Need to fetch the previous character's FCD value because
2245 // prevFCD16 was just for the trail surrogate code point.
2246 prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1]));
2247 // Still known to have lccc==0 because its lead surrogate unit had lccc==0.
2248 }
2249 if(prevFCD16>1) {
2250 prevBoundary=p;
2251 }
2252 }
2253 // The start of the current character (c).
2254 prevSrc=src;
2255 } else if(src==limit) {
2256 break;
2257 }
2258
2259 src+=U16_LENGTH(c);
2260 // The current character (c) at [prevSrc..src[ has a non-zero lead combining class.
2261 // Check for proper order, and decompose locally if necessary.
2262 if((prevFCD16&0xff)<=(fcd16>>8)) {
2263 // proper order: prev tccc <= current lccc
2264 if((fcd16&0xff)<=1) {
2265 prevBoundary=src;
2266 }
2267 if(buffer!=NULL && !buffer->appendZeroCC(c, errorCode)) {
2268 break;
2269 }
2270 prevFCD16=fcd16;
2271 continue;
2272 } else if(buffer==NULL) {
2273 return prevBoundary; // quick check "no"
2274 } else {
2275 /*
2276 * Back out the part of the source that we copied or appended
2277 * already but is now going to be decomposed.
2278 * prevSrc is set to after what was copied/appended.
2279 */
2280 buffer->removeSuffix((int32_t)(prevSrc-prevBoundary));
2281 /*
2282 * Find the part of the source that needs to be decomposed,
2283 * up to the next safe boundary.
2284 */
2285 src=findNextFCDBoundary(src, limit);
2286 /*
2287 * The source text does not fulfill the conditions for FCD.
2288 * Decompose and reorder a limited piece of the text.
2289 */
2290 decomposeShort(prevBoundary, src, FALSE, FALSE, *buffer, errorCode);
2291 if (U_FAILURE(errorCode)) {
2292 break;
2293 }
2294 prevBoundary=src;
2295 prevFCD16=0;
2296 }
2297 }
2298 return src;
2299 }
2300
2301 void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit,
2302 UBool doMakeFCD,
2303 UnicodeString &safeMiddle,
2304 ReorderingBuffer &buffer,
2305 UErrorCode &errorCode) const {
2306 if(!buffer.isEmpty()) {
2307 const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit);
2308 if(src!=firstBoundaryInSrc) {
2309 const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(),
2310 buffer.getLimit());
2311 int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastBoundaryInDest);
2312 UnicodeString middle(lastBoundaryInDest, destSuffixLength);
2313 buffer.removeSuffix(destSuffixLength);
2314 safeMiddle=middle;
2315 middle.append(src, (int32_t)(firstBoundaryInSrc-src));
2316 const UChar *middleStart=middle.getBuffer();
2317 makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode);
2318 if(U_FAILURE(errorCode)) {
2319 return;
2320 }
2321 src=firstBoundaryInSrc;
2322 }
2323 }
2324 if(doMakeFCD) {
2325 makeFCD(src, limit, &buffer, errorCode);
2326 } else {
2327 if(limit==NULL) { // appendZeroCC() needs limit!=NULL
2328 limit=u_strchr(src, 0);
2329 }
2330 buffer.appendZeroCC(src, limit, errorCode);
2331 }
2332 }
2333
2334 const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const UChar *p) const {
2335 while(start<p) {
2336 const UChar *codePointLimit = p;
2337 UChar32 c;
2338 uint16_t norm16;
2339 UTRIE2_U16_PREV16(normTrie, start, p, c, norm16);
2340 if (c < minDecompNoCP || norm16HasDecompBoundaryAfter(norm16)) {
2341 return codePointLimit;
2342 }
2343 if (norm16HasDecompBoundaryBefore(norm16)) {
2344 return p;
2345 }
2346 }
2347 return p;
2348 }
2349
2350 const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *limit) const {
2351 while(p<limit) {
2352 const UChar *codePointStart=p;
2353 UChar32 c;
2354 uint16_t norm16;
2355 UTRIE2_U16_NEXT16(normTrie, p, limit, c, norm16);
2356 if (c < minLcccCP || norm16HasDecompBoundaryBefore(norm16)) {
2357 return codePointStart;
2358 }
2359 if (norm16HasDecompBoundaryAfter(norm16)) {
2360 return p;
2361 }
2362 }
2363 return p;
2364 }
2365
2366 // CanonicalIterator data -------------------------------------------------- ***
2367
2368 CanonIterData::CanonIterData(UErrorCode &errorCode) :
2369 trie(utrie2_open(0, 0, &errorCode)),
2370 canonStartSets(uprv_deleteUObject, NULL, errorCode) {}
2371
2372 CanonIterData::~CanonIterData() {
2373 utrie2_close(trie);
2374 }
2375
2376 void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) {
2377 uint32_t canonValue=utrie2_get32(trie, decompLead);
2378 if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) {
2379 // origin is the first character whose decomposition starts with
2380 // the character for which we are setting the value.
2381 utrie2_set32(trie, decompLead, canonValue|origin, &errorCode);
2382 } else {
2383 // origin is not the first character, or it is U+0000.
2384 UnicodeSet *set;
2385 if((canonValue&CANON_HAS_SET)==0) {
2386 set=new UnicodeSet;
2387 if(set==NULL) {
2388 errorCode=U_MEMORY_ALLOCATION_ERROR;
2389 return;
2390 }
2391 UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK);
2392 canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size();
2393 utrie2_set32(trie, decompLead, canonValue, &errorCode);
2394 canonStartSets.addElement(set, errorCode);
2395 if(firstOrigin!=0) {
2396 set->add(firstOrigin);
2397 }
2398 } else {
2399 set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)];
2400 }
2401 set->add(origin);
2402 }
2403 }
2404
2405 // C++ class for friend access to private Normalizer2Impl members.
2406 class InitCanonIterData {
2407 public:
2408 static void doInit(Normalizer2Impl *impl, UErrorCode &errorCode);
2409 static void handleRange(Normalizer2Impl *impl, UChar32 start, UChar32 end, uint16_t value, UErrorCode &errorCode);
2410 };
2411
2412 U_CDECL_BEGIN
2413
2414 // UInitOnce instantiation function for CanonIterData
2415 static void U_CALLCONV
2416 initCanonIterData(Normalizer2Impl *impl, UErrorCode &errorCode) {
2417 InitCanonIterData::doInit(impl, errorCode);
2418 }
2419
2420 // Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters.
2421 // context: the Normalizer2Impl
2422 static UBool U_CALLCONV
2423 enumCIDRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t value) {
2424 UErrorCode errorCode = U_ZERO_ERROR;
2425 if (value != Normalizer2Impl::INERT) {
2426 Normalizer2Impl *impl = (Normalizer2Impl *)context;
2427 InitCanonIterData::handleRange(impl, start, end, (uint16_t)value, errorCode);
2428 }
2429 return U_SUCCESS(errorCode);
2430 }
2431
2432 U_CDECL_END
2433
2434 void InitCanonIterData::doInit(Normalizer2Impl *impl, UErrorCode &errorCode) {
2435 U_ASSERT(impl->fCanonIterData == NULL);
2436 impl->fCanonIterData = new CanonIterData(errorCode);
2437 if (impl->fCanonIterData == NULL) {
2438 errorCode=U_MEMORY_ALLOCATION_ERROR;
2439 }
2440 if (U_SUCCESS(errorCode)) {
2441 utrie2_enum(impl->normTrie, NULL, enumCIDRangeHandler, impl);
2442 utrie2_freeze(impl->fCanonIterData->trie, UTRIE2_32_VALUE_BITS, &errorCode);
2443 }
2444 if (U_FAILURE(errorCode)) {
2445 delete impl->fCanonIterData;
2446 impl->fCanonIterData = NULL;
2447 }
2448 }
2449
2450 void InitCanonIterData::handleRange(
2451 Normalizer2Impl *impl, UChar32 start, UChar32 end, uint16_t value, UErrorCode &errorCode) {
2452 impl->makeCanonIterDataFromNorm16(start, end, value, *impl->fCanonIterData, errorCode);
2453 }
2454
2455 void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, const uint16_t norm16,
2456 CanonIterData &newData,
2457 UErrorCode &errorCode) const {
2458 if(isInert(norm16) || (minYesNo<=norm16 && norm16<minNoNo)) {
2459 // Inert, or 2-way mapping (including Hangul syllable).
2460 // We do not write a canonStartSet for any yesNo character.
2461 // Composites from 2-way mappings are added at runtime from the
2462 // starter's compositions list, and the other characters in
2463 // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are
2464 // "maybe" characters.
2465 return;
2466 }
2467 for(UChar32 c=start; c<=end; ++c) {
2468 uint32_t oldValue=utrie2_get32(newData.trie, c);
2469 uint32_t newValue=oldValue;
2470 if(isMaybeOrNonZeroCC(norm16)) {
2471 // not a segment starter if it occurs in a decomposition or has cc!=0
2472 newValue|=CANON_NOT_SEGMENT_STARTER;
2473 if(norm16<MIN_NORMAL_MAYBE_YES) {
2474 newValue|=CANON_HAS_COMPOSITIONS;
2475 }
2476 } else if(norm16<minYesNo) {
2477 newValue|=CANON_HAS_COMPOSITIONS;
2478 } else {
2479 // c has a one-way decomposition
2480 UChar32 c2=c;
2481 // Do not modify the whole-range norm16 value.
2482 uint16_t norm16_2=norm16;
2483 if (isDecompNoAlgorithmic(norm16_2)) {
2484 // Maps to an isCompYesAndZeroCC.
2485 c2 = mapAlgorithmic(c2, norm16_2);
2486 norm16_2 = getNorm16(c2);
2487 // No compatibility mappings for the CanonicalIterator.
2488 U_ASSERT(!(isHangulLV(norm16_2) || isHangulLVT(norm16_2)));
2489 }
2490 if (norm16_2 > minYesNo) {
2491 // c decomposes, get everything from the variable-length extra data
2492 const uint16_t *mapping=getMapping(norm16_2);
2493 uint16_t firstUnit=*mapping;
2494 int32_t length=firstUnit&MAPPING_LENGTH_MASK;
2495 if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) {
2496 if(c==c2 && (*(mapping-1)&0xff)!=0) {
2497 newValue|=CANON_NOT_SEGMENT_STARTER; // original c has cc!=0
2498 }
2499 }
2500 // Skip empty mappings (no characters in the decomposition).
2501 if(length!=0) {
2502 ++mapping; // skip over the firstUnit
2503 // add c to first code point's start set
2504 int32_t i=0;
2505 U16_NEXT_UNSAFE(mapping, i, c2);
2506 newData.addToStartSet(c, c2, errorCode);
2507 // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a
2508 // one-way mapping. A 2-way mapping is possible here after
2509 // intermediate algorithmic mapping.
2510 if(norm16_2>=minNoNo) {
2511 while(i<length) {
2512 U16_NEXT_UNSAFE(mapping, i, c2);
2513 uint32_t c2Value=utrie2_get32(newData.trie, c2);
2514 if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) {
2515 utrie2_set32(newData.trie, c2, c2Value|CANON_NOT_SEGMENT_STARTER,
2516 &errorCode);
2517 }
2518 }
2519 }
2520 }
2521 } else {
2522 // c decomposed to c2 algorithmically; c has cc==0
2523 newData.addToStartSet(c, c2, errorCode);
2524 }
2525 }
2526 if(newValue!=oldValue) {
2527 utrie2_set32(newData.trie, c, newValue, &errorCode);
2528 }
2529 }
2530 }
2531
2532 UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const {
2533 // Logically const: Synchronized instantiation.
2534 Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this);
2535 umtx_initOnce(me->fCanonIterDataInitOnce, &initCanonIterData, me, errorCode);
2536 return U_SUCCESS(errorCode);
2537 }
2538
2539 int32_t Normalizer2Impl::getCanonValue(UChar32 c) const {
2540 return (int32_t)utrie2_get32(fCanonIterData->trie, c);
2541 }
2542
2543 const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const {
2544 return *(const UnicodeSet *)fCanonIterData->canonStartSets[n];
2545 }
2546
2547 UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const {
2548 return getCanonValue(c)>=0;
2549 }
2550
2551 UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const {
2552 int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER;
2553 if(canonValue==0) {
2554 return FALSE;
2555 }
2556 set.clear();
2557 int32_t value=canonValue&CANON_VALUE_MASK;
2558 if((canonValue&CANON_HAS_SET)!=0) {
2559 set.addAll(getCanonStartSet(value));
2560 } else if(value!=0) {
2561 set.add(value);
2562 }
2563 if((canonValue&CANON_HAS_COMPOSITIONS)!=0) {
2564 uint16_t norm16=getNorm16(c);
2565 if(norm16==JAMO_L) {
2566 UChar32 syllable=
2567 (UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT);
2568 set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1);
2569 } else {
2570 addComposites(getCompositionsList(norm16), set);
2571 }
2572 }
2573 return TRUE;
2574 }
2575
2576 U_NAMESPACE_END
2577
2578 // Normalizer2 data swapping ----------------------------------------------- ***
2579
2580 U_NAMESPACE_USE
2581
2582 U_CAPI int32_t U_EXPORT2
2583 unorm2_swap(const UDataSwapper *ds,
2584 const void *inData, int32_t length, void *outData,
2585 UErrorCode *pErrorCode) {
2586 const UDataInfo *pInfo;
2587 int32_t headerSize;
2588
2589 const uint8_t *inBytes;
2590 uint8_t *outBytes;
2591
2592 const int32_t *inIndexes;
2593 int32_t indexes[Normalizer2Impl::IX_TOTAL_SIZE+1];
2594
2595 int32_t i, offset, nextOffset, size;
2596
2597 /* udata_swapDataHeader checks the arguments */
2598 headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode);
2599 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
2600 return 0;
2601 }
2602
2603 /* check data format and format version */
2604 pInfo=(const UDataInfo *)((const char *)inData+4);
2605 uint8_t formatVersion0=pInfo->formatVersion[0];
2606 if(!(
2607 pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */
2608 pInfo->dataFormat[1]==0x72 &&
2609 pInfo->dataFormat[2]==0x6d &&
2610 pInfo->dataFormat[3]==0x32 &&
2611 (1<=formatVersion0 && formatVersion0<=3)
2612 )) {
2613 udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n",
2614 pInfo->dataFormat[0], pInfo->dataFormat[1],
2615 pInfo->dataFormat[2], pInfo->dataFormat[3],
2616 pInfo->formatVersion[0]);
2617 *pErrorCode=U_UNSUPPORTED_ERROR;
2618 return 0;
2619 }
2620
2621 inBytes=(const uint8_t *)inData+headerSize;
2622 outBytes=(uint8_t *)outData+headerSize;
2623
2624 inIndexes=(const int32_t *)inBytes;
2625 int32_t minIndexesLength;
2626 if(formatVersion0==1) {
2627 minIndexesLength=Normalizer2Impl::IX_MIN_MAYBE_YES+1;
2628 } else if(formatVersion0==2) {
2629 minIndexesLength=Normalizer2Impl::IX_MIN_YES_NO_MAPPINGS_ONLY+1;
2630 } else {
2631 minIndexesLength=Normalizer2Impl::IX_MIN_LCCC_CP+1;
2632 }
2633
2634 if(length>=0) {
2635 length-=headerSize;
2636 if(length<minIndexesLength*4) {
2637 udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n",
2638 length);
2639 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2640 return 0;
2641 }
2642 }
2643
2644 /* read the first few indexes */
2645 for(i=0; i<UPRV_LENGTHOF(indexes); ++i) {
2646 indexes[i]=udata_readInt32(ds, inIndexes[i]);
2647 }
2648
2649 /* get the total length of the data */
2650 size=indexes[Normalizer2Impl::IX_TOTAL_SIZE];
2651
2652 if(length>=0) {
2653 if(length<size) {
2654 udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n",
2655 length);
2656 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2657 return 0;
2658 }
2659
2660 /* copy the data for inaccessible bytes */
2661 if(inBytes!=outBytes) {
2662 uprv_memcpy(outBytes, inBytes, size);
2663 }
2664
2665 offset=0;
2666
2667 /* swap the int32_t indexes[] */
2668 nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET];
2669 ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode);
2670 offset=nextOffset;
2671
2672 /* swap the UTrie2 */
2673 nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET];
2674 utrie2_swap(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
2675 offset=nextOffset;
2676
2677 /* swap the uint16_t extraData[] */
2678 nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET];
2679 ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
2680 offset=nextOffset;
2681
2682 /* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */
2683 nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET+1];
2684 offset=nextOffset;
2685
2686 U_ASSERT(offset==size);
2687 }
2688
2689 return headerSize+size;
2690 }
2691
2692 #endif // !UCONFIG_NO_NORMALIZATION