1 // © 2018 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
4 // From the double-conversion library. Original license:
6 // Copyright 2010 the V8 project authors. All rights reserved.
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions are
11 // * Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 // * Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following
15 // disclaimer in the documentation and/or other materials provided
16 // with the distribution.
17 // * Neither the name of Google Inc. nor the names of its
18 // contributors may be used to endorse or promote products derived
19 // from this software without specific prior written permission.
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34 #include "unicode/utypes.h"
35 #if !UCONFIG_NO_FORMATTING
40 // ICU PATCH: Customize header file paths for ICU.
41 // The file fixed-dtoa.h is not needed.
43 #include "double-conversion-strtod.h"
44 #include "double-conversion-bignum.h"
45 #include "double-conversion-cached-powers.h"
46 #include "double-conversion-ieee.h"
48 // ICU PATCH: Wrap in ICU namespace
51 namespace double_conversion
{
53 // 2^53 = 9007199254740992.
54 // Any integer with at most 15 decimal digits will hence fit into a double
55 // (which has a 53bit significand) without loss of precision.
56 static const int kMaxExactDoubleIntegerDecimalDigits
= 15;
57 // 2^64 = 18446744073709551616 > 10^19
58 static const int kMaxUint64DecimalDigits
= 19;
60 // Max double: 1.7976931348623157 x 10^308
61 // Min non-zero double: 4.9406564584124654 x 10^-324
62 // Any x >= 10^309 is interpreted as +infinity.
63 // Any x <= 10^-324 is interpreted as 0.
64 // Note that 2.5e-324 (despite being smaller than the min double) will be read
65 // as non-zero (equal to the min non-zero double).
66 static const int kMaxDecimalPower
= 309;
67 static const int kMinDecimalPower
= -324;
69 // 2^64 = 18446744073709551616
70 static const uint64_t kMaxUint64
= UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF
);
73 static const double exact_powers_of_ten
[] = {
84 10000000000.0, // 10^10
92 1000000000000000000.0,
93 10000000000000000000.0,
94 100000000000000000000.0, // 10^20
95 1000000000000000000000.0,
96 // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
97 10000000000000000000000.0
99 static const int kExactPowersOfTenSize
= ARRAY_SIZE(exact_powers_of_ten
);
101 // Maximum number of significant digits in the decimal representation.
102 // In fact the value is 772 (see conversions.cc), but to give us some margin
103 // we round up to 780.
104 static const int kMaxSignificantDecimalDigits
= 780;
106 static Vector
<const char> TrimLeadingZeros(Vector
<const char> buffer
) {
107 for (int i
= 0; i
< buffer
.length(); i
++) {
108 if (buffer
[i
] != '0') {
109 return buffer
.SubVector(i
, buffer
.length());
112 return Vector
<const char>(buffer
.start(), 0);
116 static Vector
<const char> TrimTrailingZeros(Vector
<const char> buffer
) {
117 for (int i
= buffer
.length() - 1; i
>= 0; --i
) {
118 if (buffer
[i
] != '0') {
119 return buffer
.SubVector(0, i
+ 1);
122 return Vector
<const char>(buffer
.start(), 0);
126 static void CutToMaxSignificantDigits(Vector
<const char> buffer
,
128 char* significant_buffer
,
129 int* significant_exponent
) {
130 for (int i
= 0; i
< kMaxSignificantDecimalDigits
- 1; ++i
) {
131 significant_buffer
[i
] = buffer
[i
];
133 // The input buffer has been trimmed. Therefore the last digit must be
134 // different from '0'.
135 ASSERT(buffer
[buffer
.length() - 1] != '0');
136 // Set the last digit to be non-zero. This is sufficient to guarantee
138 significant_buffer
[kMaxSignificantDecimalDigits
- 1] = '1';
139 *significant_exponent
=
140 exponent
+ (buffer
.length() - kMaxSignificantDecimalDigits
);
144 // Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits.
145 // If possible the input-buffer is reused, but if the buffer needs to be
146 // modified (due to cutting), then the input needs to be copied into the
147 // buffer_copy_space.
148 static void TrimAndCut(Vector
<const char> buffer
, int exponent
,
149 char* buffer_copy_space
, int space_size
,
150 Vector
<const char>* trimmed
, int* updated_exponent
) {
151 Vector
<const char> left_trimmed
= TrimLeadingZeros(buffer
);
152 Vector
<const char> right_trimmed
= TrimTrailingZeros(left_trimmed
);
153 exponent
+= left_trimmed
.length() - right_trimmed
.length();
154 if (right_trimmed
.length() > kMaxSignificantDecimalDigits
) {
155 (void) space_size
; // Mark variable as used.
156 ASSERT(space_size
>= kMaxSignificantDecimalDigits
);
157 CutToMaxSignificantDigits(right_trimmed
, exponent
,
158 buffer_copy_space
, updated_exponent
);
159 *trimmed
= Vector
<const char>(buffer_copy_space
,
160 kMaxSignificantDecimalDigits
);
162 *trimmed
= right_trimmed
;
163 *updated_exponent
= exponent
;
168 // Reads digits from the buffer and converts them to a uint64.
169 // Reads in as many digits as fit into a uint64.
170 // When the string starts with "1844674407370955161" no further digit is read.
171 // Since 2^64 = 18446744073709551616 it would still be possible read another
172 // digit if it was less or equal than 6, but this would complicate the code.
173 static uint64_t ReadUint64(Vector
<const char> buffer
,
174 int* number_of_read_digits
) {
177 while (i
< buffer
.length() && result
<= (kMaxUint64
/ 10 - 1)) {
178 int digit
= buffer
[i
++] - '0';
179 ASSERT(0 <= digit
&& digit
<= 9);
180 result
= 10 * result
+ digit
;
182 *number_of_read_digits
= i
;
187 // Reads a DiyFp from the buffer.
188 // The returned DiyFp is not necessarily normalized.
189 // If remaining_decimals is zero then the returned DiyFp is accurate.
190 // Otherwise it has been rounded and has error of at most 1/2 ulp.
191 static void ReadDiyFp(Vector
<const char> buffer
,
193 int* remaining_decimals
) {
195 uint64_t significand
= ReadUint64(buffer
, &read_digits
);
196 if (buffer
.length() == read_digits
) {
197 *result
= DiyFp(significand
, 0);
198 *remaining_decimals
= 0;
200 // Round the significand.
201 if (buffer
[read_digits
] >= '5') {
204 // Compute the binary exponent.
206 *result
= DiyFp(significand
, exponent
);
207 *remaining_decimals
= buffer
.length() - read_digits
;
212 static bool DoubleStrtod(Vector
<const char> trimmed
,
215 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
216 // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
217 // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
218 // result is not accurate.
219 // We know that Windows32 uses 64 bits and is therefore accurate.
220 // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
224 if (trimmed
.length() <= kMaxExactDoubleIntegerDecimalDigits
) {
226 // The trimmed input fits into a double.
227 // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
228 // can compute the result-double simply by multiplying (resp. dividing) the
230 // This is possible because IEEE guarantees that floating-point operations
231 // return the best possible approximation.
232 if (exponent
< 0 && -exponent
< kExactPowersOfTenSize
) {
233 // 10^-exponent fits into a double.
234 *result
= static_cast<double>(ReadUint64(trimmed
, &read_digits
));
235 ASSERT(read_digits
== trimmed
.length());
236 *result
/= exact_powers_of_ten
[-exponent
];
239 if (0 <= exponent
&& exponent
< kExactPowersOfTenSize
) {
240 // 10^exponent fits into a double.
241 *result
= static_cast<double>(ReadUint64(trimmed
, &read_digits
));
242 ASSERT(read_digits
== trimmed
.length());
243 *result
*= exact_powers_of_ten
[exponent
];
246 int remaining_digits
=
247 kMaxExactDoubleIntegerDecimalDigits
- trimmed
.length();
248 if ((0 <= exponent
) &&
249 (exponent
- remaining_digits
< kExactPowersOfTenSize
)) {
250 // The trimmed string was short and we can multiply it with
251 // 10^remaining_digits. As a result the remaining exponent now fits
252 // into a double too.
253 *result
= static_cast<double>(ReadUint64(trimmed
, &read_digits
));
254 ASSERT(read_digits
== trimmed
.length());
255 *result
*= exact_powers_of_ten
[remaining_digits
];
256 *result
*= exact_powers_of_ten
[exponent
- remaining_digits
];
264 // Returns 10^exponent as an exact DiyFp.
265 // The given exponent must be in the range [1; kDecimalExponentDistance[.
266 static DiyFp
AdjustmentPowerOfTen(int exponent
) {
267 ASSERT(0 < exponent
);
268 ASSERT(exponent
< PowersOfTenCache::kDecimalExponentDistance
);
269 // Simply hardcode the remaining powers for the given decimal exponent
271 ASSERT(PowersOfTenCache::kDecimalExponentDistance
== 8);
273 case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
274 case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
275 case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
276 case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
277 case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
278 case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
279 case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
286 // If the function returns true then the result is the correct double.
287 // Otherwise it is either the correct double or the double that is just below
288 // the correct double.
289 static bool DiyFpStrtod(Vector
<const char> buffer
,
293 int remaining_decimals
;
294 ReadDiyFp(buffer
, &input
, &remaining_decimals
);
295 // Since we may have dropped some digits the input is not accurate.
296 // If remaining_decimals is different than 0 than the error is at most
297 // .5 ulp (unit in the last place).
298 // We don't want to deal with fractions and therefore keep a common
300 const int kDenominatorLog
= 3;
301 const int kDenominator
= 1 << kDenominatorLog
;
302 // Move the remaining decimals into the exponent.
303 exponent
+= remaining_decimals
;
304 uint64_t error
= (remaining_decimals
== 0 ? 0 : kDenominator
/ 2);
306 int old_e
= input
.e();
308 error
<<= old_e
- input
.e();
310 ASSERT(exponent
<= PowersOfTenCache::kMaxDecimalExponent
);
311 if (exponent
< PowersOfTenCache::kMinDecimalExponent
) {
316 int cached_decimal_exponent
;
317 PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent
,
319 &cached_decimal_exponent
);
321 if (cached_decimal_exponent
!= exponent
) {
322 int adjustment_exponent
= exponent
- cached_decimal_exponent
;
323 DiyFp adjustment_power
= AdjustmentPowerOfTen(adjustment_exponent
);
324 input
.Multiply(adjustment_power
);
325 if (kMaxUint64DecimalDigits
- buffer
.length() >= adjustment_exponent
) {
326 // The product of input with the adjustment power fits into a 64 bit
328 ASSERT(DiyFp::kSignificandSize
== 64);
330 // The adjustment power is exact. There is hence only an error of 0.5.
331 error
+= kDenominator
/ 2;
335 input
.Multiply(cached_power
);
336 // The error introduced by a multiplication of a*b equals
337 // error_a + error_b + error_a*error_b/2^64 + 0.5
338 // Substituting a with 'input' and b with 'cached_power' we have
339 // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp),
340 // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
341 int error_b
= kDenominator
/ 2;
342 int error_ab
= (error
== 0 ? 0 : 1); // We round up to 1.
343 int fixed_error
= kDenominator
/ 2;
344 error
+= error_b
+ error_ab
+ fixed_error
;
348 error
<<= old_e
- input
.e();
350 // See if the double's significand changes if we add/subtract the error.
351 int order_of_magnitude
= DiyFp::kSignificandSize
+ input
.e();
352 int effective_significand_size
=
353 Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude
);
354 int precision_digits_count
=
355 DiyFp::kSignificandSize
- effective_significand_size
;
356 if (precision_digits_count
+ kDenominatorLog
>= DiyFp::kSignificandSize
) {
357 // This can only happen for very small denormals. In this case the
358 // half-way multiplied by the denominator exceeds the range of an uint64.
359 // Simply shift everything to the right.
360 int shift_amount
= (precision_digits_count
+ kDenominatorLog
) -
361 DiyFp::kSignificandSize
+ 1;
362 input
.set_f(input
.f() >> shift_amount
);
363 input
.set_e(input
.e() + shift_amount
);
364 // We add 1 for the lost precision of error, and kDenominator for
365 // the lost precision of input.f().
366 error
= (error
>> shift_amount
) + 1 + kDenominator
;
367 precision_digits_count
-= shift_amount
;
369 // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
370 ASSERT(DiyFp::kSignificandSize
== 64);
371 ASSERT(precision_digits_count
< 64);
373 uint64_t precision_bits_mask
= (one64
<< precision_digits_count
) - 1;
374 uint64_t precision_bits
= input
.f() & precision_bits_mask
;
375 uint64_t half_way
= one64
<< (precision_digits_count
- 1);
376 precision_bits
*= kDenominator
;
377 half_way
*= kDenominator
;
378 DiyFp
rounded_input(input
.f() >> precision_digits_count
,
379 input
.e() + precision_digits_count
);
380 if (precision_bits
>= half_way
+ error
) {
381 rounded_input
.set_f(rounded_input
.f() + 1);
383 // If the last_bits are too close to the half-way case than we are too
384 // inaccurate and round down. In this case we return false so that we can
385 // fall back to a more precise algorithm.
387 *result
= Double(rounded_input
).value();
388 if (half_way
- error
< precision_bits
&& precision_bits
< half_way
+ error
) {
389 // Too imprecise. The caller will have to fall back to a slower version.
390 // However the returned number is guaranteed to be either the correct
391 // double, or the next-lower double.
400 // - -1 if buffer*10^exponent < diy_fp.
401 // - 0 if buffer*10^exponent == diy_fp.
402 // - +1 if buffer*10^exponent > diy_fp.
404 // buffer.length() + exponent <= kMaxDecimalPower + 1
405 // buffer.length() + exponent > kMinDecimalPower
406 // buffer.length() <= kMaxDecimalSignificantDigits
407 static int CompareBufferWithDiyFp(Vector
<const char> buffer
,
410 ASSERT(buffer
.length() + exponent
<= kMaxDecimalPower
+ 1);
411 ASSERT(buffer
.length() + exponent
> kMinDecimalPower
);
412 ASSERT(buffer
.length() <= kMaxSignificantDecimalDigits
);
413 // Make sure that the Bignum will be able to hold all our numbers.
414 // Our Bignum implementation has a separate field for exponents. Shifts will
415 // consume at most one bigit (< 64 bits).
416 // ln(10) == 3.3219...
417 ASSERT(((kMaxDecimalPower
+ 1) * 333 / 100) < Bignum::kMaxSignificantBits
);
418 Bignum buffer_bignum
;
419 Bignum diy_fp_bignum
;
420 buffer_bignum
.AssignDecimalString(buffer
);
421 diy_fp_bignum
.AssignUInt64(diy_fp
.f());
423 buffer_bignum
.MultiplyByPowerOfTen(exponent
);
425 diy_fp_bignum
.MultiplyByPowerOfTen(-exponent
);
427 if (diy_fp
.e() > 0) {
428 diy_fp_bignum
.ShiftLeft(diy_fp
.e());
430 buffer_bignum
.ShiftLeft(-diy_fp
.e());
432 return Bignum::Compare(buffer_bignum
, diy_fp_bignum
);
436 // Returns true if the guess is the correct double.
437 // Returns false, when guess is either correct or the next-lower double.
438 static bool ComputeGuess(Vector
<const char> trimmed
, int exponent
,
440 if (trimmed
.length() == 0) {
444 if (exponent
+ trimmed
.length() - 1 >= kMaxDecimalPower
) {
445 *guess
= Double::Infinity();
448 if (exponent
+ trimmed
.length() <= kMinDecimalPower
) {
453 if (DoubleStrtod(trimmed
, exponent
, guess
) ||
454 DiyFpStrtod(trimmed
, exponent
, guess
)) {
457 if (*guess
== Double::Infinity()) {
463 double Strtod(Vector
<const char> buffer
, int exponent
) {
464 char copy_buffer
[kMaxSignificantDecimalDigits
];
465 Vector
<const char> trimmed
;
466 int updated_exponent
;
467 TrimAndCut(buffer
, exponent
, copy_buffer
, kMaxSignificantDecimalDigits
,
468 &trimmed
, &updated_exponent
);
469 exponent
= updated_exponent
;
472 bool is_correct
= ComputeGuess(trimmed
, exponent
, &guess
);
473 if (is_correct
) return guess
;
475 DiyFp upper_boundary
= Double(guess
).UpperBoundary();
476 int comparison
= CompareBufferWithDiyFp(trimmed
, exponent
, upper_boundary
);
477 if (comparison
< 0) {
479 } else if (comparison
> 0) {
480 return Double(guess
).NextDouble();
481 } else if ((Double(guess
).Significand() & 1) == 0) {
482 // Round towards even.
485 return Double(guess
).NextDouble();
489 float Strtof(Vector
<const char> buffer
, int exponent
) {
490 char copy_buffer
[kMaxSignificantDecimalDigits
];
491 Vector
<const char> trimmed
;
492 int updated_exponent
;
493 TrimAndCut(buffer
, exponent
, copy_buffer
, kMaxSignificantDecimalDigits
,
494 &trimmed
, &updated_exponent
);
495 exponent
= updated_exponent
;
498 bool is_correct
= ComputeGuess(trimmed
, exponent
, &double_guess
);
500 float float_guess
= static_cast<float>(double_guess
);
501 if (float_guess
== double_guess
) {
502 // This shortcut triggers for integer values.
506 // We must catch double-rounding. Say the double has been rounded up, and is
507 // now a boundary of a float, and rounds up again. This is why we have to
508 // look at previous too.
509 // Example (in decimal numbers):
511 // high-precision (4 digits): 1235
512 // low-precision (3 digits):
513 // when read from input: 123
514 // when rounded from high precision: 124.
515 // To do this we simply look at the neigbors of the correct result and see
516 // if they would round to the same float. If the guess is not correct we have
517 // to look at four values (since two different doubles could be the correct
520 double double_next
= Double(double_guess
).NextDouble();
521 double double_previous
= Double(double_guess
).PreviousDouble();
523 float f1
= static_cast<float>(double_previous
);
524 float f2
= float_guess
;
525 float f3
= static_cast<float>(double_next
);
530 double double_next2
= Double(double_next
).NextDouble();
531 f4
= static_cast<float>(double_next2
);
533 (void) f2
; // Mark variable as used.
534 ASSERT(f1
<= f2
&& f2
<= f3
&& f3
<= f4
);
536 // If the guess doesn't lie near a single-precision boundary we can simply
537 // return its float-value.
542 ASSERT((f1
!= f2
&& f2
== f3
&& f3
== f4
) ||
543 (f1
== f2
&& f2
!= f3
&& f3
== f4
) ||
544 (f1
== f2
&& f2
== f3
&& f3
!= f4
));
546 // guess and next are the two possible canditates (in the same way that
547 // double_guess was the lower candidate for a double-precision guess).
550 DiyFp upper_boundary
;
552 float min_float
= 1e-45f
;
553 upper_boundary
= Double(static_cast<double>(min_float
) / 2).AsDiyFp();
555 upper_boundary
= Single(guess
).UpperBoundary();
557 int comparison
= CompareBufferWithDiyFp(trimmed
, exponent
, upper_boundary
);
558 if (comparison
< 0) {
560 } else if (comparison
> 0) {
562 } else if ((Single(guess
).Significand() & 1) == 0) {
563 // Round towards even.
570 } // namespace double_conversion
572 // ICU PATCH: Close ICU namespace
574 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING