]> git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/regexcmp.cpp
ICU-64243.0.1.tar.gz
[apple/icu.git] / icuSources / i18n / regexcmp.cpp
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 //
4 // file: regexcmp.cpp
5 //
6 // Copyright (C) 2002-2016 International Business Machines Corporation and others.
7 // All Rights Reserved.
8 //
9 // This file contains the ICU regular expression compiler, which is responsible
10 // for processing a regular expression pattern into the compiled form that
11 // is used by the match finding engine.
12 //
13
14 #include "unicode/utypes.h"
15
16 #if !UCONFIG_NO_REGULAR_EXPRESSIONS
17
18 #include "unicode/ustring.h"
19 #include "unicode/unistr.h"
20 #include "unicode/uniset.h"
21 #include "unicode/uchar.h"
22 #include "unicode/uchriter.h"
23 #include "unicode/parsepos.h"
24 #include "unicode/parseerr.h"
25 #include "unicode/regex.h"
26 #include "unicode/utf.h"
27 #include "unicode/utf16.h"
28 #include "patternprops.h"
29 #include "putilimp.h"
30 #include "cmemory.h"
31 #include "cstr.h"
32 #include "cstring.h"
33 #include "uvectr32.h"
34 #include "uvectr64.h"
35 #include "uassert.h"
36 #include "uinvchar.h"
37
38 #include "regeximp.h"
39 #include "regexcst.h" // Contains state table for the regex pattern parser.
40 // generated by a Perl script.
41 #include "regexcmp.h"
42 #include "regexst.h"
43 #include "regextxt.h"
44
45
46
47 U_NAMESPACE_BEGIN
48
49
50 //------------------------------------------------------------------------------
51 //
52 // Constructor.
53 //
54 //------------------------------------------------------------------------------
55 RegexCompile::RegexCompile(RegexPattern *rxp, UErrorCode &status) :
56 fParenStack(status), fSetStack(status), fSetOpStack(status)
57 {
58 // Lazy init of all shared global sets (needed for init()'s empty text)
59 RegexStaticSets::initGlobals(&status);
60
61 fStatus = &status;
62
63 fRXPat = rxp;
64 fScanIndex = 0;
65 fLastChar = -1;
66 fPeekChar = -1;
67 fLineNum = 1;
68 fCharNum = 0;
69 fQuoteMode = FALSE;
70 fInBackslashQuote = FALSE;
71 fModeFlags = fRXPat->fFlags | 0x80000000;
72 fEOLComments = TRUE;
73
74 fMatchOpenParen = -1;
75 fMatchCloseParen = -1;
76 fCaptureName = NULL;
77 fLastSetLiteral = U_SENTINEL;
78
79 if (U_SUCCESS(status) && U_FAILURE(rxp->fDeferredStatus)) {
80 status = rxp->fDeferredStatus;
81 }
82 }
83
84 static const UChar chAmp = 0x26; // '&'
85 static const UChar chDash = 0x2d; // '-'
86
87
88 //------------------------------------------------------------------------------
89 //
90 // Destructor
91 //
92 //------------------------------------------------------------------------------
93 RegexCompile::~RegexCompile() {
94 delete fCaptureName; // Normally will be NULL, but can exist if pattern
95 // compilation stops with a syntax error.
96 }
97
98 static inline void addCategory(UnicodeSet *set, int32_t value, UErrorCode& ec) {
99 set->addAll(UnicodeSet().applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, value, ec));
100 }
101
102 //------------------------------------------------------------------------------
103 //
104 // Compile regex pattern. The state machine for rexexp pattern parsing is here.
105 // The state tables are hand-written in the file regexcst.txt,
106 // and converted to the form used here by a perl
107 // script regexcst.pl
108 //
109 //------------------------------------------------------------------------------
110 void RegexCompile::compile(
111 const UnicodeString &pat, // Source pat to be compiled.
112 UParseError &pp, // Error position info
113 UErrorCode &e) // Error Code
114 {
115 fRXPat->fPatternString = new UnicodeString(pat);
116 UText patternText = UTEXT_INITIALIZER;
117 utext_openConstUnicodeString(&patternText, fRXPat->fPatternString, &e);
118
119 if (U_SUCCESS(e)) {
120 compile(&patternText, pp, e);
121 utext_close(&patternText);
122 }
123 }
124
125 //
126 // compile, UText mode
127 // All the work is actually done here.
128 //
129 void RegexCompile::compile(
130 UText *pat, // Source pat to be compiled.
131 UParseError &pp, // Error position info
132 UErrorCode &e) // Error Code
133 {
134 fStatus = &e;
135 fParseErr = &pp;
136 fStackPtr = 0;
137 fStack[fStackPtr] = 0;
138
139 if (U_FAILURE(*fStatus)) {
140 return;
141 }
142
143 // There should be no pattern stuff in the RegexPattern object. They can not be reused.
144 U_ASSERT(fRXPat->fPattern == NULL || utext_nativeLength(fRXPat->fPattern) == 0);
145
146 // Prepare the RegexPattern object to receive the compiled pattern.
147 fRXPat->fPattern = utext_clone(fRXPat->fPattern, pat, FALSE, TRUE, fStatus);
148 if (U_FAILURE(*fStatus)) {
149 return;
150 }
151 fRXPat->fStaticSets = RegexStaticSets::gStaticSets->fPropSets;
152 fRXPat->fStaticSets8 = RegexStaticSets::gStaticSets->fPropSets8;
153
154
155 // Initialize the pattern scanning state machine
156 fPatternLength = utext_nativeLength(pat);
157 uint16_t state = 1;
158 const RegexTableEl *tableEl;
159
160 // UREGEX_LITERAL force entire pattern to be treated as a literal string.
161 if (fModeFlags & UREGEX_LITERAL) {
162 fQuoteMode = TRUE;
163 }
164
165 nextChar(fC); // Fetch the first char from the pattern string.
166
167 //
168 // Main loop for the regex pattern parsing state machine.
169 // Runs once per state transition.
170 // Each time through optionally performs, depending on the state table,
171 // - an advance to the the next pattern char
172 // - an action to be performed.
173 // - pushing or popping a state to/from the local state return stack.
174 // file regexcst.txt is the source for the state table. The logic behind
175 // recongizing the pattern syntax is there, not here.
176 //
177 for (;;) {
178 // Bail out if anything has gone wrong.
179 // Regex pattern parsing stops on the first error encountered.
180 if (U_FAILURE(*fStatus)) {
181 break;
182 }
183
184 U_ASSERT(state != 0);
185
186 // Find the state table element that matches the input char from the pattern, or the
187 // class of the input character. Start with the first table row for this
188 // state, then linearly scan forward until we find a row that matches the
189 // character. The last row for each state always matches all characters, so
190 // the search will stop there, if not before.
191 //
192 tableEl = &gRuleParseStateTable[state];
193 REGEX_SCAN_DEBUG_PRINTF(("char, line, col = (\'%c\', %d, %d) state=%s ",
194 fC.fChar, fLineNum, fCharNum, RegexStateNames[state]));
195
196 for (;;) { // loop through table rows belonging to this state, looking for one
197 // that matches the current input char.
198 REGEX_SCAN_DEBUG_PRINTF(("."));
199 if (tableEl->fCharClass < 127 && fC.fQuoted == FALSE && tableEl->fCharClass == fC.fChar) {
200 // Table row specified an individual character, not a set, and
201 // the input character is not quoted, and
202 // the input character matched it.
203 break;
204 }
205 if (tableEl->fCharClass == 255) {
206 // Table row specified default, match anything character class.
207 break;
208 }
209 if (tableEl->fCharClass == 254 && fC.fQuoted) {
210 // Table row specified "quoted" and the char was quoted.
211 break;
212 }
213 if (tableEl->fCharClass == 253 && fC.fChar == (UChar32)-1) {
214 // Table row specified eof and we hit eof on the input.
215 break;
216 }
217
218 if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class &&
219 fC.fQuoted == FALSE && // char is not escaped &&
220 fC.fChar != (UChar32)-1) { // char is not EOF
221 U_ASSERT(tableEl->fCharClass <= 137);
222 if (RegexStaticSets::gStaticSets->fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) {
223 // Table row specified a character class, or set of characters,
224 // and the current char matches it.
225 break;
226 }
227 }
228
229 // No match on this row, advance to the next row for this state,
230 tableEl++;
231 }
232 REGEX_SCAN_DEBUG_PRINTF(("\n"));
233
234 //
235 // We've found the row of the state table that matches the current input
236 // character from the rules string.
237 // Perform any action specified by this row in the state table.
238 if (doParseActions(tableEl->fAction) == FALSE) {
239 // Break out of the state machine loop if the
240 // the action signalled some kind of error, or
241 // the action was to exit, occurs on normal end-of-rules-input.
242 break;
243 }
244
245 if (tableEl->fPushState != 0) {
246 fStackPtr++;
247 if (fStackPtr >= kStackSize) {
248 error(U_REGEX_INTERNAL_ERROR);
249 REGEX_SCAN_DEBUG_PRINTF(("RegexCompile::parse() - state stack overflow.\n"));
250 fStackPtr--;
251 }
252 fStack[fStackPtr] = tableEl->fPushState;
253 }
254
255 //
256 // NextChar. This is where characters are actually fetched from the pattern.
257 // Happens under control of the 'n' tag in the state table.
258 //
259 if (tableEl->fNextChar) {
260 nextChar(fC);
261 }
262
263 // Get the next state from the table entry, or from the
264 // state stack if the next state was specified as "pop".
265 if (tableEl->fNextState != 255) {
266 state = tableEl->fNextState;
267 } else {
268 state = fStack[fStackPtr];
269 fStackPtr--;
270 if (fStackPtr < 0) {
271 // state stack underflow
272 // This will occur if the user pattern has mis-matched parentheses,
273 // with extra close parens.
274 //
275 fStackPtr++;
276 error(U_REGEX_MISMATCHED_PAREN);
277 }
278 }
279
280 }
281
282 if (U_FAILURE(*fStatus)) {
283 // Bail out if the pattern had errors.
284 // Set stack cleanup: a successful compile would have left it empty,
285 // but errors can leave temporary sets hanging around.
286 while (!fSetStack.empty()) {
287 delete (UnicodeSet *)fSetStack.pop();
288 }
289 return;
290 }
291
292 //
293 // The pattern has now been read and processed, and the compiled code generated.
294 //
295
296 //
297 // The pattern's fFrameSize so far has accumulated the requirements for
298 // storage for capture parentheses, counters, etc. that are encountered
299 // in the pattern. Add space for the two variables that are always
300 // present in the saved state: the input string position (int64_t) and
301 // the position in the compiled pattern.
302 //
303 allocateStackData(RESTACKFRAME_HDRCOUNT);
304
305 //
306 // Optimization pass 1: NOPs, back-references, and case-folding
307 //
308 stripNOPs();
309
310 //
311 // Get bounds for the minimum and maximum length of a string that this
312 // pattern can match. Used to avoid looking for matches in strings that
313 // are too short.
314 //
315 fRXPat->fMinMatchLen = minMatchLength(3, fRXPat->fCompiledPat->size()-1);
316
317 //
318 // Optimization pass 2: match start type
319 //
320 matchStartType();
321
322 //
323 // Set up fast latin-1 range sets
324 //
325 int32_t numSets = fRXPat->fSets->size();
326 fRXPat->fSets8 = new Regex8BitSet[numSets];
327 // Null pointer check.
328 if (fRXPat->fSets8 == NULL) {
329 e = *fStatus = U_MEMORY_ALLOCATION_ERROR;
330 return;
331 }
332 int32_t i;
333 for (i=0; i<numSets; i++) {
334 UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(i);
335 fRXPat->fSets8[i].init(s);
336 }
337
338 }
339
340
341
342
343
344 //------------------------------------------------------------------------------
345 //
346 // doParseAction Do some action during regex pattern parsing.
347 // Called by the parse state machine.
348 //
349 // Generation of the match engine PCode happens here, or
350 // in functions called from the parse actions defined here.
351 //
352 //
353 //------------------------------------------------------------------------------
354 UBool RegexCompile::doParseActions(int32_t action)
355 {
356 UBool returnVal = TRUE;
357
358 switch ((Regex_PatternParseAction)action) {
359
360 case doPatStart:
361 // Start of pattern compiles to:
362 //0 SAVE 2 Fall back to position of FAIL
363 //1 jmp 3
364 //2 FAIL Stop if we ever reach here.
365 //3 NOP Dummy, so start of pattern looks the same as
366 // the start of an ( grouping.
367 //4 NOP Resreved, will be replaced by a save if there are
368 // OR | operators at the top level
369 appendOp(URX_STATE_SAVE, 2);
370 appendOp(URX_JMP, 3);
371 appendOp(URX_FAIL, 0);
372
373 // Standard open nonCapture paren action emits the two NOPs and
374 // sets up the paren stack frame.
375 doParseActions(doOpenNonCaptureParen);
376 break;
377
378 case doPatFinish:
379 // We've scanned to the end of the pattern
380 // The end of pattern compiles to:
381 // URX_END
382 // which will stop the runtime match engine.
383 // Encountering end of pattern also behaves like a close paren,
384 // and forces fixups of the State Save at the beginning of the compiled pattern
385 // and of any OR operations at the top level.
386 //
387 handleCloseParen();
388 if (fParenStack.size() > 0) {
389 // Missing close paren in pattern.
390 error(U_REGEX_MISMATCHED_PAREN);
391 }
392
393 // add the END operation to the compiled pattern.
394 appendOp(URX_END, 0);
395
396 // Terminate the pattern compilation state machine.
397 returnVal = FALSE;
398 break;
399
400
401
402 case doOrOperator:
403 // Scanning a '|', as in (A|B)
404 {
405 // Generate code for any pending literals preceding the '|'
406 fixLiterals(FALSE);
407
408 // Insert a SAVE operation at the start of the pattern section preceding
409 // this OR at this level. This SAVE will branch the match forward
410 // to the right hand side of the OR in the event that the left hand
411 // side fails to match and backtracks. Locate the position for the
412 // save from the location on the top of the parentheses stack.
413 int32_t savePosition = fParenStack.popi();
414 int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(savePosition);
415 U_ASSERT(URX_TYPE(op) == URX_NOP); // original contents of reserved location
416 op = buildOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+1);
417 fRXPat->fCompiledPat->setElementAt(op, savePosition);
418
419 // Append an JMP operation into the compiled pattern. The operand for
420 // the JMP will eventually be the location following the ')' for the
421 // group. This will be patched in later, when the ')' is encountered.
422 appendOp(URX_JMP, 0);
423
424 // Push the position of the newly added JMP op onto the parentheses stack.
425 // This registers if for fixup when this block's close paren is encountered.
426 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
427
428 // Append a NOP to the compiled pattern. This is the slot reserved
429 // for a SAVE in the event that there is yet another '|' following
430 // this one.
431 appendOp(URX_NOP, 0);
432 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
433 }
434 break;
435
436
437 case doBeginNamedCapture:
438 // Scanning (?<letter.
439 // The first letter of the name will come through again under doConinueNamedCapture.
440 fCaptureName = new UnicodeString();
441 if (fCaptureName == NULL) {
442 error(U_MEMORY_ALLOCATION_ERROR);
443 }
444 break;
445
446 case doContinueNamedCapture:
447 fCaptureName->append(fC.fChar);
448 break;
449
450 case doBadNamedCapture:
451 error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
452 break;
453
454 case doOpenCaptureParen:
455 // Open Capturing Paren, possibly named.
456 // Compile to a
457 // - NOP, which later may be replaced by a save-state if the
458 // parenthesized group gets a * quantifier, followed by
459 // - START_CAPTURE n where n is stack frame offset to the capture group variables.
460 // - NOP, which may later be replaced by a save-state if there
461 // is an '|' alternation within the parens.
462 //
463 // Each capture group gets three slots in the save stack frame:
464 // 0: Capture Group start position (in input string being matched.)
465 // 1: Capture Group end position.
466 // 2: Start of Match-in-progress.
467 // The first two locations are for a completed capture group, and are
468 // referred to by back references and the like.
469 // The third location stores the capture start position when an START_CAPTURE is
470 // encountered. This will be promoted to a completed capture when (and if) the corresponding
471 // END_CAPTURE is encountered.
472 {
473 fixLiterals();
474 appendOp(URX_NOP, 0);
475 int32_t varsLoc = allocateStackData(3); // Reserve three slots in match stack frame.
476 appendOp(URX_START_CAPTURE, varsLoc);
477 appendOp(URX_NOP, 0);
478
479 // On the Parentheses stack, start a new frame and add the postions
480 // of the two NOPs. Depending on what follows in the pattern, the
481 // NOPs may be changed to SAVE_STATE or JMP ops, with a target
482 // address of the end of the parenthesized group.
483 fParenStack.push(fModeFlags, *fStatus); // Match mode state
484 fParenStack.push(capturing, *fStatus); // Frame type.
485 fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP location
486 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc
487
488 // Save the mapping from group number to stack frame variable position.
489 fRXPat->fGroupMap->addElement(varsLoc, *fStatus);
490
491 // If this is a named capture group, add the name->group number mapping.
492 if (fCaptureName != NULL) {
493 int32_t groupNumber = fRXPat->fGroupMap->size();
494 int32_t previousMapping = uhash_puti(fRXPat->fNamedCaptureMap, fCaptureName, groupNumber, fStatus);
495 fCaptureName = NULL; // hash table takes ownership of the name (key) string.
496 if (previousMapping > 0 && U_SUCCESS(*fStatus)) {
497 error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
498 }
499 }
500 }
501 break;
502
503 case doOpenNonCaptureParen:
504 // Open non-caputuring (grouping only) Paren.
505 // Compile to a
506 // - NOP, which later may be replaced by a save-state if the
507 // parenthesized group gets a * quantifier, followed by
508 // - NOP, which may later be replaced by a save-state if there
509 // is an '|' alternation within the parens.
510 {
511 fixLiterals();
512 appendOp(URX_NOP, 0);
513 appendOp(URX_NOP, 0);
514
515 // On the Parentheses stack, start a new frame and add the postions
516 // of the two NOPs.
517 fParenStack.push(fModeFlags, *fStatus); // Match mode state
518 fParenStack.push(plain, *fStatus); // Begin a new frame.
519 fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
520 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc
521 }
522 break;
523
524
525 case doOpenAtomicParen:
526 // Open Atomic Paren. (?>
527 // Compile to a
528 // - NOP, which later may be replaced if the parenthesized group
529 // has a quantifier, followed by
530 // - STO_SP save state stack position, so it can be restored at the ")"
531 // - NOP, which may later be replaced by a save-state if there
532 // is an '|' alternation within the parens.
533 {
534 fixLiterals();
535 appendOp(URX_NOP, 0);
536 int32_t varLoc = allocateData(1); // Reserve a data location for saving the state stack ptr.
537 appendOp(URX_STO_SP, varLoc);
538 appendOp(URX_NOP, 0);
539
540 // On the Parentheses stack, start a new frame and add the postions
541 // of the two NOPs. Depending on what follows in the pattern, the
542 // NOPs may be changed to SAVE_STATE or JMP ops, with a target
543 // address of the end of the parenthesized group.
544 fParenStack.push(fModeFlags, *fStatus); // Match mode state
545 fParenStack.push(atomic, *fStatus); // Frame type.
546 fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP
547 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
548 }
549 break;
550
551
552 case doOpenLookAhead:
553 // Positive Look-ahead (?= stuff )
554 //
555 // Note: Addition of transparent input regions, with the need to
556 // restore the original regions when failing out of a lookahead
557 // block, complicated this sequence. Some conbined opcodes
558 // might make sense - or might not, lookahead aren't that common.
559 //
560 // Caution: min match length optimization knows about this
561 // sequence; don't change without making updates there too.
562 //
563 // Compiles to
564 // 1 START_LA dataLoc Saves SP, Input Pos
565 // 2. STATE_SAVE 4 on failure of lookahead, goto 4
566 // 3 JMP 6 continue ...
567 //
568 // 4. LA_END Look Ahead failed. Restore regions.
569 // 5. BACKTRACK and back track again.
570 //
571 // 6. NOP reserved for use by quantifiers on the block.
572 // Look-ahead can't have quantifiers, but paren stack
573 // compile time conventions require the slot anyhow.
574 // 7. NOP may be replaced if there is are '|' ops in the block.
575 // 8. code for parenthesized stuff.
576 // 9. LA_END
577 //
578 // Two data slots are reserved, for saving the stack ptr and the input position.
579 {
580 fixLiterals();
581 int32_t dataLoc = allocateData(2);
582 appendOp(URX_LA_START, dataLoc);
583 appendOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+ 2);
584 appendOp(URX_JMP, fRXPat->fCompiledPat->size()+ 3);
585 appendOp(URX_LA_END, dataLoc);
586 appendOp(URX_BACKTRACK, 0);
587 appendOp(URX_NOP, 0);
588 appendOp(URX_NOP, 0);
589
590 // On the Parentheses stack, start a new frame and add the postions
591 // of the NOPs.
592 fParenStack.push(fModeFlags, *fStatus); // Match mode state
593 fParenStack.push(lookAhead, *fStatus); // Frame type.
594 fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
595 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location
596 }
597 break;
598
599 case doOpenLookAheadNeg:
600 // Negated Lookahead. (?! stuff )
601 // Compiles to
602 // 1. START_LA dataloc
603 // 2. SAVE_STATE 7 // Fail within look-ahead block restores to this state,
604 // // which continues with the match.
605 // 3. NOP // Std. Open Paren sequence, for possible '|'
606 // 4. code for parenthesized stuff.
607 // 5. END_LA // Cut back stack, remove saved state from step 2.
608 // 6. BACKTRACK // code in block succeeded, so neg. lookahead fails.
609 // 7. END_LA // Restore match region, in case look-ahead was using
610 // an alternate (transparent) region.
611 {
612 fixLiterals();
613 int32_t dataLoc = allocateData(2);
614 appendOp(URX_LA_START, dataLoc);
615 appendOp(URX_STATE_SAVE, 0); // dest address will be patched later.
616 appendOp(URX_NOP, 0);
617
618 // On the Parentheses stack, start a new frame and add the postions
619 // of the StateSave and NOP.
620 fParenStack.push(fModeFlags, *fStatus); // Match mode state
621 fParenStack.push(negLookAhead, *fStatus); // Frame type
622 fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The STATE_SAVE location
623 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location
624
625 // Instructions #5 - #7 will be added when the ')' is encountered.
626 }
627 break;
628
629 case doOpenLookBehind:
630 {
631 // Compile a (?<= look-behind open paren.
632 //
633 // Compiles to
634 // 0 URX_LB_START dataLoc
635 // 1 URX_LB_CONT dataLoc
636 // 2 MinMatchLen
637 // 3 MaxMatchLen
638 // 4 URX_NOP Standard '(' boilerplate.
639 // 5 URX_NOP Reserved slot for use with '|' ops within (block).
640 // 6 <code for LookBehind expression>
641 // 7 URX_LB_END dataLoc # Check match len, restore input len
642 // 8 URX_LA_END dataLoc # Restore stack, input pos
643 //
644 // Allocate a block of matcher data, to contain (when running a match)
645 // 0: Stack ptr on entry
646 // 1: Input Index on entry
647 // 2: Start index of match current match attempt.
648 // 3: Original Input String len.
649
650 // Generate match code for any pending literals.
651 fixLiterals();
652
653 // Allocate data space
654 int32_t dataLoc = allocateData(4);
655
656 // Emit URX_LB_START
657 appendOp(URX_LB_START, dataLoc);
658
659 // Emit URX_LB_CONT
660 appendOp(URX_LB_CONT, dataLoc);
661 appendOp(URX_RESERVED_OP, 0); // MinMatchLength. To be filled later.
662 appendOp(URX_RESERVED_OP, 0); // MaxMatchLength. To be filled later.
663
664 // Emit the NOPs
665 appendOp(URX_NOP, 0);
666 appendOp(URX_NOP, 0);
667
668 // On the Parentheses stack, start a new frame and add the postions
669 // of the URX_LB_CONT and the NOP.
670 fParenStack.push(fModeFlags, *fStatus); // Match mode state
671 fParenStack.push(lookBehind, *fStatus); // Frame type
672 fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
673 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location
674
675 // The final two instructions will be added when the ')' is encountered.
676 }
677
678 break;
679
680 case doOpenLookBehindNeg:
681 {
682 // Compile a (?<! negated look-behind open paren.
683 //
684 // Compiles to
685 // 0 URX_LB_START dataLoc # Save entry stack, input len
686 // 1 URX_LBN_CONT dataLoc # Iterate possible match positions
687 // 2 MinMatchLen
688 // 3 MaxMatchLen
689 // 4 continueLoc (9)
690 // 5 URX_NOP Standard '(' boilerplate.
691 // 6 URX_NOP Reserved slot for use with '|' ops within (block).
692 // 7 <code for LookBehind expression>
693 // 8 URX_LBN_END dataLoc # Check match len, cause a FAIL
694 // 9 ...
695 //
696 // Allocate a block of matcher data, to contain (when running a match)
697 // 0: Stack ptr on entry
698 // 1: Input Index on entry
699 // 2: Start index of match current match attempt.
700 // 3: Original Input String len.
701
702 // Generate match code for any pending literals.
703 fixLiterals();
704
705 // Allocate data space
706 int32_t dataLoc = allocateData(4);
707
708 // Emit URX_LB_START
709 appendOp(URX_LB_START, dataLoc);
710
711 // Emit URX_LBN_CONT
712 appendOp(URX_LBN_CONT, dataLoc);
713 appendOp(URX_RESERVED_OP, 0); // MinMatchLength. To be filled later.
714 appendOp(URX_RESERVED_OP, 0); // MaxMatchLength. To be filled later.
715 appendOp(URX_RESERVED_OP, 0); // Continue Loc. To be filled later.
716
717 // Emit the NOPs
718 appendOp(URX_NOP, 0);
719 appendOp(URX_NOP, 0);
720
721 // On the Parentheses stack, start a new frame and add the postions
722 // of the URX_LB_CONT and the NOP.
723 fParenStack.push(fModeFlags, *fStatus); // Match mode state
724 fParenStack.push(lookBehindN, *fStatus); // Frame type
725 fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
726 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location
727
728 // The final two instructions will be added when the ')' is encountered.
729 }
730 break;
731
732 case doConditionalExpr:
733 // Conditionals such as (?(1)a:b)
734 case doPerlInline:
735 // Perl inline-condtionals. (?{perl code}a|b) We're not perl, no way to do them.
736 error(U_REGEX_UNIMPLEMENTED);
737 break;
738
739
740 case doCloseParen:
741 handleCloseParen();
742 if (fParenStack.size() <= 0) {
743 // Extra close paren, or missing open paren.
744 error(U_REGEX_MISMATCHED_PAREN);
745 }
746 break;
747
748 case doNOP:
749 break;
750
751
752 case doBadOpenParenType:
753 case doRuleError:
754 error(U_REGEX_RULE_SYNTAX);
755 break;
756
757
758 case doMismatchedParenErr:
759 error(U_REGEX_MISMATCHED_PAREN);
760 break;
761
762 case doPlus:
763 // Normal '+' compiles to
764 // 1. stuff to be repeated (already built)
765 // 2. jmp-sav 1
766 // 3. ...
767 //
768 // Or, if the item to be repeated can match a zero length string,
769 // 1. STO_INP_LOC data-loc
770 // 2. body of stuff to be repeated
771 // 3. JMP_SAV_X 2
772 // 4. ...
773
774 //
775 // Or, if the item to be repeated is simple
776 // 1. Item to be repeated.
777 // 2. LOOP_SR_I set number (assuming repeated item is a set ref)
778 // 3. LOOP_C stack location
779 {
780 int32_t topLoc = blockTopLoc(FALSE); // location of item #1
781 int32_t frameLoc;
782
783 // Check for simple constructs, which may get special optimized code.
784 if (topLoc == fRXPat->fCompiledPat->size() - 1) {
785 int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc);
786
787 if (URX_TYPE(repeatedOp) == URX_SETREF) {
788 // Emit optimized code for [char set]+
789 appendOp(URX_LOOP_SR_I, URX_VAL(repeatedOp));
790 frameLoc = allocateStackData(1);
791 appendOp(URX_LOOP_C, frameLoc);
792 break;
793 }
794
795 if (URX_TYPE(repeatedOp) == URX_DOTANY ||
796 URX_TYPE(repeatedOp) == URX_DOTANY_ALL ||
797 URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) {
798 // Emit Optimized code for .+ operations.
799 int32_t loopOpI = buildOp(URX_LOOP_DOT_I, 0);
800 if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) {
801 // URX_LOOP_DOT_I operand is a flag indicating ". matches any" mode.
802 loopOpI |= 1;
803 }
804 if (fModeFlags & UREGEX_UNIX_LINES) {
805 loopOpI |= 2;
806 }
807 appendOp(loopOpI);
808 frameLoc = allocateStackData(1);
809 appendOp(URX_LOOP_C, frameLoc);
810 break;
811 }
812
813 }
814
815 // General case.
816
817 // Check for minimum match length of zero, which requires
818 // extra loop-breaking code.
819 if (minMatchLength(topLoc, fRXPat->fCompiledPat->size()-1) == 0) {
820 // Zero length match is possible.
821 // Emit the code sequence that can handle it.
822 insertOp(topLoc);
823 frameLoc = allocateStackData(1);
824
825 int32_t op = buildOp(URX_STO_INP_LOC, frameLoc);
826 fRXPat->fCompiledPat->setElementAt(op, topLoc);
827
828 appendOp(URX_JMP_SAV_X, topLoc+1);
829 } else {
830 // Simpler code when the repeated body must match something non-empty
831 appendOp(URX_JMP_SAV, topLoc);
832 }
833 }
834 break;
835
836 case doNGPlus:
837 // Non-greedy '+?' compiles to
838 // 1. stuff to be repeated (already built)
839 // 2. state-save 1
840 // 3. ...
841 {
842 int32_t topLoc = blockTopLoc(FALSE);
843 appendOp(URX_STATE_SAVE, topLoc);
844 }
845 break;
846
847
848 case doOpt:
849 // Normal (greedy) ? quantifier.
850 // Compiles to
851 // 1. state save 3
852 // 2. body of optional block
853 // 3. ...
854 // Insert the state save into the compiled pattern, and we're done.
855 {
856 int32_t saveStateLoc = blockTopLoc(TRUE);
857 int32_t saveStateOp = buildOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size());
858 fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
859 }
860 break;
861
862 case doNGOpt:
863 // Non-greedy ?? quantifier
864 // compiles to
865 // 1. jmp 4
866 // 2. body of optional block
867 // 3 jmp 5
868 // 4. state save 2
869 // 5 ...
870 // This code is less than ideal, with two jmps instead of one, because we can only
871 // insert one instruction at the top of the block being iterated.
872 {
873 int32_t jmp1_loc = blockTopLoc(TRUE);
874 int32_t jmp2_loc = fRXPat->fCompiledPat->size();
875
876 int32_t jmp1_op = buildOp(URX_JMP, jmp2_loc+1);
877 fRXPat->fCompiledPat->setElementAt(jmp1_op, jmp1_loc);
878
879 appendOp(URX_JMP, jmp2_loc+2);
880
881 appendOp(URX_STATE_SAVE, jmp1_loc+1);
882 }
883 break;
884
885
886 case doStar:
887 // Normal (greedy) * quantifier.
888 // Compiles to
889 // 1. STATE_SAVE 4
890 // 2. body of stuff being iterated over
891 // 3. JMP_SAV 2
892 // 4. ...
893 //
894 // Or, if the body is a simple [Set],
895 // 1. LOOP_SR_I set number
896 // 2. LOOP_C stack location
897 // ...
898 //
899 // Or if this is a .*
900 // 1. LOOP_DOT_I (. matches all mode flag)
901 // 2. LOOP_C stack location
902 //
903 // Or, if the body can match a zero-length string, to inhibit infinite loops,
904 // 1. STATE_SAVE 5
905 // 2. STO_INP_LOC data-loc
906 // 3. body of stuff
907 // 4. JMP_SAV_X 2
908 // 5. ...
909 {
910 // location of item #1, the STATE_SAVE
911 int32_t topLoc = blockTopLoc(FALSE);
912 int32_t dataLoc = -1;
913
914 // Check for simple *, where the construct being repeated
915 // compiled to single opcode, and might be optimizable.
916 if (topLoc == fRXPat->fCompiledPat->size() - 1) {
917 int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc);
918
919 if (URX_TYPE(repeatedOp) == URX_SETREF) {
920 // Emit optimized code for a [char set]*
921 int32_t loopOpI = buildOp(URX_LOOP_SR_I, URX_VAL(repeatedOp));
922 fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc);
923 dataLoc = allocateStackData(1);
924 appendOp(URX_LOOP_C, dataLoc);
925 break;
926 }
927
928 if (URX_TYPE(repeatedOp) == URX_DOTANY ||
929 URX_TYPE(repeatedOp) == URX_DOTANY_ALL ||
930 URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) {
931 // Emit Optimized code for .* operations.
932 int32_t loopOpI = buildOp(URX_LOOP_DOT_I, 0);
933 if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) {
934 // URX_LOOP_DOT_I operand is a flag indicating . matches any mode.
935 loopOpI |= 1;
936 }
937 if ((fModeFlags & UREGEX_UNIX_LINES) != 0) {
938 loopOpI |= 2;
939 }
940 fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc);
941 dataLoc = allocateStackData(1);
942 appendOp(URX_LOOP_C, dataLoc);
943 break;
944 }
945 }
946
947 // Emit general case code for this *
948 // The optimizations did not apply.
949
950 int32_t saveStateLoc = blockTopLoc(TRUE);
951 int32_t jmpOp = buildOp(URX_JMP_SAV, saveStateLoc+1);
952
953 // Check for minimum match length of zero, which requires
954 // extra loop-breaking code.
955 if (minMatchLength(saveStateLoc, fRXPat->fCompiledPat->size()-1) == 0) {
956 insertOp(saveStateLoc);
957 dataLoc = allocateStackData(1);
958
959 int32_t op = buildOp(URX_STO_INP_LOC, dataLoc);
960 fRXPat->fCompiledPat->setElementAt(op, saveStateLoc+1);
961 jmpOp = buildOp(URX_JMP_SAV_X, saveStateLoc+2);
962 }
963
964 // Locate the position in the compiled pattern where the match will continue
965 // after completing the *. (4 or 5 in the comment above)
966 int32_t continueLoc = fRXPat->fCompiledPat->size()+1;
967
968 // Put together the save state op and store it into the compiled code.
969 int32_t saveStateOp = buildOp(URX_STATE_SAVE, continueLoc);
970 fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
971
972 // Append the URX_JMP_SAV or URX_JMPX operation to the compiled pattern.
973 appendOp(jmpOp);
974 }
975 break;
976
977 case doNGStar:
978 // Non-greedy *? quantifier
979 // compiles to
980 // 1. JMP 3
981 // 2. body of stuff being iterated over
982 // 3. STATE_SAVE 2
983 // 4 ...
984 {
985 int32_t jmpLoc = blockTopLoc(TRUE); // loc 1.
986 int32_t saveLoc = fRXPat->fCompiledPat->size(); // loc 3.
987 int32_t jmpOp = buildOp(URX_JMP, saveLoc);
988 fRXPat->fCompiledPat->setElementAt(jmpOp, jmpLoc);
989 appendOp(URX_STATE_SAVE, jmpLoc+1);
990 }
991 break;
992
993
994 case doIntervalInit:
995 // The '{' opening an interval quantifier was just scanned.
996 // Init the counter varaiables that will accumulate the values as the digits
997 // are scanned.
998 fIntervalLow = 0;
999 fIntervalUpper = -1;
1000 break;
1001
1002 case doIntevalLowerDigit:
1003 // Scanned a digit from the lower value of an {lower,upper} interval
1004 {
1005 int32_t digitValue = u_charDigitValue(fC.fChar);
1006 U_ASSERT(digitValue >= 0);
1007 int64_t val = (int64_t)fIntervalLow*10 + digitValue;
1008 if (val > INT32_MAX) {
1009 error(U_REGEX_NUMBER_TOO_BIG);
1010 } else {
1011 fIntervalLow = (int32_t)val;
1012 }
1013 }
1014 break;
1015
1016 case doIntervalUpperDigit:
1017 // Scanned a digit from the upper value of an {lower,upper} interval
1018 {
1019 if (fIntervalUpper < 0) {
1020 fIntervalUpper = 0;
1021 }
1022 int32_t digitValue = u_charDigitValue(fC.fChar);
1023 U_ASSERT(digitValue >= 0);
1024 int64_t val = (int64_t)fIntervalUpper*10 + digitValue;
1025 if (val > INT32_MAX) {
1026 error(U_REGEX_NUMBER_TOO_BIG);
1027 } else {
1028 fIntervalUpper = (int32_t)val;
1029 }
1030 }
1031 break;
1032
1033 case doIntervalSame:
1034 // Scanned a single value interval like {27}. Upper = Lower.
1035 fIntervalUpper = fIntervalLow;
1036 break;
1037
1038 case doInterval:
1039 // Finished scanning a normal {lower,upper} interval. Generate the code for it.
1040 if (compileInlineInterval() == FALSE) {
1041 compileInterval(URX_CTR_INIT, URX_CTR_LOOP);
1042 }
1043 break;
1044
1045 case doPossessiveInterval:
1046 // Finished scanning a Possessive {lower,upper}+ interval. Generate the code for it.
1047 {
1048 // Remember the loc for the top of the block being looped over.
1049 // (Can not reserve a slot in the compiled pattern at this time, because
1050 // compileInterval needs to reserve also, and blockTopLoc can only reserve
1051 // once per block.)
1052 int32_t topLoc = blockTopLoc(FALSE);
1053
1054 // Produce normal looping code.
1055 compileInterval(URX_CTR_INIT, URX_CTR_LOOP);
1056
1057 // Surround the just-emitted normal looping code with a STO_SP ... LD_SP
1058 // just as if the loop was inclosed in atomic parentheses.
1059
1060 // First the STO_SP before the start of the loop
1061 insertOp(topLoc);
1062
1063 int32_t varLoc = allocateData(1); // Reserve a data location for saving the
1064 int32_t op = buildOp(URX_STO_SP, varLoc);
1065 fRXPat->fCompiledPat->setElementAt(op, topLoc);
1066
1067 int32_t loopOp = (int32_t)fRXPat->fCompiledPat->popi();
1068 U_ASSERT(URX_TYPE(loopOp) == URX_CTR_LOOP && URX_VAL(loopOp) == topLoc);
1069 loopOp++; // point LoopOp after the just-inserted STO_SP
1070 fRXPat->fCompiledPat->push(loopOp, *fStatus);
1071
1072 // Then the LD_SP after the end of the loop
1073 appendOp(URX_LD_SP, varLoc);
1074 }
1075
1076 break;
1077
1078 case doNGInterval:
1079 // Finished scanning a non-greedy {lower,upper}? interval. Generate the code for it.
1080 compileInterval(URX_CTR_INIT_NG, URX_CTR_LOOP_NG);
1081 break;
1082
1083 case doIntervalError:
1084 error(U_REGEX_BAD_INTERVAL);
1085 break;
1086
1087 case doLiteralChar:
1088 // We've just scanned a "normal" character from the pattern,
1089 literalChar(fC.fChar);
1090 break;
1091
1092
1093 case doEscapedLiteralChar:
1094 // We've just scanned an backslashed escaped character with no
1095 // special meaning. It represents itself.
1096 if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 &&
1097 ((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z]
1098 (fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z]
1099 error(U_REGEX_BAD_ESCAPE_SEQUENCE);
1100 }
1101 literalChar(fC.fChar);
1102 break;
1103
1104
1105 case doDotAny:
1106 // scanned a ".", match any single character.
1107 {
1108 fixLiterals(FALSE);
1109 if (fModeFlags & UREGEX_DOTALL) {
1110 appendOp(URX_DOTANY_ALL, 0);
1111 } else if (fModeFlags & UREGEX_UNIX_LINES) {
1112 appendOp(URX_DOTANY_UNIX, 0);
1113 } else {
1114 appendOp(URX_DOTANY, 0);
1115 }
1116 }
1117 break;
1118
1119 case doCaret:
1120 {
1121 fixLiterals(FALSE);
1122 if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
1123 appendOp(URX_CARET, 0);
1124 } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
1125 appendOp(URX_CARET_M, 0);
1126 } else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
1127 appendOp(URX_CARET, 0); // Only testing true start of input.
1128 } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
1129 appendOp(URX_CARET_M_UNIX, 0);
1130 }
1131 }
1132 break;
1133
1134 case doDollar:
1135 {
1136 fixLiterals(FALSE);
1137 if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
1138 appendOp(URX_DOLLAR, 0);
1139 } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
1140 appendOp(URX_DOLLAR_M, 0);
1141 } else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
1142 appendOp(URX_DOLLAR_D, 0);
1143 } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
1144 appendOp(URX_DOLLAR_MD, 0);
1145 }
1146 }
1147 break;
1148
1149 case doBackslashA:
1150 fixLiterals(FALSE);
1151 appendOp(URX_CARET, 0);
1152 break;
1153
1154 case doBackslashB:
1155 {
1156 #if UCONFIG_NO_BREAK_ITERATION==1
1157 if (fModeFlags & UREGEX_UWORD) {
1158 error(U_UNSUPPORTED_ERROR);
1159 }
1160 #endif
1161 fixLiterals(FALSE);
1162 int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B;
1163 appendOp(op, 1);
1164 }
1165 break;
1166
1167 case doBackslashb:
1168 {
1169 #if UCONFIG_NO_BREAK_ITERATION==1
1170 if (fModeFlags & UREGEX_UWORD) {
1171 error(U_UNSUPPORTED_ERROR);
1172 }
1173 #endif
1174 fixLiterals(FALSE);
1175 int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B;
1176 appendOp(op, 0);
1177 }
1178 break;
1179
1180 case doBackslashD:
1181 fixLiterals(FALSE);
1182 appendOp(URX_BACKSLASH_D, 1);
1183 break;
1184
1185 case doBackslashd:
1186 fixLiterals(FALSE);
1187 appendOp(URX_BACKSLASH_D, 0);
1188 break;
1189
1190 case doBackslashG:
1191 fixLiterals(FALSE);
1192 appendOp(URX_BACKSLASH_G, 0);
1193 break;
1194
1195 case doBackslashH:
1196 fixLiterals(FALSE);
1197 appendOp(URX_BACKSLASH_H, 1);
1198 break;
1199
1200 case doBackslashh:
1201 fixLiterals(FALSE);
1202 appendOp(URX_BACKSLASH_H, 0);
1203 break;
1204
1205 case doBackslashR:
1206 fixLiterals(FALSE);
1207 appendOp(URX_BACKSLASH_R, 0);
1208 break;
1209
1210 case doBackslashS:
1211 fixLiterals(FALSE);
1212 appendOp(URX_STAT_SETREF_N, URX_ISSPACE_SET);
1213 break;
1214
1215 case doBackslashs:
1216 fixLiterals(FALSE);
1217 appendOp(URX_STATIC_SETREF, URX_ISSPACE_SET);
1218 break;
1219
1220 case doBackslashV:
1221 fixLiterals(FALSE);
1222 appendOp(URX_BACKSLASH_V, 1);
1223 break;
1224
1225 case doBackslashv:
1226 fixLiterals(FALSE);
1227 appendOp(URX_BACKSLASH_V, 0);
1228 break;
1229
1230 case doBackslashW:
1231 fixLiterals(FALSE);
1232 appendOp(URX_STAT_SETREF_N, URX_ISWORD_SET);
1233 break;
1234
1235 case doBackslashw:
1236 fixLiterals(FALSE);
1237 appendOp(URX_STATIC_SETREF, URX_ISWORD_SET);
1238 break;
1239
1240 case doBackslashX:
1241 fixLiterals(FALSE);
1242 appendOp(URX_BACKSLASH_X, 0);
1243 break;
1244
1245
1246 case doBackslashZ:
1247 fixLiterals(FALSE);
1248 appendOp(URX_DOLLAR, 0);
1249 break;
1250
1251 case doBackslashz:
1252 fixLiterals(FALSE);
1253 appendOp(URX_BACKSLASH_Z, 0);
1254 break;
1255
1256 case doEscapeError:
1257 error(U_REGEX_BAD_ESCAPE_SEQUENCE);
1258 break;
1259
1260 case doExit:
1261 fixLiterals(FALSE);
1262 returnVal = FALSE;
1263 break;
1264
1265 case doProperty:
1266 {
1267 fixLiterals(FALSE);
1268 UnicodeSet *theSet = scanProp();
1269 compileSet(theSet);
1270 }
1271 break;
1272
1273 case doNamedChar:
1274 {
1275 UChar32 c = scanNamedChar();
1276 literalChar(c);
1277 }
1278 break;
1279
1280
1281 case doBackRef:
1282 // BackReference. Somewhat unusual in that the front-end can not completely parse
1283 // the regular expression, because the number of digits to be consumed
1284 // depends on the number of capture groups that have been defined. So
1285 // we have to do it here instead.
1286 {
1287 int32_t numCaptureGroups = fRXPat->fGroupMap->size();
1288 int32_t groupNum = 0;
1289 UChar32 c = fC.fChar;
1290
1291 for (;;) {
1292 // Loop once per digit, for max allowed number of digits in a back reference.
1293 int32_t digit = u_charDigitValue(c);
1294 groupNum = groupNum * 10 + digit;
1295 if (groupNum >= numCaptureGroups) {
1296 break;
1297 }
1298 c = peekCharLL();
1299 if (RegexStaticSets::gStaticSets->fRuleDigitsAlias->contains(c) == FALSE) {
1300 break;
1301 }
1302 nextCharLL();
1303 }
1304
1305 // Scan of the back reference in the source regexp is complete. Now generate
1306 // the compiled code for it.
1307 // Because capture groups can be forward-referenced by back-references,
1308 // we fill the operand with the capture group number. At the end
1309 // of compilation, it will be changed to the variable's location.
1310 U_ASSERT(groupNum > 0); // Shouldn't happen. '\0' begins an octal escape sequence,
1311 // and shouldn't enter this code path at all.
1312 fixLiterals(FALSE);
1313 if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
1314 appendOp(URX_BACKREF_I, groupNum);
1315 } else {
1316 appendOp(URX_BACKREF, groupNum);
1317 }
1318 }
1319 break;
1320
1321 case doBeginNamedBackRef:
1322 U_ASSERT(fCaptureName == NULL);
1323 fCaptureName = new UnicodeString;
1324 if (fCaptureName == NULL) {
1325 error(U_MEMORY_ALLOCATION_ERROR);
1326 }
1327 break;
1328
1329 case doContinueNamedBackRef:
1330 fCaptureName->append(fC.fChar);
1331 break;
1332
1333 case doCompleteNamedBackRef:
1334 {
1335 int32_t groupNumber = uhash_geti(fRXPat->fNamedCaptureMap, fCaptureName);
1336 if (groupNumber == 0) {
1337 // Group name has not been defined.
1338 // Could be a forward reference. If we choose to support them at some
1339 // future time, extra mechanism will be required at this point.
1340 error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
1341 } else {
1342 // Given the number, handle identically to a \n numbered back reference.
1343 // See comments above, under doBackRef
1344 fixLiterals(FALSE);
1345 if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
1346 appendOp(URX_BACKREF_I, groupNumber);
1347 } else {
1348 appendOp(URX_BACKREF, groupNumber);
1349 }
1350 }
1351 delete fCaptureName;
1352 fCaptureName = NULL;
1353 break;
1354 }
1355
1356 case doPossessivePlus:
1357 // Possessive ++ quantifier.
1358 // Compiles to
1359 // 1. STO_SP
1360 // 2. body of stuff being iterated over
1361 // 3. STATE_SAVE 5
1362 // 4. JMP 2
1363 // 5. LD_SP
1364 // 6. ...
1365 //
1366 // Note: TODO: This is pretty inefficient. A mass of saved state is built up
1367 // then unconditionally discarded. Perhaps introduce a new opcode. Ticket 6056
1368 //
1369 {
1370 // Emit the STO_SP
1371 int32_t topLoc = blockTopLoc(TRUE);
1372 int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr.
1373 int32_t op = buildOp(URX_STO_SP, stoLoc);
1374 fRXPat->fCompiledPat->setElementAt(op, topLoc);
1375
1376 // Emit the STATE_SAVE
1377 appendOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+2);
1378
1379 // Emit the JMP
1380 appendOp(URX_JMP, topLoc+1);
1381
1382 // Emit the LD_SP
1383 appendOp(URX_LD_SP, stoLoc);
1384 }
1385 break;
1386
1387 case doPossessiveStar:
1388 // Possessive *+ quantifier.
1389 // Compiles to
1390 // 1. STO_SP loc
1391 // 2. STATE_SAVE 5
1392 // 3. body of stuff being iterated over
1393 // 4. JMP 2
1394 // 5. LD_SP loc
1395 // 6 ...
1396 // TODO: do something to cut back the state stack each time through the loop.
1397 {
1398 // Reserve two slots at the top of the block.
1399 int32_t topLoc = blockTopLoc(TRUE);
1400 insertOp(topLoc);
1401
1402 // emit STO_SP loc
1403 int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr.
1404 int32_t op = buildOp(URX_STO_SP, stoLoc);
1405 fRXPat->fCompiledPat->setElementAt(op, topLoc);
1406
1407 // Emit the SAVE_STATE 5
1408 int32_t L7 = fRXPat->fCompiledPat->size()+1;
1409 op = buildOp(URX_STATE_SAVE, L7);
1410 fRXPat->fCompiledPat->setElementAt(op, topLoc+1);
1411
1412 // Append the JMP operation.
1413 appendOp(URX_JMP, topLoc+1);
1414
1415 // Emit the LD_SP loc
1416 appendOp(URX_LD_SP, stoLoc);
1417 }
1418 break;
1419
1420 case doPossessiveOpt:
1421 // Possessive ?+ quantifier.
1422 // Compiles to
1423 // 1. STO_SP loc
1424 // 2. SAVE_STATE 5
1425 // 3. body of optional block
1426 // 4. LD_SP loc
1427 // 5. ...
1428 //
1429 {
1430 // Reserve two slots at the top of the block.
1431 int32_t topLoc = blockTopLoc(TRUE);
1432 insertOp(topLoc);
1433
1434 // Emit the STO_SP
1435 int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr.
1436 int32_t op = buildOp(URX_STO_SP, stoLoc);
1437 fRXPat->fCompiledPat->setElementAt(op, topLoc);
1438
1439 // Emit the SAVE_STATE
1440 int32_t continueLoc = fRXPat->fCompiledPat->size()+1;
1441 op = buildOp(URX_STATE_SAVE, continueLoc);
1442 fRXPat->fCompiledPat->setElementAt(op, topLoc+1);
1443
1444 // Emit the LD_SP
1445 appendOp(URX_LD_SP, stoLoc);
1446 }
1447 break;
1448
1449
1450 case doBeginMatchMode:
1451 fNewModeFlags = fModeFlags;
1452 fSetModeFlag = TRUE;
1453 break;
1454
1455 case doMatchMode: // (?i) and similar
1456 {
1457 int32_t bit = 0;
1458 switch (fC.fChar) {
1459 case 0x69: /* 'i' */ bit = UREGEX_CASE_INSENSITIVE; break;
1460 case 0x64: /* 'd' */ bit = UREGEX_UNIX_LINES; break;
1461 case 0x6d: /* 'm' */ bit = UREGEX_MULTILINE; break;
1462 case 0x73: /* 's' */ bit = UREGEX_DOTALL; break;
1463 case 0x75: /* 'u' */ bit = 0; /* Unicode casing */ break;
1464 case 0x77: /* 'w' */ bit = UREGEX_UWORD; break;
1465 case 0x78: /* 'x' */ bit = UREGEX_COMMENTS; break;
1466 case 0x2d: /* '-' */ fSetModeFlag = FALSE; break;
1467 default:
1468 UPRV_UNREACHABLE; // Should never happen. Other chars are filtered out
1469 // by the scanner.
1470 }
1471 if (fSetModeFlag) {
1472 fNewModeFlags |= bit;
1473 } else {
1474 fNewModeFlags &= ~bit;
1475 }
1476 }
1477 break;
1478
1479 case doSetMatchMode:
1480 // Emit code to match any pending literals, using the not-yet changed match mode.
1481 fixLiterals();
1482
1483 // We've got a (?i) or similar. The match mode is being changed, but
1484 // the change is not scoped to a parenthesized block.
1485 U_ASSERT(fNewModeFlags < 0);
1486 fModeFlags = fNewModeFlags;
1487
1488 break;
1489
1490
1491 case doMatchModeParen:
1492 // We've got a (?i: or similar. Begin a parenthesized block, save old
1493 // mode flags so they can be restored at the close of the block.
1494 //
1495 // Compile to a
1496 // - NOP, which later may be replaced by a save-state if the
1497 // parenthesized group gets a * quantifier, followed by
1498 // - NOP, which may later be replaced by a save-state if there
1499 // is an '|' alternation within the parens.
1500 {
1501 fixLiterals(FALSE);
1502 appendOp(URX_NOP, 0);
1503 appendOp(URX_NOP, 0);
1504
1505 // On the Parentheses stack, start a new frame and add the postions
1506 // of the two NOPs (a normal non-capturing () frame, except for the
1507 // saving of the orignal mode flags.)
1508 fParenStack.push(fModeFlags, *fStatus);
1509 fParenStack.push(flags, *fStatus); // Frame Marker
1510 fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP
1511 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
1512
1513 // Set the current mode flags to the new values.
1514 U_ASSERT(fNewModeFlags < 0);
1515 fModeFlags = fNewModeFlags;
1516 }
1517 break;
1518
1519 case doBadModeFlag:
1520 error(U_REGEX_INVALID_FLAG);
1521 break;
1522
1523 case doSuppressComments:
1524 // We have just scanned a '(?'. We now need to prevent the character scanner from
1525 // treating a '#' as a to-the-end-of-line comment.
1526 // (This Perl compatibility just gets uglier and uglier to do...)
1527 fEOLComments = FALSE;
1528 break;
1529
1530
1531 case doSetAddAmp:
1532 {
1533 UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
1534 set->add(chAmp);
1535 }
1536 break;
1537
1538 case doSetAddDash:
1539 {
1540 UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
1541 set->add(chDash);
1542 }
1543 break;
1544
1545 case doSetBackslash_s:
1546 {
1547 UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
1548 set->addAll(*RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]);
1549 break;
1550 }
1551
1552 case doSetBackslash_S:
1553 {
1554 UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
1555 UnicodeSet SSet(*RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]);
1556 SSet.complement();
1557 set->addAll(SSet);
1558 break;
1559 }
1560
1561 case doSetBackslash_d:
1562 {
1563 UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
1564 // TODO - make a static set, ticket 6058.
1565 addCategory(set, U_GC_ND_MASK, *fStatus);
1566 break;
1567 }
1568
1569 case doSetBackslash_D:
1570 {
1571 UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
1572 UnicodeSet digits;
1573 // TODO - make a static set, ticket 6058.
1574 digits.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus);
1575 digits.complement();
1576 set->addAll(digits);
1577 break;
1578 }
1579
1580 case doSetBackslash_h:
1581 {
1582 UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
1583 UnicodeSet h;
1584 h.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus);
1585 h.add((UChar32)9); // Tab
1586 set->addAll(h);
1587 break;
1588 }
1589
1590 case doSetBackslash_H:
1591 {
1592 UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
1593 UnicodeSet h;
1594 h.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus);
1595 h.add((UChar32)9); // Tab
1596 h.complement();
1597 set->addAll(h);
1598 break;
1599 }
1600
1601 case doSetBackslash_v:
1602 {
1603 UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
1604 set->add((UChar32)0x0a, (UChar32)0x0d); // add range
1605 set->add((UChar32)0x85);
1606 set->add((UChar32)0x2028, (UChar32)0x2029);
1607 break;
1608 }
1609
1610 case doSetBackslash_V:
1611 {
1612 UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
1613 UnicodeSet v;
1614 v.add((UChar32)0x0a, (UChar32)0x0d); // add range
1615 v.add((UChar32)0x85);
1616 v.add((UChar32)0x2028, (UChar32)0x2029);
1617 v.complement();
1618 set->addAll(v);
1619 break;
1620 }
1621
1622 case doSetBackslash_w:
1623 {
1624 UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
1625 set->addAll(*RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]);
1626 break;
1627 }
1628
1629 case doSetBackslash_W:
1630 {
1631 UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
1632 UnicodeSet SSet(*RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]);
1633 SSet.complement();
1634 set->addAll(SSet);
1635 break;
1636 }
1637
1638 case doSetBegin:
1639 fixLiterals(FALSE);
1640 fSetStack.push(new UnicodeSet(), *fStatus);
1641 fSetOpStack.push(setStart, *fStatus);
1642 if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
1643 fSetOpStack.push(setCaseClose, *fStatus);
1644 }
1645 break;
1646
1647 case doSetBeginDifference1:
1648 // We have scanned something like [[abc]-[
1649 // Set up a new UnicodeSet for the set beginning with the just-scanned '['
1650 // Push a Difference operator, which will cause the new set to be subtracted from what
1651 // went before once it is created.
1652 setPushOp(setDifference1);
1653 fSetOpStack.push(setStart, *fStatus);
1654 if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
1655 fSetOpStack.push(setCaseClose, *fStatus);
1656 }
1657 break;
1658
1659 case doSetBeginIntersection1:
1660 // We have scanned something like [[abc]&[
1661 // Need both the '&' operator and the open '[' operator.
1662 setPushOp(setIntersection1);
1663 fSetOpStack.push(setStart, *fStatus);
1664 if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
1665 fSetOpStack.push(setCaseClose, *fStatus);
1666 }
1667 break;
1668
1669 case doSetBeginUnion:
1670 // We have scanned something like [[abc][
1671 // Need to handle the union operation explicitly [[abc] | [
1672 setPushOp(setUnion);
1673 fSetOpStack.push(setStart, *fStatus);
1674 if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
1675 fSetOpStack.push(setCaseClose, *fStatus);
1676 }
1677 break;
1678
1679 case doSetDifference2:
1680 // We have scanned something like [abc--
1681 // Consider this to unambiguously be a set difference operator.
1682 setPushOp(setDifference2);
1683 break;
1684
1685 case doSetEnd:
1686 // Have encountered the ']' that closes a set.
1687 // Force the evaluation of any pending operations within this set,
1688 // leave the completed set on the top of the set stack.
1689 setEval(setEnd);
1690 U_ASSERT(fSetOpStack.peeki()==setStart);
1691 fSetOpStack.popi();
1692 break;
1693
1694 case doSetFinish:
1695 {
1696 // Finished a complete set expression, including all nested sets.
1697 // The close bracket has already triggered clearing out pending set operators,
1698 // the operator stack should be empty and the operand stack should have just
1699 // one entry, the result set.
1700 U_ASSERT(fSetOpStack.empty());
1701 UnicodeSet *theSet = (UnicodeSet *)fSetStack.pop();
1702 U_ASSERT(fSetStack.empty());
1703 compileSet(theSet);
1704 break;
1705 }
1706
1707 case doSetIntersection2:
1708 // Have scanned something like [abc&&
1709 setPushOp(setIntersection2);
1710 break;
1711
1712 case doSetLiteral:
1713 // Union the just-scanned literal character into the set being built.
1714 // This operation is the highest precedence set operation, so we can always do
1715 // it immediately, without waiting to see what follows. It is necessary to perform
1716 // any pending '-' or '&' operation first, because these have the same precedence
1717 // as union-ing in a literal'
1718 {
1719 setEval(setUnion);
1720 UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
1721 s->add(fC.fChar);
1722 fLastSetLiteral = fC.fChar;
1723 break;
1724 }
1725
1726 case doSetLiteralEscaped:
1727 // A back-slash escaped literal character was encountered.
1728 // Processing is the same as with setLiteral, above, with the addition of
1729 // the optional check for errors on escaped ASCII letters.
1730 {
1731 if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 &&
1732 ((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z]
1733 (fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z]
1734 error(U_REGEX_BAD_ESCAPE_SEQUENCE);
1735 }
1736 setEval(setUnion);
1737 UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
1738 s->add(fC.fChar);
1739 fLastSetLiteral = fC.fChar;
1740 break;
1741 }
1742
1743 case doSetNamedChar:
1744 // Scanning a \N{UNICODE CHARACTER NAME}
1745 // Aside from the source of the character, the processing is identical to doSetLiteral,
1746 // above.
1747 {
1748 UChar32 c = scanNamedChar();
1749 setEval(setUnion);
1750 UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
1751 s->add(c);
1752 fLastSetLiteral = c;
1753 break;
1754 }
1755
1756 case doSetNamedRange:
1757 // We have scanned literal-\N{CHAR NAME}. Add the range to the set.
1758 // The left character is already in the set, and is saved in fLastSetLiteral.
1759 // The right side needs to be picked up, the scan is at the 'N'.
1760 // Lower Limit > Upper limit being an error matches both Java
1761 // and ICU UnicodeSet behavior.
1762 {
1763 UChar32 c = scanNamedChar();
1764 if (U_SUCCESS(*fStatus) && (fLastSetLiteral == U_SENTINEL || fLastSetLiteral > c)) {
1765 error(U_REGEX_INVALID_RANGE);
1766 }
1767 UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
1768 s->add(fLastSetLiteral, c);
1769 fLastSetLiteral = c;
1770 break;
1771 }
1772
1773
1774 case doSetNegate:
1775 // Scanned a '^' at the start of a set.
1776 // Push the negation operator onto the set op stack.
1777 // A twist for case-insensitive matching:
1778 // the case closure operation must happen _before_ negation.
1779 // But the case closure operation will already be on the stack if it's required.
1780 // This requires checking for case closure, and swapping the stack order
1781 // if it is present.
1782 {
1783 int32_t tosOp = fSetOpStack.peeki();
1784 if (tosOp == setCaseClose) {
1785 fSetOpStack.popi();
1786 fSetOpStack.push(setNegation, *fStatus);
1787 fSetOpStack.push(setCaseClose, *fStatus);
1788 } else {
1789 fSetOpStack.push(setNegation, *fStatus);
1790 }
1791 }
1792 break;
1793
1794 case doSetNoCloseError:
1795 error(U_REGEX_MISSING_CLOSE_BRACKET);
1796 break;
1797
1798 case doSetOpError:
1799 error(U_REGEX_RULE_SYNTAX); // -- or && at the end of a set. Illegal.
1800 break;
1801
1802 case doSetPosixProp:
1803 {
1804 UnicodeSet *s = scanPosixProp();
1805 if (s != NULL) {
1806 UnicodeSet *tos = (UnicodeSet *)fSetStack.peek();
1807 tos->addAll(*s);
1808 delete s;
1809 } // else error. scanProp() reported the error status already.
1810 }
1811 break;
1812
1813 case doSetProp:
1814 // Scanned a \p \P within [brackets].
1815 {
1816 UnicodeSet *s = scanProp();
1817 if (s != NULL) {
1818 UnicodeSet *tos = (UnicodeSet *)fSetStack.peek();
1819 tos->addAll(*s);
1820 delete s;
1821 } // else error. scanProp() reported the error status already.
1822 }
1823 break;
1824
1825
1826 case doSetRange:
1827 // We have scanned literal-literal. Add the range to the set.
1828 // The left character is already in the set, and is saved in fLastSetLiteral.
1829 // The right side is the current character.
1830 // Lower Limit > Upper limit being an error matches both Java
1831 // and ICU UnicodeSet behavior.
1832 {
1833
1834 if (fLastSetLiteral == U_SENTINEL || fLastSetLiteral > fC.fChar) {
1835 error(U_REGEX_INVALID_RANGE);
1836 }
1837 UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
1838 s->add(fLastSetLiteral, fC.fChar);
1839 break;
1840 }
1841
1842 default:
1843 UPRV_UNREACHABLE;
1844 }
1845
1846 if (U_FAILURE(*fStatus)) {
1847 returnVal = FALSE;
1848 }
1849
1850 return returnVal;
1851 }
1852
1853
1854
1855 //------------------------------------------------------------------------------
1856 //
1857 // literalChar We've encountered a literal character from the pattern,
1858 // or an escape sequence that reduces to a character.
1859 // Add it to the string containing all literal chars/strings from
1860 // the pattern.
1861 //
1862 //------------------------------------------------------------------------------
1863 void RegexCompile::literalChar(UChar32 c) {
1864 fLiteralChars.append(c);
1865 }
1866
1867
1868 //------------------------------------------------------------------------------
1869 //
1870 // fixLiterals When compiling something that can follow a literal
1871 // string in a pattern, emit the code to match the
1872 // accumulated literal string.
1873 //
1874 // Optionally, split the last char of the string off into
1875 // a single "ONE_CHAR" operation, so that quantifiers can
1876 // apply to that char alone. Example: abc*
1877 // The * must apply to the 'c' only.
1878 //
1879 //------------------------------------------------------------------------------
1880 void RegexCompile::fixLiterals(UBool split) {
1881
1882 // If no literal characters have been scanned but not yet had code generated
1883 // for them, nothing needs to be done.
1884 if (fLiteralChars.length() == 0) {
1885 return;
1886 }
1887
1888 int32_t indexOfLastCodePoint = fLiteralChars.moveIndex32(fLiteralChars.length(), -1);
1889 UChar32 lastCodePoint = fLiteralChars.char32At(indexOfLastCodePoint);
1890
1891 // Split: We need to ensure that the last item in the compiled pattern
1892 // refers only to the last literal scanned in the pattern, so that
1893 // quantifiers (*, +, etc.) affect only it, and not a longer string.
1894 // Split before case folding for case insensitive matches.
1895
1896 if (split) {
1897 fLiteralChars.truncate(indexOfLastCodePoint);
1898 fixLiterals(FALSE); // Recursive call, emit code to match the first part of the string.
1899 // Note that the truncated literal string may be empty, in which case
1900 // nothing will be emitted.
1901
1902 literalChar(lastCodePoint); // Re-add the last code point as if it were a new literal.
1903 fixLiterals(FALSE); // Second recursive call, code for the final code point.
1904 return;
1905 }
1906
1907 // If we are doing case-insensitive matching, case fold the string. This may expand
1908 // the string, e.g. the German sharp-s turns into "ss"
1909 if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
1910 fLiteralChars.foldCase();
1911 indexOfLastCodePoint = fLiteralChars.moveIndex32(fLiteralChars.length(), -1);
1912 lastCodePoint = fLiteralChars.char32At(indexOfLastCodePoint);
1913 }
1914
1915 if (indexOfLastCodePoint == 0) {
1916 // Single character, emit a URX_ONECHAR op to match it.
1917 if ((fModeFlags & UREGEX_CASE_INSENSITIVE) &&
1918 u_hasBinaryProperty(lastCodePoint, UCHAR_CASE_SENSITIVE)) {
1919 appendOp(URX_ONECHAR_I, lastCodePoint);
1920 } else {
1921 appendOp(URX_ONECHAR, lastCodePoint);
1922 }
1923 } else {
1924 // Two or more chars, emit a URX_STRING to match them.
1925 if (fLiteralChars.length() > 0x00ffffff || fRXPat->fLiteralText.length() > 0x00ffffff) {
1926 error(U_REGEX_PATTERN_TOO_BIG);
1927 }
1928 if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
1929 appendOp(URX_STRING_I, fRXPat->fLiteralText.length());
1930 } else {
1931 // TODO here: add optimization to split case sensitive strings of length two
1932 // into two single char ops, for efficiency.
1933 appendOp(URX_STRING, fRXPat->fLiteralText.length());
1934 }
1935 appendOp(URX_STRING_LEN, fLiteralChars.length());
1936
1937 // Add this string into the accumulated strings of the compiled pattern.
1938 fRXPat->fLiteralText.append(fLiteralChars);
1939 }
1940
1941 fLiteralChars.remove();
1942 }
1943
1944
1945 int32_t RegexCompile::buildOp(int32_t type, int32_t val) {
1946 if (U_FAILURE(*fStatus)) {
1947 return 0;
1948 }
1949 if (type < 0 || type > 255) {
1950 UPRV_UNREACHABLE;
1951 }
1952 if (val > 0x00ffffff) {
1953 UPRV_UNREACHABLE;
1954 }
1955 if (val < 0) {
1956 if (!(type == URX_RESERVED_OP_N || type == URX_RESERVED_OP)) {
1957 UPRV_UNREACHABLE;
1958 }
1959 if (URX_TYPE(val) != 0xff) {
1960 UPRV_UNREACHABLE;
1961 }
1962 type = URX_RESERVED_OP_N;
1963 }
1964 return (type << 24) | val;
1965 }
1966
1967
1968 //------------------------------------------------------------------------------
1969 //
1970 // appendOp() Append a new instruction onto the compiled pattern
1971 // Includes error checking, limiting the size of the
1972 // pattern to lengths that can be represented in the
1973 // 24 bit operand field of an instruction.
1974 //
1975 //------------------------------------------------------------------------------
1976 void RegexCompile::appendOp(int32_t op) {
1977 if (U_FAILURE(*fStatus)) {
1978 return;
1979 }
1980 fRXPat->fCompiledPat->addElement(op, *fStatus);
1981 if ((fRXPat->fCompiledPat->size() > 0x00fffff0) && U_SUCCESS(*fStatus)) {
1982 error(U_REGEX_PATTERN_TOO_BIG);
1983 }
1984 }
1985
1986 void RegexCompile::appendOp(int32_t type, int32_t val) {
1987 appendOp(buildOp(type, val));
1988 }
1989
1990
1991 //------------------------------------------------------------------------------
1992 //
1993 // insertOp() Insert a slot for a new opcode into the already
1994 // compiled pattern code.
1995 //
1996 // Fill the slot with a NOP. Our caller will replace it
1997 // with what they really wanted.
1998 //
1999 //------------------------------------------------------------------------------
2000 void RegexCompile::insertOp(int32_t where) {
2001 UVector64 *code = fRXPat->fCompiledPat;
2002 U_ASSERT(where>0 && where < code->size());
2003
2004 int32_t nop = buildOp(URX_NOP, 0);
2005 code->insertElementAt(nop, where, *fStatus);
2006
2007 // Walk through the pattern, looking for any ops with targets that
2008 // were moved down by the insert. Fix them.
2009 int32_t loc;
2010 for (loc=0; loc<code->size(); loc++) {
2011 int32_t op = (int32_t)code->elementAti(loc);
2012 int32_t opType = URX_TYPE(op);
2013 int32_t opValue = URX_VAL(op);
2014 if ((opType == URX_JMP ||
2015 opType == URX_JMPX ||
2016 opType == URX_STATE_SAVE ||
2017 opType == URX_CTR_LOOP ||
2018 opType == URX_CTR_LOOP_NG ||
2019 opType == URX_JMP_SAV ||
2020 opType == URX_JMP_SAV_X ||
2021 opType == URX_RELOC_OPRND) && opValue > where) {
2022 // Target location for this opcode is after the insertion point and
2023 // needs to be incremented to adjust for the insertion.
2024 opValue++;
2025 op = buildOp(opType, opValue);
2026 code->setElementAt(op, loc);
2027 }
2028 }
2029
2030 // Now fix up the parentheses stack. All positive values in it are locations in
2031 // the compiled pattern. (Negative values are frame boundaries, and don't need fixing.)
2032 for (loc=0; loc<fParenStack.size(); loc++) {
2033 int32_t x = fParenStack.elementAti(loc);
2034 U_ASSERT(x < code->size());
2035 if (x>where) {
2036 x++;
2037 fParenStack.setElementAt(x, loc);
2038 }
2039 }
2040
2041 if (fMatchCloseParen > where) {
2042 fMatchCloseParen++;
2043 }
2044 if (fMatchOpenParen > where) {
2045 fMatchOpenParen++;
2046 }
2047 }
2048
2049
2050 //------------------------------------------------------------------------------
2051 //
2052 // allocateData() Allocate storage in the matcher's static data area.
2053 // Return the index for the newly allocated data.
2054 // The storage won't actually exist until we are running a match
2055 // operation, but the storage indexes are inserted into various
2056 // opcodes while compiling the pattern.
2057 //
2058 //------------------------------------------------------------------------------
2059 int32_t RegexCompile::allocateData(int32_t size) {
2060 if (U_FAILURE(*fStatus)) {
2061 return 0;
2062 }
2063 if (size <= 0 || size > 0x100 || fRXPat->fDataSize < 0) {
2064 error(U_REGEX_INTERNAL_ERROR);
2065 return 0;
2066 }
2067 int32_t dataIndex = fRXPat->fDataSize;
2068 fRXPat->fDataSize += size;
2069 if (fRXPat->fDataSize >= 0x00fffff0) {
2070 error(U_REGEX_INTERNAL_ERROR);
2071 }
2072 return dataIndex;
2073 }
2074
2075
2076 //------------------------------------------------------------------------------
2077 //
2078 // allocateStackData() Allocate space in the back-tracking stack frame.
2079 // Return the index for the newly allocated data.
2080 // The frame indexes are inserted into various
2081 // opcodes while compiling the pattern, meaning that frame
2082 // size must be restricted to the size that will fit
2083 // as an operand (24 bits).
2084 //
2085 //------------------------------------------------------------------------------
2086 int32_t RegexCompile::allocateStackData(int32_t size) {
2087 if (U_FAILURE(*fStatus)) {
2088 return 0;
2089 }
2090 if (size <= 0 || size > 0x100 || fRXPat->fFrameSize < 0) {
2091 error(U_REGEX_INTERNAL_ERROR);
2092 return 0;
2093 }
2094 int32_t dataIndex = fRXPat->fFrameSize;
2095 fRXPat->fFrameSize += size;
2096 if (fRXPat->fFrameSize >= 0x00fffff0) {
2097 error(U_REGEX_PATTERN_TOO_BIG);
2098 }
2099 return dataIndex;
2100 }
2101
2102
2103 //------------------------------------------------------------------------------
2104 //
2105 // blockTopLoc() Find or create a location in the compiled pattern
2106 // at the start of the operation or block that has
2107 // just been compiled. Needed when a quantifier (* or
2108 // whatever) appears, and we need to add an operation
2109 // at the start of the thing being quantified.
2110 //
2111 // (Parenthesized Blocks) have a slot with a NOP that
2112 // is reserved for this purpose. .* or similar don't
2113 // and a slot needs to be added.
2114 //
2115 // parameter reserveLoc : TRUE - ensure that there is space to add an opcode
2116 // at the returned location.
2117 // FALSE - just return the address,
2118 // do not reserve a location there.
2119 //
2120 //------------------------------------------------------------------------------
2121 int32_t RegexCompile::blockTopLoc(UBool reserveLoc) {
2122 int32_t theLoc;
2123 fixLiterals(TRUE); // Emit code for any pending literals.
2124 // If last item was a string, emit separate op for the its last char.
2125 if (fRXPat->fCompiledPat->size() == fMatchCloseParen)
2126 {
2127 // The item just processed is a parenthesized block.
2128 theLoc = fMatchOpenParen; // A slot is already reserved for us.
2129 U_ASSERT(theLoc > 0);
2130 U_ASSERT(URX_TYPE(((uint32_t)fRXPat->fCompiledPat->elementAti(theLoc))) == URX_NOP);
2131 }
2132 else {
2133 // Item just compiled is a single thing, a ".", or a single char, a string or a set reference.
2134 // No slot for STATE_SAVE was pre-reserved in the compiled code.
2135 // We need to make space now.
2136 theLoc = fRXPat->fCompiledPat->size()-1;
2137 int32_t opAtTheLoc = (int32_t)fRXPat->fCompiledPat->elementAti(theLoc);
2138 if (URX_TYPE(opAtTheLoc) == URX_STRING_LEN) {
2139 // Strings take two opcode, we want the position of the first one.
2140 // We can have a string at this point if a single character case-folded to two.
2141 theLoc--;
2142 }
2143 if (reserveLoc) {
2144 int32_t nop = buildOp(URX_NOP, 0);
2145 fRXPat->fCompiledPat->insertElementAt(nop, theLoc, *fStatus);
2146 }
2147 }
2148 return theLoc;
2149 }
2150
2151
2152
2153 //------------------------------------------------------------------------------
2154 //
2155 // handleCloseParen When compiling a close paren, we need to go back
2156 // and fix up any JMP or SAVE operations within the
2157 // parenthesized block that need to target the end
2158 // of the block. The locations of these are kept on
2159 // the paretheses stack.
2160 //
2161 // This function is called both when encountering a
2162 // real ) and at the end of the pattern.
2163 //
2164 //------------------------------------------------------------------------------
2165 void RegexCompile::handleCloseParen() {
2166 int32_t patIdx;
2167 int32_t patOp;
2168 if (fParenStack.size() <= 0) {
2169 error(U_REGEX_MISMATCHED_PAREN);
2170 return;
2171 }
2172
2173 // Emit code for any pending literals.
2174 fixLiterals(FALSE);
2175
2176 // Fixup any operations within the just-closed parenthesized group
2177 // that need to reference the end of the (block).
2178 // (The first one popped from the stack is an unused slot for
2179 // alternation (OR) state save, but applying the fixup to it does no harm.)
2180 for (;;) {
2181 patIdx = fParenStack.popi();
2182 if (patIdx < 0) {
2183 // value < 0 flags the start of the frame on the paren stack.
2184 break;
2185 }
2186 U_ASSERT(patIdx>0 && patIdx <= fRXPat->fCompiledPat->size());
2187 patOp = (int32_t)fRXPat->fCompiledPat->elementAti(patIdx);
2188 U_ASSERT(URX_VAL(patOp) == 0); // Branch target for JMP should not be set.
2189 patOp |= fRXPat->fCompiledPat->size(); // Set it now.
2190 fRXPat->fCompiledPat->setElementAt(patOp, patIdx);
2191 fMatchOpenParen = patIdx;
2192 }
2193
2194 // At the close of any parenthesized block, restore the match mode flags to
2195 // the value they had at the open paren. Saved value is
2196 // at the top of the paren stack.
2197 fModeFlags = fParenStack.popi();
2198 U_ASSERT(fModeFlags < 0);
2199
2200 // DO any additional fixups, depending on the specific kind of
2201 // parentesized grouping this is
2202
2203 switch (patIdx) {
2204 case plain:
2205 case flags:
2206 // No additional fixups required.
2207 // (Grouping-only parentheses)
2208 break;
2209 case capturing:
2210 // Capturing Parentheses.
2211 // Insert a End Capture op into the pattern.
2212 // The frame offset of the variables for this cg is obtained from the
2213 // start capture op and put it into the end-capture op.
2214 {
2215 int32_t captureOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
2216 U_ASSERT(URX_TYPE(captureOp) == URX_START_CAPTURE);
2217
2218 int32_t frameVarLocation = URX_VAL(captureOp);
2219 appendOp(URX_END_CAPTURE, frameVarLocation);
2220 }
2221 break;
2222 case atomic:
2223 // Atomic Parenthesis.
2224 // Insert a LD_SP operation to restore the state stack to the position
2225 // it was when the atomic parens were entered.
2226 {
2227 int32_t stoOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
2228 U_ASSERT(URX_TYPE(stoOp) == URX_STO_SP);
2229 int32_t stoLoc = URX_VAL(stoOp);
2230 appendOp(URX_LD_SP, stoLoc);
2231 }
2232 break;
2233
2234 case lookAhead:
2235 {
2236 int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5);
2237 U_ASSERT(URX_TYPE(startOp) == URX_LA_START);
2238 int32_t dataLoc = URX_VAL(startOp);
2239 appendOp(URX_LA_END, dataLoc);
2240 }
2241 break;
2242
2243 case negLookAhead:
2244 {
2245 // See comment at doOpenLookAheadNeg
2246 int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-1);
2247 U_ASSERT(URX_TYPE(startOp) == URX_LA_START);
2248 int32_t dataLoc = URX_VAL(startOp);
2249 appendOp(URX_LA_END, dataLoc);
2250 appendOp(URX_BACKTRACK, 0);
2251 appendOp(URX_LA_END, dataLoc);
2252
2253 // Patch the URX_SAVE near the top of the block.
2254 // The destination of the SAVE is the final LA_END that was just added.
2255 int32_t saveOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen);
2256 U_ASSERT(URX_TYPE(saveOp) == URX_STATE_SAVE);
2257 int32_t dest = fRXPat->fCompiledPat->size()-1;
2258 saveOp = buildOp(URX_STATE_SAVE, dest);
2259 fRXPat->fCompiledPat->setElementAt(saveOp, fMatchOpenParen);
2260 }
2261 break;
2262
2263 case lookBehind:
2264 {
2265 // See comment at doOpenLookBehind.
2266
2267 // Append the URX_LB_END and URX_LA_END to the compiled pattern.
2268 int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-4);
2269 U_ASSERT(URX_TYPE(startOp) == URX_LB_START);
2270 int32_t dataLoc = URX_VAL(startOp);
2271 appendOp(URX_LB_END, dataLoc);
2272 appendOp(URX_LA_END, dataLoc);
2273
2274 // Determine the min and max bounds for the length of the
2275 // string that the pattern can match.
2276 // An unbounded upper limit is an error.
2277 int32_t patEnd = fRXPat->fCompiledPat->size() - 1;
2278 int32_t minML = minMatchLength(fMatchOpenParen, patEnd);
2279 int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd);
2280 if (URX_TYPE(maxML) != 0) {
2281 error(U_REGEX_LOOK_BEHIND_LIMIT);
2282 break;
2283 }
2284 if (maxML == INT32_MAX) {
2285 error(U_REGEX_LOOK_BEHIND_LIMIT);
2286 break;
2287 }
2288 if (minML == INT32_MAX && maxML == 0) {
2289 // This condition happens when no match is possible, such as with a
2290 // [set] expression containing no elements.
2291 // In principle, the generated code to evaluate the expression could be deleted,
2292 // but it's probably not worth the complication.
2293 minML = 0;
2294 }
2295 U_ASSERT(minML <= maxML);
2296
2297 // Insert the min and max match len bounds into the URX_LB_CONT op that
2298 // appears at the top of the look-behind block, at location fMatchOpenParen+1
2299 fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-2);
2300 fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-1);
2301
2302 }
2303 break;
2304
2305
2306
2307 case lookBehindN:
2308 {
2309 // See comment at doOpenLookBehindNeg.
2310
2311 // Append the URX_LBN_END to the compiled pattern.
2312 int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5);
2313 U_ASSERT(URX_TYPE(startOp) == URX_LB_START);
2314 int32_t dataLoc = URX_VAL(startOp);
2315 appendOp(URX_LBN_END, dataLoc);
2316
2317 // Determine the min and max bounds for the length of the
2318 // string that the pattern can match.
2319 // An unbounded upper limit is an error.
2320 int32_t patEnd = fRXPat->fCompiledPat->size() - 1;
2321 int32_t minML = minMatchLength(fMatchOpenParen, patEnd);
2322 int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd);
2323 if (URX_TYPE(maxML) != 0) {
2324 error(U_REGEX_LOOK_BEHIND_LIMIT);
2325 break;
2326 }
2327 if (maxML == INT32_MAX) {
2328 error(U_REGEX_LOOK_BEHIND_LIMIT);
2329 break;
2330 }
2331 if (minML == INT32_MAX && maxML == 0) {
2332 // This condition happens when no match is possible, such as with a
2333 // [set] expression containing no elements.
2334 // In principle, the generated code to evaluate the expression could be deleted,
2335 // but it's probably not worth the complication.
2336 minML = 0;
2337 }
2338
2339 U_ASSERT(minML <= maxML);
2340
2341 // Insert the min and max match len bounds into the URX_LB_CONT op that
2342 // appears at the top of the look-behind block, at location fMatchOpenParen+1
2343 fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-3);
2344 fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-2);
2345
2346 // Insert the pattern location to continue at after a successful match
2347 // as the last operand of the URX_LBN_CONT
2348 int32_t op = buildOp(URX_RELOC_OPRND, fRXPat->fCompiledPat->size());
2349 fRXPat->fCompiledPat->setElementAt(op, fMatchOpenParen-1);
2350 }
2351 break;
2352
2353
2354
2355 default:
2356 UPRV_UNREACHABLE;
2357 }
2358
2359 // remember the next location in the compiled pattern.
2360 // The compilation of Quantifiers will look at this to see whether its looping
2361 // over a parenthesized block or a single item
2362 fMatchCloseParen = fRXPat->fCompiledPat->size();
2363 }
2364
2365
2366
2367 //------------------------------------------------------------------------------
2368 //
2369 // compileSet Compile the pattern operations for a reference to a
2370 // UnicodeSet.
2371 //
2372 //------------------------------------------------------------------------------
2373 void RegexCompile::compileSet(UnicodeSet *theSet)
2374 {
2375 if (theSet == NULL) {
2376 return;
2377 }
2378 // Remove any strings from the set.
2379 // There shoudn't be any, but just in case.
2380 // (Case Closure can add them; if we had a simple case closure avaialble that
2381 // ignored strings, that would be better.)
2382 theSet->removeAllStrings();
2383 int32_t setSize = theSet->size();
2384
2385 switch (setSize) {
2386 case 0:
2387 {
2388 // Set of no elements. Always fails to match.
2389 appendOp(URX_BACKTRACK, 0);
2390 delete theSet;
2391 }
2392 break;
2393
2394 case 1:
2395 {
2396 // The set contains only a single code point. Put it into
2397 // the compiled pattern as a single char operation rather
2398 // than a set, and discard the set itself.
2399 literalChar(theSet->charAt(0));
2400 delete theSet;
2401 }
2402 break;
2403
2404 default:
2405 {
2406 // The set contains two or more chars. (the normal case)
2407 // Put it into the compiled pattern as a set.
2408 int32_t setNumber = fRXPat->fSets->size();
2409 fRXPat->fSets->addElement(theSet, *fStatus);
2410 appendOp(URX_SETREF, setNumber);
2411 }
2412 }
2413 }
2414
2415
2416 //------------------------------------------------------------------------------
2417 //
2418 // compileInterval Generate the code for a {min, max} style interval quantifier.
2419 // Except for the specific opcodes used, the code is the same
2420 // for all three types (greedy, non-greedy, possessive) of
2421 // intervals. The opcodes are supplied as parameters.
2422 // (There are two sets of opcodes - greedy & possessive use the
2423 // same ones, while non-greedy has it's own.)
2424 //
2425 // The code for interval loops has this form:
2426 // 0 CTR_INIT counter loc (in stack frame)
2427 // 1 5 patt address of CTR_LOOP at bottom of block
2428 // 2 min count
2429 // 3 max count (-1 for unbounded)
2430 // 4 ... block to be iterated over
2431 // 5 CTR_LOOP
2432 //
2433 // In
2434 //------------------------------------------------------------------------------
2435 void RegexCompile::compileInterval(int32_t InitOp, int32_t LoopOp)
2436 {
2437 // The CTR_INIT op at the top of the block with the {n,m} quantifier takes
2438 // four slots in the compiled code. Reserve them.
2439 int32_t topOfBlock = blockTopLoc(TRUE);
2440 insertOp(topOfBlock);
2441 insertOp(topOfBlock);
2442 insertOp(topOfBlock);
2443
2444 // The operands for the CTR_INIT opcode include the index in the matcher data
2445 // of the counter. Allocate it now. There are two data items
2446 // counterLoc --> Loop counter
2447 // +1 --> Input index (for breaking non-progressing loops)
2448 // (Only present if unbounded upper limit on loop)
2449 int32_t dataSize = fIntervalUpper < 0 ? 2 : 1;
2450 int32_t counterLoc = allocateStackData(dataSize);
2451
2452 int32_t op = buildOp(InitOp, counterLoc);
2453 fRXPat->fCompiledPat->setElementAt(op, topOfBlock);
2454
2455 // The second operand of CTR_INIT is the location following the end of the loop.
2456 // Must put in as a URX_RELOC_OPRND so that the value will be adjusted if the
2457 // compilation of something later on causes the code to grow and the target
2458 // position to move.
2459 int32_t loopEnd = fRXPat->fCompiledPat->size();
2460 op = buildOp(URX_RELOC_OPRND, loopEnd);
2461 fRXPat->fCompiledPat->setElementAt(op, topOfBlock+1);
2462
2463 // Followed by the min and max counts.
2464 fRXPat->fCompiledPat->setElementAt(fIntervalLow, topOfBlock+2);
2465 fRXPat->fCompiledPat->setElementAt(fIntervalUpper, topOfBlock+3);
2466
2467 // Apend the CTR_LOOP op. The operand is the location of the CTR_INIT op.
2468 // Goes at end of the block being looped over, so just append to the code so far.
2469 appendOp(LoopOp, topOfBlock);
2470
2471 if ((fIntervalLow & 0xff000000) != 0 ||
2472 (fIntervalUpper > 0 && (fIntervalUpper & 0xff000000) != 0)) {
2473 error(U_REGEX_NUMBER_TOO_BIG);
2474 }
2475
2476 if (fIntervalLow > fIntervalUpper && fIntervalUpper != -1) {
2477 error(U_REGEX_MAX_LT_MIN);
2478 }
2479 }
2480
2481
2482
2483 UBool RegexCompile::compileInlineInterval() {
2484 if (fIntervalUpper > 10 || fIntervalUpper < fIntervalLow) {
2485 // Too big to inline. Fail, which will cause looping code to be generated.
2486 // (Upper < Lower picks up unbounded upper and errors, both.)
2487 return FALSE;
2488 }
2489
2490 int32_t topOfBlock = blockTopLoc(FALSE);
2491 if (fIntervalUpper == 0) {
2492 // Pathological case. Attempt no matches, as if the block doesn't exist.
2493 // Discard the generated code for the block.
2494 // If the block included parens, discard the info pertaining to them as well.
2495 fRXPat->fCompiledPat->setSize(topOfBlock);
2496 if (fMatchOpenParen >= topOfBlock) {
2497 fMatchOpenParen = -1;
2498 }
2499 if (fMatchCloseParen >= topOfBlock) {
2500 fMatchCloseParen = -1;
2501 }
2502 return TRUE;
2503 }
2504
2505 if (topOfBlock != fRXPat->fCompiledPat->size()-1 && fIntervalUpper != 1) {
2506 // The thing being repeated is not a single op, but some
2507 // more complex block. Do it as a loop, not inlines.
2508 // Note that things "repeated" a max of once are handled as inline, because
2509 // the one copy of the code already generated is just fine.
2510 return FALSE;
2511 }
2512
2513 // Pick up the opcode that is to be repeated
2514 //
2515 int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(topOfBlock);
2516
2517 // Compute the pattern location where the inline sequence
2518 // will end, and set up the state save op that will be needed.
2519 //
2520 int32_t endOfSequenceLoc = fRXPat->fCompiledPat->size()-1
2521 + fIntervalUpper + (fIntervalUpper-fIntervalLow);
2522 int32_t saveOp = buildOp(URX_STATE_SAVE, endOfSequenceLoc);
2523 if (fIntervalLow == 0) {
2524 insertOp(topOfBlock);
2525 fRXPat->fCompiledPat->setElementAt(saveOp, topOfBlock);
2526 }
2527
2528
2529
2530 // Loop, emitting the op for the thing being repeated each time.
2531 // Loop starts at 1 because one instance of the op already exists in the pattern,
2532 // it was put there when it was originally encountered.
2533 int32_t i;
2534 for (i=1; i<fIntervalUpper; i++ ) {
2535 if (i >= fIntervalLow) {
2536 appendOp(saveOp);
2537 }
2538 appendOp(op);
2539 }
2540 return TRUE;
2541 }
2542
2543
2544
2545 //------------------------------------------------------------------------------
2546 //
2547 // caseInsensitiveStart given a single code point from a pattern string, determine the
2548 // set of characters that could potentially begin a case-insensitive
2549 // match of a string beginning with that character, using full Unicode
2550 // case insensitive matching.
2551 //
2552 // This is used in optimizing find().
2553 //
2554 // closeOver(USET_CASE_INSENSITIVE) does most of what is needed, but
2555 // misses cases like this:
2556 // A string from the pattern begins with 'ss' (although all we know
2557 // in this context is that it begins with 's')
2558 // The pattern could match a string beginning with a German sharp-s
2559 //
2560 // To the ordinary case closure for a character c, we add all other
2561 // characters cx where the case closure of cx incudes a string form that begins
2562 // with the original character c.
2563 //
2564 // This function could be made smarter. The full pattern string is available
2565 // and it would be possible to verify that the extra characters being added
2566 // to the starting set fully match, rather than having just a first-char of the
2567 // folded form match.
2568 //
2569 //------------------------------------------------------------------------------
2570 void RegexCompile::findCaseInsensitiveStarters(UChar32 c, UnicodeSet *starterChars) {
2571
2572 // Machine Generated below.
2573 // It may need updating with new versions of Unicode.
2574 // Intltest test RegexTest::TestCaseInsensitiveStarters will fail if an update is needed.
2575 // The update tool is here: svn+ssh://source.icu-project.org/repos/icu/tools/trunk/unicode/c/genregexcasing
2576
2577 // Machine Generated Data. Do not hand edit.
2578 static const UChar32 RECaseFixCodePoints[] = {
2579 0x61, 0x66, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x77, 0x79, 0x2bc,
2580 0x3ac, 0x3ae, 0x3b1, 0x3b7, 0x3b9, 0x3c1, 0x3c5, 0x3c9, 0x3ce, 0x565,
2581 0x574, 0x57e, 0x1f00, 0x1f01, 0x1f02, 0x1f03, 0x1f04, 0x1f05, 0x1f06, 0x1f07,
2582 0x1f20, 0x1f21, 0x1f22, 0x1f23, 0x1f24, 0x1f25, 0x1f26, 0x1f27, 0x1f60, 0x1f61,
2583 0x1f62, 0x1f63, 0x1f64, 0x1f65, 0x1f66, 0x1f67, 0x1f70, 0x1f74, 0x1f7c, 0x110000};
2584
2585 static const int16_t RECaseFixStringOffsets[] = {
2586 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xd, 0xe, 0xf, 0x10,
2587 0x11, 0x12, 0x13, 0x17, 0x1b, 0x20, 0x21, 0x2a, 0x2e, 0x2f,
2588 0x30, 0x34, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f, 0x41, 0x43,
2589 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57,
2590 0x59, 0x5b, 0x5d, 0x5f, 0x61, 0x63, 0x65, 0x66, 0x67, 0};
2591
2592 static const int16_t RECaseFixCounts[] = {
2593 0x1, 0x5, 0x1, 0x1, 0x1, 0x4, 0x1, 0x1, 0x1, 0x1,
2594 0x1, 0x1, 0x4, 0x4, 0x5, 0x1, 0x9, 0x4, 0x1, 0x1,
2595 0x4, 0x1, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2,
2596 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2,
2597 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x1, 0x1, 0x1, 0};
2598
2599 static const UChar RECaseFixData[] = {
2600 0x1e9a, 0xfb00, 0xfb01, 0xfb02, 0xfb03, 0xfb04, 0x1e96, 0x130, 0x1f0, 0xdf,
2601 0x1e9e, 0xfb05, 0xfb06, 0x1e97, 0x1e98, 0x1e99, 0x149, 0x1fb4, 0x1fc4, 0x1fb3,
2602 0x1fb6, 0x1fb7, 0x1fbc, 0x1fc3, 0x1fc6, 0x1fc7, 0x1fcc, 0x390, 0x1fd2, 0x1fd3,
2603 0x1fd6, 0x1fd7, 0x1fe4, 0x3b0, 0x1f50, 0x1f52, 0x1f54, 0x1f56, 0x1fe2, 0x1fe3,
2604 0x1fe6, 0x1fe7, 0x1ff3, 0x1ff6, 0x1ff7, 0x1ffc, 0x1ff4, 0x587, 0xfb13, 0xfb14,
2605 0xfb15, 0xfb17, 0xfb16, 0x1f80, 0x1f88, 0x1f81, 0x1f89, 0x1f82, 0x1f8a, 0x1f83,
2606 0x1f8b, 0x1f84, 0x1f8c, 0x1f85, 0x1f8d, 0x1f86, 0x1f8e, 0x1f87, 0x1f8f, 0x1f90,
2607 0x1f98, 0x1f91, 0x1f99, 0x1f92, 0x1f9a, 0x1f93, 0x1f9b, 0x1f94, 0x1f9c, 0x1f95,
2608 0x1f9d, 0x1f96, 0x1f9e, 0x1f97, 0x1f9f, 0x1fa0, 0x1fa8, 0x1fa1, 0x1fa9, 0x1fa2,
2609 0x1faa, 0x1fa3, 0x1fab, 0x1fa4, 0x1fac, 0x1fa5, 0x1fad, 0x1fa6, 0x1fae, 0x1fa7,
2610 0x1faf, 0x1fb2, 0x1fc2, 0x1ff2, 0};
2611
2612 // End of machine generated data.
2613
2614 if (c < UCHAR_MIN_VALUE || c > UCHAR_MAX_VALUE) {
2615 // This function should never be called with an invalid input character.
2616 UPRV_UNREACHABLE;
2617 } else if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) {
2618 UChar32 caseFoldedC = u_foldCase(c, U_FOLD_CASE_DEFAULT);
2619 starterChars->set(caseFoldedC, caseFoldedC);
2620
2621 int32_t i;
2622 for (i=0; RECaseFixCodePoints[i]<c ; i++) {
2623 // Simple linear search through the sorted list of interesting code points.
2624 }
2625
2626 if (RECaseFixCodePoints[i] == c) {
2627 int32_t dataIndex = RECaseFixStringOffsets[i];
2628 int32_t numCharsToAdd = RECaseFixCounts[i];
2629 UChar32 cpToAdd = 0;
2630 for (int32_t j=0; j<numCharsToAdd; j++) {
2631 U16_NEXT_UNSAFE(RECaseFixData, dataIndex, cpToAdd);
2632 starterChars->add(cpToAdd);
2633 }
2634 }
2635
2636 starterChars->closeOver(USET_CASE_INSENSITIVE);
2637 starterChars->removeAllStrings();
2638 } else {
2639 // Not a cased character. Just return it alone.
2640 starterChars->set(c, c);
2641 }
2642 }
2643
2644
2645 // Increment with overflow check.
2646 // val and delta will both be positive.
2647
2648 static int32_t safeIncrement(int32_t val, int32_t delta) {
2649 if (INT32_MAX - val > delta) {
2650 return val + delta;
2651 } else {
2652 return INT32_MAX;
2653 }
2654 }
2655
2656
2657 //------------------------------------------------------------------------------
2658 //
2659 // matchStartType Determine how a match can start.
2660 // Used to optimize find() operations.
2661 //
2662 // Operation is very similar to minMatchLength(). Walk the compiled
2663 // pattern, keeping an on-going minimum-match-length. For any
2664 // op where the min match coming in is zero, add that ops possible
2665 // starting matches to the possible starts for the overall pattern.
2666 //
2667 //------------------------------------------------------------------------------
2668 void RegexCompile::matchStartType() {
2669 if (U_FAILURE(*fStatus)) {
2670 return;
2671 }
2672
2673
2674 int32_t loc; // Location in the pattern of the current op being processed.
2675 int32_t op; // The op being processed
2676 int32_t opType; // The opcode type of the op
2677 int32_t currentLen = 0; // Minimum length of a match to this point (loc) in the pattern
2678 int32_t numInitialStrings = 0; // Number of strings encountered that could match at start.
2679
2680 UBool atStart = TRUE; // True if no part of the pattern yet encountered
2681 // could have advanced the position in a match.
2682 // (Maximum match length so far == 0)
2683
2684 // forwardedLength is a vector holding minimum-match-length values that
2685 // are propagated forward in the pattern by JMP or STATE_SAVE operations.
2686 // It must be one longer than the pattern being checked because some ops
2687 // will jmp to a end-of-block+1 location from within a block, and we must
2688 // count those when checking the block.
2689 int32_t end = fRXPat->fCompiledPat->size();
2690 UVector32 forwardedLength(end+1, *fStatus);
2691 forwardedLength.setSize(end+1);
2692 for (loc=3; loc<end; loc++) {
2693 forwardedLength.setElementAt(INT32_MAX, loc);
2694 }
2695
2696 for (loc = 3; loc<end; loc++) {
2697 op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
2698 opType = URX_TYPE(op);
2699
2700 // The loop is advancing linearly through the pattern.
2701 // If the op we are now at was the destination of a branch in the pattern,
2702 // and that path has a shorter minimum length than the current accumulated value,
2703 // replace the current accumulated value.
2704 if (forwardedLength.elementAti(loc) < currentLen) {
2705 currentLen = forwardedLength.elementAti(loc);
2706 U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
2707 }
2708
2709 switch (opType) {
2710 // Ops that don't change the total length matched
2711 case URX_RESERVED_OP:
2712 case URX_END:
2713 case URX_FAIL:
2714 case URX_STRING_LEN:
2715 case URX_NOP:
2716 case URX_START_CAPTURE:
2717 case URX_END_CAPTURE:
2718 case URX_BACKSLASH_B:
2719 case URX_BACKSLASH_BU:
2720 case URX_BACKSLASH_G:
2721 case URX_BACKSLASH_Z:
2722 case URX_DOLLAR:
2723 case URX_DOLLAR_M:
2724 case URX_DOLLAR_D:
2725 case URX_DOLLAR_MD:
2726 case URX_RELOC_OPRND:
2727 case URX_STO_INP_LOC:
2728 case URX_BACKREF: // BackRef. Must assume that it might be a zero length match
2729 case URX_BACKREF_I:
2730
2731 case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match.
2732 case URX_LD_SP:
2733 break;
2734
2735 case URX_CARET:
2736 if (atStart) {
2737 fRXPat->fStartType = START_START;
2738 }
2739 break;
2740
2741 case URX_CARET_M:
2742 case URX_CARET_M_UNIX:
2743 if (atStart) {
2744 fRXPat->fStartType = START_LINE;
2745 }
2746 break;
2747
2748 case URX_ONECHAR:
2749 if (currentLen == 0) {
2750 // This character could appear at the start of a match.
2751 // Add it to the set of possible starting characters.
2752 fRXPat->fInitialChars->add(URX_VAL(op));
2753 numInitialStrings += 2;
2754 }
2755 currentLen = safeIncrement(currentLen, 1);
2756 atStart = FALSE;
2757 break;
2758
2759
2760 case URX_SETREF:
2761 if (currentLen == 0) {
2762 int32_t sn = URX_VAL(op);
2763 U_ASSERT(sn > 0 && sn < fRXPat->fSets->size());
2764 const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn);
2765 fRXPat->fInitialChars->addAll(*s);
2766 numInitialStrings += 2;
2767 }
2768 currentLen = safeIncrement(currentLen, 1);
2769 atStart = FALSE;
2770 break;
2771
2772 case URX_LOOP_SR_I:
2773 // [Set]*, like a SETREF, above, in what it can match,
2774 // but may not match at all, so currentLen is not incremented.
2775 if (currentLen == 0) {
2776 int32_t sn = URX_VAL(op);
2777 U_ASSERT(sn > 0 && sn < fRXPat->fSets->size());
2778 const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn);
2779 fRXPat->fInitialChars->addAll(*s);
2780 numInitialStrings += 2;
2781 }
2782 atStart = FALSE;
2783 break;
2784
2785 case URX_LOOP_DOT_I:
2786 if (currentLen == 0) {
2787 // .* at the start of a pattern.
2788 // Any character can begin the match.
2789 fRXPat->fInitialChars->clear();
2790 fRXPat->fInitialChars->complement();
2791 numInitialStrings += 2;
2792 }
2793 atStart = FALSE;
2794 break;
2795
2796
2797 case URX_STATIC_SETREF:
2798 if (currentLen == 0) {
2799 int32_t sn = URX_VAL(op);
2800 U_ASSERT(sn>0 && sn<URX_LAST_SET);
2801 const UnicodeSet *s = fRXPat->fStaticSets[sn];
2802 fRXPat->fInitialChars->addAll(*s);
2803 numInitialStrings += 2;
2804 }
2805 currentLen = safeIncrement(currentLen, 1);
2806 atStart = FALSE;
2807 break;
2808
2809
2810
2811 case URX_STAT_SETREF_N:
2812 if (currentLen == 0) {
2813 int32_t sn = URX_VAL(op);
2814 const UnicodeSet *s = fRXPat->fStaticSets[sn];
2815 UnicodeSet sc(*s);
2816 sc.complement();
2817 fRXPat->fInitialChars->addAll(sc);
2818 numInitialStrings += 2;
2819 }
2820 currentLen = safeIncrement(currentLen, 1);
2821 atStart = FALSE;
2822 break;
2823
2824
2825
2826 case URX_BACKSLASH_D:
2827 // Digit Char
2828 if (currentLen == 0) {
2829 UnicodeSet s;
2830 s.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus);
2831 if (URX_VAL(op) != 0) {
2832 s.complement();
2833 }
2834 fRXPat->fInitialChars->addAll(s);
2835 numInitialStrings += 2;
2836 }
2837 currentLen = safeIncrement(currentLen, 1);
2838 atStart = FALSE;
2839 break;
2840
2841
2842 case URX_BACKSLASH_H:
2843 // Horiz white space
2844 if (currentLen == 0) {
2845 UnicodeSet s;
2846 s.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus);
2847 s.add((UChar32)9); // Tab
2848 if (URX_VAL(op) != 0) {
2849 s.complement();
2850 }
2851 fRXPat->fInitialChars->addAll(s);
2852 numInitialStrings += 2;
2853 }
2854 currentLen = safeIncrement(currentLen, 1);
2855 atStart = FALSE;
2856 break;
2857
2858
2859 case URX_BACKSLASH_R: // Any line ending sequence
2860 case URX_BACKSLASH_V: // Any line ending code point, with optional negation
2861 if (currentLen == 0) {
2862 UnicodeSet s;
2863 s.add((UChar32)0x0a, (UChar32)0x0d); // add range
2864 s.add((UChar32)0x85);
2865 s.add((UChar32)0x2028, (UChar32)0x2029);
2866 if (URX_VAL(op) != 0) {
2867 // Complement option applies to URX_BACKSLASH_V only.
2868 s.complement();
2869 }
2870 fRXPat->fInitialChars->addAll(s);
2871 numInitialStrings += 2;
2872 }
2873 currentLen = safeIncrement(currentLen, 1);
2874 atStart = FALSE;
2875 break;
2876
2877
2878
2879 case URX_ONECHAR_I:
2880 // Case Insensitive Single Character.
2881 if (currentLen == 0) {
2882 UChar32 c = URX_VAL(op);
2883 if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) {
2884 UnicodeSet starters(c, c);
2885 starters.closeOver(USET_CASE_INSENSITIVE);
2886 // findCaseInsensitiveStarters(c, &starters);
2887 // For ONECHAR_I, no need to worry about text chars that expand on folding into strings.
2888 // The expanded folding can't match the pattern.
2889 fRXPat->fInitialChars->addAll(starters);
2890 } else {
2891 // Char has no case variants. Just add it as-is to the
2892 // set of possible starting chars.
2893 fRXPat->fInitialChars->add(c);
2894 }
2895 numInitialStrings += 2;
2896 }
2897 currentLen = safeIncrement(currentLen, 1);
2898 atStart = FALSE;
2899 break;
2900
2901
2902 case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded.
2903 case URX_DOTANY_ALL: // . matches one or two.
2904 case URX_DOTANY:
2905 case URX_DOTANY_UNIX:
2906 if (currentLen == 0) {
2907 // These constructs are all bad news when they appear at the start
2908 // of a match. Any character can begin the match.
2909 fRXPat->fInitialChars->clear();
2910 fRXPat->fInitialChars->complement();
2911 numInitialStrings += 2;
2912 }
2913 currentLen = safeIncrement(currentLen, 1);
2914 atStart = FALSE;
2915 break;
2916
2917
2918 case URX_JMPX:
2919 loc++; // Except for extra operand on URX_JMPX, same as URX_JMP.
2920 U_FALLTHROUGH;
2921 case URX_JMP:
2922 {
2923 int32_t jmpDest = URX_VAL(op);
2924 if (jmpDest < loc) {
2925 // Loop of some kind. Can safely ignore, the worst that will happen
2926 // is that we understate the true minimum length
2927 currentLen = forwardedLength.elementAti(loc+1);
2928
2929 } else {
2930 // Forward jump. Propagate the current min length to the target loc of the jump.
2931 U_ASSERT(jmpDest <= end+1);
2932 if (forwardedLength.elementAti(jmpDest) > currentLen) {
2933 forwardedLength.setElementAt(currentLen, jmpDest);
2934 }
2935 }
2936 }
2937 atStart = FALSE;
2938 break;
2939
2940 case URX_JMP_SAV:
2941 case URX_JMP_SAV_X:
2942 // Combo of state save to the next loc, + jmp backwards.
2943 // Net effect on min. length computation is nothing.
2944 atStart = FALSE;
2945 break;
2946
2947 case URX_BACKTRACK:
2948 // Fails are kind of like a branch, except that the min length was
2949 // propagated already, by the state save.
2950 currentLen = forwardedLength.elementAti(loc+1);
2951 atStart = FALSE;
2952 break;
2953
2954
2955 case URX_STATE_SAVE:
2956 {
2957 // State Save, for forward jumps, propagate the current minimum.
2958 // of the state save.
2959 int32_t jmpDest = URX_VAL(op);
2960 if (jmpDest > loc) {
2961 if (currentLen < forwardedLength.elementAti(jmpDest)) {
2962 forwardedLength.setElementAt(currentLen, jmpDest);
2963 }
2964 }
2965 }
2966 atStart = FALSE;
2967 break;
2968
2969
2970
2971
2972 case URX_STRING:
2973 {
2974 loc++;
2975 int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
2976 int32_t stringLen = URX_VAL(stringLenOp);
2977 U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN);
2978 U_ASSERT(stringLenOp >= 2);
2979 if (currentLen == 0) {
2980 // Add the starting character of this string to the set of possible starting
2981 // characters for this pattern.
2982 int32_t stringStartIdx = URX_VAL(op);
2983 UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx);
2984 fRXPat->fInitialChars->add(c);
2985
2986 // Remember this string. After the entire pattern has been checked,
2987 // if nothing else is identified that can start a match, we'll use it.
2988 numInitialStrings++;
2989 fRXPat->fInitialStringIdx = stringStartIdx;
2990 fRXPat->fInitialStringLen = stringLen;
2991 }
2992
2993 currentLen = safeIncrement(currentLen, stringLen);
2994 atStart = FALSE;
2995 }
2996 break;
2997
2998 case URX_STRING_I:
2999 {
3000 // Case-insensitive string. Unlike exact-match strings, we won't
3001 // attempt a string search for possible match positions. But we
3002 // do update the set of possible starting characters.
3003 loc++;
3004 int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
3005 int32_t stringLen = URX_VAL(stringLenOp);
3006 U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN);
3007 U_ASSERT(stringLenOp >= 2);
3008 if (currentLen == 0) {
3009 // Add the starting character of this string to the set of possible starting
3010 // characters for this pattern.
3011 int32_t stringStartIdx = URX_VAL(op);
3012 UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx);
3013 UnicodeSet s;
3014 findCaseInsensitiveStarters(c, &s);
3015 fRXPat->fInitialChars->addAll(s);
3016 numInitialStrings += 2; // Matching on an initial string not possible.
3017 }
3018 currentLen = safeIncrement(currentLen, stringLen);
3019 atStart = FALSE;
3020 }
3021 break;
3022
3023 case URX_CTR_INIT:
3024 case URX_CTR_INIT_NG:
3025 {
3026 // Loop Init Ops. These don't change the min length, but they are 4 word ops
3027 // so location must be updated accordingly.
3028 // Loop Init Ops.
3029 // If the min loop count == 0
3030 // move loc forwards to the end of the loop, skipping over the body.
3031 // If the min count is > 0,
3032 // continue normal processing of the body of the loop.
3033 int32_t loopEndLoc = (int32_t)fRXPat->fCompiledPat->elementAti(loc+1);
3034 loopEndLoc = URX_VAL(loopEndLoc);
3035 int32_t minLoopCount = (int32_t)fRXPat->fCompiledPat->elementAti(loc+2);
3036 if (minLoopCount == 0) {
3037 // Min Loop Count of 0, treat like a forward branch and
3038 // move the current minimum length up to the target
3039 // (end of loop) location.
3040 U_ASSERT(loopEndLoc <= end+1);
3041 if (forwardedLength.elementAti(loopEndLoc) > currentLen) {
3042 forwardedLength.setElementAt(currentLen, loopEndLoc);
3043 }
3044 }
3045 loc+=3; // Skips over operands of CTR_INIT
3046 }
3047 atStart = FALSE;
3048 break;
3049
3050
3051 case URX_CTR_LOOP:
3052 case URX_CTR_LOOP_NG:
3053 // Loop ops.
3054 // The jump is conditional, backwards only.
3055 atStart = FALSE;
3056 break;
3057
3058 case URX_LOOP_C:
3059 // More loop ops. These state-save to themselves.
3060 // don't change the minimum match
3061 atStart = FALSE;
3062 break;
3063
3064
3065 case URX_LA_START:
3066 case URX_LB_START:
3067 {
3068 // Look-around. Scan forward until the matching look-ahead end,
3069 // without processing the look-around block. This is overly pessimistic.
3070
3071 // Keep track of the nesting depth of look-around blocks. Boilerplate code for
3072 // lookahead contains two LA_END instructions, so count goes up by two
3073 // for each LA_START.
3074 int32_t depth = (opType == URX_LA_START? 2: 1);
3075 for (;;) {
3076 loc++;
3077 op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
3078 if (URX_TYPE(op) == URX_LA_START) {
3079 depth+=2;
3080 }
3081 if (URX_TYPE(op) == URX_LB_START) {
3082 depth++;
3083 }
3084 if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) {
3085 depth--;
3086 if (depth == 0) {
3087 break;
3088 }
3089 }
3090 if (URX_TYPE(op) == URX_STATE_SAVE) {
3091 // Need this because neg lookahead blocks will FAIL to outside
3092 // of the block.
3093 int32_t jmpDest = URX_VAL(op);
3094 if (jmpDest > loc) {
3095 if (currentLen < forwardedLength.elementAti(jmpDest)) {
3096 forwardedLength.setElementAt(currentLen, jmpDest);
3097 }
3098 }
3099 }
3100 U_ASSERT(loc <= end);
3101 }
3102 }
3103 break;
3104
3105 case URX_LA_END:
3106 case URX_LB_CONT:
3107 case URX_LB_END:
3108 case URX_LBN_CONT:
3109 case URX_LBN_END:
3110 UPRV_UNREACHABLE; // Shouldn't get here. These ops should be
3111 // consumed by the scan in URX_LA_START and LB_START
3112 default:
3113 UPRV_UNREACHABLE;
3114 }
3115
3116 }
3117
3118
3119 // We have finished walking through the ops. Check whether some forward jump
3120 // propagated a shorter length to location end+1.
3121 if (forwardedLength.elementAti(end+1) < currentLen) {
3122 currentLen = forwardedLength.elementAti(end+1);
3123 }
3124
3125
3126 fRXPat->fInitialChars8->init(fRXPat->fInitialChars);
3127
3128
3129 // Sort out what we should check for when looking for candidate match start positions.
3130 // In order of preference,
3131 // 1. Start of input text buffer.
3132 // 2. A literal string.
3133 // 3. Start of line in multi-line mode.
3134 // 4. A single literal character.
3135 // 5. A character from a set of characters.
3136 //
3137 if (fRXPat->fStartType == START_START) {
3138 // Match only at the start of an input text string.
3139 // start type is already set. We're done.
3140 } else if (numInitialStrings == 1 && fRXPat->fMinMatchLen > 0) {
3141 // Match beginning only with a literal string.
3142 UChar32 c = fRXPat->fLiteralText.char32At(fRXPat->fInitialStringIdx);
3143 U_ASSERT(fRXPat->fInitialChars->contains(c));
3144 fRXPat->fStartType = START_STRING;
3145 fRXPat->fInitialChar = c;
3146 } else if (fRXPat->fStartType == START_LINE) {
3147 // Match at start of line in Multi-Line mode.
3148 // Nothing to do here; everything is already set.
3149 } else if (fRXPat->fMinMatchLen == 0) {
3150 // Zero length match possible. We could start anywhere.
3151 fRXPat->fStartType = START_NO_INFO;
3152 } else if (fRXPat->fInitialChars->size() == 1) {
3153 // All matches begin with the same char.
3154 fRXPat->fStartType = START_CHAR;
3155 fRXPat->fInitialChar = fRXPat->fInitialChars->charAt(0);
3156 U_ASSERT(fRXPat->fInitialChar != (UChar32)-1);
3157 } else if (fRXPat->fInitialChars->contains((UChar32)0, (UChar32)0x10ffff) == FALSE &&
3158 fRXPat->fMinMatchLen > 0) {
3159 // Matches start with a set of character smaller than the set of all chars.
3160 fRXPat->fStartType = START_SET;
3161 } else {
3162 // Matches can start with anything
3163 fRXPat->fStartType = START_NO_INFO;
3164 }
3165
3166 return;
3167 }
3168
3169
3170
3171 //------------------------------------------------------------------------------
3172 //
3173 // minMatchLength Calculate the length of the shortest string that could
3174 // match the specified pattern.
3175 // Length is in 16 bit code units, not code points.
3176 //
3177 // The calculated length may not be exact. The returned
3178 // value may be shorter than the actual minimum; it must
3179 // never be longer.
3180 //
3181 // start and end are the range of p-code operations to be
3182 // examined. The endpoints are included in the range.
3183 //
3184 //------------------------------------------------------------------------------
3185 int32_t RegexCompile::minMatchLength(int32_t start, int32_t end) {
3186 if (U_FAILURE(*fStatus)) {
3187 return 0;
3188 }
3189
3190 U_ASSERT(start <= end);
3191 U_ASSERT(end < fRXPat->fCompiledPat->size());
3192
3193
3194 int32_t loc;
3195 int32_t op;
3196 int32_t opType;
3197 int32_t currentLen = 0;
3198
3199
3200 // forwardedLength is a vector holding minimum-match-length values that
3201 // are propagated forward in the pattern by JMP or STATE_SAVE operations.
3202 // It must be one longer than the pattern being checked because some ops
3203 // will jmp to a end-of-block+1 location from within a block, and we must
3204 // count those when checking the block.
3205 UVector32 forwardedLength(end+2, *fStatus);
3206 forwardedLength.setSize(end+2);
3207 for (loc=start; loc<=end+1; loc++) {
3208 forwardedLength.setElementAt(INT32_MAX, loc);
3209 }
3210
3211 for (loc = start; loc<=end; loc++) {
3212 op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
3213 opType = URX_TYPE(op);
3214
3215 // The loop is advancing linearly through the pattern.
3216 // If the op we are now at was the destination of a branch in the pattern,
3217 // and that path has a shorter minimum length than the current accumulated value,
3218 // replace the current accumulated value.
3219 // U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); // MinLength == INT32_MAX for some
3220 // no-match-possible cases.
3221 if (forwardedLength.elementAti(loc) < currentLen) {
3222 currentLen = forwardedLength.elementAti(loc);
3223 U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
3224 }
3225
3226 switch (opType) {
3227 // Ops that don't change the total length matched
3228 case URX_RESERVED_OP:
3229 case URX_END:
3230 case URX_STRING_LEN:
3231 case URX_NOP:
3232 case URX_START_CAPTURE:
3233 case URX_END_CAPTURE:
3234 case URX_BACKSLASH_B:
3235 case URX_BACKSLASH_BU:
3236 case URX_BACKSLASH_G:
3237 case URX_BACKSLASH_Z:
3238 case URX_CARET:
3239 case URX_DOLLAR:
3240 case URX_DOLLAR_M:
3241 case URX_DOLLAR_D:
3242 case URX_DOLLAR_MD:
3243 case URX_RELOC_OPRND:
3244 case URX_STO_INP_LOC:
3245 case URX_CARET_M:
3246 case URX_CARET_M_UNIX:
3247 case URX_BACKREF: // BackRef. Must assume that it might be a zero length match
3248 case URX_BACKREF_I:
3249
3250 case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match.
3251 case URX_LD_SP:
3252
3253 case URX_JMP_SAV:
3254 case URX_JMP_SAV_X:
3255 break;
3256
3257
3258 // Ops that match a minimum of one character (one or two 16 bit code units.)
3259 //
3260 case URX_ONECHAR:
3261 case URX_STATIC_SETREF:
3262 case URX_STAT_SETREF_N:
3263 case URX_SETREF:
3264 case URX_BACKSLASH_D:
3265 case URX_BACKSLASH_H:
3266 case URX_BACKSLASH_R:
3267 case URX_BACKSLASH_V:
3268 case URX_ONECHAR_I:
3269 case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded.
3270 case URX_DOTANY_ALL: // . matches one or two.
3271 case URX_DOTANY:
3272 case URX_DOTANY_UNIX:
3273 currentLen = safeIncrement(currentLen, 1);
3274 break;
3275
3276
3277 case URX_JMPX:
3278 loc++; // URX_JMPX has an extra operand, ignored here,
3279 // otherwise processed identically to URX_JMP.
3280 U_FALLTHROUGH;
3281 case URX_JMP:
3282 {
3283 int32_t jmpDest = URX_VAL(op);
3284 if (jmpDest < loc) {
3285 // Loop of some kind. Can safely ignore, the worst that will happen
3286 // is that we understate the true minimum length
3287 currentLen = forwardedLength.elementAti(loc+1);
3288 } else {
3289 // Forward jump. Propagate the current min length to the target loc of the jump.
3290 U_ASSERT(jmpDest <= end+1);
3291 if (forwardedLength.elementAti(jmpDest) > currentLen) {
3292 forwardedLength.setElementAt(currentLen, jmpDest);
3293 }
3294 }
3295 }
3296 break;
3297
3298 case URX_BACKTRACK:
3299 {
3300 // Back-tracks are kind of like a branch, except that the min length was
3301 // propagated already, by the state save.
3302 currentLen = forwardedLength.elementAti(loc+1);
3303 }
3304 break;
3305
3306
3307 case URX_STATE_SAVE:
3308 {
3309 // State Save, for forward jumps, propagate the current minimum.
3310 // of the state save.
3311 int32_t jmpDest = URX_VAL(op);
3312 if (jmpDest > loc) {
3313 if (currentLen < forwardedLength.elementAti(jmpDest)) {
3314 forwardedLength.setElementAt(currentLen, jmpDest);
3315 }
3316 }
3317 }
3318 break;
3319
3320
3321 case URX_STRING:
3322 {
3323 loc++;
3324 int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
3325 currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp));
3326 }
3327 break;
3328
3329
3330 case URX_STRING_I:
3331 {
3332 loc++;
3333 // TODO: with full case folding, matching input text may be shorter than
3334 // the string we have here. More smarts could put some bounds on it.
3335 // Assume a min length of one for now. A min length of zero causes
3336 // optimization failures for a pattern like "string"+
3337 // currentLen += URX_VAL(stringLenOp);
3338 currentLen = safeIncrement(currentLen, 1);
3339 }
3340 break;
3341
3342 case URX_CTR_INIT:
3343 case URX_CTR_INIT_NG:
3344 {
3345 // Loop Init Ops.
3346 // If the min loop count == 0
3347 // move loc forwards to the end of the loop, skipping over the body.
3348 // If the min count is > 0,
3349 // continue normal processing of the body of the loop.
3350 int32_t loopEndLoc = (int32_t)fRXPat->fCompiledPat->elementAti(loc+1);
3351 loopEndLoc = URX_VAL(loopEndLoc);
3352 int32_t minLoopCount = (int32_t)fRXPat->fCompiledPat->elementAti(loc+2);
3353 if (minLoopCount == 0) {
3354 loc = loopEndLoc;
3355 } else {
3356 loc+=3; // Skips over operands of CTR_INIT
3357 }
3358 }
3359 break;
3360
3361
3362 case URX_CTR_LOOP:
3363 case URX_CTR_LOOP_NG:
3364 // Loop ops.
3365 // The jump is conditional, backwards only.
3366 break;
3367
3368 case URX_LOOP_SR_I:
3369 case URX_LOOP_DOT_I:
3370 case URX_LOOP_C:
3371 // More loop ops. These state-save to themselves.
3372 // don't change the minimum match - could match nothing at all.
3373 break;
3374
3375
3376 case URX_LA_START:
3377 case URX_LB_START:
3378 {
3379 // Look-around. Scan forward until the matching look-ahead end,
3380 // without processing the look-around block. This is overly pessimistic for look-ahead,
3381 // it assumes that the look-ahead match might be zero-length.
3382 // TODO: Positive lookahead could recursively do the block, then continue
3383 // with the longer of the block or the value coming in. Ticket 6060
3384 int32_t depth = (opType == URX_LA_START? 2: 1);;
3385 for (;;) {
3386 loc++;
3387 op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
3388 if (URX_TYPE(op) == URX_LA_START) {
3389 // The boilerplate for look-ahead includes two LA_END insturctions,
3390 // Depth will be decremented by each one when it is seen.
3391 depth += 2;
3392 }
3393 if (URX_TYPE(op) == URX_LB_START) {
3394 depth++;
3395 }
3396 if (URX_TYPE(op) == URX_LA_END) {
3397 depth--;
3398 if (depth == 0) {
3399 break;
3400 }
3401 }
3402 if (URX_TYPE(op)==URX_LBN_END) {
3403 depth--;
3404 if (depth == 0) {
3405 break;
3406 }
3407 }
3408 if (URX_TYPE(op) == URX_STATE_SAVE) {
3409 // Need this because neg lookahead blocks will FAIL to outside
3410 // of the block.
3411 int32_t jmpDest = URX_VAL(op);
3412 if (jmpDest > loc) {
3413 if (currentLen < forwardedLength.elementAti(jmpDest)) {
3414 forwardedLength.setElementAt(currentLen, jmpDest);
3415 }
3416 }
3417 }
3418 U_ASSERT(loc <= end);
3419 }
3420 }
3421 break;
3422
3423 case URX_LA_END:
3424 case URX_LB_CONT:
3425 case URX_LB_END:
3426 case URX_LBN_CONT:
3427 case URX_LBN_END:
3428 // Only come here if the matching URX_LA_START or URX_LB_START was not in the
3429 // range being sized, which happens when measuring size of look-behind blocks.
3430 break;
3431
3432 default:
3433 UPRV_UNREACHABLE;
3434 }
3435
3436 }
3437
3438 // We have finished walking through the ops. Check whether some forward jump
3439 // propagated a shorter length to location end+1.
3440 if (forwardedLength.elementAti(end+1) < currentLen) {
3441 currentLen = forwardedLength.elementAti(end+1);
3442 U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
3443 }
3444
3445 return currentLen;
3446 }
3447
3448 //------------------------------------------------------------------------------
3449 //
3450 // maxMatchLength Calculate the length of the longest string that could
3451 // match the specified pattern.
3452 // Length is in 16 bit code units, not code points.
3453 //
3454 // The calculated length may not be exact. The returned
3455 // value may be longer than the actual maximum; it must
3456 // never be shorter.
3457 //
3458 //------------------------------------------------------------------------------
3459 int32_t RegexCompile::maxMatchLength(int32_t start, int32_t end) {
3460 if (U_FAILURE(*fStatus)) {
3461 return 0;
3462 }
3463 U_ASSERT(start <= end);
3464 U_ASSERT(end < fRXPat->fCompiledPat->size());
3465
3466
3467 int32_t loc;
3468 int32_t op;
3469 int32_t opType;
3470 int32_t currentLen = 0;
3471 UVector32 forwardedLength(end+1, *fStatus);
3472 forwardedLength.setSize(end+1);
3473
3474 for (loc=start; loc<=end; loc++) {
3475 forwardedLength.setElementAt(0, loc);
3476 }
3477
3478 for (loc = start; loc<=end; loc++) {
3479 op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
3480 opType = URX_TYPE(op);
3481
3482 // The loop is advancing linearly through the pattern.
3483 // If the op we are now at was the destination of a branch in the pattern,
3484 // and that path has a longer maximum length than the current accumulated value,
3485 // replace the current accumulated value.
3486 if (forwardedLength.elementAti(loc) > currentLen) {
3487 currentLen = forwardedLength.elementAti(loc);
3488 }
3489
3490 switch (opType) {
3491 // Ops that don't change the total length matched
3492 case URX_RESERVED_OP:
3493 case URX_END:
3494 case URX_STRING_LEN:
3495 case URX_NOP:
3496 case URX_START_CAPTURE:
3497 case URX_END_CAPTURE:
3498 case URX_BACKSLASH_B:
3499 case URX_BACKSLASH_BU:
3500 case URX_BACKSLASH_G:
3501 case URX_BACKSLASH_Z:
3502 case URX_CARET:
3503 case URX_DOLLAR:
3504 case URX_DOLLAR_M:
3505 case URX_DOLLAR_D:
3506 case URX_DOLLAR_MD:
3507 case URX_RELOC_OPRND:
3508 case URX_STO_INP_LOC:
3509 case URX_CARET_M:
3510 case URX_CARET_M_UNIX:
3511
3512 case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match.
3513 case URX_LD_SP:
3514
3515 case URX_LB_END:
3516 case URX_LB_CONT:
3517 case URX_LBN_CONT:
3518 case URX_LBN_END:
3519 break;
3520
3521
3522 // Ops that increase that cause an unbounded increase in the length
3523 // of a matched string, or that increase it a hard to characterize way.
3524 // Call the max length unbounded, and stop further checking.
3525 case URX_BACKREF: // BackRef. Must assume that it might be a zero length match
3526 case URX_BACKREF_I:
3527 case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded.
3528 currentLen = INT32_MAX;
3529 break;
3530
3531
3532 // Ops that match a max of one character (possibly two 16 bit code units.)
3533 //
3534 case URX_STATIC_SETREF:
3535 case URX_STAT_SETREF_N:
3536 case URX_SETREF:
3537 case URX_BACKSLASH_D:
3538 case URX_BACKSLASH_H:
3539 case URX_BACKSLASH_R:
3540 case URX_BACKSLASH_V:
3541 case URX_ONECHAR_I:
3542 case URX_DOTANY_ALL:
3543 case URX_DOTANY:
3544 case URX_DOTANY_UNIX:
3545 currentLen = safeIncrement(currentLen, 2);
3546 break;
3547
3548 // Single literal character. Increase current max length by one or two,
3549 // depending on whether the char is in the supplementary range.
3550 case URX_ONECHAR:
3551 currentLen = safeIncrement(currentLen, 1);
3552 if (URX_VAL(op) > 0x10000) {
3553 currentLen = safeIncrement(currentLen, 1);
3554 }
3555 break;
3556
3557 // Jumps.
3558 //
3559 case URX_JMP:
3560 case URX_JMPX:
3561 case URX_JMP_SAV:
3562 case URX_JMP_SAV_X:
3563 {
3564 int32_t jmpDest = URX_VAL(op);
3565 if (jmpDest < loc) {
3566 // Loop of some kind. Max match length is unbounded.
3567 currentLen = INT32_MAX;
3568 } else {
3569 // Forward jump. Propagate the current min length to the target loc of the jump.
3570 if (forwardedLength.elementAti(jmpDest) < currentLen) {
3571 forwardedLength.setElementAt(currentLen, jmpDest);
3572 }
3573 currentLen = 0;
3574 }
3575 }
3576 break;
3577
3578 case URX_BACKTRACK:
3579 // back-tracks are kind of like a branch, except that the max length was
3580 // propagated already, by the state save.
3581 currentLen = forwardedLength.elementAti(loc+1);
3582 break;
3583
3584
3585 case URX_STATE_SAVE:
3586 {
3587 // State Save, for forward jumps, propagate the current minimum.
3588 // of the state save.
3589 // For backwards jumps, they create a loop, maximum
3590 // match length is unbounded.
3591 int32_t jmpDest = URX_VAL(op);
3592 if (jmpDest > loc) {
3593 if (currentLen > forwardedLength.elementAti(jmpDest)) {
3594 forwardedLength.setElementAt(currentLen, jmpDest);
3595 }
3596 } else {
3597 currentLen = INT32_MAX;
3598 }
3599 }
3600 break;
3601
3602
3603
3604
3605 case URX_STRING:
3606 {
3607 loc++;
3608 int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
3609 currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp));
3610 break;
3611 }
3612
3613 case URX_STRING_I:
3614 // TODO: This code assumes that any user string that matches will be no longer
3615 // than our compiled string, with case insensitive matching.
3616 // Our compiled string has been case-folded already.
3617 //
3618 // Any matching user string will have no more code points than our
3619 // compiled (folded) string. Folding may add code points, but
3620 // not remove them.
3621 //
3622 // There is a potential problem if a supplemental code point
3623 // case-folds to a BMP code point. In this case our compiled string
3624 // could be shorter (in code units) than a matching user string.
3625 //
3626 // At this time (Unicode 6.1) there are no such characters, and this case
3627 // is not being handled. A test, intltest regex/Bug9283, will fail if
3628 // any problematic characters are added to Unicode.
3629 //
3630 // If this happens, we can make a set of the BMP chars that the
3631 // troublesome supplementals fold to, scan our string, and bump the
3632 // currentLen one extra for each that is found.
3633 //
3634 {
3635 loc++;
3636 int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
3637 currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp));
3638 }
3639 break;
3640
3641 case URX_CTR_INIT:
3642 case URX_CTR_INIT_NG:
3643 // For Loops, recursively call this function on the pattern for the loop body,
3644 // then multiply the result by the maximum loop count.
3645 {
3646 int32_t loopEndLoc = URX_VAL(fRXPat->fCompiledPat->elementAti(loc+1));
3647 if (loopEndLoc == loc+4) {
3648 // Loop has an empty body. No affect on max match length.
3649 // Continue processing with code after the loop end.
3650 loc = loopEndLoc;
3651 break;
3652 }
3653
3654 int32_t maxLoopCount = static_cast<int32_t>(fRXPat->fCompiledPat->elementAti(loc+3));
3655 if (maxLoopCount == -1) {
3656 // Unbounded Loop. No upper bound on match length.
3657 currentLen = INT32_MAX;
3658 break;
3659 }
3660
3661 U_ASSERT(loopEndLoc >= loc+4);
3662 int64_t blockLen = maxMatchLength(loc+4, loopEndLoc-1); // Recursive call.
3663 int64_t updatedLen = (int64_t)currentLen + blockLen * maxLoopCount;
3664 if (updatedLen >= INT32_MAX) {
3665 currentLen = INT32_MAX;
3666 break;
3667 }
3668 currentLen = (int32_t)updatedLen;
3669 loc = loopEndLoc;
3670 break;
3671 }
3672
3673 case URX_CTR_LOOP:
3674 case URX_CTR_LOOP_NG:
3675 // These opcodes will be skipped over by code for URX_CRT_INIT.
3676 // We shouldn't encounter them here.
3677 UPRV_UNREACHABLE;
3678
3679 case URX_LOOP_SR_I:
3680 case URX_LOOP_DOT_I:
3681 case URX_LOOP_C:
3682 // For anything to do with loops, make the match length unbounded.
3683 currentLen = INT32_MAX;
3684 break;
3685
3686
3687
3688 case URX_LA_START:
3689 case URX_LA_END:
3690 // Look-ahead. Just ignore, treat the look-ahead block as if
3691 // it were normal pattern. Gives a too-long match length,
3692 // but good enough for now.
3693 break;
3694
3695 // End of look-ahead ops should always be consumed by the processing at
3696 // the URX_LA_START op.
3697 // UPRV_UNREACHABLE;
3698
3699 case URX_LB_START:
3700 {
3701 // Look-behind. Scan forward until the matching look-around end,
3702 // without processing the look-behind block.
3703 int32_t depth = 0;
3704 for (;;) {
3705 loc++;
3706 op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
3707 if (URX_TYPE(op) == URX_LA_START || URX_TYPE(op) == URX_LB_START) {
3708 depth++;
3709 }
3710 if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) {
3711 if (depth == 0) {
3712 break;
3713 }
3714 depth--;
3715 }
3716 U_ASSERT(loc < end);
3717 }
3718 }
3719 break;
3720
3721 default:
3722 UPRV_UNREACHABLE;
3723 }
3724
3725
3726 if (currentLen == INT32_MAX) {
3727 // The maximum length is unbounded.
3728 // Stop further processing of the pattern.
3729 break;
3730 }
3731
3732 }
3733 return currentLen;
3734
3735 }
3736
3737
3738 //------------------------------------------------------------------------------
3739 //
3740 // stripNOPs Remove any NOP operations from the compiled pattern code.
3741 // Extra NOPs are inserted for some constructs during the initial
3742 // code generation to provide locations that may be patched later.
3743 // Many end up unneeded, and are removed by this function.
3744 //
3745 // In order to minimize the number of passes through the pattern,
3746 // back-reference fixup is also performed here (adjusting
3747 // back-reference operands to point to the correct frame offsets).
3748 //
3749 //------------------------------------------------------------------------------
3750 void RegexCompile::stripNOPs() {
3751
3752 if (U_FAILURE(*fStatus)) {
3753 return;
3754 }
3755
3756 int32_t end = fRXPat->fCompiledPat->size();
3757 UVector32 deltas(end, *fStatus);
3758
3759 // Make a first pass over the code, computing the amount that things
3760 // will be offset at each location in the original code.
3761 int32_t loc;
3762 int32_t d = 0;
3763 for (loc=0; loc<end; loc++) {
3764 deltas.addElement(d, *fStatus);
3765 int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
3766 if (URX_TYPE(op) == URX_NOP) {
3767 d++;
3768 }
3769 }
3770
3771 UnicodeString caseStringBuffer;
3772
3773 // Make a second pass over the code, removing the NOPs by moving following
3774 // code up, and patching operands that refer to code locations that
3775 // are being moved. The array of offsets from the first step is used
3776 // to compute the new operand values.
3777 int32_t src;
3778 int32_t dst = 0;
3779 for (src=0; src<end; src++) {
3780 int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(src);
3781 int32_t opType = URX_TYPE(op);
3782 switch (opType) {
3783 case URX_NOP:
3784 break;
3785
3786 case URX_STATE_SAVE:
3787 case URX_JMP:
3788 case URX_CTR_LOOP:
3789 case URX_CTR_LOOP_NG:
3790 case URX_RELOC_OPRND:
3791 case URX_JMPX:
3792 case URX_JMP_SAV:
3793 case URX_JMP_SAV_X:
3794 // These are instructions with operands that refer to code locations.
3795 {
3796 int32_t operandAddress = URX_VAL(op);
3797 U_ASSERT(operandAddress>=0 && operandAddress<deltas.size());
3798 int32_t fixedOperandAddress = operandAddress - deltas.elementAti(operandAddress);
3799 op = buildOp(opType, fixedOperandAddress);
3800 fRXPat->fCompiledPat->setElementAt(op, dst);
3801 dst++;
3802 break;
3803 }
3804
3805 case URX_BACKREF:
3806 case URX_BACKREF_I:
3807 {
3808 int32_t where = URX_VAL(op);
3809 if (where > fRXPat->fGroupMap->size()) {
3810 error(U_REGEX_INVALID_BACK_REF);
3811 break;
3812 }
3813 where = fRXPat->fGroupMap->elementAti(where-1);
3814 op = buildOp(opType, where);
3815 fRXPat->fCompiledPat->setElementAt(op, dst);
3816 dst++;
3817
3818 fRXPat->fNeedsAltInput = TRUE;
3819 break;
3820 }
3821 case URX_RESERVED_OP:
3822 case URX_RESERVED_OP_N:
3823 case URX_BACKTRACK:
3824 case URX_END:
3825 case URX_ONECHAR:
3826 case URX_STRING:
3827 case URX_STRING_LEN:
3828 case URX_START_CAPTURE:
3829 case URX_END_CAPTURE:
3830 case URX_STATIC_SETREF:
3831 case URX_STAT_SETREF_N:
3832 case URX_SETREF:
3833 case URX_DOTANY:
3834 case URX_FAIL:
3835 case URX_BACKSLASH_B:
3836 case URX_BACKSLASH_BU:
3837 case URX_BACKSLASH_G:
3838 case URX_BACKSLASH_X:
3839 case URX_BACKSLASH_Z:
3840 case URX_DOTANY_ALL:
3841 case URX_BACKSLASH_D:
3842 case URX_CARET:
3843 case URX_DOLLAR:
3844 case URX_CTR_INIT:
3845 case URX_CTR_INIT_NG:
3846 case URX_DOTANY_UNIX:
3847 case URX_STO_SP:
3848 case URX_LD_SP:
3849 case URX_STO_INP_LOC:
3850 case URX_LA_START:
3851 case URX_LA_END:
3852 case URX_ONECHAR_I:
3853 case URX_STRING_I:
3854 case URX_DOLLAR_M:
3855 case URX_CARET_M:
3856 case URX_CARET_M_UNIX:
3857 case URX_LB_START:
3858 case URX_LB_CONT:
3859 case URX_LB_END:
3860 case URX_LBN_CONT:
3861 case URX_LBN_END:
3862 case URX_LOOP_SR_I:
3863 case URX_LOOP_DOT_I:
3864 case URX_LOOP_C:
3865 case URX_DOLLAR_D:
3866 case URX_DOLLAR_MD:
3867 case URX_BACKSLASH_H:
3868 case URX_BACKSLASH_R:
3869 case URX_BACKSLASH_V:
3870 // These instructions are unaltered by the relocation.
3871 fRXPat->fCompiledPat->setElementAt(op, dst);
3872 dst++;
3873 break;
3874
3875 default:
3876 // Some op is unaccounted for.
3877 UPRV_UNREACHABLE;
3878 }
3879 }
3880
3881 fRXPat->fCompiledPat->setSize(dst);
3882 }
3883
3884
3885
3886
3887 //------------------------------------------------------------------------------
3888 //
3889 // Error Report a rule parse error.
3890 // Only report it if no previous error has been recorded.
3891 //
3892 //------------------------------------------------------------------------------
3893 void RegexCompile::error(UErrorCode e) {
3894 if (U_SUCCESS(*fStatus) || e == U_MEMORY_ALLOCATION_ERROR) {
3895 *fStatus = e;
3896 // Hmm. fParseErr (UParseError) line & offset fields are int32_t in public
3897 // API (see common/unicode/parseerr.h), while fLineNum and fCharNum are
3898 // int64_t. If the values of the latter are out of range for the former,
3899 // set them to the appropriate "field not supported" values.
3900 if (fLineNum > 0x7FFFFFFF) {
3901 fParseErr->line = 0;
3902 fParseErr->offset = -1;
3903 } else if (fCharNum > 0x7FFFFFFF) {
3904 fParseErr->line = (int32_t)fLineNum;
3905 fParseErr->offset = -1;
3906 } else {
3907 fParseErr->line = (int32_t)fLineNum;
3908 fParseErr->offset = (int32_t)fCharNum;
3909 }
3910
3911 UErrorCode status = U_ZERO_ERROR; // throwaway status for extracting context
3912
3913 // Fill in the context.
3914 // Note: extractBetween() pins supplied indicies to the string bounds.
3915 uprv_memset(fParseErr->preContext, 0, sizeof(fParseErr->preContext));
3916 uprv_memset(fParseErr->postContext, 0, sizeof(fParseErr->postContext));
3917 utext_extract(fRXPat->fPattern, fScanIndex-U_PARSE_CONTEXT_LEN+1, fScanIndex, fParseErr->preContext, U_PARSE_CONTEXT_LEN, &status);
3918 utext_extract(fRXPat->fPattern, fScanIndex, fScanIndex+U_PARSE_CONTEXT_LEN-1, fParseErr->postContext, U_PARSE_CONTEXT_LEN, &status);
3919 }
3920 }
3921
3922
3923 //
3924 // Assorted Unicode character constants.
3925 // Numeric because there is no portable way to enter them as literals.
3926 // (Think EBCDIC).
3927 //
3928 static const UChar chCR = 0x0d; // New lines, for terminating comments.
3929 static const UChar chLF = 0x0a; // Line Feed
3930 static const UChar chPound = 0x23; // '#', introduces a comment.
3931 static const UChar chDigit0 = 0x30; // '0'
3932 static const UChar chDigit7 = 0x37; // '9'
3933 static const UChar chColon = 0x3A; // ':'
3934 static const UChar chE = 0x45; // 'E'
3935 static const UChar chQ = 0x51; // 'Q'
3936 //static const UChar chN = 0x4E; // 'N'
3937 static const UChar chP = 0x50; // 'P'
3938 static const UChar chBackSlash = 0x5c; // '\' introduces a char escape
3939 //static const UChar chLBracket = 0x5b; // '['
3940 static const UChar chRBracket = 0x5d; // ']'
3941 static const UChar chUp = 0x5e; // '^'
3942 static const UChar chLowerP = 0x70;
3943 static const UChar chLBrace = 0x7b; // '{'
3944 static const UChar chRBrace = 0x7d; // '}'
3945 static const UChar chNEL = 0x85; // NEL newline variant
3946 static const UChar chLS = 0x2028; // Unicode Line Separator
3947
3948
3949 //------------------------------------------------------------------------------
3950 //
3951 // nextCharLL Low Level Next Char from the regex pattern.
3952 // Get a char from the string, keep track of input position
3953 // for error reporting.
3954 //
3955 //------------------------------------------------------------------------------
3956 UChar32 RegexCompile::nextCharLL() {
3957 UChar32 ch;
3958
3959 if (fPeekChar != -1) {
3960 ch = fPeekChar;
3961 fPeekChar = -1;
3962 return ch;
3963 }
3964
3965 // assume we're already in the right place
3966 ch = UTEXT_NEXT32(fRXPat->fPattern);
3967 if (ch == U_SENTINEL) {
3968 return ch;
3969 }
3970
3971 if (ch == chCR ||
3972 ch == chNEL ||
3973 ch == chLS ||
3974 (ch == chLF && fLastChar != chCR)) {
3975 // Character is starting a new line. Bump up the line number, and
3976 // reset the column to 0.
3977 fLineNum++;
3978 fCharNum=0;
3979 }
3980 else {
3981 // Character is not starting a new line. Except in the case of a
3982 // LF following a CR, increment the column position.
3983 if (ch != chLF) {
3984 fCharNum++;
3985 }
3986 }
3987 fLastChar = ch;
3988 return ch;
3989 }
3990
3991 //------------------------------------------------------------------------------
3992 //
3993 // peekCharLL Low Level Character Scanning, sneak a peek at the next
3994 // character without actually getting it.
3995 //
3996 //------------------------------------------------------------------------------
3997 UChar32 RegexCompile::peekCharLL() {
3998 if (fPeekChar == -1) {
3999 fPeekChar = nextCharLL();
4000 }
4001 return fPeekChar;
4002 }
4003
4004
4005 //------------------------------------------------------------------------------
4006 //
4007 // nextChar for pattern scanning. At this level, we handle stripping
4008 // out comments and processing some backslash character escapes.
4009 // The rest of the pattern grammar is handled at the next level up.
4010 //
4011 //------------------------------------------------------------------------------
4012 void RegexCompile::nextChar(RegexPatternChar &c) {
4013 tailRecursion:
4014 fScanIndex = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
4015 c.fChar = nextCharLL();
4016 c.fQuoted = FALSE;
4017
4018 if (fQuoteMode) {
4019 c.fQuoted = TRUE;
4020 if ((c.fChar==chBackSlash && peekCharLL()==chE && ((fModeFlags & UREGEX_LITERAL) == 0)) ||
4021 c.fChar == (UChar32)-1) {
4022 fQuoteMode = FALSE; // Exit quote mode,
4023 nextCharLL(); // discard the E
4024 // nextChar(c); // recurse to get the real next char
4025 goto tailRecursion; // Note: fuzz testing produced testcases that
4026 // resulted in stack overflow here.
4027 }
4028 }
4029 else if (fInBackslashQuote) {
4030 // The current character immediately follows a '\'
4031 // Don't check for any further escapes, just return it as-is.
4032 // Don't set c.fQuoted, because that would prevent the state machine from
4033 // dispatching on the character.
4034 fInBackslashQuote = FALSE;
4035 }
4036 else
4037 {
4038 // We are not in a \Q quoted region \E of the source.
4039 //
4040 if (fModeFlags & UREGEX_COMMENTS) {
4041 //
4042 // We are in free-spacing and comments mode.
4043 // Scan through any white space and comments, until we
4044 // reach a significant character or the end of inut.
4045 for (;;) {
4046 if (c.fChar == (UChar32)-1) {
4047 break; // End of Input
4048 }
4049 if (c.fChar == chPound && fEOLComments == TRUE) {
4050 // Start of a comment. Consume the rest of it, until EOF or a new line
4051 for (;;) {
4052 c.fChar = nextCharLL();
4053 if (c.fChar == (UChar32)-1 || // EOF
4054 c.fChar == chCR ||
4055 c.fChar == chLF ||
4056 c.fChar == chNEL ||
4057 c.fChar == chLS) {
4058 break;
4059 }
4060 }
4061 }
4062 // TODO: check what Java & Perl do with non-ASCII white spaces. Ticket 6061.
4063 if (PatternProps::isWhiteSpace(c.fChar) == FALSE) {
4064 break;
4065 }
4066 c.fChar = nextCharLL();
4067 }
4068 }
4069
4070 //
4071 // check for backslash escaped characters.
4072 //
4073 if (c.fChar == chBackSlash) {
4074 int64_t pos = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
4075 if (RegexStaticSets::gStaticSets->fUnescapeCharSet.contains(peekCharLL())) {
4076 //
4077 // A '\' sequence that is handled by ICU's standard unescapeAt function.
4078 // Includes \uxxxx, \n, \r, many others.
4079 // Return the single equivalent character.
4080 //
4081 nextCharLL(); // get & discard the peeked char.
4082 c.fQuoted = TRUE;
4083
4084 if (UTEXT_FULL_TEXT_IN_CHUNK(fRXPat->fPattern, fPatternLength)) {
4085 int32_t endIndex = (int32_t)pos;
4086 c.fChar = u_unescapeAt(uregex_ucstr_unescape_charAt, &endIndex, (int32_t)fPatternLength, (void *)fRXPat->fPattern->chunkContents);
4087
4088 if (endIndex == pos) {
4089 error(U_REGEX_BAD_ESCAPE_SEQUENCE);
4090 }
4091 fCharNum += endIndex - pos;
4092 UTEXT_SETNATIVEINDEX(fRXPat->fPattern, endIndex);
4093 } else {
4094 int32_t offset = 0;
4095 struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(fRXPat->fPattern);
4096
4097 UTEXT_SETNATIVEINDEX(fRXPat->fPattern, pos);
4098 c.fChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context);
4099
4100 if (offset == 0) {
4101 error(U_REGEX_BAD_ESCAPE_SEQUENCE);
4102 } else if (context.lastOffset == offset) {
4103 UTEXT_PREVIOUS32(fRXPat->fPattern);
4104 } else if (context.lastOffset != offset-1) {
4105 utext_moveIndex32(fRXPat->fPattern, offset - context.lastOffset - 1);
4106 }
4107 fCharNum += offset;
4108 }
4109 }
4110 else if (peekCharLL() == chDigit0) {
4111 // Octal Escape, using Java Regexp Conventions
4112 // which are \0 followed by 1-3 octal digits.
4113 // Different from ICU Unescape handling of Octal, which does not
4114 // require the leading 0.
4115 // Java also has the convention of only consuming 2 octal digits if
4116 // the three digit number would be > 0xff
4117 //
4118 c.fChar = 0;
4119 nextCharLL(); // Consume the initial 0.
4120 int index;
4121 for (index=0; index<3; index++) {
4122 int32_t ch = peekCharLL();
4123 if (ch<chDigit0 || ch>chDigit7) {
4124 if (index==0) {
4125 // \0 is not followed by any octal digits.
4126 error(U_REGEX_BAD_ESCAPE_SEQUENCE);
4127 }
4128 break;
4129 }
4130 c.fChar <<= 3;
4131 c.fChar += ch&7;
4132 if (c.fChar <= 255) {
4133 nextCharLL();
4134 } else {
4135 // The last digit made the number too big. Forget we saw it.
4136 c.fChar >>= 3;
4137 }
4138 }
4139 c.fQuoted = TRUE;
4140 }
4141 else if (peekCharLL() == chQ) {
4142 // "\Q" enter quote mode, which will continue until "\E"
4143 fQuoteMode = TRUE;
4144 nextCharLL(); // discard the 'Q'.
4145 // nextChar(c); // recurse to get the real next char.
4146 goto tailRecursion; // Note: fuzz testing produced test cases that
4147 // resulted in stack overflow here.
4148 }
4149 else
4150 {
4151 // We are in a '\' escape that will be handled by the state table scanner.
4152 // Just return the backslash, but remember that the following char is to
4153 // be taken literally.
4154 fInBackslashQuote = TRUE;
4155 }
4156 }
4157 }
4158
4159 // re-enable # to end-of-line comments, in case they were disabled.
4160 // They are disabled by the parser upon seeing '(?', but this lasts for
4161 // the fetching of the next character only.
4162 fEOLComments = TRUE;
4163
4164 // putc(c.fChar, stdout);
4165 }
4166
4167
4168
4169 //------------------------------------------------------------------------------
4170 //
4171 // scanNamedChar
4172 // Get a UChar32 from a \N{UNICODE CHARACTER NAME} in the pattern.
4173 //
4174 // The scan position will be at the 'N'. On return
4175 // the scan position should be just after the '}'
4176 //
4177 // Return the UChar32
4178 //
4179 //------------------------------------------------------------------------------
4180 UChar32 RegexCompile::scanNamedChar() {
4181 if (U_FAILURE(*fStatus)) {
4182 return 0;
4183 }
4184
4185 nextChar(fC);
4186 if (fC.fChar != chLBrace) {
4187 error(U_REGEX_PROPERTY_SYNTAX);
4188 return 0;
4189 }
4190
4191 UnicodeString charName;
4192 for (;;) {
4193 nextChar(fC);
4194 if (fC.fChar == chRBrace) {
4195 break;
4196 }
4197 if (fC.fChar == -1) {
4198 error(U_REGEX_PROPERTY_SYNTAX);
4199 return 0;
4200 }
4201 charName.append(fC.fChar);
4202 }
4203
4204 char name[100];
4205 if (!uprv_isInvariantUString(charName.getBuffer(), charName.length()) ||
4206 (uint32_t)charName.length()>=sizeof(name)) {
4207 // All Unicode character names have only invariant characters.
4208 // The API to get a character, given a name, accepts only char *, forcing us to convert,
4209 // which requires this error check
4210 error(U_REGEX_PROPERTY_SYNTAX);
4211 return 0;
4212 }
4213 charName.extract(0, charName.length(), name, sizeof(name), US_INV);
4214
4215 UChar32 theChar = u_charFromName(U_UNICODE_CHAR_NAME, name, fStatus);
4216 if (U_FAILURE(*fStatus)) {
4217 error(U_REGEX_PROPERTY_SYNTAX);
4218 }
4219
4220 nextChar(fC); // Continue overall regex pattern processing with char after the '}'
4221 return theChar;
4222 }
4223
4224 //------------------------------------------------------------------------------
4225 //
4226 // scanProp Construct a UnicodeSet from the text at the current scan
4227 // position, which will be of the form \p{whaterver}
4228 //
4229 // The scan position will be at the 'p' or 'P'. On return
4230 // the scan position should be just after the '}'
4231 //
4232 // Return a UnicodeSet, constructed from the \P pattern,
4233 // or NULL if the pattern is invalid.
4234 //
4235 //------------------------------------------------------------------------------
4236 UnicodeSet *RegexCompile::scanProp() {
4237 UnicodeSet *uset = NULL;
4238
4239 if (U_FAILURE(*fStatus)) {
4240 return NULL;
4241 }
4242 (void)chLowerP; // Suppress compiler unused variable warning.
4243 U_ASSERT(fC.fChar == chLowerP || fC.fChar == chP);
4244 UBool negated = (fC.fChar == chP);
4245
4246 UnicodeString propertyName;
4247 nextChar(fC);
4248 if (fC.fChar != chLBrace) {
4249 error(U_REGEX_PROPERTY_SYNTAX);
4250 return NULL;
4251 }
4252 for (;;) {
4253 nextChar(fC);
4254 if (fC.fChar == chRBrace) {
4255 break;
4256 }
4257 if (fC.fChar == -1) {
4258 // Hit the end of the input string without finding the closing '}'
4259 error(U_REGEX_PROPERTY_SYNTAX);
4260 return NULL;
4261 }
4262 propertyName.append(fC.fChar);
4263 }
4264 uset = createSetForProperty(propertyName, negated);
4265 nextChar(fC); // Move input scan to position following the closing '}'
4266 return uset;
4267 }
4268
4269 //------------------------------------------------------------------------------
4270 //
4271 // scanPosixProp Construct a UnicodeSet from the text at the current scan
4272 // position, which is expected be of the form [:property expression:]
4273 //
4274 // The scan position will be at the opening ':'. On return
4275 // the scan position must be on the closing ']'
4276 //
4277 // Return a UnicodeSet constructed from the pattern,
4278 // or NULL if this is not a valid POSIX-style set expression.
4279 // If not a property expression, restore the initial scan position
4280 // (to the opening ':')
4281 //
4282 // Note: the opening '[:' is not sufficient to guarantee that
4283 // this is a [:property:] expression.
4284 // [:'+=,] is a perfectly good ordinary set expression that
4285 // happens to include ':' as one of its characters.
4286 //
4287 //------------------------------------------------------------------------------
4288 UnicodeSet *RegexCompile::scanPosixProp() {
4289 UnicodeSet *uset = NULL;
4290
4291 if (U_FAILURE(*fStatus)) {
4292 return NULL;
4293 }
4294
4295 U_ASSERT(fC.fChar == chColon);
4296
4297 // Save the scanner state.
4298 // TODO: move this into the scanner, with the state encapsulated in some way. Ticket 6062
4299 int64_t savedScanIndex = fScanIndex;
4300 int64_t savedNextIndex = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
4301 UBool savedQuoteMode = fQuoteMode;
4302 UBool savedInBackslashQuote = fInBackslashQuote;
4303 UBool savedEOLComments = fEOLComments;
4304 int64_t savedLineNum = fLineNum;
4305 int64_t savedCharNum = fCharNum;
4306 UChar32 savedLastChar = fLastChar;
4307 UChar32 savedPeekChar = fPeekChar;
4308 RegexPatternChar savedfC = fC;
4309
4310 // Scan for a closing ]. A little tricky because there are some perverse
4311 // edge cases possible. "[:abc\Qdef:] \E]" is a valid non-property expression,
4312 // ending on the second closing ].
4313
4314 UnicodeString propName;
4315 UBool negated = FALSE;
4316
4317 // Check for and consume the '^' in a negated POSIX property, e.g. [:^Letter:]
4318 nextChar(fC);
4319 if (fC.fChar == chUp) {
4320 negated = TRUE;
4321 nextChar(fC);
4322 }
4323
4324 // Scan for the closing ":]", collecting the property name along the way.
4325 UBool sawPropSetTerminator = FALSE;
4326 for (;;) {
4327 propName.append(fC.fChar);
4328 nextChar(fC);
4329 if (fC.fQuoted || fC.fChar == -1) {
4330 // Escaped characters or end of input - either says this isn't a [:Property:]
4331 break;
4332 }
4333 if (fC.fChar == chColon) {
4334 nextChar(fC);
4335 if (fC.fChar == chRBracket) {
4336 sawPropSetTerminator = TRUE;
4337 }
4338 break;
4339 }
4340 }
4341
4342 if (sawPropSetTerminator) {
4343 uset = createSetForProperty(propName, negated);
4344 }
4345 else
4346 {
4347 // No closing ":]".
4348 // Restore the original scan position.
4349 // The main scanner will retry the input as a normal set expression,
4350 // not a [:Property:] expression.
4351 fScanIndex = savedScanIndex;
4352 fQuoteMode = savedQuoteMode;
4353 fInBackslashQuote = savedInBackslashQuote;
4354 fEOLComments = savedEOLComments;
4355 fLineNum = savedLineNum;
4356 fCharNum = savedCharNum;
4357 fLastChar = savedLastChar;
4358 fPeekChar = savedPeekChar;
4359 fC = savedfC;
4360 UTEXT_SETNATIVEINDEX(fRXPat->fPattern, savedNextIndex);
4361 }
4362 return uset;
4363 }
4364
4365 static inline void addIdentifierIgnorable(UnicodeSet *set, UErrorCode& ec) {
4366 set->add(0, 8).add(0x0e, 0x1b).add(0x7f, 0x9f);
4367 addCategory(set, U_GC_CF_MASK, ec);
4368 }
4369
4370 //
4371 // Create a Unicode Set from a Unicode Property expression.
4372 // This is common code underlying both \p{...} ane [:...:] expressions.
4373 // Includes trying the Java "properties" that aren't supported as
4374 // normal ICU UnicodeSet properties
4375 //
4376 UnicodeSet *RegexCompile::createSetForProperty(const UnicodeString &propName, UBool negated) {
4377
4378 if (U_FAILURE(*fStatus)) {
4379 return nullptr;
4380 }
4381 LocalPointer<UnicodeSet> set;
4382 UErrorCode status = U_ZERO_ERROR;
4383
4384 do { // non-loop, exists to allow breaks from the block.
4385 //
4386 // First try the property as we received it
4387 //
4388 UnicodeString setExpr;
4389 uint32_t usetFlags = 0;
4390 setExpr.append(u"[\\p{", -1);
4391 setExpr.append(propName);
4392 setExpr.append(u"}]", -1);
4393 if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
4394 usetFlags |= USET_CASE_INSENSITIVE;
4395 }
4396 set.adoptInsteadAndCheckErrorCode(new UnicodeSet(setExpr, usetFlags, NULL, status), status);
4397 if (U_SUCCESS(status) || status == U_MEMORY_ALLOCATION_ERROR) {
4398 break;
4399 }
4400
4401 //
4402 // The incoming property wasn't directly recognized by ICU.
4403
4404 // Check [:word:] and [:all:]. These are not recognized as a properties by ICU UnicodeSet.
4405 // Java accepts 'word' with mixed case.
4406 // Java accepts 'all' only in all lower case.
4407
4408 status = U_ZERO_ERROR;
4409 if (propName.caseCompare(u"word", -1, 0) == 0) {
4410 set.adoptInsteadAndCheckErrorCode(new UnicodeSet(*(fRXPat->fStaticSets[URX_ISWORD_SET])), status);
4411 break;
4412 }
4413 if (propName.compare(u"all", -1) == 0) {
4414 set.adoptInsteadAndCheckErrorCode(new UnicodeSet(0, 0x10ffff), status);
4415 break;
4416 }
4417
4418
4419 // Do Java InBlock expressions
4420 //
4421 UnicodeString mPropName = propName;
4422 if (mPropName.startsWith(u"In", 2) && mPropName.length() >= 3) {
4423 status = U_ZERO_ERROR;
4424 set.adoptInsteadAndCheckErrorCode(new UnicodeSet(), status);
4425 if (U_FAILURE(status)) {
4426 break;
4427 }
4428 UnicodeString blockName(mPropName, 2); // Property with the leading "In" removed.
4429 set->applyPropertyAlias(UnicodeString(u"Block"), blockName, status);
4430 break;
4431 }
4432
4433 // Check for the Java form "IsBooleanPropertyValue", which we will recast
4434 // as "BooleanPropertyValue". The property value can be either a
4435 // a General Category or a Script Name.
4436
4437 if (propName.startsWith(u"Is", 2) && propName.length()>=3) {
4438 mPropName.remove(0, 2); // Strip the "Is"
4439 if (mPropName.indexOf(u'=') >= 0) {
4440 // Reject any "Is..." property expression containing an '=', that is,
4441 // any non-binary property expression.
4442 status = U_REGEX_PROPERTY_SYNTAX;
4443 break;
4444 }
4445
4446 if (mPropName.caseCompare(u"assigned", -1, 0) == 0) {
4447 mPropName.setTo(u"unassigned", -1);
4448 negated = !negated;
4449 } else if (mPropName.caseCompare(u"TitleCase", -1, 0) == 0) {
4450 mPropName.setTo(u"Titlecase_Letter", -1);
4451 }
4452
4453 mPropName.insert(0, u"[\\p{", -1);
4454 mPropName.append(u"}]", -1);
4455 set.adoptInsteadAndCheckErrorCode(new UnicodeSet(mPropName, *fStatus), status);
4456
4457 if (U_SUCCESS(status) && !set->isEmpty() && (usetFlags & USET_CASE_INSENSITIVE)) {
4458 set->closeOver(USET_CASE_INSENSITIVE);
4459 }
4460 break;
4461
4462 }
4463
4464 if (propName.startsWith(u"java", -1)) {
4465 status = U_ZERO_ERROR;
4466 set.adoptInsteadAndCheckErrorCode(new UnicodeSet(), status);
4467 if (U_FAILURE(status)) {
4468 break;
4469 }
4470 //
4471 // Try the various Java specific properties.
4472 // These all begin with "java"
4473 //
4474 if (propName.compare(u"javaDefined", -1) == 0) {
4475 addCategory(set.getAlias(), U_GC_CN_MASK, status);
4476 set->complement();
4477 }
4478 else if (propName.compare(u"javaDigit", -1) == 0) {
4479 addCategory(set.getAlias(), U_GC_ND_MASK, status);
4480 }
4481 else if (propName.compare(u"javaIdentifierIgnorable", -1) == 0) {
4482 addIdentifierIgnorable(set.getAlias(), status);
4483 }
4484 else if (propName.compare(u"javaISOControl", -1) == 0) {
4485 set->add(0, 0x1F).add(0x7F, 0x9F);
4486 }
4487 else if (propName.compare(u"javaJavaIdentifierPart", -1) == 0) {
4488 addCategory(set.getAlias(), U_GC_L_MASK, status);
4489 addCategory(set.getAlias(), U_GC_SC_MASK, status);
4490 addCategory(set.getAlias(), U_GC_PC_MASK, status);
4491 addCategory(set.getAlias(), U_GC_ND_MASK, status);
4492 addCategory(set.getAlias(), U_GC_NL_MASK, status);
4493 addCategory(set.getAlias(), U_GC_MC_MASK, status);
4494 addCategory(set.getAlias(), U_GC_MN_MASK, status);
4495 addIdentifierIgnorable(set.getAlias(), status);
4496 }
4497 else if (propName.compare(u"javaJavaIdentifierStart", -1) == 0) {
4498 addCategory(set.getAlias(), U_GC_L_MASK, status);
4499 addCategory(set.getAlias(), U_GC_NL_MASK, status);
4500 addCategory(set.getAlias(), U_GC_SC_MASK, status);
4501 addCategory(set.getAlias(), U_GC_PC_MASK, status);
4502 }
4503 else if (propName.compare(u"javaLetter", -1) == 0) {
4504 addCategory(set.getAlias(), U_GC_L_MASK, status);
4505 }
4506 else if (propName.compare(u"javaLetterOrDigit", -1) == 0) {
4507 addCategory(set.getAlias(), U_GC_L_MASK, status);
4508 addCategory(set.getAlias(), U_GC_ND_MASK, status);
4509 }
4510 else if (propName.compare(u"javaLowerCase", -1) == 0) {
4511 addCategory(set.getAlias(), U_GC_LL_MASK, status);
4512 }
4513 else if (propName.compare(u"javaMirrored", -1) == 0) {
4514 set->applyIntPropertyValue(UCHAR_BIDI_MIRRORED, 1, status);
4515 }
4516 else if (propName.compare(u"javaSpaceChar", -1) == 0) {
4517 addCategory(set.getAlias(), U_GC_Z_MASK, status);
4518 }
4519 else if (propName.compare(u"javaSupplementaryCodePoint", -1) == 0) {
4520 set->add(0x10000, UnicodeSet::MAX_VALUE);
4521 }
4522 else if (propName.compare(u"javaTitleCase", -1) == 0) {
4523 addCategory(set.getAlias(), U_GC_LT_MASK, status);
4524 }
4525 else if (propName.compare(u"javaUnicodeIdentifierStart", -1) == 0) {
4526 addCategory(set.getAlias(), U_GC_L_MASK, status);
4527 addCategory(set.getAlias(), U_GC_NL_MASK, status);
4528 }
4529 else if (propName.compare(u"javaUnicodeIdentifierPart", -1) == 0) {
4530 addCategory(set.getAlias(), U_GC_L_MASK, status);
4531 addCategory(set.getAlias(), U_GC_PC_MASK, status);
4532 addCategory(set.getAlias(), U_GC_ND_MASK, status);
4533 addCategory(set.getAlias(), U_GC_NL_MASK, status);
4534 addCategory(set.getAlias(), U_GC_MC_MASK, status);
4535 addCategory(set.getAlias(), U_GC_MN_MASK, status);
4536 addIdentifierIgnorable(set.getAlias(), status);
4537 }
4538 else if (propName.compare(u"javaUpperCase", -1) == 0) {
4539 addCategory(set.getAlias(), U_GC_LU_MASK, status);
4540 }
4541 else if (propName.compare(u"javaValidCodePoint", -1) == 0) {
4542 set->add(0, UnicodeSet::MAX_VALUE);
4543 }
4544 else if (propName.compare(u"javaWhitespace", -1) == 0) {
4545 addCategory(set.getAlias(), U_GC_Z_MASK, status);
4546 set->removeAll(UnicodeSet().add(0xa0).add(0x2007).add(0x202f));
4547 set->add(9, 0x0d).add(0x1c, 0x1f);
4548 } else {
4549 status = U_REGEX_PROPERTY_SYNTAX;
4550 }
4551
4552 if (U_SUCCESS(status) && !set->isEmpty() && (usetFlags & USET_CASE_INSENSITIVE)) {
4553 set->closeOver(USET_CASE_INSENSITIVE);
4554 }
4555 break;
4556 }
4557
4558 // Unrecognized property. ICU didn't like it as it was, and none of the Java compatibility
4559 // extensions matched it.
4560 status = U_REGEX_PROPERTY_SYNTAX;
4561 } while (false); // End of do loop block. Code above breaks out of the block on success or hard failure.
4562
4563 if (U_SUCCESS(status)) {
4564 U_ASSERT(set.isValid());
4565 if (negated) {
4566 set->complement();
4567 }
4568 return set.orphan();
4569 } else {
4570 if (status == U_ILLEGAL_ARGUMENT_ERROR) {
4571 status = U_REGEX_PROPERTY_SYNTAX;
4572 }
4573 error(status);
4574 return nullptr;
4575 }
4576 }
4577
4578
4579 //
4580 // SetEval Part of the evaluation of [set expressions].
4581 // Perform any pending (stacked) operations with precedence
4582 // equal or greater to that of the next operator encountered
4583 // in the expression.
4584 //
4585 void RegexCompile::setEval(int32_t nextOp) {
4586 UnicodeSet *rightOperand = NULL;
4587 UnicodeSet *leftOperand = NULL;
4588 for (;;) {
4589 U_ASSERT(fSetOpStack.empty()==FALSE);
4590 int32_t pendingSetOperation = fSetOpStack.peeki();
4591 if ((pendingSetOperation&0xffff0000) < (nextOp&0xffff0000)) {
4592 break;
4593 }
4594 fSetOpStack.popi();
4595 U_ASSERT(fSetStack.empty() == FALSE);
4596 rightOperand = (UnicodeSet *)fSetStack.peek();
4597 switch (pendingSetOperation) {
4598 case setNegation:
4599 rightOperand->complement();
4600 break;
4601 case setCaseClose:
4602 // TODO: need a simple close function. Ticket 6065
4603 rightOperand->closeOver(USET_CASE_INSENSITIVE);
4604 rightOperand->removeAllStrings();
4605 break;
4606 case setDifference1:
4607 case setDifference2:
4608 fSetStack.pop();
4609 leftOperand = (UnicodeSet *)fSetStack.peek();
4610 leftOperand->removeAll(*rightOperand);
4611 delete rightOperand;
4612 break;
4613 case setIntersection1:
4614 case setIntersection2:
4615 fSetStack.pop();
4616 leftOperand = (UnicodeSet *)fSetStack.peek();
4617 leftOperand->retainAll(*rightOperand);
4618 delete rightOperand;
4619 break;
4620 case setUnion:
4621 fSetStack.pop();
4622 leftOperand = (UnicodeSet *)fSetStack.peek();
4623 leftOperand->addAll(*rightOperand);
4624 delete rightOperand;
4625 break;
4626 default:
4627 UPRV_UNREACHABLE;
4628 }
4629 }
4630 }
4631
4632 void RegexCompile::setPushOp(int32_t op) {
4633 setEval(op);
4634 fSetOpStack.push(op, *fStatus);
4635 fSetStack.push(new UnicodeSet(), *fStatus);
4636 }
4637
4638 U_NAMESPACE_END
4639 #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS
4640