2 ******************************************************************************
3 * Copyright (C) 1997-2012, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 ******************************************************************************
8 * tab size: 8 (not used)
11 * Modification history
13 * 10/11/2001 Doug Ported from ICU4J
20 #include "unicode/uchar.h"
23 #include "patternprops.h"
32 // euclid's algorithm works with doubles
33 // note, doubles only get us up to one quadrillion or so, which
34 // isn't as much range as we get with longs. We probably still
35 // want either 64-bit math, or BigInteger.
38 util_lcm(int64_t x
, int64_t y
)
43 if (x
== 0 || y
== 0) {
48 int64_t t
= x
; x
= y
; y
= t
;
59 * Calculates the least common multiple of x and y.
62 util_lcm(int64_t x
, int64_t y
)
64 // binary gcd algorithm from Knuth, "The Art of Computer Programming,"
65 // vol. 2, 1st ed., pp. 298-299
70 while ((x1
& 1) == 0 && (y1
& 1) == 0) {
84 while ((t
& 1) == 0) {
95 int64_t gcd
= x1
<< p2
;
97 // x * y == gcd(x, y) * lcm(x, y)
102 static const UChar gPercent
= 0x0025;
103 static const UChar gColon
= 0x003a;
104 static const UChar gSemicolon
= 0x003b;
105 static const UChar gLineFeed
= 0x000a;
107 static const UChar gFourSpaces
[] =
109 0x20, 0x20, 0x20, 0x20, 0
111 static const UChar gPercentPercent
[] =
116 static const UChar gNoparse
[] =
118 0x40, 0x6E, 0x6F, 0x70, 0x61, 0x72, 0x73, 0x65, 0
121 NFRuleSet::NFRuleSet(UnicodeString
* descriptions
, int32_t index
, UErrorCode
& status
)
124 , negativeNumberRule(NULL
)
125 , fIsFractionRuleSet(FALSE
)
130 for (int i
= 0; i
< 3; ++i
) {
131 fractionRules
[i
] = NULL
;
134 if (U_FAILURE(status
)) {
138 UnicodeString
& description
= descriptions
[index
]; // !!! make sure index is valid
140 if (description
.length() == 0) {
141 // throw new IllegalArgumentException("Empty rule set description");
142 status
= U_PARSE_ERROR
;
146 // if the description begins with a rule set name (the rule set
147 // name can be omitted in formatter descriptions that consist
148 // of only one rule set), copy it out into our "name" member
149 // and delete it from the description
150 if (description
.charAt(0) == gPercent
) {
151 int32_t pos
= description
.indexOf(gColon
);
153 // throw new IllegalArgumentException("Rule set name doesn't end in colon");
154 status
= U_PARSE_ERROR
;
156 name
.setTo(description
, 0, pos
);
157 while (pos
< description
.length() && PatternProps::isWhiteSpace(description
.charAt(++pos
))) {
159 description
.remove(0, pos
);
162 name
.setTo(UNICODE_STRING_SIMPLE("%default"));
165 if (description
.length() == 0) {
166 // throw new IllegalArgumentException("Empty rule set description");
167 status
= U_PARSE_ERROR
;
170 fIsPublic
= name
.indexOf(gPercentPercent
, 2, 0) != 0;
172 if ( name
.endsWith(gNoparse
,8) ) {
173 fIsParseable
= FALSE
;
174 name
.truncate(name
.length()-8); // remove the @noparse from the name
177 // all of the other members of NFRuleSet are initialized
182 NFRuleSet::parseRules(UnicodeString
& description
, const RuleBasedNumberFormat
* owner
, UErrorCode
& status
)
184 // start by creating a Vector whose elements are Strings containing
185 // the descriptions of the rules (one rule per element). The rules
186 // are separated by semicolons (there's no escape facility: ALL
187 // semicolons are rule delimiters)
189 if (U_FAILURE(status
)) {
193 // ensure we are starting with an empty rule list
196 // dlf - the original code kept a separate description array for no reason,
197 // so I got rid of it. The loop was too complex so I simplified it.
199 UnicodeString currentDescription
;
201 while (oldP
< description
.length()) {
202 int32_t p
= description
.indexOf(gSemicolon
, oldP
);
204 p
= description
.length();
206 currentDescription
.setTo(description
, oldP
, p
- oldP
);
207 NFRule::makeRules(currentDescription
, this, rules
.last(), owner
, rules
, status
);
211 // for rules that didn't specify a base value, their base values
212 // were initialized to 0. Make another pass through the list and
213 // set all those rules' base values. We also remove any special
214 // rules from the list and put them into their own member variables
215 int64_t defaultBaseValue
= 0;
217 // (this isn't a for loop because we might be deleting items from
218 // the vector-- we want to make sure we only increment i when
219 // we _didn't_ delete aything from the vector)
221 while (i
< rules
.size()) {
222 NFRule
* rule
= rules
[i
];
224 switch (rule
->getType()) {
225 // if the rule's base value is 0, fill in a default
226 // base value (this will be 1 plus the preceding
227 // rule's base value for regular rule sets, and the
228 // same as the preceding rule's base value in fraction
230 case NFRule::kNoBase
:
231 rule
->setBaseValue(defaultBaseValue
, status
);
232 if (!isFractionRuleSet()) {
238 // if it's the negative-number rule, copy it into its own
239 // data member and delete it from the list
240 case NFRule::kNegativeNumberRule
:
241 if (negativeNumberRule
) {
242 delete negativeNumberRule
;
244 negativeNumberRule
= rules
.remove(i
);
247 // if it's the improper fraction rule, copy it into the
248 // correct element of fractionRules
249 case NFRule::kImproperFractionRule
:
250 if (fractionRules
[0]) {
251 delete fractionRules
[0];
253 fractionRules
[0] = rules
.remove(i
);
256 // if it's the proper fraction rule, copy it into the
257 // correct element of fractionRules
258 case NFRule::kProperFractionRule
:
259 if (fractionRules
[1]) {
260 delete fractionRules
[1];
262 fractionRules
[1] = rules
.remove(i
);
265 // if it's the master rule, copy it into the
266 // correct element of fractionRules
267 case NFRule::kMasterRule
:
268 if (fractionRules
[2]) {
269 delete fractionRules
[2];
271 fractionRules
[2] = rules
.remove(i
);
274 // if it's a regular rule that already knows its base value,
275 // check to make sure the rules are in order, and update
276 // the default base value for the next rule
278 if (rule
->getBaseValue() < defaultBaseValue
) {
279 // throw new IllegalArgumentException("Rules are not in order");
280 status
= U_PARSE_ERROR
;
283 defaultBaseValue
= rule
->getBaseValue();
284 if (!isFractionRuleSet()) {
293 NFRuleSet::~NFRuleSet()
295 delete negativeNumberRule
;
296 delete fractionRules
[0];
297 delete fractionRules
[1];
298 delete fractionRules
[2];
302 util_equalRules(const NFRule
* rule1
, const NFRule
* rule2
)
306 return *rule1
== *rule2
;
315 NFRuleSet::operator==(const NFRuleSet
& rhs
) const
317 if (rules
.size() == rhs
.rules
.size() &&
318 fIsFractionRuleSet
== rhs
.fIsFractionRuleSet
&&
320 util_equalRules(negativeNumberRule
, rhs
.negativeNumberRule
) &&
321 util_equalRules(fractionRules
[0], rhs
.fractionRules
[0]) &&
322 util_equalRules(fractionRules
[1], rhs
.fractionRules
[1]) &&
323 util_equalRules(fractionRules
[2], rhs
.fractionRules
[2])) {
325 for (uint32_t i
= 0; i
< rules
.size(); ++i
) {
326 if (*rules
[i
] != *rhs
.rules
[i
]) {
335 #define RECURSION_LIMIT 50
338 NFRuleSet::format(int64_t number
, UnicodeString
& toAppendTo
, int32_t pos
) const
340 NFRule
*rule
= findNormalRule(number
);
341 if (rule
) { // else error, but can't report it
342 NFRuleSet
* ncThis
= (NFRuleSet
*)this;
343 if (ncThis
->fRecursionCount
++ >= RECURSION_LIMIT
) {
345 ncThis
->fRecursionCount
= 0;
347 rule
->doFormat(number
, toAppendTo
, pos
);
348 ncThis
->fRecursionCount
--;
354 NFRuleSet::format(double number
, UnicodeString
& toAppendTo
, int32_t pos
) const
356 NFRule
*rule
= findDoubleRule(number
);
357 if (rule
) { // else error, but can't report it
358 NFRuleSet
* ncThis
= (NFRuleSet
*)this;
359 if (ncThis
->fRecursionCount
++ >= RECURSION_LIMIT
) {
361 ncThis
->fRecursionCount
= 0;
363 rule
->doFormat(number
, toAppendTo
, pos
);
364 ncThis
->fRecursionCount
--;
370 NFRuleSet::findDoubleRule(double number
) const
372 // if this is a fraction rule set, use findFractionRuleSetRule()
373 if (isFractionRuleSet()) {
374 return findFractionRuleSetRule(number
);
377 // if the number is negative, return the negative number rule
378 // (if there isn't a negative-number rule, we pretend it's a
381 if (negativeNumberRule
) {
382 return negativeNumberRule
;
388 // if the number isn't an integer, we use one of the fraction rules...
389 if (number
!= uprv_floor(number
)) {
390 // if the number is between 0 and 1, return the proper
392 if (number
< 1 && fractionRules
[1]) {
393 return fractionRules
[1];
395 // otherwise, return the improper fraction rule
396 else if (fractionRules
[0]) {
397 return fractionRules
[0];
401 // if there's a master rule, use it to format the number
402 if (fractionRules
[2]) {
403 return fractionRules
[2];
406 // always use the last rule for infinity. It is likely that rule
407 // has a DecimalFormat that will do the right thing with infinity even
408 // if the rule's base value is strange, i.e. something larger than what
409 // util64_fromDouble produces below.
410 if (uprv_isInfinite(number
) && (rules
.size() > 0)) {
411 return rules
[rules
.size() - 1];
414 // and if we haven't yet returned a rule, use findNormalRule()
415 // to find the applicable rule
416 int64_t r
= util64_fromDouble(number
+ 0.5);
417 return findNormalRule(r
);
421 NFRuleSet::findNormalRule(int64_t number
) const
423 // if this is a fraction rule set, use findFractionRuleSetRule()
424 // to find the rule (we should only go into this clause if the
426 if (fIsFractionRuleSet
) {
427 return findFractionRuleSetRule((double)number
);
430 // if the number is negative, return the negative-number rule
431 // (if there isn't one, pretend the number is positive)
433 if (negativeNumberRule
) {
434 return negativeNumberRule
;
440 // we have to repeat the preceding two checks, even though we
441 // do them in findRule(), because the version of format() that
442 // takes a long bypasses findRule() and goes straight to this
443 // function. This function does skip the fraction rules since
444 // we know the value is an integer (it also skips the master
445 // rule, since it's considered a fraction rule. Skipping the
446 // master rule in this function is also how we avoid infinite
449 // {dlf} unfortunately this fails if there are no rules except
450 // special rules. If there are no rules, use the master rule.
452 // binary-search the rule list for the applicable rule
453 // (a rule is used for all values from its base value to
454 // the next rule's base value)
455 int32_t hi
= rules
.size();
460 int32_t mid
= (lo
+ hi
) / 2;
461 if (rules
[mid
]->getBaseValue() == number
) {
464 else if (rules
[mid
]->getBaseValue() > number
) {
471 if (hi
== 0) { // bad rule set, minimum base > 0
472 return NULL
; // want to throw exception here
475 NFRule
*result
= rules
[hi
- 1];
477 // use shouldRollBack() to see whether we need to invoke the
478 // rollback rule (see shouldRollBack()'s documentation for
479 // an explanation of the rollback rule). If we do, roll back
480 // one rule and return that one instead of the one we'd normally
482 if (result
->shouldRollBack((double)number
)) {
483 if (hi
== 1) { // bad rule set, no prior rule to rollback to from this base
486 result
= rules
[hi
- 2];
490 // else use the master rule
491 return fractionRules
[2];
495 * If this rule is a fraction rule set, this function is used by
496 * findRule() to select the most appropriate rule for formatting
497 * the number. Basically, the base value of each rule in the rule
498 * set is treated as the denominator of a fraction. Whichever
499 * denominator can produce the fraction closest in value to the
500 * number passed in is the result. If there's a tie, the earlier
501 * one in the list wins. (If there are two rules in a row with the
502 * same base value, the first one is used when the numerator of the
503 * fraction would be 1, and the second rule is used the rest of the
505 * @param number The number being formatted (which will always be
506 * a number between 0 and 1)
507 * @return The rule to use to format this number
510 NFRuleSet::findFractionRuleSetRule(double number
) const
512 // the obvious way to do this (multiply the value being formatted
513 // by each rule's base value until you get an integral result)
514 // doesn't work because of rounding error. This method is more
517 // find the least common multiple of the rules' base values
518 // and multiply this by the number being formatted. This is
519 // all the precision we need, and we can do all of the rest
520 // of the math using integer arithmetic
521 int64_t leastCommonMultiple
= rules
[0]->getBaseValue();
524 for (uint32_t i
= 1; i
< rules
.size(); ++i
) {
525 leastCommonMultiple
= util_lcm(leastCommonMultiple
, rules
[i
]->getBaseValue());
527 numerator
= util64_fromDouble(number
* (double)leastCommonMultiple
+ 0.5);
529 // for each rule, do the following...
530 int64_t tempDifference
;
531 int64_t difference
= util64_fromDouble(uprv_maxMantissa());
533 for (uint32_t i
= 0; i
< rules
.size(); ++i
) {
534 // "numerator" is the numerator of the fraction if the
535 // denominator is the LCD. The numerator if the rule's
536 // base value is the denominator is "numerator" times the
537 // base value divided bythe LCD. Here we check to see if
538 // that's an integer, and if not, how close it is to being
540 tempDifference
= numerator
* rules
[i
]->getBaseValue() % leastCommonMultiple
;
543 // normalize the result of the above calculation: we want
544 // the numerator's distance from the CLOSEST multiple
546 if (leastCommonMultiple
- tempDifference
< tempDifference
) {
547 tempDifference
= leastCommonMultiple
- tempDifference
;
550 // if this is as close as we've come, keep track of how close
551 // that is, and the line number of the rule that did it. If
552 // we've scored a direct hit, we don't have to look at any more
554 if (tempDifference
< difference
) {
555 difference
= tempDifference
;
557 if (difference
== 0) {
563 // if we have two successive rules that both have the winning base
564 // value, then the first one (the one we found above) is used if
565 // the numerator of the fraction is 1 and the second one is used if
566 // the numerator of the fraction is anything else (this lets us
567 // do things like "one third"/"two thirds" without haveing to define
568 // a whole bunch of extra rule sets)
569 if ((unsigned)(winner
+ 1) < rules
.size() &&
570 rules
[winner
+ 1]->getBaseValue() == rules
[winner
]->getBaseValue()) {
571 double n
= ((double)rules
[winner
]->getBaseValue()) * number
;
572 if (n
< 0.5 || n
>= 2) {
577 // finally, return the winning rule
578 return rules
[winner
];
582 * Parses a string. Matches the string to be parsed against each
583 * of its rules (with a base value less than upperBound) and returns
584 * the value produced by the rule that matched the most charcters
585 * in the source string.
586 * @param text The string to parse
587 * @param parsePosition The initial position is ignored and assumed
588 * to be 0. On exit, this object has been updated to point to the
589 * first character position this rule set didn't consume.
590 * @param upperBound Limits the rules that can be allowed to match.
591 * Only rules whose base values are strictly less than upperBound
593 * @return The numerical result of parsing this string. This will
594 * be the matching rule's base value, composed appropriately with
595 * the results of matching any of its substitutions. The object
596 * will be an instance of Long if it's an integral value; otherwise,
597 * it will be an instance of Double. This function always returns
598 * a valid object: If nothing matched the input string at all,
599 * this function returns new Long(0), and the parse position is
605 static void dumpUS(FILE* f
, const UnicodeString
& us
) {
606 int len
= us
.length();
607 char* buf
= (char *)uprv_malloc((len
+1)*sizeof(char)); //new char[len+1];
609 us
.extract(0, len
, buf
);
611 fprintf(f
, "%s", buf
);
612 uprv_free(buf
); //delete[] buf;
618 NFRuleSet::parse(const UnicodeString
& text
, ParsePosition
& pos
, double upperBound
, Formattable
& result
, UBool lenient
) const
620 // try matching each rule in the rule set against the text being
621 // parsed. Whichever one matches the most characters is the one
622 // that determines the value we return.
626 // dump out if there's no text to parse
627 if (text
.length() == 0) {
631 ParsePosition highWaterMark
;
632 ParsePosition workingPos
= pos
;
635 fprintf(stderr
, "<nfrs> %x '", this);
636 dumpUS(stderr
, name
);
637 fprintf(stderr
, "' text '");
638 dumpUS(stderr
, text
);
639 fprintf(stderr
, "'\n");
640 fprintf(stderr
, " parse negative: %d\n", this, negativeNumberRule
!= 0);
643 // start by trying the negative number rule (if there is one)
644 if (negativeNumberRule
) {
645 Formattable tempResult
;
647 fprintf(stderr
, " <nfrs before negative> %x ub: %g\n", negativeNumberRule
, upperBound
);
649 UBool success
= negativeNumberRule
->doParse(text
, workingPos
, 0, upperBound
, tempResult
);
651 fprintf(stderr
, " <nfrs after negative> success: %d wpi: %d\n", success
, workingPos
.getIndex());
653 if (success
&& workingPos
.getIndex() > highWaterMark
.getIndex()) {
655 highWaterMark
= workingPos
;
660 fprintf(stderr
, "<nfrs> continue fractional with text '");
661 dumpUS(stderr
, text
);
662 fprintf(stderr
, "' hwm: %d\n", highWaterMark
.getIndex());
664 // then try each of the fraction rules
666 for (int i
= 0; i
< 3; i
++) {
667 if (fractionRules
[i
]) {
668 Formattable tempResult
;
669 UBool success
= fractionRules
[i
]->doParse(text
, workingPos
, 0, upperBound
, tempResult
, lenient
|| isDecimalFormatRuleParseable() );
670 if (success
&& (workingPos
.getIndex() > highWaterMark
.getIndex())) {
672 highWaterMark
= workingPos
;
679 fprintf(stderr
, "<nfrs> continue other with text '");
680 dumpUS(stderr
, text
);
681 fprintf(stderr
, "' hwm: %d\n", highWaterMark
.getIndex());
684 // finally, go through the regular rules one at a time. We start
685 // at the end of the list because we want to try matching the most
686 // sigificant rule first (this helps ensure that we parse
687 // "five thousand three hundred six" as
688 // "(five thousand) (three hundred) (six)" rather than
689 // "((five thousand three) hundred) (six)"). Skip rules whose
690 // base values are higher than the upper bound (again, this helps
691 // limit ambiguity by making sure the rules that match a rule's
692 // are less significant than the rule containing the substitutions)/
694 int64_t ub
= util64_fromDouble(upperBound
);
698 util64_toa(ub
, ubstr
, 64);
700 util64_toa(ub
, ubstrhex
, 64, 16);
701 fprintf(stderr
, "ub: %g, i64: %s (%s)\n", upperBound
, ubstr
, ubstrhex
);
704 for (int32_t i
= rules
.size(); --i
>= 0 && highWaterMark
.getIndex() < text
.length();) {
705 if ((!fIsFractionRuleSet
) && (rules
[i
]->getBaseValue() >= ub
)) {
708 Formattable tempResult
;
709 UBool success
= rules
[i
]->doParse(text
, workingPos
, fIsFractionRuleSet
, upperBound
, tempResult
);
710 if (success
&& workingPos
.getIndex() > highWaterMark
.getIndex()) {
712 highWaterMark
= workingPos
;
718 fprintf(stderr
, "<nfrs> exit\n");
720 // finally, update the parse postion we were passed to point to the
721 // first character we didn't use, and return the result that
722 // corresponds to that string of characters
729 NFRuleSet::appendRules(UnicodeString
& result
) const
731 // the rule set name goes first...
733 result
.append(gColon
);
734 result
.append(gLineFeed
);
736 // followed by the regular rules...
737 for (uint32_t i
= 0; i
< rules
.size(); i
++) {
738 result
.append(gFourSpaces
, 4);
739 rules
[i
]->_appendRuleText(result
);
740 result
.append(gLineFeed
);
743 // followed by the special rules (if they exist)
744 if (negativeNumberRule
) {
745 result
.append(gFourSpaces
, 4);
746 negativeNumberRule
->_appendRuleText(result
);
747 result
.append(gLineFeed
);
751 for (uint32_t i
= 0; i
< 3; ++i
) {
752 if (fractionRules
[i
]) {
753 result
.append(gFourSpaces
, 4);
754 fractionRules
[i
]->_appendRuleText(result
);
755 result
.append(gLineFeed
);
763 int64_t util64_fromDouble(double d
) {
765 if (!uprv_isNaN(d
)) {
766 double mant
= uprv_maxMantissa();
769 } else if (d
> mant
) {
776 result
= (int64_t)uprv_floor(d
);
784 int64_t util64_pow(int32_t r
, uint32_t e
) {
798 static const uint8_t asciiDigits
[] = {
799 0x30u
, 0x31u
, 0x32u
, 0x33u
, 0x34u
, 0x35u
, 0x36u
, 0x37u
,
800 0x38u
, 0x39u
, 0x61u
, 0x62u
, 0x63u
, 0x64u
, 0x65u
, 0x66u
,
801 0x67u
, 0x68u
, 0x69u
, 0x6au
, 0x6bu
, 0x6cu
, 0x6du
, 0x6eu
,
802 0x6fu
, 0x70u
, 0x71u
, 0x72u
, 0x73u
, 0x74u
, 0x75u
, 0x76u
,
803 0x77u
, 0x78u
, 0x79u
, 0x7au
,
806 static const UChar kUMinus
= (UChar
)0x002d;
809 static const char kMinus
= '-';
811 static const uint8_t digitInfo
[] = {
812 0, 0, 0, 0, 0, 0, 0, 0,
813 0, 0, 0, 0, 0, 0, 0, 0,
814 0, 0, 0, 0, 0, 0, 0, 0,
815 0, 0, 0, 0, 0, 0, 0, 0,
816 0, 0, 0, 0, 0, 0, 0, 0,
817 0, 0, 0, 0, 0, 0, 0, 0,
818 0x80u
, 0x81u
, 0x82u
, 0x83u
, 0x84u
, 0x85u
, 0x86u
, 0x87u
,
819 0x88u
, 0x89u
, 0, 0, 0, 0, 0, 0,
820 0, 0x8au
, 0x8bu
, 0x8cu
, 0x8du
, 0x8eu
, 0x8fu
, 0x90u
,
821 0x91u
, 0x92u
, 0x93u
, 0x94u
, 0x95u
, 0x96u
, 0x97u
, 0x98u
,
822 0x99u
, 0x9au
, 0x9bu
, 0x9cu
, 0x9du
, 0x9eu
, 0x9fu
, 0xa0u
,
823 0xa1u
, 0xa2u
, 0xa3u
, 0, 0, 0, 0, 0,
824 0, 0x8au
, 0x8bu
, 0x8cu
, 0x8du
, 0x8eu
, 0x8fu
, 0x90u
,
825 0x91u
, 0x92u
, 0x93u
, 0x94u
, 0x95u
, 0x96u
, 0x97u
, 0x98u
,
826 0x99u
, 0x9au
, 0x9bu
, 0x9cu
, 0x9du
, 0x9eu
, 0x9fu
, 0xa0u
,
827 0xa1u
, 0xa2u
, 0xa3u
, 0, 0, 0, 0, 0,
830 int64_t util64_atoi(const char* str
, uint32_t radix
)
834 } else if (radix
< 2) {
837 int64_t lradix
= radix
;
840 if (*str
== kMinus
) {
846 while ((b
= digitInfo
[*str
++]) && ((b
&= 0x7f) < radix
)) {
848 result
+= (int32_t)b
;
856 int64_t util64_utoi(const UChar
* str
, uint32_t radix
)
860 } else if (radix
< 2) {
863 int64_t lradix
= radix
;
866 if (*str
== kUMinus
) {
873 while (((c
= *str
++) < 0x0080) && (b
= digitInfo
[c
]) && ((b
&= 0x7f) < radix
)) {
875 result
+= (int32_t)b
;
883 uint32_t util64_toa(int64_t w
, char* buf
, uint32_t len
, uint32_t radix
, UBool raw
)
887 } else if (radix
< 2) {
890 int64_t base
= radix
;
893 if (len
&& (w
< 0) && (radix
== 10) && !raw
) {
897 } else if (len
&& (w
== 0)) {
898 *p
++ = (char)raw
? 0 : asciiDigits
[0];
902 while (len
&& w
!= 0) {
903 int64_t n
= w
/ base
;
904 int64_t m
= n
* base
;
905 int32_t d
= (int32_t)(w
-m
);
906 *p
++ = raw
? (char)d
: asciiDigits
[d
];
911 *p
= 0; // null terminate if room for caller convenience
915 if (*buf
== kMinus
) {
929 uint32_t util64_tou(int64_t w
, UChar
* buf
, uint32_t len
, uint32_t radix
, UBool raw
)
933 } else if (radix
< 2) {
936 int64_t base
= radix
;
939 if (len
&& (w
< 0) && (radix
== 10) && !raw
) {
943 } else if (len
&& (w
== 0)) {
944 *p
++ = (UChar
)raw
? 0 : asciiDigits
[0];
948 while (len
&& (w
!= 0)) {
949 int64_t n
= w
/ base
;
950 int64_t m
= n
* base
;
951 int32_t d
= (int32_t)(w
-m
);
952 *p
++ = (UChar
)(raw
? d
: asciiDigits
[d
]);
957 *p
= 0; // null terminate if room for caller convenience
960 len
= (uint32_t)(p
- buf
);
961 if (*buf
== kUMinus
) {