]> git.saurik.com Git - apple/icu.git/blob - icuSources/tools/gennorm/store.c
ICU-400.40.tar.gz
[apple/icu.git] / icuSources / tools / gennorm / store.c
1 /*
2 *******************************************************************************
3 *
4 * Copyright (C) 1999-2008, International Business Machines
5 * Corporation and others. All Rights Reserved.
6 *
7 *******************************************************************************
8 * file name: store.c
9 * encoding: US-ASCII
10 * tab size: 8 (not used)
11 * indentation:4
12 *
13 * created on: 2001may25
14 * created by: Markus W. Scherer
15 *
16 * Store Unicode normalization data in a memory-mappable file.
17 */
18
19 #include <stdio.h>
20 #include <stdlib.h>
21 #include "unicode/utypes.h"
22 #include "unicode/uchar.h"
23 #include "unicode/ustring.h"
24 #include "cmemory.h"
25 #include "cstring.h"
26 #include "filestrm.h"
27 #include "unicode/udata.h"
28 #include "utrie.h"
29 #include "unicode/uset.h"
30 #include "toolutil.h"
31 #include "unewdata.h"
32 #include "writesrc.h"
33 #include "unormimp.h"
34 #include "gennorm.h"
35
36 #define DO_DEBUG_OUT 0
37
38 #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
39
40 /*
41 * The new implementation of the normalization code loads its data from
42 * unorm.icu, which is generated with this gennorm tool.
43 * The format of that file is described in unormimp.h .
44 */
45
46 /* file data ---------------------------------------------------------------- */
47
48 #if UCONFIG_NO_NORMALIZATION
49
50 /* dummy UDataInfo cf. udata.h */
51 static UDataInfo dataInfo = {
52 sizeof(UDataInfo),
53 0,
54
55 U_IS_BIG_ENDIAN,
56 U_CHARSET_FAMILY,
57 U_SIZEOF_UCHAR,
58 0,
59
60 { 0, 0, 0, 0 }, /* dummy dataFormat */
61 { 0, 0, 0, 0 }, /* dummy formatVersion */
62 { 0, 0, 0, 0 } /* dummy dataVersion */
63 };
64
65 #else
66
67 /* UDataInfo cf. udata.h */
68 static UDataInfo dataInfo={
69 sizeof(UDataInfo),
70 0,
71
72 U_IS_BIG_ENDIAN,
73 U_CHARSET_FAMILY,
74 U_SIZEOF_UCHAR,
75 0,
76
77 { 0x4e, 0x6f, 0x72, 0x6d }, /* dataFormat="Norm" */
78 { 2, 3, UTRIE_SHIFT, UTRIE_INDEX_SHIFT }, /* formatVersion */
79 { 3, 2, 0, 0 } /* dataVersion (Unicode version) */
80 };
81
82 extern void
83 setUnicodeVersion(const char *v) {
84 UVersionInfo version;
85 u_versionFromString(version, v);
86 uprv_memcpy(dataInfo.dataVersion, version, 4);
87 }
88
89 static int32_t indexes[_NORM_INDEX_TOP]={ 0 };
90
91 /* builder data ------------------------------------------------------------- */
92
93 /* modularization flags, see gennorm.h (default to "store everything") */
94 uint32_t gStoreFlags=0xffffffff;
95
96 typedef void EnumTrieFn(void *context, uint32_t code, Norm *norm);
97
98 static UNewTrie
99 *normTrie,
100 *norm32Trie,
101 *fcdTrie,
102 *auxTrie;
103
104 static UToolMemory *normMem, *utf32Mem, *extraMem, *combiningTriplesMem;
105
106 static Norm *norms;
107
108 /*
109 * set a flag for each code point that was seen in decompositions -
110 * avoid to decompose ones that have not been used before
111 */
112 static uint32_t haveSeenFlags[256];
113
114 /* set of characters with NFD_QC=No (i.e., those with canonical decompositions) */
115 static USet *nfdQCNoSet;
116
117 /* see addCombiningCP() for details */
118 static uint32_t combiningCPs[2000];
119
120 /*
121 * after processCombining() this contains for each code point in combiningCPs[]
122 * the runtime combining index
123 */
124 static uint16_t combiningIndexes[2000];
125
126 /* section limits for combiningCPs[], see addCombiningCP() */
127 static uint16_t combineFwdTop=0, combineBothTop=0, combineBackTop=0;
128
129 /**
130 * Structure for a triple of code points, stored in combiningTriplesMem.
131 * The lead and trail code points combine into the the combined one,
132 * i.e., there is a canonical decomposition of combined-> <lead, trail>.
133 *
134 * Before processCombining() is called, leadIndex and trailIndex are 0.
135 * After processCombining(), they contain the indexes of the lead and trail
136 * code point in the combiningCPs[] array.
137 * They are then sorted by leadIndex, then trailIndex.
138 * They are not sorted by code points.
139 */
140 typedef struct CombiningTriple {
141 uint16_t leadIndex, trailIndex;
142 uint32_t lead, trail, combined;
143 } CombiningTriple;
144
145 /* 15b in the combining index -> <=0x8000 uint16_t values in the combining table */
146 static uint16_t combiningTable[0x8000];
147 static uint16_t combiningTableTop=0;
148
149 #define _NORM_MAX_SET_SEARCH_TABLE_LENGTH 0x4000
150 static uint16_t canonStartSets[_NORM_MAX_CANON_SETS+2*_NORM_MAX_SET_SEARCH_TABLE_LENGTH
151 +10000]; /* +10000 for exclusion sets */
152 static int32_t canonStartSetsTop=_NORM_SET_INDEX_TOP;
153 static int32_t canonSetsCount=0;
154
155 /* allocate and initialize a Norm unit */
156 static Norm *
157 allocNorm() {
158 /* allocate Norm */
159 Norm *p=(Norm *)utm_alloc(normMem);
160 /*
161 * The combiningIndex must not be initialized to 0 because 0 is the
162 * combiningIndex of the first forward-combining character.
163 */
164 p->combiningIndex=0xffff;
165 return p;
166 }
167
168 extern void
169 init() {
170 uint16_t *p16;
171
172 normTrie = (UNewTrie *)uprv_malloc(sizeof(UNewTrie));
173 uprv_memset(normTrie, 0, sizeof(UNewTrie));
174 norm32Trie = (UNewTrie *)uprv_malloc(sizeof(UNewTrie));
175 uprv_memset(norm32Trie, 0, sizeof(UNewTrie));
176 fcdTrie = (UNewTrie *)uprv_malloc(sizeof(UNewTrie));
177 uprv_memset(fcdTrie, 0, sizeof(UNewTrie));
178 auxTrie = (UNewTrie *)uprv_malloc(sizeof(UNewTrie));
179 uprv_memset(auxTrie, 0, sizeof(UNewTrie));
180
181 /* initialize the two tries */
182 if(NULL==utrie_open(normTrie, NULL, 30000, 0, 0, FALSE)) {
183 fprintf(stderr, "error: failed to initialize tries\n");
184 exit(U_MEMORY_ALLOCATION_ERROR);
185 }
186
187 /* allocate Norm structures and reset the first one */
188 normMem=utm_open("gennorm normalization structs", 20000, 20000, sizeof(Norm));
189 norms=allocNorm();
190
191 /* allocate UTF-32 string memory */
192 utf32Mem=utm_open("gennorm UTF-32 strings", 30000, 30000, 4);
193
194 /* reset all "have seen" flags */
195 uprv_memset(haveSeenFlags, 0, sizeof(haveSeenFlags));
196
197 /* open an empty set */
198 nfdQCNoSet=uset_open(1, 0);
199
200 /* allocate extra data memory for UTF-16 decomposition strings and other values */
201 extraMem=utm_open("gennorm extra 16-bit memory", _NORM_EXTRA_INDEX_TOP, _NORM_EXTRA_INDEX_TOP, 2);
202 /* initialize the extraMem counter for the top of FNC strings */
203 p16=(uint16_t *)utm_alloc(extraMem);
204 *p16=1;
205
206 /* allocate temporary memory for combining triples */
207 combiningTriplesMem=utm_open("gennorm combining triples", 0x4000, 0x4000, sizeof(CombiningTriple));
208
209 /* set the minimum code points for no/maybe quick check values to the end of the BMP */
210 indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE]=0xffff;
211 indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE]=0xffff;
212 indexes[_NORM_INDEX_MIN_NFD_NO_MAYBE]=0xffff;
213 indexes[_NORM_INDEX_MIN_NFKD_NO_MAYBE]=0xffff;
214
215 /* preset the indexes portion of canonStartSets */
216 uprv_memset(canonStartSets, 0, _NORM_SET_INDEX_TOP*2);
217 }
218
219 /*
220 * get or create a Norm unit;
221 * get or create the intermediate trie entries for it as well
222 */
223 static Norm *
224 createNorm(uint32_t code) {
225 Norm *p;
226 uint32_t i;
227
228 i=utrie_get32(normTrie, (UChar32)code, NULL);
229 if(i!=0) {
230 p=norms+i;
231 } else {
232 /* allocate Norm */
233 p=allocNorm();
234 if(!utrie_set32(normTrie, (UChar32)code, (uint32_t)(p-norms))) {
235 fprintf(stderr, "error: too many normalization entries\n");
236 exit(U_BUFFER_OVERFLOW_ERROR);
237 }
238 }
239 return p;
240 }
241
242 /* get an existing Norm unit */
243 static Norm *
244 getNorm(uint32_t code) {
245 uint32_t i;
246
247 i=utrie_get32(normTrie, (UChar32)code, NULL);
248 if(i==0) {
249 return NULL;
250 }
251 return norms+i;
252 }
253
254 /* get the canonical combining class of a character */
255 static uint8_t
256 getCCFromCP(uint32_t code) {
257 Norm *norm=getNorm(code);
258 if(norm==NULL) {
259 return 0;
260 } else {
261 return norm->udataCC;
262 }
263 }
264
265 /*
266 * enumerate all code points with their Norm structs and call a function for each
267 * return the number of code points with data
268 */
269 static uint32_t
270 enumTrie(EnumTrieFn *fn, void *context) {
271 uint32_t count, i;
272 UChar32 code;
273 UBool isInBlockZero;
274
275 count=0;
276 for(code=0; code<=0x10ffff;) {
277 i=utrie_get32(normTrie, code, &isInBlockZero);
278 if(isInBlockZero) {
279 code+=UTRIE_DATA_BLOCK_LENGTH;
280 } else {
281 if(i!=0) {
282 fn(context, (uint32_t)code, norms+i);
283 ++count;
284 }
285 ++code;
286 }
287 }
288 return count;
289 }
290
291 static void
292 setHaveSeenString(const uint32_t *s, int32_t length) {
293 uint32_t c;
294
295 while(length>0) {
296 c=*s++;
297 haveSeenFlags[(c>>5)&0xff]|=(1<<(c&0x1f));
298 --length;
299 }
300 }
301
302 #define HAVE_SEEN(c) (haveSeenFlags[((c)>>5)&0xff]&(1<<((c)&0x1f)))
303
304 /* handle combining data ---------------------------------------------------- */
305
306 /*
307 * Insert an entry into combiningCPs[] for the new code point code with its flags.
308 * The flags indicate if code combines forward, backward, or both.
309 *
310 * combiningCPs[] contains three sections:
311 * 1. code points that combine forward
312 * 2. code points that combine forward and backward
313 * 3. code points that combine backward
314 *
315 * Search for code in the entire array.
316 * If it is found and already is in the right section (old flags==new flags)
317 * then we are done.
318 * If it is found but the flags are different, then remove it,
319 * union the old and new flags, and reinsert it into its correct section.
320 * If it is not found, then just insert it.
321 *
322 * Within each section, the code points are not sorted.
323 */
324 static void
325 addCombiningCP(uint32_t code, uint8_t flags) {
326 uint32_t newEntry;
327 uint16_t i;
328
329 newEntry=code|((uint32_t)flags<<24);
330
331 /* search for this code point */
332 for(i=0; i<combineBackTop; ++i) {
333 if(code==(combiningCPs[i]&0xffffff)) {
334 /* found it */
335 if(newEntry==combiningCPs[i]) {
336 return; /* no change */
337 }
338
339 /* combine the flags, remove the old entry from the old place, and insert the new one */
340 newEntry|=combiningCPs[i];
341 if(i!=--combineBackTop) {
342 uprv_memmove(combiningCPs+i, combiningCPs+i+1, (combineBackTop-i)*4);
343 }
344 if(i<combineBothTop) {
345 --combineBothTop;
346 }
347 if(i<combineFwdTop) {
348 --combineFwdTop;
349 }
350 break;
351 }
352 }
353
354 /* not found or modified, insert it */
355 if(combineBackTop>=sizeof(combiningCPs)/4) {
356 fprintf(stderr, "error: gennorm combining code points - trying to use more than %ld units\n",
357 (long)(sizeof(combiningCPs)/4));
358 exit(U_MEMORY_ALLOCATION_ERROR);
359 }
360
361 /* set i to the insertion point */
362 flags=(uint8_t)(newEntry>>24);
363 if(flags==1) {
364 i=combineFwdTop++;
365 ++combineBothTop;
366 } else if(flags==3) {
367 i=combineBothTop++;
368 } else /* flags==2 */ {
369 i=combineBackTop;
370 }
371
372 /* move the following code points up one and insert newEntry at i */
373 if(i<combineBackTop) {
374 uprv_memmove(combiningCPs+i+1, combiningCPs+i, (combineBackTop-i)*4);
375 }
376 combiningCPs[i]=newEntry;
377
378 /* finally increment the total counter */
379 ++combineBackTop;
380 }
381
382 /**
383 * Find the index in combiningCPs[] where code point code is stored.
384 * @param code code point to look for
385 * @param isLead is code a forward combining code point?
386 * @return index in combiningCPs[] where code is stored
387 */
388 static uint16_t
389 findCombiningCP(uint32_t code, UBool isLead) {
390 uint16_t i, limit;
391
392 if(isLead) {
393 i=0;
394 limit=combineBothTop;
395 } else {
396 i=combineFwdTop;
397 limit=combineBackTop;
398 }
399
400 /* search for this code point */
401 for(; i<limit; ++i) {
402 if(code==(combiningCPs[i]&0xffffff)) {
403 /* found it */
404 return i;
405 }
406 }
407
408 /* not found */
409 return 0xffff;
410 }
411
412 static void
413 addCombiningTriple(uint32_t lead, uint32_t trail, uint32_t combined) {
414 CombiningTriple *triple;
415
416 if(DO_NOT_STORE(UGENNORM_STORE_COMPOSITION)) {
417 return;
418 }
419
420 /*
421 * set combiningFlags for the two code points
422 * do this after decomposition so that getNorm() above returns NULL
423 * if we do not have actual sub-decomposition data for the initial NFD here
424 */
425 createNorm(lead)->combiningFlags|=1; /* combines forward */
426 createNorm(trail)->combiningFlags|=2; /* combines backward */
427
428 addCombiningCP(lead, 1);
429 addCombiningCP(trail, 2);
430
431 triple=(CombiningTriple *)utm_alloc(combiningTriplesMem);
432 triple->lead=lead;
433 triple->trail=trail;
434 triple->combined=combined;
435 }
436
437 static int
438 compareTriples(const void *l, const void *r) {
439 int diff;
440 diff=(int)((CombiningTriple *)l)->leadIndex-
441 (int)((CombiningTriple *)r)->leadIndex;
442 if(diff==0) {
443 diff=(int)((CombiningTriple *)l)->trailIndex-
444 (int)((CombiningTriple *)r)->trailIndex;
445 }
446 return diff;
447 }
448
449 static void
450 processCombining() {
451 CombiningTriple *triples;
452 uint16_t *p;
453 uint32_t combined;
454 uint16_t i, j, count, tableTop, finalIndex, combinesFwd;
455
456 triples=utm_getStart(combiningTriplesMem);
457
458 /* add lead and trail indexes to the triples for sorting */
459 count=(uint16_t)utm_countItems(combiningTriplesMem);
460 for(i=0; i<count; ++i) {
461 /* findCombiningCP() must always find the code point */
462 triples[i].leadIndex=findCombiningCP(triples[i].lead, TRUE);
463 triples[i].trailIndex=findCombiningCP(triples[i].trail, FALSE);
464 }
465
466 /* sort them by leadIndex, trailIndex */
467 qsort(triples, count, sizeof(CombiningTriple), compareTriples);
468
469 /* calculate final combining indexes and store them in the Norm entries */
470 tableTop=0;
471 j=0; /* triples counter */
472
473 /* first, combining indexes of fwd/both characters are indexes into the combiningTable */
474 for(i=0; i<combineBothTop; ++i) {
475 /* start a new table */
476
477 /* assign combining index */
478 createNorm(combiningCPs[i]&0xffffff)->combiningIndex=combiningIndexes[i]=tableTop;
479
480 /* calculate the length of the combining data for this lead code point in the combiningTable */
481 while(j<count && i==triples[j].leadIndex) {
482 /* count 2 to 3 16-bit units per composition entry (back-index, code point) */
483 combined=triples[j++].combined;
484 if(combined<=0x1fff) {
485 tableTop+=2;
486 } else {
487 tableTop+=3;
488 }
489 }
490 }
491
492 /* second, combining indexes of back-only characters are simply incremented from here to be unique */
493 finalIndex=tableTop;
494 for(; i<combineBackTop; ++i) {
495 createNorm(combiningCPs[i]&0xffffff)->combiningIndex=combiningIndexes[i]=finalIndex++;
496 }
497
498 /* it must be finalIndex<=0x8000 because bit 15 is used in combiningTable as an end-for-this-lead marker */
499 if(finalIndex>0x8000) {
500 fprintf(stderr, "error: gennorm combining table - trying to use %u units, more than the %ld units available\n",
501 tableTop, (long)(sizeof(combiningTable)/4));
502 exit(U_MEMORY_ALLOCATION_ERROR);
503 }
504
505 combiningTableTop=tableTop;
506
507 /* store the combining data in the combiningTable, with the final indexes from above */
508 p=combiningTable;
509 j=0; /* triples counter */
510
511 /*
512 * this is essentially the same loop as above, but
513 * it writes the table data instead of calculating and setting the final indexes;
514 * it is necessary to have two passes so that all the final indexes are known before
515 * they are written into the table
516 */
517 for(i=0; i<combineBothTop; ++i) {
518 /* start a new table */
519
520 combined=0; /* avoid compiler warning */
521
522 /* store the combining data for this lead code point in the combiningTable */
523 while(j<count && i==triples[j].leadIndex) {
524 Norm *normPtr;
525 finalIndex=combiningIndexes[triples[j].trailIndex];
526 combined=triples[j++].combined;
527 normPtr = getNorm(combined);
528
529 if (normPtr == NULL) {
530 fprintf(stderr, "error: processCombining did not get expected result. combined=%d\n", combined);
531 exit(U_INTERNAL_PROGRAM_ERROR);
532 }
533
534 /* is combined a starter? (i.e., cc==0 && combines forward) */
535 combinesFwd=(uint16_t)((normPtr->combiningFlags&1)<<13);
536
537 *p++=finalIndex;
538 if(combined<=0x1fff) {
539 *p++=(uint16_t)(combinesFwd|combined);
540 } else if(combined<=0xffff) {
541 *p++=(uint16_t)(0x8000|combinesFwd);
542 *p++=(uint16_t)combined;
543 } else {
544 *p++=(uint16_t)(0xc000|combinesFwd|((combined-0x10000)>>10));
545 *p++=(uint16_t)(0xdc00|(combined&0x3ff));
546 }
547 }
548
549 /* set a marker on the last final trail index in this lead's table */
550 if(combined<=0x1fff) {
551 *(p-2)|=0x8000;
552 } else {
553 *(p-3)|=0x8000;
554 }
555 }
556
557 /* post condition: tableTop==(p-combiningTable) */
558 }
559
560 /* processing incoming normalization data ----------------------------------- */
561
562 /*
563 * Decompose Hangul syllables algorithmically and fill a pseudo-Norm struct.
564 * c must be a Hangul syllable code point.
565 */
566 static void
567 getHangulDecomposition(uint32_t c, Norm *pHangulNorm, uint32_t hangulBuffer[3]) {
568 /* Hangul syllable: decompose algorithmically */
569 uint32_t c2;
570 uint8_t length;
571
572 uprv_memset(pHangulNorm, 0, sizeof(Norm));
573
574 c-=HANGUL_BASE;
575
576 c2=c%JAMO_T_COUNT;
577 c/=JAMO_T_COUNT;
578 if(c2>0) {
579 hangulBuffer[2]=JAMO_T_BASE+c2;
580 length=3;
581 } else {
582 hangulBuffer[2]=0;
583 length=2;
584 }
585
586 hangulBuffer[1]=JAMO_V_BASE+c%JAMO_V_COUNT;
587 hangulBuffer[0]=JAMO_L_BASE+c/JAMO_V_COUNT;
588
589 pHangulNorm->nfd=hangulBuffer;
590 pHangulNorm->lenNFD=length;
591 if(DO_STORE(UGENNORM_STORE_COMPAT)) {
592 pHangulNorm->nfkd=hangulBuffer;
593 pHangulNorm->lenNFKD=length;
594 }
595 }
596
597 /*
598 * decompose the one decomposition further, may generate two decompositions
599 * apply all previous characters' decompositions to this one
600 */
601 static void
602 decompStoreNewNF(uint32_t code, Norm *norm) {
603 uint32_t nfd[40], nfkd[40], hangulBuffer[3];
604 Norm hangulNorm;
605
606 uint32_t *s32;
607 Norm *p;
608 uint32_t c;
609 int32_t i, length;
610 uint8_t lenNFD=0, lenNFKD=0;
611 UBool changedNFD=FALSE, changedNFKD=FALSE;
612
613 if((length=norm->lenNFD)!=0) {
614 /* always allocate the original string */
615 changedNFD=TRUE;
616 s32=norm->nfd;
617 } else if((length=norm->lenNFKD)!=0) {
618 /* always allocate the original string */
619 changedNFKD=TRUE;
620 s32=norm->nfkd;
621 } else {
622 /* no decomposition here, nothing to do */
623 return;
624 }
625
626 /* decompose each code point */
627 for(i=0; i<length; ++i) {
628 c=s32[i];
629 p=getNorm(c);
630 if(p==NULL) {
631 if(HANGUL_BASE<=c && c<(HANGUL_BASE+HANGUL_COUNT)) {
632 getHangulDecomposition(c, &hangulNorm, hangulBuffer);
633 p=&hangulNorm;
634 } else {
635 /* no data, no decomposition */
636 nfd[lenNFD++]=c;
637 nfkd[lenNFKD++]=c;
638 continue;
639 }
640 }
641
642 /* canonically decompose c */
643 if(changedNFD) {
644 if(p->lenNFD!=0) {
645 uprv_memcpy(nfd+lenNFD, p->nfd, p->lenNFD*4);
646 lenNFD+=p->lenNFD;
647 } else {
648 nfd[lenNFD++]=c;
649 }
650 }
651
652 /* compatibility-decompose c */
653 if(p->lenNFKD!=0) {
654 uprv_memcpy(nfkd+lenNFKD, p->nfkd, p->lenNFKD*4);
655 lenNFKD+=p->lenNFKD;
656 changedNFKD=TRUE;
657 } else if(p->lenNFD!=0) {
658 uprv_memcpy(nfkd+lenNFKD, p->nfd, p->lenNFD*4);
659 lenNFKD+=p->lenNFD;
660 /*
661 * not changedNFKD=TRUE;
662 * so that we do not store a new nfkd if there was no nfkd string before
663 * and we only see canonical decompositions
664 */
665 } else {
666 nfkd[lenNFKD++]=c;
667 }
668 }
669
670 /* assume that norm->lenNFD==1 or ==2 */
671 if(norm->lenNFD==2 && !(norm->combiningFlags&0x80)) {
672 addCombiningTriple(s32[0], s32[1], code);
673 }
674
675 if(changedNFD) {
676 if(lenNFD!=0) {
677 s32=utm_allocN(utf32Mem, lenNFD);
678 uprv_memcpy(s32, nfd, lenNFD*4);
679 } else {
680 s32=NULL;
681 }
682 norm->lenNFD=lenNFD;
683 norm->nfd=s32;
684 setHaveSeenString(nfd, lenNFD);
685 }
686 if(changedNFKD) {
687 if(lenNFKD!=0) {
688 s32=utm_allocN(utf32Mem, lenNFKD);
689 uprv_memcpy(s32, nfkd, lenNFKD*4);
690 } else {
691 s32=NULL;
692 }
693 norm->lenNFKD=lenNFKD;
694 norm->nfkd=s32;
695 setHaveSeenString(nfkd, lenNFKD);
696 }
697 }
698
699 typedef struct DecompSingle {
700 uint32_t c;
701 Norm *norm;
702 } DecompSingle;
703
704 /*
705 * apply this one character's decompositions (there is at least one!) to
706 * all previous characters' decompositions to decompose them further
707 */
708 static void
709 decompWithSingleFn(void *context, uint32_t code, Norm *norm) {
710 uint32_t nfd[40], nfkd[40];
711 uint32_t *s32;
712 DecompSingle *me=(DecompSingle *)context;
713 uint32_t c, myC;
714 int32_t i, length;
715 uint8_t lenNFD=0, lenNFKD=0, myLenNFD, myLenNFKD;
716 UBool changedNFD=FALSE, changedNFKD=FALSE;
717
718 /* get the new character's data */
719 myC=me->c;
720 myLenNFD=me->norm->lenNFD;
721 myLenNFKD=me->norm->lenNFKD;
722 /* assume that myC has at least one decomposition */
723
724 if((length=norm->lenNFD)!=0 && myLenNFD!=0) {
725 /* apply NFD(myC) to norm->nfd */
726 s32=norm->nfd;
727 for(i=0; i<length; ++i) {
728 c=s32[i];
729 if(c==myC) {
730 uprv_memcpy(nfd+lenNFD, me->norm->nfd, myLenNFD*4);
731 lenNFD+=myLenNFD;
732 changedNFD=TRUE;
733 } else {
734 nfd[lenNFD++]=c;
735 }
736 }
737 }
738
739 if((length=norm->lenNFKD)!=0) {
740 /* apply NFD(myC) and NFKD(myC) to norm->nfkd */
741 s32=norm->nfkd;
742 for(i=0; i<length; ++i) {
743 c=s32[i];
744 if(c==myC) {
745 if(myLenNFKD!=0) {
746 uprv_memcpy(nfkd+lenNFKD, me->norm->nfkd, myLenNFKD*4);
747 lenNFKD+=myLenNFKD;
748 } else /* assume myLenNFD!=0 */ {
749 uprv_memcpy(nfkd+lenNFKD, me->norm->nfd, myLenNFD*4);
750 lenNFKD+=myLenNFD;
751 }
752 changedNFKD=TRUE;
753 } else {
754 nfkd[lenNFKD++]=c;
755 }
756 }
757 } else if((length=norm->lenNFD)!=0 && myLenNFKD!=0) {
758 /* apply NFKD(myC) to norm->nfd, forming a new norm->nfkd */
759 s32=norm->nfd;
760 for(i=0; i<length; ++i) {
761 c=s32[i];
762 if(c==myC) {
763 uprv_memcpy(nfkd+lenNFKD, me->norm->nfkd, myLenNFKD*4);
764 lenNFKD+=myLenNFKD;
765 changedNFKD=TRUE;
766 } else {
767 nfkd[lenNFKD++]=c;
768 }
769 }
770 }
771
772 /* set the new decompositions, forget the old ones */
773 if(changedNFD) {
774 if(lenNFD!=0) {
775 if(lenNFD>norm->lenNFD) {
776 s32=utm_allocN(utf32Mem, lenNFD);
777 } else {
778 s32=norm->nfd;
779 }
780 uprv_memcpy(s32, nfd, lenNFD*4);
781 } else {
782 s32=NULL;
783 }
784 norm->lenNFD=lenNFD;
785 norm->nfd=s32;
786 }
787 if(changedNFKD) {
788 if(lenNFKD!=0) {
789 if(lenNFKD>norm->lenNFKD) {
790 s32=utm_allocN(utf32Mem, lenNFKD);
791 } else {
792 s32=norm->nfkd;
793 }
794 uprv_memcpy(s32, nfkd, lenNFKD*4);
795 } else {
796 s32=NULL;
797 }
798 norm->lenNFKD=lenNFKD;
799 norm->nfkd=s32;
800 }
801 }
802
803 /*
804 * process the data for one code point listed in UnicodeData;
805 * UnicodeData itself never maps a code point to both NFD and NFKD
806 */
807 extern void
808 storeNorm(uint32_t code, Norm *norm) {
809 DecompSingle decompSingle;
810 Norm *p;
811
812 if(DO_NOT_STORE(UGENNORM_STORE_COMPAT)) {
813 /* ignore compatibility decomposition */
814 norm->lenNFKD=0;
815 }
816
817 /* copy existing derived normalization properties */
818 p=createNorm(code);
819 norm->qcFlags=p->qcFlags;
820 norm->combiningFlags=p->combiningFlags;
821 norm->fncIndex=p->fncIndex;
822
823 /* process the decomposition if there is one here */
824 if((norm->lenNFD|norm->lenNFKD)!=0) {
825 /* decompose this one decomposition further, may generate two decompositions */
826 decompStoreNewNF(code, norm);
827
828 /* has this code point been used in previous decompositions? */
829 if(HAVE_SEEN(code)) {
830 /* use this decomposition to decompose other decompositions further */
831 decompSingle.c=code;
832 decompSingle.norm=norm;
833 enumTrie(decompWithSingleFn, &decompSingle);
834 }
835 }
836
837 /* store the data */
838 uprv_memcpy(p, norm, sizeof(Norm));
839 }
840
841 extern void
842 setQCFlags(uint32_t code, uint8_t qcFlags) {
843 if(DO_NOT_STORE(UGENNORM_STORE_COMPAT)) {
844 /* ignore compatibility decomposition: unset the KC/KD flags */
845 qcFlags&=~(_NORM_QC_NFKC|_NORM_QC_NFKD);
846
847 /* set the KC/KD flags to the same values as the C/D flags */
848 qcFlags|=qcFlags<<1;
849 }
850 if(DO_NOT_STORE(UGENNORM_STORE_COMPOSITION)) {
851 /* ignore composition data: unset the C/KC flags */
852 qcFlags&=~(_NORM_QC_NFC|_NORM_QC_NFKC);
853
854 /* set the C/KC flags to the same values as the D/KD flags */
855 qcFlags|=qcFlags>>2;
856 }
857
858 createNorm(code)->qcFlags|=qcFlags;
859
860 /* adjust the minimum code point for quick check no/maybe */
861 if(code<0xffff) {
862 if((qcFlags&_NORM_QC_NFC) && (uint16_t)code<indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE]) {
863 indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE]=(uint16_t)code;
864 }
865 if((qcFlags&_NORM_QC_NFKC) && (uint16_t)code<indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE]) {
866 indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE]=(uint16_t)code;
867 }
868 if((qcFlags&_NORM_QC_NFD) && (uint16_t)code<indexes[_NORM_INDEX_MIN_NFD_NO_MAYBE]) {
869 indexes[_NORM_INDEX_MIN_NFD_NO_MAYBE]=(uint16_t)code;
870 }
871 if((qcFlags&_NORM_QC_NFKD) && (uint16_t)code<indexes[_NORM_INDEX_MIN_NFKD_NO_MAYBE]) {
872 indexes[_NORM_INDEX_MIN_NFKD_NO_MAYBE]=(uint16_t)code;
873 }
874 }
875
876 if(qcFlags&_NORM_QC_NFD) {
877 uset_add(nfdQCNoSet, (UChar32)code);
878 }
879 }
880
881 extern void
882 setCompositionExclusion(uint32_t code) {
883 if(DO_STORE(UGENNORM_STORE_COMPOSITION)) {
884 createNorm(code)->combiningFlags|=0x80;
885 }
886 }
887
888 static void
889 setHangulJamoSpecials() {
890 Norm *norm;
891 uint32_t c, hangul;
892
893 /*
894 * Hangul syllables are algorithmically decomposed into Jamos,
895 * and Jamos are algorithmically composed into Hangul syllables.
896 * The quick check flags are parsed, except for Hangul.
897 */
898
899 /* set Jamo L specials */
900 hangul=0xac00;
901 for(c=0x1100; c<=0x1112; ++c) {
902 norm=createNorm(c);
903 norm->specialTag=_NORM_EXTRA_INDEX_TOP+_NORM_EXTRA_JAMO_L;
904 if(DO_STORE(UGENNORM_STORE_COMPOSITION)) {
905 norm->combiningFlags=1;
906 }
907
908 /* for each Jamo L create a set with its associated Hangul block */
909 norm->canonStart=uset_open(hangul, hangul+21*28-1);
910 hangul+=21*28;
911 }
912
913 /* set Jamo V specials */
914 for(c=0x1161; c<=0x1175; ++c) {
915 norm=createNorm(c);
916 norm->specialTag=_NORM_EXTRA_INDEX_TOP+_NORM_EXTRA_JAMO_V;
917 if(DO_STORE(UGENNORM_STORE_COMPOSITION)) {
918 norm->combiningFlags=2;
919 }
920 norm->unsafeStart=TRUE;
921 }
922
923 /* set Jamo T specials */
924 for(c=0x11a8; c<=0x11c2; ++c) {
925 norm=createNorm(c);
926 norm->specialTag=_NORM_EXTRA_INDEX_TOP+_NORM_EXTRA_JAMO_T;
927 if(DO_STORE(UGENNORM_STORE_COMPOSITION)) {
928 norm->combiningFlags=2;
929 }
930 norm->unsafeStart=TRUE;
931 }
932
933 /* set Hangul specials, precompacted */
934 norm=allocNorm();
935 norm->specialTag=_NORM_EXTRA_INDEX_TOP+_NORM_EXTRA_HANGUL;
936 if(DO_STORE(UGENNORM_STORE_COMPAT)) {
937 norm->qcFlags=_NORM_QC_NFD|_NORM_QC_NFKD;
938 } else {
939 norm->qcFlags=_NORM_QC_NFD;
940 }
941
942 if(!utrie_setRange32(normTrie, 0xac00, 0xd7a4, (uint32_t)(norm-norms), TRUE)) {
943 fprintf(stderr, "error: too many normalization entries (setting Hangul)\n");
944 exit(U_BUFFER_OVERFLOW_ERROR);
945 }
946 }
947
948 /*
949 * set FC-NFKC-Closure string
950 * s contains the closure string; s[0]==length, s[1..length] is the actual string
951 * may modify s[0]
952 */
953 U_CFUNC void
954 setFNC(uint32_t c, UChar *s) {
955 uint16_t *p;
956 int32_t length, i, count;
957 UChar first;
958
959 if( DO_NOT_STORE(UGENNORM_STORE_COMPAT) ||
960 DO_NOT_STORE(UGENNORM_STORE_COMPOSITION) ||
961 DO_NOT_STORE(UGENNORM_STORE_AUX)
962 ) {
963 return;
964 }
965
966 count=utm_countItems(extraMem);
967 length=s[0];
968 first=s[1];
969
970 /* try to overlay single-unit strings with existing ones */
971 if(length==1 && first<0xff00) {
972 p=utm_getStart(extraMem);
973 for(i=1; i<count; ++i) {
974 if(first==p[i]) {
975 break;
976 }
977 }
978 } else {
979 i=count;
980 }
981
982 /* append the new string if it cannot be overlayed with an old one */
983 if(i==count) {
984 if(count>_NORM_AUX_MAX_FNC) {
985 fprintf(stderr, "gennorm error: too many FNC strings\n");
986 exit(U_INDEX_OUTOFBOUNDS_ERROR);
987 }
988
989 /* prepend 0xffxx with xx==length */
990 s[0]=(uint16_t)(0xff00+length);
991 ++length;
992 p=(uint16_t *)utm_allocN(extraMem, length);
993 uprv_memcpy(p, s, length*2);
994
995 /* update the top index in extraMem[0] */
996 count+=length;
997 ((uint16_t *)utm_getStart(extraMem))[0]=(uint16_t)count;
998 }
999
1000 /* store the index to the string */
1001 createNorm(c)->fncIndex=i;
1002 }
1003
1004 /* build runtime structures ------------------------------------------------- */
1005
1006 /* canonically reorder a UTF-32 string; return { leadCC, trailCC } */
1007 static uint16_t
1008 reorderString(uint32_t *s, int32_t length) {
1009 uint8_t ccs[40];
1010 uint32_t c;
1011 int32_t i, j;
1012 uint8_t cc, prevCC;
1013
1014 if(length<=0) {
1015 return 0;
1016 }
1017
1018 for(i=0; i<length; ++i) {
1019 /* get the i-th code point and its combining class */
1020 c=s[i];
1021 cc=getCCFromCP(c);
1022 if(cc!=0 && i!=0) {
1023 /* it is a combining mark, see if it needs to be moved back */
1024 j=i;
1025 do {
1026 prevCC=ccs[j-1];
1027 if(prevCC<=cc) {
1028 break; /* found the right place */
1029 }
1030 /* move the previous code point here and go back */
1031 s[j]=s[j-1];
1032 ccs[j]=prevCC;
1033 } while(--j!=0);
1034 s[j]=c;
1035 ccs[j]=cc;
1036 } else {
1037 /* just store the combining class */
1038 ccs[i]=cc;
1039 }
1040 }
1041
1042 return (uint16_t)(((uint16_t)ccs[0]<<8)|ccs[length-1]);
1043 }
1044
1045 #if 0
1046 static UBool combineAndQC[64]={ 0 };
1047 #endif
1048
1049 /*
1050 * canonically reorder the up to two decompositions
1051 * and store the leading and trailing combining classes accordingly
1052 *
1053 * also process canonical decompositions for canonical closure
1054 */
1055 static void
1056 postParseFn(void *context, uint32_t code, Norm *norm) {
1057 int32_t length;
1058
1059 /* canonically order the NFD */
1060 length=norm->lenNFD;
1061 if(length>0) {
1062 norm->canonBothCCs=reorderString(norm->nfd, length);
1063 }
1064
1065 /* canonically reorder the NFKD */
1066 length=norm->lenNFKD;
1067 if(length>0) {
1068 norm->compatBothCCs=reorderString(norm->nfkd, length);
1069 }
1070
1071 /* verify that code has a decomposition if and only if the quick check flags say "no" on NF(K)D */
1072 if((norm->lenNFD!=0) != ((norm->qcFlags&_NORM_QC_NFD)!=0)) {
1073 fprintf(stderr, "gennorm warning: U+%04lx has NFD[%d] but quick check 0x%02x\n", (long)code, norm->lenNFD, norm->qcFlags);
1074 }
1075 if(((norm->lenNFD|norm->lenNFKD)!=0) != ((norm->qcFlags&(_NORM_QC_NFD|_NORM_QC_NFKD))!=0)) {
1076 fprintf(stderr, "gennorm warning: U+%04lx has NFD[%d] NFKD[%d] but quick check 0x%02x\n", (long)code, norm->lenNFD, norm->lenNFKD, norm->qcFlags);
1077 }
1078
1079 /* see which combinations of combiningFlags and qcFlags are used for NFC/NFKC */
1080 #if 0
1081 combineAndQC[(norm->qcFlags&0x33)|((norm->combiningFlags&3)<<2)]=1;
1082 #endif
1083
1084 if(norm->combiningFlags&1) {
1085 if(norm->udataCC!=0) {
1086 /* illegal - data-derivable composition exclusion */
1087 fprintf(stderr, "gennorm warning: U+%04lx combines forward but udataCC==%u\n", (long)code, norm->udataCC);
1088 }
1089 }
1090 if(norm->combiningFlags&2) {
1091 if((norm->qcFlags&0x11)==0) {
1092 fprintf(stderr, "gennorm warning: U+%04lx combines backward but qcNF?C==0\n", (long)code);
1093 }
1094 #if 0
1095 /* occurs sometimes, this one is ok (therefore #if 0) - still here for documentation */
1096 if(norm->udataCC==0) {
1097 printf("U+%04lx combines backward but udataCC==0\n", (long)code);
1098 }
1099 #endif
1100 }
1101 if((norm->combiningFlags&3)==3 && beVerbose) {
1102 printf("U+%04lx combines both ways\n", (long)code);
1103 }
1104
1105 /*
1106 * process canonical decompositions for canonical closure
1107 *
1108 * in each canonical decomposition:
1109 * add the current character (code) to the set of canonical starters of its norm->nfd[0]
1110 * set the "unsafe starter" flag for each norm->nfd[1..]
1111 */
1112 length=norm->lenNFD;
1113 if(length>0) {
1114 Norm *otherNorm;
1115 UChar32 c;
1116 int32_t i;
1117
1118 /* nfd[0].canonStart.add(code) */
1119 c=norm->nfd[0];
1120 otherNorm=createNorm(c);
1121 if(otherNorm->canonStart==NULL) {
1122 otherNorm->canonStart=uset_open(code, code);
1123 if(otherNorm->canonStart==NULL) {
1124 fprintf(stderr, "gennorm error: out of memory in uset_open()\n");
1125 exit(U_MEMORY_ALLOCATION_ERROR);
1126 }
1127 } else {
1128 uset_add(otherNorm->canonStart, code);
1129 if(!uset_contains(otherNorm->canonStart, code)) {
1130 fprintf(stderr, "gennorm error: uset_add(setOf(U+%4x), U+%4x)\n", (int)c, (int)code);
1131 exit(U_INTERNAL_PROGRAM_ERROR);
1132 }
1133 }
1134
1135 /* for(i=1..length-1) nfd[i].unsafeStart=TRUE */
1136 for(i=1; i<length; ++i) {
1137 createNorm(norm->nfd[i])->unsafeStart=TRUE;
1138 }
1139 }
1140 }
1141
1142 static uint32_t
1143 make32BitNorm(Norm *norm) {
1144 UChar extra[100];
1145 const Norm *other;
1146 uint32_t word;
1147 int32_t i, length, beforeZero=0, count, start;
1148
1149 /*
1150 * Check for assumptions:
1151 *
1152 * Test that if a "true starter" (cc==0 && NF*C_YES) decomposes,
1153 * then the decomposition also begins with a true starter.
1154 */
1155 if(norm->udataCC==0) {
1156 /* this is a starter */
1157 if((norm->qcFlags&_NORM_QC_NFC)==0 && norm->lenNFD>0) {
1158 /* a "true" NFC starter with a canonical decomposition */
1159 if( norm->canonBothCCs>=0x100 || /* lead cc!=0 or */
1160 ((other=getNorm(norm->nfd[0]))!=NULL && (other->qcFlags&_NORM_QC_NFC)!=0) /* nfd[0] not NFC_YES */
1161 ) {
1162 fprintf(stderr,
1163 "error: true NFC starter canonical decomposition[%u] does not begin\n"
1164 " with a true NFC starter: U+%04lx U+%04lx%s\n",
1165 norm->lenNFD, (long)norm->nfd[0], (long)norm->nfd[1],
1166 norm->lenNFD<=2 ? "" : " ...");
1167 exit(U_INVALID_TABLE_FILE);
1168 }
1169 }
1170
1171 if((norm->qcFlags&_NORM_QC_NFKC)==0) {
1172 if(norm->lenNFKD>0) {
1173 /* a "true" NFKC starter with a compatibility decomposition */
1174 if( norm->compatBothCCs>=0x100 || /* lead cc!=0 or */
1175 ((other=getNorm(norm->nfkd[0]))!=NULL && (other->qcFlags&_NORM_QC_NFKC)!=0) /* nfkd[0] not NFKC_YES */
1176 ) {
1177 fprintf(stderr,
1178 "error: true NFKC starter compatibility decomposition[%u] does not begin\n"
1179 " with a true NFKC starter: U+%04lx U+%04lx%s\n",
1180 norm->lenNFKD, (long)norm->nfkd[0], (long)norm->nfkd[1],
1181 norm->lenNFKD<=2 ? "" : " ...");
1182 exit(U_INVALID_TABLE_FILE);
1183 }
1184 } else if(norm->lenNFD>0) {
1185 /* a "true" NFKC starter with only a canonical decomposition */
1186 if( norm->canonBothCCs>=0x100 || /* lead cc!=0 or */
1187 ((other=getNorm(norm->nfd[0]))!=NULL && (other->qcFlags&_NORM_QC_NFKC)!=0) /* nfd[0] not NFKC_YES */
1188 ) {
1189 fprintf(stderr,
1190 "error: true NFKC starter canonical decomposition[%u] does not begin\n"
1191 " with a true NFKC starter: U+%04lx U+%04lx%s\n",
1192 norm->lenNFD, (long)norm->nfd[0], (long)norm->nfd[1],
1193 norm->lenNFD<=2 ? "" : " ...");
1194 exit(U_INVALID_TABLE_FILE);
1195 }
1196 }
1197 }
1198 }
1199
1200 /* reset the 32-bit word and set the quick check flags */
1201 word=norm->qcFlags;
1202
1203 /* set the UnicodeData combining class */
1204 word|=(uint32_t)norm->udataCC<<_NORM_CC_SHIFT;
1205
1206 /* set the combining flag and index */
1207 if(norm->combiningFlags&3) {
1208 word|=(uint32_t)(norm->combiningFlags&3)<<6;
1209 }
1210
1211 /* set the combining index value into the extra data */
1212 /* 0xffff: no combining index; 0..0x7fff: combining index */
1213 if(norm->combiningIndex!=0xffff) {
1214 extra[0]=norm->combiningIndex;
1215 beforeZero=1;
1216 }
1217
1218 count=beforeZero;
1219
1220 /* write the decompositions */
1221 if((norm->lenNFD|norm->lenNFKD)!=0) {
1222 extra[count++]=0; /* set the pieces when available, into extra[beforeZero] */
1223
1224 length=norm->lenNFD;
1225 if(length>0) {
1226 if(norm->canonBothCCs!=0) {
1227 extra[beforeZero]|=0x80;
1228 extra[count++]=norm->canonBothCCs;
1229 }
1230 start=count;
1231 for(i=0; i<length; ++i) {
1232 UTF_APPEND_CHAR_UNSAFE(extra, count, norm->nfd[i]);
1233 }
1234 extra[beforeZero]|=(UChar)(count-start); /* set the decomp length as the number of UTF-16 code units */
1235 }
1236
1237 length=norm->lenNFKD;
1238 if(length>0) {
1239 if(norm->compatBothCCs!=0) {
1240 extra[beforeZero]|=0x8000;
1241 extra[count++]=norm->compatBothCCs;
1242 }
1243 start=count;
1244 for(i=0; i<length; ++i) {
1245 UTF_APPEND_CHAR_UNSAFE(extra, count, norm->nfkd[i]);
1246 }
1247 extra[beforeZero]|=(UChar)((count-start)<<8); /* set the decomp length as the number of UTF-16 code units */
1248 }
1249 }
1250
1251 /* allocate and copy the extra data */
1252 if(count!=0) {
1253 UChar *p;
1254
1255 if(norm->specialTag!=0) {
1256 fprintf(stderr, "error: gennorm - illegal to have both extra data and a special tag (0x%x)\n", norm->specialTag);
1257 exit(U_ILLEGAL_ARGUMENT_ERROR);
1258 }
1259
1260 p=(UChar *)utm_allocN(extraMem, count);
1261 uprv_memcpy(p, extra, count*2);
1262
1263 /* set the extra index, offset by beforeZero */
1264 word|=(uint32_t)(beforeZero+(p-(UChar *)utm_getStart(extraMem)))<<_NORM_EXTRA_SHIFT;
1265 } else if(norm->specialTag!=0) {
1266 /* set a special tag instead of an extra index */
1267 word|=(uint32_t)norm->specialTag<<_NORM_EXTRA_SHIFT;
1268 }
1269
1270 return word;
1271 }
1272
1273 /* turn all Norm structs into corresponding 32-bit norm values */
1274 static void
1275 makeAll32() {
1276 uint32_t *pNormData;
1277 uint32_t n;
1278 int32_t i, normLength, count;
1279
1280 count=(int32_t)utm_countItems(normMem);
1281 for(i=0; i<count; ++i) {
1282 norms[i].value32=make32BitNorm(norms+i);
1283 }
1284
1285 pNormData=utrie_getData(norm32Trie, &normLength);
1286
1287 count=0; /* count is now just used for debugging */
1288 for(i=0; i<normLength; ++i) {
1289 n=pNormData[i];
1290 if(0!=(pNormData[i]=norms[n].value32)) {
1291 ++count;
1292 }
1293 }
1294 }
1295
1296 /*
1297 * extract all Norm.canonBothCCs into the FCD table
1298 * set 32-bit values to use the common fold and compact functions
1299 */
1300 static void
1301 makeFCD() {
1302 uint32_t *pFCDData;
1303 uint32_t n;
1304 int32_t i, count, fcdLength;
1305 uint16_t bothCCs;
1306
1307 count=utm_countItems(normMem);
1308 for(i=0; i<count; ++i) {
1309 bothCCs=norms[i].canonBothCCs;
1310 if(bothCCs==0) {
1311 /* if there are no decomposition cc's then use the udataCC twice */
1312 bothCCs=norms[i].udataCC;
1313 bothCCs|=bothCCs<<8;
1314 }
1315 norms[i].value32=bothCCs;
1316 }
1317
1318 pFCDData=utrie_getData(fcdTrie, &fcdLength);
1319
1320 for(i=0; i<fcdLength; ++i) {
1321 n=pFCDData[i];
1322 pFCDData[i]=norms[n].value32;
1323 }
1324 }
1325
1326 /**
1327 * If the given set contains exactly one character, then return it.
1328 * Otherwise return -1.
1329 */
1330 static int32_t
1331 usetContainsOne(const USet* set) {
1332 if(uset_getItemCount(set)==1) {
1333 /* there is a single item (a single range) */
1334 UChar32 start, end;
1335 UErrorCode ec=U_ZERO_ERROR;
1336 int32_t len=uset_getItem(set, 0, &start, &end, NULL, 0, &ec);
1337 if (len==0 && start==end) { /* a range (len==0) with a single code point */
1338 return start;
1339 }
1340 }
1341 return -1;
1342 }
1343
1344 static void
1345 makeCanonSetFn(void *context, uint32_t code, Norm *norm) {
1346 if(norm->canonStart!=NULL && !uset_isEmpty(norm->canonStart)) {
1347 uint16_t *table;
1348 int32_t c, tableLength;
1349 UErrorCode errorCode=U_ZERO_ERROR;
1350
1351 /* does the set contain exactly one code point? */
1352 c=usetContainsOne(norm->canonStart);
1353
1354 /* add an entry to the BMP or supplementary search table */
1355 if(code<=0xffff) {
1356 table=canonStartSets+_NORM_MAX_CANON_SETS;
1357 tableLength=canonStartSets[_NORM_SET_INDEX_CANON_BMP_TABLE_LENGTH];
1358
1359 table[tableLength++]=(uint16_t)code;
1360
1361 if(c>=0 && c<=0xffff && (c&_NORM_CANON_SET_BMP_MASK)!=_NORM_CANON_SET_BMP_IS_INDEX) {
1362 /* single-code point BMP result for BMP code point */
1363 table[tableLength++]=(uint16_t)c;
1364 } else {
1365 table[tableLength++]=(uint16_t)(_NORM_CANON_SET_BMP_IS_INDEX|canonStartSetsTop);
1366 c=-1;
1367 }
1368 canonStartSets[_NORM_SET_INDEX_CANON_BMP_TABLE_LENGTH]=(uint16_t)tableLength;
1369 } else {
1370 table=canonStartSets+_NORM_MAX_CANON_SETS+_NORM_MAX_SET_SEARCH_TABLE_LENGTH;
1371 tableLength=canonStartSets[_NORM_SET_INDEX_CANON_SUPP_TABLE_LENGTH];
1372
1373 table[tableLength++]=(uint16_t)(code>>16);
1374 table[tableLength++]=(uint16_t)code;
1375
1376 if(c>=0) {
1377 /* single-code point result for supplementary code point */
1378 table[tableLength-2]|=(uint16_t)(0x8000|((c>>8)&0x1f00));
1379 table[tableLength++]=(uint16_t)c;
1380 } else {
1381 table[tableLength++]=(uint16_t)canonStartSetsTop;
1382 }
1383 canonStartSets[_NORM_SET_INDEX_CANON_SUPP_TABLE_LENGTH]=(uint16_t)tableLength;
1384 }
1385
1386 if(c<0) {
1387 /* write a USerializedSet */
1388 ++canonSetsCount;
1389 canonStartSetsTop+=
1390 uset_serialize(norm->canonStart,
1391 canonStartSets+canonStartSetsTop,
1392 _NORM_MAX_CANON_SETS-canonStartSetsTop,
1393 &errorCode);
1394 }
1395 canonStartSets[_NORM_SET_INDEX_CANON_SETS_LENGTH]=(uint16_t)canonStartSetsTop;
1396
1397 if(U_FAILURE(errorCode)) {
1398 fprintf(stderr, "gennorm error: uset_serialize()->%s (canonStartSetsTop=%d)\n", u_errorName(errorCode), (int)canonStartSetsTop);
1399 exit(errorCode);
1400 }
1401 if(tableLength>_NORM_MAX_SET_SEARCH_TABLE_LENGTH) {
1402 fprintf(stderr, "gennorm error: search table for canonical starter sets too long\n");
1403 exit(U_INDEX_OUTOFBOUNDS_ERROR);
1404 }
1405 }
1406 }
1407
1408 /* for getSkippableFlags ---------------------------------------------------- */
1409
1410 /* combine the lead and trail code points; return <0 if they do not combine */
1411 static int32_t
1412 combine(uint32_t lead, uint32_t trail) {
1413 CombiningTriple *triples;
1414 uint32_t i, count;
1415
1416 /* search for all triples with c as lead code point */
1417 triples=utm_getStart(combiningTriplesMem);
1418 count=utm_countItems(combiningTriplesMem);
1419
1420 /* triples are not sorted by code point but for each lead CP there is one contiguous block */
1421 for(i=0; i<count && lead!=triples[i].lead; ++i) {}
1422
1423 /* check each triple for this code point */
1424 for(; i<count && lead==triples[i].lead; ++i) {
1425 if(trail==triples[i].trail) {
1426 return (int32_t)triples[i].combined;
1427 }
1428 }
1429
1430 return -1;
1431 }
1432
1433 /*
1434 * Starting from the canonical decomposition s[0..length[ of a single code point,
1435 * is the code point c consumed in an NFC/FCC recomposition?
1436 *
1437 * No need to handle discontiguous composition because that would not consume some
1438 * intermediate character, so would not compose back to the original character.
1439 * See comments in canChangeWithFollowing().
1440 *
1441 * No need to compose beyond where c canonically orders because if it is consumed
1442 * then the result differs from the original anyway.
1443 *
1444 * Possible optimization:
1445 * - Verify that there are no cases of the same combining mark stacking twice.
1446 * - return FALSE right away if c inserts after a copy of itself
1447 * without attempting to recompose; will happen because each mark in
1448 * the decomposition will be enumerated and passed in as c.
1449 * More complicated and fragile though than it is already.
1450 *
1451 * markus 2002nov04
1452 */
1453 static UBool
1454 doesComposeConsume(const uint32_t *s, int32_t length, uint32_t c, uint8_t cc) {
1455 int32_t starter, i;
1456
1457 /* ignore trailing characters where cc<prevCC */
1458 while(length>1 && cc<getCCFromCP(s[length-1])) {
1459 --length;
1460 }
1461
1462 /* start consuming/combining from the beginning */
1463 starter=(int32_t)s[0];
1464 for(i=1; i<length; ++i) {
1465 starter=combine((uint32_t)starter, s[i]);
1466 if(starter<0) {
1467 fprintf(stderr, "error: unable to consume normal decomposition in doesComposeConsume(<%04x, %04x, ...>[%d], U+%04x, %u)\n",
1468 (int)s[0], (int)s[1], (int)length, (int)c, cc);
1469 exit(U_INTERNAL_PROGRAM_ERROR);
1470 }
1471 }
1472
1473 /* try to combine/consume c, return TRUE if it is consumed */
1474 return combine((uint32_t)starter, c)>=0;
1475 }
1476
1477 /* does the starter s[0] combine forward with another char that is below trailCC? */
1478 static UBool
1479 canChangeWithFollowing(const uint32_t *s, int32_t length, uint8_t trailCC) {
1480 if(trailCC<=1) {
1481 /* no character will combine ahead of the trailing char of the decomposition */
1482 return FALSE;
1483 }
1484
1485 /*
1486 * We are only checking skippable condition (f).
1487 * Therefore, the original character does not have quick check flag NFC_NO (c),
1488 * i.e., the decomposition recomposes completely back into the original code point.
1489 * So s[0] must be a true starter with cc==0 and
1490 * combining with following code points.
1491 *
1492 * Similarly, length==1 is not possible because that would be a singleton
1493 * decomposition which is marked with NFC_NO and does not pass (c).
1494 *
1495 * Only a character with cc<trailCC can change the composition.
1496 * Reason: A char with cc>=trailCC would order after decomposition s[],
1497 * composition would consume all of the decomposition, and here we know that
1498 * the original char passed check d), i.e., it does not combine forward,
1499 * therefore does not combine with anything after the decomposition is consumed.
1500 *
1501 * Now see if there is a character that
1502 * 1. combines backward
1503 * 2. has cc<trailCC
1504 * 3. is consumed in recomposition
1505 *
1506 * length==2 is simple:
1507 *
1508 * Characters that fulfill these conditions are exactly the ones that combine directly
1509 * with the starter c==s[0] because there is no intervening character after
1510 * reordering.
1511 * We can just enumerate all chars with which c combines (they all pass 1. and 3.)
1512 * and see if one has cc<trailCC (passes 2.).
1513 *
1514 * length>2 is a little harder:
1515 *
1516 * Since we will get different starters during recomposition, we need to
1517 * enumerate each backward-combining character (1.)
1518 * with cc<trailCC (2.) and
1519 * see if it gets consumed in recomposition. (3.)
1520 * No need to enumerate both-ways combining characters because they must have cc==0.
1521 */
1522 if(length==2) {
1523 /* enumerate all chars that combine with this one and check their cc */
1524 CombiningTriple *triples;
1525 uint32_t c, i, count;
1526 uint8_t cc;
1527
1528 /* search for all triples with c as lead code point */
1529 triples=utm_getStart(combiningTriplesMem);
1530 count=utm_countItems(combiningTriplesMem);
1531 c=s[0];
1532
1533 /* triples are not sorted by code point but for each lead CP there is one contiguous block */
1534 for(i=0; i<count && c!=triples[i].lead; ++i) {}
1535
1536 /* check each triple for this code point */
1537 for(; i<count && c==triples[i].lead; ++i) {
1538 cc=getCCFromCP(triples[i].trail);
1539 if(cc>0 && cc<trailCC) {
1540 /* this trail code point combines with c and has cc<trailCC */
1541 return TRUE;
1542 }
1543 }
1544 } else {
1545 /* enumerate all chars that combine backward */
1546 uint32_t c2;
1547 uint16_t i;
1548 uint8_t cc;
1549
1550 for(i=combineBothTop; i<combineBackTop; ++i) {
1551 c2=combiningCPs[i]&0xffffff;
1552 cc=getCCFromCP(c2);
1553 /* pass in length-1 because we already know that c2 will insert before the last character with trailCC */
1554 if(cc>0 && cc<trailCC && doesComposeConsume(s, length-1, c2, cc)) {
1555 return TRUE;
1556 }
1557 }
1558 }
1559
1560 /* this decomposition is not modified by any appended character */
1561 return FALSE;
1562 }
1563
1564 /* see unormimp.h for details on NF*C Skippable flags */
1565 static uint32_t
1566 getSkippableFlags(const Norm *norm) {
1567 /* ignore NF*D skippable properties because they are covered by norm32, test at runtime */
1568
1569 /* ignore Hangul, test those at runtime (LV Hangul are not skippable) */
1570 if(norm->specialTag==_NORM_EXTRA_INDEX_TOP+_NORM_EXTRA_HANGUL) {
1571 return 0;
1572 }
1573
1574 /* ### TODO check other data generation functions whether they should & do ignore Hangul/Jamo specials */
1575
1576 /*
1577 * Note:
1578 * This function returns a non-zero flag only if (a)..(e) indicate skippable but (f) does not.
1579 *
1580 * This means that (a)..(e) must always be derived from the runtime norm32 value,
1581 * and (f) be checked from the auxTrie if the character is skippable per (a)..(e),
1582 * the form is NF*C and there is a canonical decomposition (NFD_NO).
1583 *
1584 * (a) unassigned code points get "not skippable"==false because they
1585 * don't have a Norm struct so they won't get here
1586 */
1587
1588 /* (b) not skippable if cc!=0 */
1589 if(norm->udataCC!=0) {
1590 return 0; /* non-zero flag for (f) only */
1591 }
1592
1593 /*
1594 * not NFC_Skippable if
1595 * (c) quick check flag == NO or
1596 * (d) combines forward or
1597 * (e) combines back or
1598 * (f) can change if another character is added
1599 *
1600 * for (f):
1601 * For NF*C: Get corresponding decomposition, get its last starter (cc==0),
1602 * check its composition list,
1603 * see if any of the second code points in the list
1604 * has cc less than the trailCC of the decomposition.
1605 *
1606 * For FCC: Test at runtime if the decomposition has a trailCC>1
1607 * -> there are characters with cc==1, they would order before the trail char
1608 * and prevent contiguous combination with the trail char.
1609 */
1610 if( (norm->qcFlags&(_NORM_QC_NFC&_NORM_QC_ANY_NO))!=0 ||
1611 (norm->combiningFlags&3)!=0) {
1612 return 0; /* non-zero flag for (f) only */
1613 }
1614 if(norm->lenNFD!=0 && canChangeWithFollowing(norm->nfd, norm->lenNFD, (uint8_t)norm->canonBothCCs)) {
1615 return _NORM_AUX_NFC_SKIP_F_MASK;
1616 }
1617
1618 return 0; /* skippable */
1619 }
1620
1621 static void
1622 makeAux() {
1623 Norm *norm;
1624 uint32_t *pData;
1625 int32_t i, length;
1626
1627 pData=utrie_getData(auxTrie, &length);
1628
1629 for(i=0; i<length; ++i) {
1630 norm=norms+pData[i];
1631 /*
1632 * 16-bit auxiliary normalization properties
1633 * see unormimp.h
1634 */
1635 pData[i]=
1636 ((uint32_t)(norm->combiningFlags&0x80)<<(_NORM_AUX_COMP_EX_SHIFT-7))|
1637 (uint32_t)norm->fncIndex;
1638
1639 if(norm->unsafeStart || norm->udataCC!=0) {
1640 pData[i]|=_NORM_AUX_UNSAFE_MASK;
1641 }
1642
1643 pData[i]|=getSkippableFlags(norm);
1644 }
1645 }
1646
1647 /* folding value for normalization: just store the offset (16 bits) if there is any non-0 entry */
1648 static uint32_t U_CALLCONV
1649 getFoldedNormValue(UNewTrie *trie, UChar32 start, int32_t offset) {
1650 uint32_t value, leadNorm32=0;
1651 UChar32 limit;
1652 UBool inBlockZero;
1653
1654 limit=start+0x400;
1655 while(start<limit) {
1656 value=utrie_get32(trie, start, &inBlockZero);
1657 if(inBlockZero) {
1658 start+=UTRIE_DATA_BLOCK_LENGTH;
1659 } else {
1660 if(value!=0) {
1661 leadNorm32|=value;
1662 }
1663 ++start;
1664 }
1665 }
1666
1667 /* turn multi-bit fields into the worst-case value */
1668 if(leadNorm32&_NORM_CC_MASK) {
1669 leadNorm32|=_NORM_CC_MASK;
1670 }
1671
1672 /* clean up unnecessarily ored bit fields */
1673 leadNorm32&=~((uint32_t)0xffffffff<<_NORM_EXTRA_SHIFT);
1674
1675 if(leadNorm32==0) {
1676 /* nothing to do (only composition exclusions?) */
1677 return 0;
1678 }
1679
1680 /* add the extra surrogate index, offset by the BMP top, for the new stage 1 location */
1681 leadNorm32|=(
1682 (uint32_t)_NORM_EXTRA_INDEX_TOP+
1683 (uint32_t)((offset-UTRIE_BMP_INDEX_LENGTH)>>UTRIE_SURROGATE_BLOCK_BITS)
1684 )<<_NORM_EXTRA_SHIFT;
1685
1686 return leadNorm32;
1687 }
1688
1689 /* folding value for FCD: use default function (just store the offset (16 bits) if there is any non-0 entry) */
1690
1691 /*
1692 * folding value for auxiliary data:
1693 * store the non-zero offset in bits 9..0 (FNC bits)
1694 * if there is any non-0 entry;
1695 * "or" [verb!] together data bits 15..10 of all of the 1024 supplementary code points
1696 */
1697 static uint32_t U_CALLCONV
1698 getFoldedAuxValue(UNewTrie *trie, UChar32 start, int32_t offset) {
1699 uint32_t value, oredValues;
1700 UChar32 limit;
1701 UBool inBlockZero;
1702
1703 oredValues=0;
1704 limit=start+0x400;
1705 while(start<limit) {
1706 value=utrie_get32(trie, start, &inBlockZero);
1707 if(inBlockZero) {
1708 start+=UTRIE_DATA_BLOCK_LENGTH;
1709 } else {
1710 oredValues|=value;
1711 ++start;
1712 }
1713 }
1714
1715 if(oredValues!=0) {
1716 /* move the 10 significant offset bits into bits 9..0 */
1717 offset>>=UTRIE_SURROGATE_BLOCK_BITS;
1718 if(offset>_NORM_AUX_FNC_MASK) {
1719 fprintf(stderr, "gennorm error: folding offset too large (auxTrie)\n");
1720 exit(U_INDEX_OUTOFBOUNDS_ERROR);
1721 }
1722 return (uint32_t)offset|(oredValues&~_NORM_AUX_FNC_MASK);
1723 } else {
1724 return 0;
1725 }
1726 }
1727
1728 extern void
1729 processData() {
1730 #if 0
1731 uint16_t i;
1732 #endif
1733
1734 processCombining();
1735
1736 /* canonically reorder decompositions and assign combining classes for decompositions */
1737 enumTrie(postParseFn, NULL);
1738
1739 #if 0
1740 for(i=1; i<64; ++i) {
1741 if(combineAndQC[i]) {
1742 printf("combiningFlags==0x%02x qcFlags(NF?C)==0x%02x\n", (i&0xc)>>2, i&0x33);
1743 }
1744 }
1745 #endif
1746
1747 /* add hangul/jamo specials */
1748 setHangulJamoSpecials();
1749
1750 /* set this value; will be updated as makeCanonSetFn() adds sets (if there are any, see gStoreFlags) */
1751 canonStartSets[_NORM_SET_INDEX_CANON_SETS_LENGTH]=(uint16_t)canonStartSetsTop;
1752
1753 /* store search tables and USerializedSets for canonical starters (after Hangul/Jamo specials!) */
1754 if(DO_STORE(UGENNORM_STORE_AUX) && DO_STORE(UGENNORM_STORE_COMPOSITION)) {
1755 enumTrie(makeCanonSetFn, NULL);
1756 }
1757
1758 /* clone the normalization builder trie to make the final data tries */
1759 if( NULL==utrie_clone(norm32Trie, normTrie, NULL, 0) ||
1760 NULL==utrie_clone(fcdTrie, normTrie, NULL, 0) ||
1761 NULL==utrie_clone(auxTrie, normTrie, NULL, 0)
1762 ) {
1763 fprintf(stderr, "error: unable to clone the normalization trie\n");
1764 exit(U_MEMORY_ALLOCATION_ERROR);
1765 }
1766
1767 /* --- finalize data for quick checks & normalization --- */
1768
1769 /* turn the Norm structs (stage2, norms) into 32-bit data words */
1770 makeAll32();
1771
1772 /* --- finalize data for FCD checks --- */
1773
1774 /* FCD data: take Norm.canonBothCCs and store them in the FCD table */
1775 makeFCD();
1776
1777 /* --- finalize auxiliary normalization data --- */
1778 makeAux();
1779
1780 if(beVerbose) {
1781 #if 0
1782 printf("number of stage 2 entries: %ld\n", stage2Mem->index);
1783 printf("size of stage 1 (BMP) & 2 (uncompacted) + extra data: %ld bytes\n", _NORM_STAGE_1_BMP_COUNT*2+stage2Mem->index*4+extraMem->index*2);
1784 #endif
1785 printf("combining CPs tops: fwd %u both %u back %u\n", combineFwdTop, combineBothTop, combineBackTop);
1786 printf("combining table count: %u\n", combiningTableTop);
1787 }
1788 }
1789
1790 #endif /* #if !UCONFIG_NO_NORMALIZATION */
1791
1792 extern void
1793 generateData(const char *dataDir, UBool csource) {
1794 static uint8_t normTrieBlock[100000], fcdTrieBlock[100000], auxTrieBlock[100000];
1795
1796 UNewDataMemory *pData;
1797 UErrorCode errorCode=U_ZERO_ERROR;
1798 int32_t size, dataLength;
1799
1800 #if UCONFIG_NO_NORMALIZATION
1801
1802 size=0;
1803
1804 #else
1805
1806 U_STRING_DECL(nxCJKCompatPattern, "[:Ideographic:]", 15);
1807 U_STRING_DECL(nxUnicode32Pattern, "[:^Age=3.2:]", 12);
1808 USet *set;
1809 int32_t normTrieSize, fcdTrieSize, auxTrieSize;
1810
1811 normTrieSize=utrie_serialize(norm32Trie, normTrieBlock, sizeof(normTrieBlock), getFoldedNormValue, FALSE, &errorCode);
1812 if(U_FAILURE(errorCode)) {
1813 fprintf(stderr, "error: utrie_serialize(normalization properties) failed, %s\n", u_errorName(errorCode));
1814 exit(errorCode);
1815 }
1816
1817 if(DO_STORE(UGENNORM_STORE_FCD)) {
1818 fcdTrieSize=utrie_serialize(fcdTrie, fcdTrieBlock, sizeof(fcdTrieBlock), NULL, TRUE, &errorCode);
1819 if(U_FAILURE(errorCode)) {
1820 fprintf(stderr, "error: utrie_serialize(FCD data) failed, %s\n", u_errorName(errorCode));
1821 exit(errorCode);
1822 }
1823 } else {
1824 fcdTrieSize=0;
1825 }
1826
1827 if(DO_STORE(UGENNORM_STORE_AUX)) {
1828 auxTrieSize=utrie_serialize(auxTrie, auxTrieBlock, sizeof(auxTrieBlock), getFoldedAuxValue, TRUE, &errorCode);
1829 if(U_FAILURE(errorCode)) {
1830 fprintf(stderr, "error: utrie_serialize(auxiliary data) failed, %s\n", u_errorName(errorCode));
1831 exit(errorCode);
1832 }
1833 } else {
1834 auxTrieSize=0;
1835 }
1836
1837 /* move the parts of canonStartSets[] together into a contiguous block */
1838 if( canonStartSetsTop<_NORM_MAX_CANON_SETS &&
1839 canonStartSets[_NORM_SET_INDEX_CANON_BMP_TABLE_LENGTH]!=0
1840 ) {
1841 uprv_memmove(canonStartSets+canonStartSetsTop,
1842 canonStartSets+_NORM_MAX_CANON_SETS,
1843 canonStartSets[_NORM_SET_INDEX_CANON_BMP_TABLE_LENGTH]*2);
1844 }
1845 canonStartSetsTop+=canonStartSets[_NORM_SET_INDEX_CANON_BMP_TABLE_LENGTH];
1846
1847 if( canonStartSetsTop<(_NORM_MAX_CANON_SETS+_NORM_MAX_SET_SEARCH_TABLE_LENGTH) &&
1848 canonStartSets[_NORM_SET_INDEX_CANON_SUPP_TABLE_LENGTH]!=0
1849 ) {
1850 uprv_memmove(canonStartSets+canonStartSetsTop,
1851 canonStartSets+_NORM_MAX_CANON_SETS+_NORM_MAX_SET_SEARCH_TABLE_LENGTH,
1852 canonStartSets[_NORM_SET_INDEX_CANON_SUPP_TABLE_LENGTH]*2);
1853 }
1854 canonStartSetsTop+=canonStartSets[_NORM_SET_INDEX_CANON_SUPP_TABLE_LENGTH];
1855
1856 /* create the normalization exclusion sets */
1857 /*
1858 * nxCJKCompatPattern should be [[:Ideographic:]&[:NFD_QC=No:]]
1859 * but we cannot use NFD_QC from the pattern because that would require
1860 * unorm.icu which we are just going to generate.
1861 * Therefore we have manually collected nfdQCNoSet and intersect Ideographic
1862 * with that.
1863 */
1864 U_STRING_INIT(nxCJKCompatPattern, "[:Ideographic:]", 15);
1865 U_STRING_INIT(nxUnicode32Pattern, "[:^Age=3.2:]", 12);
1866
1867 canonStartSets[_NORM_SET_INDEX_NX_CJK_COMPAT_OFFSET]=canonStartSetsTop;
1868 set=uset_openPattern(nxCJKCompatPattern, -1, &errorCode);
1869 if(U_FAILURE(errorCode)) {
1870 fprintf(stderr, "error: uset_openPattern([:Ideographic:]&[:NFD_QC=No:]) failed, %s\n", u_errorName(errorCode));
1871 exit(errorCode);
1872 }
1873 uset_retainAll(set, nfdQCNoSet);
1874 if(DO_NOT_STORE(UGENNORM_STORE_EXCLUSIONS)) {
1875 uset_clear(set);
1876 }
1877 canonStartSetsTop+=uset_serialize(set, canonStartSets+canonStartSetsTop, LENGTHOF(canonStartSets)-canonStartSetsTop, &errorCode);
1878 if(U_FAILURE(errorCode)) {
1879 fprintf(stderr, "error: uset_serialize([:Ideographic:]&[:NFD_QC=No:]) failed, %s\n", u_errorName(errorCode));
1880 exit(errorCode);
1881 }
1882 uset_close(set);
1883
1884 canonStartSets[_NORM_SET_INDEX_NX_UNICODE32_OFFSET]=canonStartSetsTop;
1885 set=uset_openPattern(nxUnicode32Pattern, -1, &errorCode);
1886 if(U_FAILURE(errorCode)) {
1887 fprintf(stderr, "error: uset_openPattern([:^Age=3.2:]) failed, %s\n", u_errorName(errorCode));
1888 exit(errorCode);
1889 }
1890 if(DO_NOT_STORE(UGENNORM_STORE_EXCLUSIONS)) {
1891 uset_clear(set);
1892 }
1893 canonStartSetsTop+=uset_serialize(set, canonStartSets+canonStartSetsTop, LENGTHOF(canonStartSets)-canonStartSetsTop, &errorCode);
1894 if(U_FAILURE(errorCode)) {
1895 fprintf(stderr, "error: uset_serialize([:^Age=3.2:]) failed, %s\n", u_errorName(errorCode));
1896 exit(errorCode);
1897 }
1898 uset_close(set);
1899
1900 canonStartSets[_NORM_SET_INDEX_NX_RESERVED_OFFSET]=canonStartSetsTop;
1901
1902 /* make sure that the FCD trie is 4-aligned */
1903 if((utm_countItems(extraMem)+combiningTableTop)&1) {
1904 combiningTable[combiningTableTop++]=0x1234; /* add one 16-bit word for an even number */
1905 }
1906
1907 /* pad canonStartSets to 4-alignment, too */
1908 if(canonStartSetsTop&1) {
1909 canonStartSets[canonStartSetsTop++]=0x1235;
1910 }
1911
1912 size=
1913 _NORM_INDEX_TOP*4+
1914 normTrieSize+
1915 utm_countItems(extraMem)*2+
1916 combiningTableTop*2+
1917 fcdTrieSize+
1918 auxTrieSize+
1919 canonStartSetsTop*2;
1920
1921 if(beVerbose) {
1922 printf("size of normalization trie %5u bytes\n", (int)normTrieSize);
1923 printf("size of 16-bit extra memory %5u UChars/uint16_t\n", (int)utm_countItems(extraMem));
1924 printf(" of that: FC_NFKC_Closure size %5u UChars/uint16_t\n", ((uint16_t *)utm_getStart(extraMem))[0]);
1925 printf("size of combining table %5u uint16_t\n", combiningTableTop);
1926 printf("size of FCD trie %5u bytes\n", (int)fcdTrieSize);
1927 printf("size of auxiliary trie %5u bytes\n", (int)auxTrieSize);
1928 printf("size of canonStartSets[] %5u uint16_t\n", (int)canonStartSetsTop);
1929 printf(" number of indexes %5u uint16_t\n", _NORM_SET_INDEX_TOP);
1930 printf(" size of sets %5u uint16_t\n", canonStartSets[_NORM_SET_INDEX_CANON_SETS_LENGTH]-_NORM_SET_INDEX_TOP);
1931 printf(" number of sets %5d\n", (int)canonSetsCount);
1932 printf(" size of BMP search table %5u uint16_t\n", canonStartSets[_NORM_SET_INDEX_CANON_BMP_TABLE_LENGTH]);
1933 printf(" size of supplementary search table %5u uint16_t\n", canonStartSets[_NORM_SET_INDEX_CANON_SUPP_TABLE_LENGTH]);
1934 printf(" length of exclusion sets %5u uint16_t\n", canonStartSets[_NORM_SET_INDEX_NX_RESERVED_OFFSET]-canonStartSets[_NORM_SET_INDEX_NX_CJK_COMPAT_OFFSET]);
1935 printf("size of " U_ICUDATA_NAME "_" DATA_NAME "." DATA_TYPE " contents: %ld bytes\n", (long)size);
1936 }
1937
1938 indexes[_NORM_INDEX_TRIE_SIZE]=normTrieSize;
1939 indexes[_NORM_INDEX_UCHAR_COUNT]=(uint16_t)utm_countItems(extraMem);
1940
1941 indexes[_NORM_INDEX_COMBINE_DATA_COUNT]=combiningTableTop;
1942 indexes[_NORM_INDEX_COMBINE_FWD_COUNT]=combineFwdTop;
1943 indexes[_NORM_INDEX_COMBINE_BOTH_COUNT]=(uint16_t)(combineBothTop-combineFwdTop);
1944 indexes[_NORM_INDEX_COMBINE_BACK_COUNT]=(uint16_t)(combineBackTop-combineBothTop);
1945
1946 /* the quick check minimum code points are already set */
1947
1948 indexes[_NORM_INDEX_FCD_TRIE_SIZE]=fcdTrieSize;
1949 indexes[_NORM_INDEX_AUX_TRIE_SIZE]=auxTrieSize;
1950 indexes[_NORM_INDEX_CANON_SET_COUNT]=canonStartSetsTop;
1951
1952 #endif
1953
1954 if(csource) {
1955 #if UCONFIG_NO_NORMALIZATION
1956 /* no csource for dummy mode..? */
1957 fprintf(stderr, "gennorm error: UCONFIG_NO_NORMALIZATION is on in csource mode.\n");
1958 exit(1);
1959 #else
1960 /* write .c file for hardcoded data */
1961 UTrie normTrie2={ NULL }, fcdTrie2={ NULL }, auxTrie2={ NULL };
1962 FILE *f;
1963
1964 utrie_unserialize(&normTrie2, normTrieBlock, normTrieSize, &errorCode);
1965 if(fcdTrieSize>0) {
1966 utrie_unserialize(&fcdTrie2, fcdTrieBlock, fcdTrieSize, &errorCode);
1967 }
1968 if(auxTrieSize>0) {
1969 utrie_unserialize(&auxTrie2, auxTrieBlock, auxTrieSize, &errorCode);
1970 }
1971 if(U_FAILURE(errorCode)) {
1972 fprintf(
1973 stderr,
1974 "gennorm error: failed to utrie_unserialize() one of the tries - %s\n",
1975 u_errorName(errorCode));
1976 exit(errorCode);
1977 }
1978
1979 f=usrc_create(dataDir, "unorm_props_data.c");
1980 if(f!=NULL) {
1981 usrc_writeArray(f,
1982 "static const UVersionInfo formatVersion={ ",
1983 dataInfo.formatVersion, 8, 4,
1984 " };\n\n");
1985 usrc_writeArray(f,
1986 "static const UVersionInfo dataVersion={ ",
1987 dataInfo.dataVersion, 8, 4,
1988 " };\n\n");
1989 usrc_writeArray(f,
1990 "static const int32_t indexes[_NORM_INDEX_TOP]={\n",
1991 indexes, 32, _NORM_INDEX_TOP,
1992 "\n};\n\n");
1993 usrc_writeUTrieArrays(f,
1994 "static const uint16_t normTrie_index[%ld]={\n",
1995 "static const uint32_t normTrie_data32[%ld]={\n",
1996 &normTrie2,
1997 "\n};\n\n");
1998 usrc_writeUTrieStruct(f,
1999 "static const UTrie normTrie={\n",
2000 &normTrie2, "normTrie_index", "normTrie_data32", "getFoldingNormOffset",
2001 "};\n\n");
2002 usrc_writeArray(f,
2003 "static const uint16_t extraData[%ld]={\n",
2004 utm_getStart(extraMem), 16, utm_countItems(extraMem),
2005 "\n};\n\n");
2006 usrc_writeArray(f,
2007 "static const uint16_t combiningTable[%ld]={\n",
2008 combiningTable, 16, combiningTableTop,
2009 "\n};\n\n");
2010 if(fcdTrieSize>0) {
2011 usrc_writeUTrieArrays(f,
2012 "static const uint16_t fcdTrie_index[%ld]={\n", NULL,
2013 &fcdTrie2,
2014 "\n};\n\n");
2015 usrc_writeUTrieStruct(f,
2016 "static const UTrie fcdTrie={\n",
2017 &fcdTrie2, "fcdTrie_index", NULL, NULL,
2018 "};\n\n");
2019 } else {
2020 fputs( "static const UTrie fcdTrie={ NULL };\n\n", f);
2021 }
2022 if(auxTrieSize>0) {
2023 usrc_writeUTrieArrays(f,
2024 "static const uint16_t auxTrie_index[%ld]={\n", NULL,
2025 &auxTrie2,
2026 "\n};\n\n");
2027 usrc_writeUTrieStruct(f,
2028 "static const UTrie auxTrie={\n",
2029 &auxTrie2, "auxTrie_index", NULL, "getFoldingAuxOffset",
2030 "};\n\n");
2031 } else {
2032 fputs( "static const UTrie auxTrie={ NULL };\n\n", f);
2033 }
2034 usrc_writeArray(f,
2035 "static const uint16_t canonStartSets[%ld]={\n",
2036 canonStartSets, 16, canonStartSetsTop,
2037 "\n};\n\n");
2038 fclose(f);
2039 }
2040 #endif
2041 } else {
2042 /* write the data */
2043 pData=udata_create(dataDir, DATA_TYPE, DATA_NAME, &dataInfo,
2044 haveCopyright ? U_COPYRIGHT_STRING : NULL, &errorCode);
2045 if(U_FAILURE(errorCode)) {
2046 fprintf(stderr, "gennorm: unable to create the output file, error %d\n", errorCode);
2047 exit(errorCode);
2048 }
2049
2050 #if !UCONFIG_NO_NORMALIZATION
2051
2052 udata_writeBlock(pData, indexes, sizeof(indexes));
2053 udata_writeBlock(pData, normTrieBlock, normTrieSize);
2054 udata_writeBlock(pData, utm_getStart(extraMem), utm_countItems(extraMem)*2);
2055 udata_writeBlock(pData, combiningTable, combiningTableTop*2);
2056 udata_writeBlock(pData, fcdTrieBlock, fcdTrieSize);
2057 udata_writeBlock(pData, auxTrieBlock, auxTrieSize);
2058 udata_writeBlock(pData, canonStartSets, canonStartSetsTop*2);
2059
2060 #endif
2061
2062 /* finish up */
2063 dataLength=udata_finish(pData, &errorCode);
2064 if(U_FAILURE(errorCode)) {
2065 fprintf(stderr, "gennorm: error %d writing the output file\n", errorCode);
2066 exit(errorCode);
2067 }
2068
2069 if(dataLength!=size) {
2070 fprintf(stderr, "gennorm error: data length %ld != calculated size %ld\n",
2071 (long)dataLength, (long)size);
2072 exit(U_INTERNAL_PROGRAM_ERROR);
2073 }
2074 }
2075 }
2076
2077 #if !UCONFIG_NO_NORMALIZATION
2078
2079 extern void
2080 cleanUpData(void) {
2081 int32_t i, count;
2082
2083 count=utm_countItems(normMem);
2084 for(i=0; i<count; ++i) {
2085 uset_close(norms[i].canonStart);
2086 }
2087
2088 utm_close(normMem);
2089 utm_close(utf32Mem);
2090 utm_close(extraMem);
2091 utm_close(combiningTriplesMem);
2092 utrie_close(normTrie);
2093 utrie_close(norm32Trie);
2094 utrie_close(fcdTrie);
2095 utrie_close(auxTrie);
2096
2097 uset_close(nfdQCNoSet);
2098
2099 uprv_free(normTrie);
2100 uprv_free(norm32Trie);
2101 uprv_free(fcdTrie);
2102 uprv_free(auxTrie);
2103 }
2104
2105 #endif /* #if !UCONFIG_NO_NORMALIZATION */
2106
2107 /*
2108 * Hey, Emacs, please set the following:
2109 *
2110 * Local Variables:
2111 * indent-tabs-mode: nil
2112 * End:
2113 *
2114 */