]> git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/decimfmt.cpp
ICU-491.11.2.tar.gz
[apple/icu.git] / icuSources / i18n / decimfmt.cpp
1 /*
2 *******************************************************************************
3 * Copyright (C) 1997-2012, International Business Machines Corporation and *
4 * others. All Rights Reserved. *
5 *******************************************************************************
6 *
7 * File DECIMFMT.CPP
8 *
9 * Modification History:
10 *
11 * Date Name Description
12 * 02/19/97 aliu Converted from java.
13 * 03/20/97 clhuang Implemented with new APIs.
14 * 03/31/97 aliu Moved isLONG_MIN to DigitList, and fixed it.
15 * 04/3/97 aliu Rewrote parsing and formatting completely, and
16 * cleaned up and debugged. Actually works now.
17 * Implemented NAN and INF handling, for both parsing
18 * and formatting. Extensive testing & debugging.
19 * 04/10/97 aliu Modified to compile on AIX.
20 * 04/16/97 aliu Rewrote to use DigitList, which has been resurrected.
21 * Changed DigitCount to int per code review.
22 * 07/09/97 helena Made ParsePosition into a class.
23 * 08/26/97 aliu Extensive changes to applyPattern; completely
24 * rewritten from the Java.
25 * 09/09/97 aliu Ported over support for exponential formats.
26 * 07/20/98 stephen JDK 1.2 sync up.
27 * Various instances of '0' replaced with 'NULL'
28 * Check for grouping size in subFormat()
29 * Brought subParse() in line with Java 1.2
30 * Added method appendAffix()
31 * 08/24/1998 srl Removed Mutex calls. This is not a thread safe class!
32 * 02/22/99 stephen Removed character literals for EBCDIC safety
33 * 06/24/99 helena Integrated Alan's NF enhancements and Java2 bug fixes
34 * 06/28/99 stephen Fixed bugs in toPattern().
35 * 06/29/99 stephen Fixed operator= to copy fFormatWidth, fPad,
36 * fPadPosition
37 ********************************************************************************
38 */
39
40 #include "unicode/utypes.h"
41
42 #if !UCONFIG_NO_FORMATTING
43
44 #include "fphdlimp.h"
45 #include "unicode/decimfmt.h"
46 #include "unicode/choicfmt.h"
47 #include "unicode/ucurr.h"
48 #include "unicode/ustring.h"
49 #include "unicode/dcfmtsym.h"
50 #include "unicode/ures.h"
51 #include "unicode/uchar.h"
52 #include "unicode/uniset.h"
53 #include "unicode/curramt.h"
54 #include "unicode/currpinf.h"
55 #include "unicode/plurrule.h"
56 #include "unicode/utf16.h"
57 #include "unicode/numsys.h"
58 #include "unicode/localpointer.h"
59 #include "uresimp.h"
60 #include "ucurrimp.h"
61 #include "charstr.h"
62 #include "cmemory.h"
63 #include "patternprops.h"
64 #include "digitlst.h"
65 #include "cstring.h"
66 #include "umutex.h"
67 #include "uassert.h"
68 #include "putilimp.h"
69 #include <math.h>
70 #include "hash.h"
71 #include "decfmtst.h"
72
73
74 U_NAMESPACE_BEGIN
75
76 /* For currency parsing purose,
77 * Need to remember all prefix patterns and suffix patterns of
78 * every currency format pattern,
79 * including the pattern of default currecny style
80 * and plural currency style. And the patterns are set through applyPattern.
81 */
82 struct AffixPatternsForCurrency : public UMemory {
83 // negative prefix pattern
84 UnicodeString negPrefixPatternForCurrency;
85 // negative suffix pattern
86 UnicodeString negSuffixPatternForCurrency;
87 // positive prefix pattern
88 UnicodeString posPrefixPatternForCurrency;
89 // positive suffix pattern
90 UnicodeString posSuffixPatternForCurrency;
91 int8_t patternType;
92
93 AffixPatternsForCurrency(const UnicodeString& negPrefix,
94 const UnicodeString& negSuffix,
95 const UnicodeString& posPrefix,
96 const UnicodeString& posSuffix,
97 int8_t type) {
98 negPrefixPatternForCurrency = negPrefix;
99 negSuffixPatternForCurrency = negSuffix;
100 posPrefixPatternForCurrency = posPrefix;
101 posSuffixPatternForCurrency = posSuffix;
102 patternType = type;
103 }
104 };
105
106 /* affix for currency formatting when the currency sign in the pattern
107 * equals to 3, such as the pattern contains 3 currency sign or
108 * the formatter style is currency plural format style.
109 */
110 struct AffixesForCurrency : public UMemory {
111 // negative prefix
112 UnicodeString negPrefixForCurrency;
113 // negative suffix
114 UnicodeString negSuffixForCurrency;
115 // positive prefix
116 UnicodeString posPrefixForCurrency;
117 // positive suffix
118 UnicodeString posSuffixForCurrency;
119
120 int32_t formatWidth;
121
122 AffixesForCurrency(const UnicodeString& negPrefix,
123 const UnicodeString& negSuffix,
124 const UnicodeString& posPrefix,
125 const UnicodeString& posSuffix) {
126 negPrefixForCurrency = negPrefix;
127 negSuffixForCurrency = negSuffix;
128 posPrefixForCurrency = posPrefix;
129 posSuffixForCurrency = posSuffix;
130 }
131 };
132
133 U_CDECL_BEGIN
134
135 /**
136 * @internal ICU 4.2
137 */
138 static UBool U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2);
139
140 /**
141 * @internal ICU 4.2
142 */
143 static UBool U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2);
144
145
146 static UBool
147 U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2) {
148 const AffixesForCurrency* affix_1 =
149 (AffixesForCurrency*)val1.pointer;
150 const AffixesForCurrency* affix_2 =
151 (AffixesForCurrency*)val2.pointer;
152 return affix_1->negPrefixForCurrency == affix_2->negPrefixForCurrency &&
153 affix_1->negSuffixForCurrency == affix_2->negSuffixForCurrency &&
154 affix_1->posPrefixForCurrency == affix_2->posPrefixForCurrency &&
155 affix_1->posSuffixForCurrency == affix_2->posSuffixForCurrency;
156 }
157
158
159 static UBool
160 U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2) {
161 const AffixPatternsForCurrency* affix_1 =
162 (AffixPatternsForCurrency*)val1.pointer;
163 const AffixPatternsForCurrency* affix_2 =
164 (AffixPatternsForCurrency*)val2.pointer;
165 return affix_1->negPrefixPatternForCurrency ==
166 affix_2->negPrefixPatternForCurrency &&
167 affix_1->negSuffixPatternForCurrency ==
168 affix_2->negSuffixPatternForCurrency &&
169 affix_1->posPrefixPatternForCurrency ==
170 affix_2->posPrefixPatternForCurrency &&
171 affix_1->posSuffixPatternForCurrency ==
172 affix_2->posSuffixPatternForCurrency &&
173 affix_1->patternType == affix_2->patternType;
174 }
175
176 U_CDECL_END
177
178
179 //#define FMT_DEBUG
180
181 #ifdef FMT_DEBUG
182 #include <stdio.h>
183 static void debugout(UnicodeString s) {
184 char buf[2000];
185 s.extract((int32_t) 0, s.length(), buf);
186 printf("%s\n", buf);
187 }
188 #define debug(x) printf("%s\n", x);
189 #else
190 #define debugout(x)
191 #define debug(x)
192 #endif
193
194
195
196 // *****************************************************************************
197 // class DecimalFormat
198 // *****************************************************************************
199
200 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat)
201
202 // Constants for characters used in programmatic (unlocalized) patterns.
203 #define kPatternZeroDigit ((UChar)0x0030) /*'0'*/
204 #define kPatternSignificantDigit ((UChar)0x0040) /*'@'*/
205 #define kPatternGroupingSeparator ((UChar)0x002C) /*','*/
206 #define kPatternDecimalSeparator ((UChar)0x002E) /*'.'*/
207 #define kPatternPerMill ((UChar)0x2030)
208 #define kPatternPercent ((UChar)0x0025) /*'%'*/
209 #define kPatternDigit ((UChar)0x0023) /*'#'*/
210 #define kPatternSeparator ((UChar)0x003B) /*';'*/
211 #define kPatternExponent ((UChar)0x0045) /*'E'*/
212 #define kPatternPlus ((UChar)0x002B) /*'+'*/
213 #define kPatternMinus ((UChar)0x002D) /*'-'*/
214 #define kPatternPadEscape ((UChar)0x002A) /*'*'*/
215 #define kQuote ((UChar)0x0027) /*'\''*/
216 /**
217 * The CURRENCY_SIGN is the standard Unicode symbol for currency. It
218 * is used in patterns and substitued with either the currency symbol,
219 * or if it is doubled, with the international currency symbol. If the
220 * CURRENCY_SIGN is seen in a pattern, then the decimal separator is
221 * replaced with the monetary decimal separator.
222 */
223 #define kCurrencySign ((UChar)0x00A4)
224 #define kDefaultPad ((UChar)0x0020) /* */
225
226 const int32_t DecimalFormat::kDoubleIntegerDigits = 309;
227 const int32_t DecimalFormat::kDoubleFractionDigits = 340;
228
229 const int32_t DecimalFormat::kMaxScientificIntegerDigits = 8;
230
231 /**
232 * These are the tags we expect to see in normal resource bundle files associated
233 * with a locale.
234 */
235 const char DecimalFormat::fgNumberPatterns[]="NumberPatterns"; // Deprecated - not used
236 static const char fgNumberElements[]="NumberElements";
237 static const char fgLatn[]="latn";
238 static const char fgPatterns[]="patterns";
239 static const char fgDecimalFormat[]="decimalFormat";
240 static const char fgCurrencyFormat[]="currencyFormat";
241 static const UChar fgTripleCurrencySign[] = {0xA4, 0xA4, 0xA4, 0};
242
243 inline int32_t _min(int32_t a, int32_t b) { return (a<b) ? a : b; }
244 inline int32_t _max(int32_t a, int32_t b) { return (a<b) ? b : a; }
245
246 //------------------------------------------------------------------------------
247 // Constructs a DecimalFormat instance in the default locale.
248
249 DecimalFormat::DecimalFormat(UErrorCode& status) {
250 init();
251 UParseError parseError;
252 construct(status, parseError);
253 }
254
255 //------------------------------------------------------------------------------
256 // Constructs a DecimalFormat instance with the specified number format
257 // pattern in the default locale.
258
259 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
260 UErrorCode& status) {
261 init();
262 UParseError parseError;
263 construct(status, parseError, &pattern);
264 }
265
266 //------------------------------------------------------------------------------
267 // Constructs a DecimalFormat instance with the specified number format
268 // pattern and the number format symbols in the default locale. The
269 // created instance owns the symbols.
270
271 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
272 DecimalFormatSymbols* symbolsToAdopt,
273 UErrorCode& status) {
274 init();
275 UParseError parseError;
276 if (symbolsToAdopt == NULL)
277 status = U_ILLEGAL_ARGUMENT_ERROR;
278 construct(status, parseError, &pattern, symbolsToAdopt);
279 }
280
281 DecimalFormat::DecimalFormat( const UnicodeString& pattern,
282 DecimalFormatSymbols* symbolsToAdopt,
283 UParseError& parseErr,
284 UErrorCode& status) {
285 init();
286 if (symbolsToAdopt == NULL)
287 status = U_ILLEGAL_ARGUMENT_ERROR;
288 construct(status,parseErr, &pattern, symbolsToAdopt);
289 }
290
291 //------------------------------------------------------------------------------
292 // Constructs a DecimalFormat instance with the specified number format
293 // pattern and the number format symbols in the default locale. The
294 // created instance owns the clone of the symbols.
295
296 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
297 const DecimalFormatSymbols& symbols,
298 UErrorCode& status) {
299 init();
300 UParseError parseError;
301 construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols));
302 }
303
304 //------------------------------------------------------------------------------
305 // Constructs a DecimalFormat instance with the specified number format
306 // pattern, the number format symbols, and the number format style.
307 // The created instance owns the clone of the symbols.
308
309 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
310 DecimalFormatSymbols* symbolsToAdopt,
311 UNumberFormatStyle style,
312 UErrorCode& status) {
313 init();
314 fStyle = style;
315 UParseError parseError;
316 construct(status, parseError, &pattern, symbolsToAdopt);
317 }
318
319 //-----------------------------------------------------------------------------
320 // Common DecimalFormat initialization.
321 // Put all fields of an uninitialized object into a known state.
322 // Common code, shared by all constructors.
323 void
324 DecimalFormat::init() {
325 fPosPrefixPattern = 0;
326 fPosSuffixPattern = 0;
327 fNegPrefixPattern = 0;
328 fNegSuffixPattern = 0;
329 fCurrencyChoice = 0;
330 fMultiplier = NULL;
331 fGroupingSize = 0;
332 fGroupingSize2 = 0;
333 fDecimalSeparatorAlwaysShown = FALSE;
334 fSymbols = NULL;
335 fUseSignificantDigits = FALSE;
336 fMinSignificantDigits = 1;
337 fMaxSignificantDigits = 6;
338 fUseExponentialNotation = FALSE;
339 fMinExponentDigits = 0;
340 fExponentSignAlwaysShown = FALSE;
341 fRoundingIncrement = 0;
342 fRoundingMode = kRoundHalfEven;
343 fPad = 0;
344 fFormatWidth = 0;
345 fPadPosition = kPadBeforePrefix;
346 fStyle = UNUM_DECIMAL;
347 fCurrencySignCount = 0;
348 fAffixPatternsForCurrency = NULL;
349 fAffixesForCurrency = NULL;
350 fPluralAffixesForCurrency = NULL;
351 fCurrencyPluralInfo = NULL;
352 }
353
354 //------------------------------------------------------------------------------
355 // Constructs a DecimalFormat instance with the specified number format
356 // pattern and the number format symbols in the desired locale. The
357 // created instance owns the symbols.
358
359 void
360 DecimalFormat::construct(UErrorCode& status,
361 UParseError& parseErr,
362 const UnicodeString* pattern,
363 DecimalFormatSymbols* symbolsToAdopt)
364 {
365 fSymbols = symbolsToAdopt; // Do this BEFORE aborting on status failure!!!
366 fRoundingIncrement = NULL;
367 fRoundingMode = kRoundHalfEven;
368 fPad = kPatternPadEscape;
369 fPadPosition = kPadBeforePrefix;
370 if (U_FAILURE(status))
371 return;
372
373 fPosPrefixPattern = fPosSuffixPattern = NULL;
374 fNegPrefixPattern = fNegSuffixPattern = NULL;
375 setMultiplier(1);
376 fGroupingSize = 3;
377 fGroupingSize2 = 0;
378 fDecimalSeparatorAlwaysShown = FALSE;
379 fUseExponentialNotation = FALSE;
380 fMinExponentDigits = 0;
381
382 if (fSymbols == NULL)
383 {
384 fSymbols = new DecimalFormatSymbols(Locale::getDefault(), status);
385 /* test for NULL */
386 if (fSymbols == 0) {
387 status = U_MEMORY_ALLOCATION_ERROR;
388 return;
389 }
390 }
391 UErrorCode nsStatus = U_ZERO_ERROR;
392 NumberingSystem *ns = NumberingSystem::createInstance(nsStatus);
393 if (U_FAILURE(nsStatus)) {
394 status = nsStatus;
395 return;
396 }
397
398 UnicodeString str;
399 // Uses the default locale's number format pattern if there isn't
400 // one specified.
401 if (pattern == NULL)
402 {
403 int32_t len = 0;
404 UResourceBundle *top = ures_open(NULL, Locale::getDefault().getName(), &status);
405
406 UResourceBundle *resource = ures_getByKeyWithFallback(top, fgNumberElements, NULL, &status);
407 resource = ures_getByKeyWithFallback(resource, ns->getName(), resource, &status);
408 resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
409 const UChar *resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
410 if ( status == U_MISSING_RESOURCE_ERROR && uprv_strcmp(fgLatn,ns->getName())) {
411 status = U_ZERO_ERROR;
412 resource = ures_getByKeyWithFallback(top, fgNumberElements, resource, &status);
413 resource = ures_getByKeyWithFallback(resource, fgLatn, resource, &status);
414 resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
415 resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
416 }
417 str.setTo(TRUE, resStr, len);
418 pattern = &str;
419 ures_close(resource);
420 ures_close(top);
421 }
422
423 delete ns;
424
425 if (U_FAILURE(status))
426 {
427 return;
428 }
429
430 if (pattern->indexOf((UChar)kCurrencySign) >= 0) {
431 // If it looks like we are going to use a currency pattern
432 // then do the time consuming lookup.
433 setCurrencyForSymbols();
434 } else {
435 setCurrencyInternally(NULL, status);
436 }
437
438 const UnicodeString* patternUsed;
439 UnicodeString currencyPluralPatternForOther;
440 // apply pattern
441 if (fStyle == UNUM_CURRENCY_PLURAL) {
442 fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
443 if (U_FAILURE(status)) {
444 return;
445 }
446
447 // the pattern used in format is not fixed until formatting,
448 // in which, the number is known and
449 // will be used to pick the right pattern based on plural count.
450 // Here, set the pattern as the pattern of plural count == "other".
451 // For most locale, the patterns are probably the same for all
452 // plural count. If not, the right pattern need to be re-applied
453 // during format.
454 fCurrencyPluralInfo->getCurrencyPluralPattern(UNICODE_STRING("other", 5), currencyPluralPatternForOther);
455 patternUsed = &currencyPluralPatternForOther;
456 // TODO: not needed?
457 setCurrencyForSymbols();
458
459 } else {
460 patternUsed = pattern;
461 }
462
463 if (patternUsed->indexOf(kCurrencySign) != -1) {
464 // initialize for currency, not only for plural format,
465 // but also for mix parsing
466 if (fCurrencyPluralInfo == NULL) {
467 fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
468 if (U_FAILURE(status)) {
469 return;
470 }
471 }
472 // need it for mix parsing
473 setupCurrencyAffixPatterns(status);
474 // expanded affixes for plural names
475 if (patternUsed->indexOf(fgTripleCurrencySign, 3, 0) != -1) {
476 setupCurrencyAffixes(*patternUsed, TRUE, TRUE, status);
477 }
478 }
479
480 applyPatternWithoutExpandAffix(*patternUsed,FALSE, parseErr, status);
481
482 // expand affixes
483 if (fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
484 expandAffixAdjustWidth(NULL);
485 }
486
487 // If it was a currency format, apply the appropriate rounding by
488 // resetting the currency. NOTE: this copies fCurrency on top of itself.
489 if (fCurrencySignCount > fgCurrencySignCountZero) {
490 setCurrencyInternally(getCurrency(), status);
491 }
492 }
493
494
495 void
496 DecimalFormat::setupCurrencyAffixPatterns(UErrorCode& status) {
497 if (U_FAILURE(status)) {
498 return;
499 }
500 UParseError parseErr;
501 fAffixPatternsForCurrency = initHashForAffixPattern(status);
502 if (U_FAILURE(status)) {
503 return;
504 }
505
506 NumberingSystem *ns = NumberingSystem::createInstance(fSymbols->getLocale(),status);
507 if (U_FAILURE(status)) {
508 return;
509 }
510
511 // Save the default currency patterns of this locale.
512 // Here, chose onlyApplyPatternWithoutExpandAffix without
513 // expanding the affix patterns into affixes.
514 UnicodeString currencyPattern;
515 UErrorCode error = U_ZERO_ERROR;
516
517 UResourceBundle *resource = ures_open(NULL, fSymbols->getLocale().getName(), &error);
518 UResourceBundle *numElements = ures_getByKeyWithFallback(resource, fgNumberElements, NULL, &error);
519 resource = ures_getByKeyWithFallback(numElements, ns->getName(), resource, &error);
520 resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
521 int32_t patLen = 0;
522 const UChar *patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat, &patLen, &error);
523 if ( error == U_MISSING_RESOURCE_ERROR && uprv_strcmp(ns->getName(),fgLatn)) {
524 error = U_ZERO_ERROR;
525 resource = ures_getByKeyWithFallback(numElements, fgLatn, resource, &error);
526 resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
527 patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat, &patLen, &error);
528 }
529 ures_close(numElements);
530 ures_close(resource);
531 delete ns;
532
533 if (U_SUCCESS(error)) {
534 applyPatternWithoutExpandAffix(UnicodeString(patResStr, patLen), false,
535 parseErr, status);
536 AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
537 *fNegPrefixPattern,
538 *fNegSuffixPattern,
539 *fPosPrefixPattern,
540 *fPosSuffixPattern,
541 UCURR_SYMBOL_NAME);
542 fAffixPatternsForCurrency->put(UNICODE_STRING("default", 7), affixPtn, status);
543 }
544
545 // save the unique currency plural patterns of this locale.
546 Hashtable* pluralPtn = fCurrencyPluralInfo->fPluralCountToCurrencyUnitPattern;
547 const UHashElement* element = NULL;
548 int32_t pos = -1;
549 Hashtable pluralPatternSet;
550 while ((element = pluralPtn->nextElement(pos)) != NULL) {
551 const UHashTok valueTok = element->value;
552 const UnicodeString* value = (UnicodeString*)valueTok.pointer;
553 const UHashTok keyTok = element->key;
554 const UnicodeString* key = (UnicodeString*)keyTok.pointer;
555 if (pluralPatternSet.geti(*value) != 1) {
556 pluralPatternSet.puti(*value, 1, status);
557 applyPatternWithoutExpandAffix(*value, false, parseErr, status);
558 AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
559 *fNegPrefixPattern,
560 *fNegSuffixPattern,
561 *fPosPrefixPattern,
562 *fPosSuffixPattern,
563 UCURR_LONG_NAME);
564 fAffixPatternsForCurrency->put(*key, affixPtn, status);
565 }
566 }
567 }
568
569
570 void
571 DecimalFormat::setupCurrencyAffixes(const UnicodeString& pattern,
572 UBool setupForCurrentPattern,
573 UBool setupForPluralPattern,
574 UErrorCode& status) {
575 if (U_FAILURE(status)) {
576 return;
577 }
578 UParseError parseErr;
579 if (setupForCurrentPattern) {
580 if (fAffixesForCurrency) {
581 deleteHashForAffix(fAffixesForCurrency);
582 }
583 fAffixesForCurrency = initHashForAffix(status);
584 if (U_SUCCESS(status)) {
585 applyPatternWithoutExpandAffix(pattern, false, parseErr, status);
586 const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
587 StringEnumeration* keywords = pluralRules->getKeywords(status);
588 if (U_SUCCESS(status)) {
589 const UnicodeString* pluralCount;
590 while ((pluralCount = keywords->snext(status)) != NULL) {
591 if ( U_SUCCESS(status) ) {
592 expandAffixAdjustWidth(pluralCount);
593 AffixesForCurrency* affix = new AffixesForCurrency(
594 fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
595 fAffixesForCurrency->put(*pluralCount, affix, status);
596 }
597 }
598 }
599 delete keywords;
600 }
601 }
602
603 if (U_FAILURE(status)) {
604 return;
605 }
606
607 if (setupForPluralPattern) {
608 if (fPluralAffixesForCurrency) {
609 deleteHashForAffix(fPluralAffixesForCurrency);
610 }
611 fPluralAffixesForCurrency = initHashForAffix(status);
612 if (U_SUCCESS(status)) {
613 const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
614 StringEnumeration* keywords = pluralRules->getKeywords(status);
615 if (U_SUCCESS(status)) {
616 const UnicodeString* pluralCount;
617 while ((pluralCount = keywords->snext(status)) != NULL) {
618 if ( U_SUCCESS(status) ) {
619 UnicodeString ptn;
620 fCurrencyPluralInfo->getCurrencyPluralPattern(*pluralCount, ptn);
621 applyPatternInternally(*pluralCount, ptn, false, parseErr, status);
622 AffixesForCurrency* affix = new AffixesForCurrency(
623 fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
624 fPluralAffixesForCurrency->put(*pluralCount, affix, status);
625 }
626 }
627 }
628 delete keywords;
629 }
630 }
631 }
632
633
634 //------------------------------------------------------------------------------
635
636 DecimalFormat::~DecimalFormat()
637 {
638 delete fPosPrefixPattern;
639 delete fPosSuffixPattern;
640 delete fNegPrefixPattern;
641 delete fNegSuffixPattern;
642 delete fCurrencyChoice;
643 delete fMultiplier;
644 delete fSymbols;
645 delete fRoundingIncrement;
646 deleteHashForAffixPattern();
647 deleteHashForAffix(fAffixesForCurrency);
648 deleteHashForAffix(fPluralAffixesForCurrency);
649 delete fCurrencyPluralInfo;
650 }
651
652 //------------------------------------------------------------------------------
653 // copy constructor
654
655 DecimalFormat::DecimalFormat(const DecimalFormat &source) :
656 NumberFormat(source) {
657 init();
658 *this = source;
659 }
660
661 //------------------------------------------------------------------------------
662 // assignment operator
663
664 static void _copy_us_ptr(UnicodeString** pdest, const UnicodeString* source) {
665 if (source == NULL) {
666 delete *pdest;
667 *pdest = NULL;
668 } else if (*pdest == NULL) {
669 *pdest = new UnicodeString(*source);
670 } else {
671 **pdest = *source;
672 }
673 }
674
675 DecimalFormat&
676 DecimalFormat::operator=(const DecimalFormat& rhs)
677 {
678 if(this != &rhs) {
679 NumberFormat::operator=(rhs);
680 fPositivePrefix = rhs.fPositivePrefix;
681 fPositiveSuffix = rhs.fPositiveSuffix;
682 fNegativePrefix = rhs.fNegativePrefix;
683 fNegativeSuffix = rhs.fNegativeSuffix;
684 _copy_us_ptr(&fPosPrefixPattern, rhs.fPosPrefixPattern);
685 _copy_us_ptr(&fPosSuffixPattern, rhs.fPosSuffixPattern);
686 _copy_us_ptr(&fNegPrefixPattern, rhs.fNegPrefixPattern);
687 _copy_us_ptr(&fNegSuffixPattern, rhs.fNegSuffixPattern);
688 if (rhs.fCurrencyChoice == 0) {
689 delete fCurrencyChoice;
690 fCurrencyChoice = 0;
691 } else {
692 fCurrencyChoice = (ChoiceFormat*) rhs.fCurrencyChoice->clone();
693 }
694 setRoundingIncrement(rhs.getRoundingIncrement());
695 fRoundingMode = rhs.fRoundingMode;
696 setMultiplier(rhs.getMultiplier());
697 fGroupingSize = rhs.fGroupingSize;
698 fGroupingSize2 = rhs.fGroupingSize2;
699 fDecimalSeparatorAlwaysShown = rhs.fDecimalSeparatorAlwaysShown;
700 if(fSymbols == NULL) {
701 fSymbols = new DecimalFormatSymbols(*rhs.fSymbols);
702 } else {
703 *fSymbols = *rhs.fSymbols;
704 }
705 fUseExponentialNotation = rhs.fUseExponentialNotation;
706 fExponentSignAlwaysShown = rhs.fExponentSignAlwaysShown;
707 /*Bertrand A. D. Update 98.03.17*/
708 fCurrencySignCount = rhs.fCurrencySignCount;
709 /*end of Update*/
710 fMinExponentDigits = rhs.fMinExponentDigits;
711
712 /* sfb 990629 */
713 fFormatWidth = rhs.fFormatWidth;
714 fPad = rhs.fPad;
715 fPadPosition = rhs.fPadPosition;
716 /* end sfb */
717 fMinSignificantDigits = rhs.fMinSignificantDigits;
718 fMaxSignificantDigits = rhs.fMaxSignificantDigits;
719 fUseSignificantDigits = rhs.fUseSignificantDigits;
720 fFormatPattern = rhs.fFormatPattern;
721 fStyle = rhs.fStyle;
722 fCurrencySignCount = rhs.fCurrencySignCount;
723 if (rhs.fCurrencyPluralInfo) {
724 delete fCurrencyPluralInfo;
725 fCurrencyPluralInfo = rhs.fCurrencyPluralInfo->clone();
726 }
727 if (rhs.fAffixPatternsForCurrency) {
728 UErrorCode status = U_ZERO_ERROR;
729 deleteHashForAffixPattern();
730 fAffixPatternsForCurrency = initHashForAffixPattern(status);
731 copyHashForAffixPattern(rhs.fAffixPatternsForCurrency,
732 fAffixPatternsForCurrency, status);
733 }
734 if (rhs.fAffixesForCurrency) {
735 UErrorCode status = U_ZERO_ERROR;
736 deleteHashForAffix(fAffixesForCurrency);
737 fAffixesForCurrency = initHashForAffixPattern(status);
738 copyHashForAffix(rhs.fAffixesForCurrency, fAffixesForCurrency, status);
739 }
740 if (rhs.fPluralAffixesForCurrency) {
741 UErrorCode status = U_ZERO_ERROR;
742 deleteHashForAffix(fPluralAffixesForCurrency);
743 fPluralAffixesForCurrency = initHashForAffixPattern(status);
744 copyHashForAffix(rhs.fPluralAffixesForCurrency, fPluralAffixesForCurrency, status);
745 }
746 }
747 return *this;
748 }
749
750 //------------------------------------------------------------------------------
751
752 UBool
753 DecimalFormat::operator==(const Format& that) const
754 {
755 if (this == &that)
756 return TRUE;
757
758 // NumberFormat::operator== guarantees this cast is safe
759 const DecimalFormat* other = (DecimalFormat*)&that;
760
761 #ifdef FMT_DEBUG
762 // This code makes it easy to determine why two format objects that should
763 // be equal aren't.
764 UBool first = TRUE;
765 if (!NumberFormat::operator==(that)) {
766 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
767 debug("NumberFormat::!=");
768 } else {
769 if (!((fPosPrefixPattern == other->fPosPrefixPattern && // both null
770 fPositivePrefix == other->fPositivePrefix)
771 || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
772 *fPosPrefixPattern == *other->fPosPrefixPattern))) {
773 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
774 debug("Pos Prefix !=");
775 }
776 if (!((fPosSuffixPattern == other->fPosSuffixPattern && // both null
777 fPositiveSuffix == other->fPositiveSuffix)
778 || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
779 *fPosSuffixPattern == *other->fPosSuffixPattern))) {
780 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
781 debug("Pos Suffix !=");
782 }
783 if (!((fNegPrefixPattern == other->fNegPrefixPattern && // both null
784 fNegativePrefix == other->fNegativePrefix)
785 || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
786 *fNegPrefixPattern == *other->fNegPrefixPattern))) {
787 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
788 debug("Neg Prefix ");
789 if (fNegPrefixPattern == NULL) {
790 debug("NULL(");
791 debugout(fNegativePrefix);
792 debug(")");
793 } else {
794 debugout(*fNegPrefixPattern);
795 }
796 debug(" != ");
797 if (other->fNegPrefixPattern == NULL) {
798 debug("NULL(");
799 debugout(other->fNegativePrefix);
800 debug(")");
801 } else {
802 debugout(*other->fNegPrefixPattern);
803 }
804 }
805 if (!((fNegSuffixPattern == other->fNegSuffixPattern && // both null
806 fNegativeSuffix == other->fNegativeSuffix)
807 || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
808 *fNegSuffixPattern == *other->fNegSuffixPattern))) {
809 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
810 debug("Neg Suffix ");
811 if (fNegSuffixPattern == NULL) {
812 debug("NULL(");
813 debugout(fNegativeSuffix);
814 debug(")");
815 } else {
816 debugout(*fNegSuffixPattern);
817 }
818 debug(" != ");
819 if (other->fNegSuffixPattern == NULL) {
820 debug("NULL(");
821 debugout(other->fNegativeSuffix);
822 debug(")");
823 } else {
824 debugout(*other->fNegSuffixPattern);
825 }
826 }
827 if (!((fRoundingIncrement == other->fRoundingIncrement) // both null
828 || (fRoundingIncrement != NULL &&
829 other->fRoundingIncrement != NULL &&
830 *fRoundingIncrement == *other->fRoundingIncrement))) {
831 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
832 debug("Rounding Increment !=");
833 }
834 if (getMultiplier() != other->getMultiplier()) {
835 if (first) { printf("[ "); first = FALSE; }
836 printf("Multiplier %ld != %ld", getMultiplier(), other->getMultiplier());
837 }
838 if (fGroupingSize != other->fGroupingSize) {
839 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
840 printf("Grouping Size %ld != %ld", fGroupingSize, other->fGroupingSize);
841 }
842 if (fGroupingSize2 != other->fGroupingSize2) {
843 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
844 printf("Secondary Grouping Size %ld != %ld", fGroupingSize2, other->fGroupingSize2);
845 }
846 if (fDecimalSeparatorAlwaysShown != other->fDecimalSeparatorAlwaysShown) {
847 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
848 printf("Dec Sep Always %d != %d", fDecimalSeparatorAlwaysShown, other->fDecimalSeparatorAlwaysShown);
849 }
850 if (fUseExponentialNotation != other->fUseExponentialNotation) {
851 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
852 debug("Use Exp !=");
853 }
854 if (!(!fUseExponentialNotation ||
855 fMinExponentDigits != other->fMinExponentDigits)) {
856 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
857 debug("Exp Digits !=");
858 }
859 if (*fSymbols != *(other->fSymbols)) {
860 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
861 debug("Symbols !=");
862 }
863 // TODO Add debug stuff for significant digits here
864 if (fUseSignificantDigits != other->fUseSignificantDigits) {
865 debug("fUseSignificantDigits !=");
866 }
867 if (fUseSignificantDigits &&
868 fMinSignificantDigits != other->fMinSignificantDigits) {
869 debug("fMinSignificantDigits !=");
870 }
871 if (fUseSignificantDigits &&
872 fMaxSignificantDigits != other->fMaxSignificantDigits) {
873 debug("fMaxSignificantDigits !=");
874 }
875
876 if (!first) { printf(" ]"); }
877 if (fCurrencySignCount != other->fCurrencySignCount) {
878 debug("fCurrencySignCount !=");
879 }
880 if (fCurrencyPluralInfo == other->fCurrencyPluralInfo) {
881 debug("fCurrencyPluralInfo == ");
882 if (fCurrencyPluralInfo == NULL) {
883 debug("fCurrencyPluralInfo == NULL");
884 }
885 }
886 if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
887 *fCurrencyPluralInfo != *(other->fCurrencyPluralInfo)) {
888 debug("fCurrencyPluralInfo !=");
889 }
890 if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo == NULL ||
891 fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo != NULL) {
892 debug("fCurrencyPluralInfo one NULL, the other not");
893 }
894 if (fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo == NULL) {
895 debug("fCurrencyPluralInfo == ");
896 }
897 }
898 #endif
899
900 return (NumberFormat::operator==(that) &&
901 ((fCurrencySignCount == fgCurrencySignCountInPluralFormat) ?
902 (fAffixPatternsForCurrency->equals(*other->fAffixPatternsForCurrency)) :
903 (((fPosPrefixPattern == other->fPosPrefixPattern && // both null
904 fPositivePrefix == other->fPositivePrefix)
905 || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
906 *fPosPrefixPattern == *other->fPosPrefixPattern)) &&
907 ((fPosSuffixPattern == other->fPosSuffixPattern && // both null
908 fPositiveSuffix == other->fPositiveSuffix)
909 || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
910 *fPosSuffixPattern == *other->fPosSuffixPattern)) &&
911 ((fNegPrefixPattern == other->fNegPrefixPattern && // both null
912 fNegativePrefix == other->fNegativePrefix)
913 || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
914 *fNegPrefixPattern == *other->fNegPrefixPattern)) &&
915 ((fNegSuffixPattern == other->fNegSuffixPattern && // both null
916 fNegativeSuffix == other->fNegativeSuffix)
917 || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
918 *fNegSuffixPattern == *other->fNegSuffixPattern)))) &&
919 ((fRoundingIncrement == other->fRoundingIncrement) // both null
920 || (fRoundingIncrement != NULL &&
921 other->fRoundingIncrement != NULL &&
922 *fRoundingIncrement == *other->fRoundingIncrement)) &&
923 getMultiplier() == other->getMultiplier() &&
924 fGroupingSize == other->fGroupingSize &&
925 fGroupingSize2 == other->fGroupingSize2 &&
926 fDecimalSeparatorAlwaysShown == other->fDecimalSeparatorAlwaysShown &&
927 fUseExponentialNotation == other->fUseExponentialNotation &&
928 (!fUseExponentialNotation ||
929 fMinExponentDigits == other->fMinExponentDigits) &&
930 *fSymbols == *(other->fSymbols) &&
931 fUseSignificantDigits == other->fUseSignificantDigits &&
932 (!fUseSignificantDigits ||
933 (fMinSignificantDigits == other->fMinSignificantDigits &&
934 fMaxSignificantDigits == other->fMaxSignificantDigits)) &&
935 fCurrencySignCount == other->fCurrencySignCount &&
936 ((fCurrencyPluralInfo == other->fCurrencyPluralInfo &&
937 fCurrencyPluralInfo == NULL) ||
938 (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
939 *fCurrencyPluralInfo == *(other->fCurrencyPluralInfo))));
940 }
941
942 //------------------------------------------------------------------------------
943
944 Format*
945 DecimalFormat::clone() const
946 {
947 return new DecimalFormat(*this);
948 }
949
950 //------------------------------------------------------------------------------
951
952 UnicodeString&
953 DecimalFormat::format(int32_t number,
954 UnicodeString& appendTo,
955 FieldPosition& fieldPosition) const
956 {
957 return format((int64_t)number, appendTo, fieldPosition);
958 }
959
960 UnicodeString&
961 DecimalFormat::format(int32_t number,
962 UnicodeString& appendTo,
963 FieldPositionIterator* posIter,
964 UErrorCode& status) const
965 {
966 return format((int64_t)number, appendTo, posIter, status);
967 }
968
969 //------------------------------------------------------------------------------
970
971 UnicodeString&
972 DecimalFormat::format(int64_t number,
973 UnicodeString& appendTo,
974 FieldPosition& fieldPosition) const
975 {
976 FieldPositionOnlyHandler handler(fieldPosition);
977 return _format(number, appendTo, handler);
978 }
979
980 UnicodeString&
981 DecimalFormat::format(int64_t number,
982 UnicodeString& appendTo,
983 FieldPositionIterator* posIter,
984 UErrorCode& status) const
985 {
986 FieldPositionIteratorHandler handler(posIter, status);
987 return _format(number, appendTo, handler);
988 }
989
990 UnicodeString&
991 DecimalFormat::_format(int64_t number,
992 UnicodeString& appendTo,
993 FieldPositionHandler& handler) const
994 {
995 UErrorCode status = U_ZERO_ERROR;
996 DigitList digits;
997 digits.set(number);
998 return _format(digits, appendTo, handler, status);
999 }
1000
1001 //------------------------------------------------------------------------------
1002
1003 UnicodeString&
1004 DecimalFormat::format( double number,
1005 UnicodeString& appendTo,
1006 FieldPosition& fieldPosition) const
1007 {
1008 FieldPositionOnlyHandler handler(fieldPosition);
1009 return _format(number, appendTo, handler);
1010 }
1011
1012 UnicodeString&
1013 DecimalFormat::format( double number,
1014 UnicodeString& appendTo,
1015 FieldPositionIterator* posIter,
1016 UErrorCode& status) const
1017 {
1018 FieldPositionIteratorHandler handler(posIter, status);
1019 return _format(number, appendTo, handler);
1020 }
1021
1022 UnicodeString&
1023 DecimalFormat::_format( double number,
1024 UnicodeString& appendTo,
1025 FieldPositionHandler& handler) const
1026 {
1027 // Special case for NaN, sets the begin and end index to be the
1028 // the string length of localized name of NaN.
1029 // TODO: let NaNs go through DigitList.
1030 if (uprv_isNaN(number))
1031 {
1032 int begin = appendTo.length();
1033 appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
1034
1035 handler.addAttribute(kIntegerField, begin, appendTo.length());
1036
1037 addPadding(appendTo, handler, 0, 0);
1038 return appendTo;
1039 }
1040
1041 UErrorCode status = U_ZERO_ERROR;
1042 DigitList digits;
1043 digits.set(number);
1044 _format(digits, appendTo, handler, status);
1045 // No way to return status from here.
1046 return appendTo;
1047 }
1048
1049 //------------------------------------------------------------------------------
1050
1051
1052 UnicodeString&
1053 DecimalFormat::format(const StringPiece &number,
1054 UnicodeString &toAppendTo,
1055 FieldPositionIterator *posIter,
1056 UErrorCode &status) const
1057 {
1058 DigitList dnum;
1059 dnum.set(number, status);
1060 if (U_FAILURE(status)) {
1061 return toAppendTo;
1062 }
1063 FieldPositionIteratorHandler handler(posIter, status);
1064 _format(dnum, toAppendTo, handler, status);
1065 return toAppendTo;
1066 }
1067
1068
1069 UnicodeString&
1070 DecimalFormat::format(const DigitList &number,
1071 UnicodeString &appendTo,
1072 FieldPositionIterator *posIter,
1073 UErrorCode &status) const {
1074 FieldPositionIteratorHandler handler(posIter, status);
1075 _format(number, appendTo, handler, status);
1076 return appendTo;
1077 }
1078
1079
1080
1081 UnicodeString&
1082 DecimalFormat::format(const DigitList &number,
1083 UnicodeString& appendTo,
1084 FieldPosition& pos,
1085 UErrorCode &status) const {
1086 FieldPositionOnlyHandler handler(pos);
1087 _format(number, appendTo, handler, status);
1088 return appendTo;
1089 }
1090
1091
1092
1093 UnicodeString&
1094 DecimalFormat::_format(const DigitList &number,
1095 UnicodeString& appendTo,
1096 FieldPositionHandler& handler,
1097 UErrorCode &status) const
1098 {
1099 // Special case for NaN, sets the begin and end index to be the
1100 // the string length of localized name of NaN.
1101 if (number.isNaN())
1102 {
1103 int begin = appendTo.length();
1104 appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
1105
1106 handler.addAttribute(kIntegerField, begin, appendTo.length());
1107
1108 addPadding(appendTo, handler, 0, 0);
1109 return appendTo;
1110 }
1111
1112 // Do this BEFORE checking to see if value is infinite or negative! Sets the
1113 // begin and end index to be length of the string composed of
1114 // localized name of Infinite and the positive/negative localized
1115 // signs.
1116
1117 DigitList adjustedNum(number); // Copy, so we do not alter the original.
1118 adjustedNum.setRoundingMode(fRoundingMode);
1119 if (fMultiplier != NULL) {
1120 adjustedNum.mult(*fMultiplier, status);
1121 }
1122
1123 /*
1124 * Note: sign is important for zero as well as non-zero numbers.
1125 * Proper detection of -0.0 is needed to deal with the
1126 * issues raised by bugs 4106658, 4106667, and 4147706. Liu 7/6/98.
1127 */
1128 UBool isNegative = !adjustedNum.isPositive();
1129
1130 // Apply rounding after multiplier
1131
1132 adjustedNum.fContext.status &= ~DEC_Inexact;
1133 if (fRoundingIncrement != NULL) {
1134 adjustedNum.div(*fRoundingIncrement, status);
1135 adjustedNum.toIntegralValue();
1136 adjustedNum.mult(*fRoundingIncrement, status);
1137 adjustedNum.trim();
1138 }
1139 if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
1140 status = U_FORMAT_INEXACT_ERROR;
1141 return appendTo;
1142 }
1143
1144
1145 // Special case for INFINITE,
1146 if (adjustedNum.isInfinite()) {
1147 int32_t prefixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, TRUE);
1148
1149 int begin = appendTo.length();
1150 appendTo += getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
1151
1152 handler.addAttribute(kIntegerField, begin, appendTo.length());
1153
1154 int32_t suffixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, FALSE);
1155
1156 addPadding(appendTo, handler, prefixLen, suffixLen);
1157 return appendTo;
1158 }
1159
1160 if (fUseExponentialNotation || areSignificantDigitsUsed()) {
1161 int32_t sigDigits = precision();
1162 if (sigDigits > 0) {
1163 adjustedNum.round(sigDigits);
1164 }
1165 } else {
1166 // Fixed point format. Round to a set number of fraction digits.
1167 int32_t numFractionDigits = precision();
1168 adjustedNum.roundFixedPoint(numFractionDigits);
1169 }
1170 if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
1171 status = U_FORMAT_INEXACT_ERROR;
1172 return appendTo;
1173 }
1174
1175 return subformat(appendTo, handler, adjustedNum, FALSE);
1176 }
1177
1178
1179 UnicodeString&
1180 DecimalFormat::format( const Formattable& obj,
1181 UnicodeString& appendTo,
1182 FieldPosition& fieldPosition,
1183 UErrorCode& status) const
1184 {
1185 return NumberFormat::format(obj, appendTo, fieldPosition, status);
1186 }
1187
1188 /**
1189 * Return true if a grouping separator belongs at the given
1190 * position, based on whether grouping is in use and the values of
1191 * the primary and secondary grouping interval.
1192 * @param pos the number of integer digits to the right of
1193 * the current position. Zero indicates the position after the
1194 * rightmost integer digit.
1195 * @return true if a grouping character belongs at the current
1196 * position.
1197 */
1198 UBool DecimalFormat::isGroupingPosition(int32_t pos) const {
1199 UBool result = FALSE;
1200 if (isGroupingUsed() && (pos > 0) && (fGroupingSize > 0)) {
1201 if ((fGroupingSize2 > 0) && (pos > fGroupingSize)) {
1202 result = ((pos - fGroupingSize) % fGroupingSize2) == 0;
1203 } else {
1204 result = pos % fGroupingSize == 0;
1205 }
1206 }
1207 return result;
1208 }
1209
1210 //------------------------------------------------------------------------------
1211
1212 /**
1213 * Complete the formatting of a finite number. On entry, the DigitList must
1214 * be filled in with the correct digits.
1215 */
1216 UnicodeString&
1217 DecimalFormat::subformat(UnicodeString& appendTo,
1218 FieldPositionHandler& handler,
1219 DigitList& digits,
1220 UBool isInteger) const
1221 {
1222 // char zero = '0';
1223 // DigitList returns digits as '0' thru '9', so we will need to
1224 // always need to subtract the character 0 to get the numeric value to use for indexing.
1225
1226 UChar32 localizedDigits[10];
1227 localizedDigits[0] = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
1228 localizedDigits[1] = getConstSymbol(DecimalFormatSymbols::kOneDigitSymbol).char32At(0);
1229 localizedDigits[2] = getConstSymbol(DecimalFormatSymbols::kTwoDigitSymbol).char32At(0);
1230 localizedDigits[3] = getConstSymbol(DecimalFormatSymbols::kThreeDigitSymbol).char32At(0);
1231 localizedDigits[4] = getConstSymbol(DecimalFormatSymbols::kFourDigitSymbol).char32At(0);
1232 localizedDigits[5] = getConstSymbol(DecimalFormatSymbols::kFiveDigitSymbol).char32At(0);
1233 localizedDigits[6] = getConstSymbol(DecimalFormatSymbols::kSixDigitSymbol).char32At(0);
1234 localizedDigits[7] = getConstSymbol(DecimalFormatSymbols::kSevenDigitSymbol).char32At(0);
1235 localizedDigits[8] = getConstSymbol(DecimalFormatSymbols::kEightDigitSymbol).char32At(0);
1236 localizedDigits[9] = getConstSymbol(DecimalFormatSymbols::kNineDigitSymbol).char32At(0);
1237
1238 const UnicodeString *grouping ;
1239 if(fCurrencySignCount > fgCurrencySignCountZero) {
1240 grouping = &getConstSymbol(DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
1241 }else{
1242 grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
1243 }
1244 const UnicodeString *decimal;
1245 if(fCurrencySignCount > fgCurrencySignCountZero) {
1246 decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
1247 } else {
1248 decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
1249 }
1250 UBool useSigDig = areSignificantDigitsUsed();
1251 int32_t maxIntDig = getMaximumIntegerDigits();
1252 int32_t minIntDig = getMinimumIntegerDigits();
1253
1254 // Appends the prefix.
1255 double doubleValue = digits.getDouble();
1256 int32_t prefixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), TRUE);
1257
1258 if (fUseExponentialNotation)
1259 {
1260 int currentLength = appendTo.length();
1261 int intBegin = currentLength;
1262 int intEnd = -1;
1263 int fracBegin = -1;
1264
1265 int32_t minFracDig = 0;
1266 if (useSigDig) {
1267 maxIntDig = minIntDig = 1;
1268 minFracDig = getMinimumSignificantDigits() - 1;
1269 } else {
1270 minFracDig = getMinimumFractionDigits();
1271 if (maxIntDig > kMaxScientificIntegerDigits) {
1272 maxIntDig = 1;
1273 if (maxIntDig < minIntDig) {
1274 maxIntDig = minIntDig;
1275 }
1276 }
1277 if (maxIntDig > minIntDig) {
1278 minIntDig = 1;
1279 }
1280 }
1281
1282 // Minimum integer digits are handled in exponential format by
1283 // adjusting the exponent. For example, 0.01234 with 3 minimum
1284 // integer digits is "123.4E-4".
1285
1286 // Maximum integer digits are interpreted as indicating the
1287 // repeating range. This is useful for engineering notation, in
1288 // which the exponent is restricted to a multiple of 3. For
1289 // example, 0.01234 with 3 maximum integer digits is "12.34e-3".
1290 // If maximum integer digits are defined and are larger than
1291 // minimum integer digits, then minimum integer digits are
1292 // ignored.
1293 digits.reduce(); // Removes trailing zero digits.
1294 int32_t exponent = digits.getDecimalAt();
1295 if (maxIntDig > 1 && maxIntDig != minIntDig) {
1296 // A exponent increment is defined; adjust to it.
1297 exponent = (exponent > 0) ? (exponent - 1) / maxIntDig
1298 : (exponent / maxIntDig) - 1;
1299 exponent *= maxIntDig;
1300 } else {
1301 // No exponent increment is defined; use minimum integer digits.
1302 // If none is specified, as in "#E0", generate 1 integer digit.
1303 exponent -= (minIntDig > 0 || minFracDig > 0)
1304 ? minIntDig : 1;
1305 }
1306
1307 // We now output a minimum number of digits, and more if there
1308 // are more digits, up to the maximum number of digits. We
1309 // place the decimal point after the "integer" digits, which
1310 // are the first (decimalAt - exponent) digits.
1311 int32_t minimumDigits = minIntDig + minFracDig;
1312 // The number of integer digits is handled specially if the number
1313 // is zero, since then there may be no digits.
1314 int32_t integerDigits = digits.isZero() ? minIntDig :
1315 digits.getDecimalAt() - exponent;
1316 int32_t totalDigits = digits.getCount();
1317 if (minimumDigits > totalDigits)
1318 totalDigits = minimumDigits;
1319 if (integerDigits > totalDigits)
1320 totalDigits = integerDigits;
1321
1322 // totalDigits records total number of digits needs to be processed
1323 int32_t i;
1324 for (i=0; i<totalDigits; ++i)
1325 {
1326 if (i == integerDigits)
1327 {
1328 intEnd = appendTo.length();
1329 handler.addAttribute(kIntegerField, intBegin, intEnd);
1330
1331 appendTo += *decimal;
1332
1333 fracBegin = appendTo.length();
1334 handler.addAttribute(kDecimalSeparatorField, fracBegin - 1, fracBegin);
1335 }
1336 // Restores the digit character or pads the buffer with zeros.
1337 UChar32 c = (UChar32)((i < digits.getCount()) ?
1338 localizedDigits[digits.getDigitValue(i)] :
1339 localizedDigits[0]);
1340 appendTo += c;
1341 }
1342
1343 currentLength = appendTo.length();
1344
1345 if (intEnd < 0) {
1346 handler.addAttribute(kIntegerField, intBegin, currentLength);
1347 }
1348 if (fracBegin > 0) {
1349 handler.addAttribute(kFractionField, fracBegin, currentLength);
1350 }
1351
1352 // The exponent is output using the pattern-specified minimum
1353 // exponent digits. There is no maximum limit to the exponent
1354 // digits, since truncating the exponent would appendTo in an
1355 // unacceptable inaccuracy.
1356 appendTo += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
1357
1358 handler.addAttribute(kExponentSymbolField, currentLength, appendTo.length());
1359 currentLength = appendTo.length();
1360
1361 // For zero values, we force the exponent to zero. We
1362 // must do this here, and not earlier, because the value
1363 // is used to determine integer digit count above.
1364 if (digits.isZero())
1365 exponent = 0;
1366
1367 if (exponent < 0) {
1368 appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
1369 handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
1370 } else if (fExponentSignAlwaysShown) {
1371 appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
1372 handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
1373 }
1374
1375 currentLength = appendTo.length();
1376
1377 DigitList expDigits;
1378 expDigits.set(exponent);
1379 {
1380 int expDig = fMinExponentDigits;
1381 if (fUseExponentialNotation && expDig < 1) {
1382 expDig = 1;
1383 }
1384 for (i=expDigits.getDecimalAt(); i<expDig; ++i)
1385 appendTo += (localizedDigits[0]);
1386 }
1387 for (i=0; i<expDigits.getDecimalAt(); ++i)
1388 {
1389 UChar32 c = (UChar32)((i < expDigits.getCount()) ?
1390 localizedDigits[expDigits.getDigitValue(i)] :
1391 localizedDigits[0]);
1392 appendTo += c;
1393 }
1394
1395 handler.addAttribute(kExponentField, currentLength, appendTo.length());
1396 }
1397 else // Not using exponential notation
1398 {
1399 int currentLength = appendTo.length();
1400 int intBegin = currentLength;
1401
1402 int32_t sigCount = 0;
1403 int32_t minSigDig = getMinimumSignificantDigits();
1404 int32_t maxSigDig = getMaximumSignificantDigits();
1405 if (!useSigDig) {
1406 minSigDig = 0;
1407 maxSigDig = INT32_MAX;
1408 }
1409
1410 // Output the integer portion. Here 'count' is the total
1411 // number of integer digits we will display, including both
1412 // leading zeros required to satisfy getMinimumIntegerDigits,
1413 // and actual digits present in the number.
1414 int32_t count = useSigDig ?
1415 _max(1, digits.getDecimalAt()) : minIntDig;
1416 if (digits.getDecimalAt() > 0 && count < digits.getDecimalAt()) {
1417 count = digits.getDecimalAt();
1418 }
1419
1420 // Handle the case where getMaximumIntegerDigits() is smaller
1421 // than the real number of integer digits. If this is so, we
1422 // output the least significant max integer digits. For example,
1423 // the value 1997 printed with 2 max integer digits is just "97".
1424
1425 int32_t digitIndex = 0; // Index into digitList.fDigits[]
1426 if (count > maxIntDig && maxIntDig >= 0) {
1427 count = maxIntDig;
1428 digitIndex = digits.getDecimalAt() - count;
1429 }
1430
1431 int32_t sizeBeforeIntegerPart = appendTo.length();
1432
1433 int32_t i;
1434 for (i=count-1; i>=0; --i)
1435 {
1436 if (i < digits.getDecimalAt() && digitIndex < digits.getCount() &&
1437 sigCount < maxSigDig) {
1438 // Output a real digit
1439 appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
1440 ++sigCount;
1441 }
1442 else
1443 {
1444 // Output a zero (leading or trailing)
1445 appendTo += localizedDigits[0];
1446 if (sigCount > 0) {
1447 ++sigCount;
1448 }
1449 }
1450
1451 // Output grouping separator if necessary.
1452 if (isGroupingPosition(i)) {
1453 currentLength = appendTo.length();
1454 appendTo.append(*grouping);
1455 handler.addAttribute(kGroupingSeparatorField, currentLength, appendTo.length());
1456 }
1457 }
1458
1459 // TODO(dlf): this looks like it was a bug, we marked the int field as ending
1460 // before the zero was generated.
1461 // Record field information for caller.
1462 // if (fieldPosition.getField() == NumberFormat::kIntegerField)
1463 // fieldPosition.setEndIndex(appendTo.length());
1464
1465 // Determine whether or not there are any printable fractional
1466 // digits. If we've used up the digits we know there aren't.
1467 UBool fractionPresent = (!isInteger && digitIndex < digits.getCount()) ||
1468 (useSigDig ? (sigCount < minSigDig) : (getMinimumFractionDigits() > 0));
1469
1470 // If there is no fraction present, and we haven't printed any
1471 // integer digits, then print a zero. Otherwise we won't print
1472 // _any_ digits, and we won't be able to parse this string.
1473 if (!fractionPresent && appendTo.length() == sizeBeforeIntegerPart)
1474 appendTo += localizedDigits[0];
1475
1476 currentLength = appendTo.length();
1477 handler.addAttribute(kIntegerField, intBegin, currentLength);
1478
1479 // Output the decimal separator if we always do so.
1480 if (fDecimalSeparatorAlwaysShown || fractionPresent) {
1481 appendTo += *decimal;
1482 handler.addAttribute(kDecimalSeparatorField, currentLength, appendTo.length());
1483 currentLength = appendTo.length();
1484 }
1485
1486 int fracBegin = currentLength;
1487
1488 count = useSigDig ? INT32_MAX : getMaximumFractionDigits();
1489 if (useSigDig && (sigCount == maxSigDig ||
1490 (sigCount >= minSigDig && digitIndex == digits.getCount()))) {
1491 count = 0;
1492 }
1493
1494 for (i=0; i < count; ++i) {
1495 // Here is where we escape from the loop. We escape
1496 // if we've output the maximum fraction digits
1497 // (specified in the for expression above). We also
1498 // stop when we've output the minimum digits and
1499 // either: we have an integer, so there is no
1500 // fractional stuff to display, or we're out of
1501 // significant digits.
1502 if (!useSigDig && i >= getMinimumFractionDigits() &&
1503 (isInteger || digitIndex >= digits.getCount())) {
1504 break;
1505 }
1506
1507 // Output leading fractional zeros. These are zeros
1508 // that come after the decimal but before any
1509 // significant digits. These are only output if
1510 // abs(number being formatted) < 1.0.
1511 if (-1-i > (digits.getDecimalAt()-1)) {
1512 appendTo += localizedDigits[0];
1513 continue;
1514 }
1515
1516 // Output a digit, if we have any precision left, or a
1517 // zero if we don't. We don't want to output noise digits.
1518 if (!isInteger && digitIndex < digits.getCount()) {
1519 appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
1520 } else {
1521 appendTo += localizedDigits[0];
1522 }
1523
1524 // If we reach the maximum number of significant
1525 // digits, or if we output all the real digits and
1526 // reach the minimum, then we are done.
1527 ++sigCount;
1528 if (useSigDig &&
1529 (sigCount == maxSigDig ||
1530 (digitIndex == digits.getCount() && sigCount >= minSigDig))) {
1531 break;
1532 }
1533 }
1534
1535 handler.addAttribute(kFractionField, fracBegin, appendTo.length());
1536 }
1537
1538 int32_t suffixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), FALSE);
1539
1540 addPadding(appendTo, handler, prefixLen, suffixLen);
1541 return appendTo;
1542 }
1543
1544 /**
1545 * Inserts the character fPad as needed to expand result to fFormatWidth.
1546 * @param result the string to be padded
1547 */
1548 void DecimalFormat::addPadding(UnicodeString& appendTo,
1549 FieldPositionHandler& handler,
1550 int32_t prefixLen,
1551 int32_t suffixLen) const
1552 {
1553 if (fFormatWidth > 0) {
1554 int32_t len = fFormatWidth - appendTo.length();
1555 if (len > 0) {
1556 UnicodeString padding;
1557 for (int32_t i=0; i<len; ++i) {
1558 padding += fPad;
1559 }
1560 switch (fPadPosition) {
1561 case kPadAfterPrefix:
1562 appendTo.insert(prefixLen, padding);
1563 break;
1564 case kPadBeforePrefix:
1565 appendTo.insert(0, padding);
1566 break;
1567 case kPadBeforeSuffix:
1568 appendTo.insert(appendTo.length() - suffixLen, padding);
1569 break;
1570 case kPadAfterSuffix:
1571 appendTo += padding;
1572 break;
1573 }
1574 if (fPadPosition == kPadBeforePrefix || fPadPosition == kPadAfterPrefix) {
1575 handler.shiftLast(len);
1576 }
1577 }
1578 }
1579 }
1580
1581 //------------------------------------------------------------------------------
1582
1583 void
1584 DecimalFormat::parse(const UnicodeString& text,
1585 Formattable& result,
1586 UErrorCode& status) const
1587 {
1588 NumberFormat::parse(text, result, status);
1589 }
1590
1591 void
1592 DecimalFormat::parse(const UnicodeString& text,
1593 Formattable& result,
1594 ParsePosition& parsePosition) const {
1595 parse(text, result, parsePosition, NULL);
1596 }
1597
1598 CurrencyAmount* DecimalFormat::parseCurrency(const UnicodeString& text,
1599 ParsePosition& pos) const {
1600 Formattable parseResult;
1601 int32_t start = pos.getIndex();
1602 UChar curbuf[4];
1603 parse(text, parseResult, pos, curbuf);
1604 if (pos.getIndex() != start) {
1605 UErrorCode ec = U_ZERO_ERROR;
1606 LocalPointer<CurrencyAmount> currAmt(new CurrencyAmount(parseResult, curbuf, ec));
1607 if (U_FAILURE(ec)) {
1608 pos.setIndex(start); // indicate failure
1609 } else {
1610 return currAmt.orphan();
1611 }
1612 }
1613 return NULL;
1614 }
1615
1616 /**
1617 * Parses the given text as a number, optionally providing a currency amount.
1618 * @param text the string to parse
1619 * @param result output parameter for the numeric result.
1620 * @param parsePosition input-output position; on input, the
1621 * position within text to match; must have 0 <= pos.getIndex() <
1622 * text.length(); on output, the position after the last matched
1623 * character. If the parse fails, the position in unchanged upon
1624 * output.
1625 * @param currency if non-NULL, it should point to a 4-UChar buffer.
1626 * In this case the text is parsed as a currency format, and the
1627 * ISO 4217 code for the parsed currency is put into the buffer.
1628 * Otherwise the text is parsed as a non-currency format.
1629 */
1630 void DecimalFormat::parse(const UnicodeString& text,
1631 Formattable& result,
1632 ParsePosition& parsePosition,
1633 UChar* currency) const {
1634 int32_t startIdx, backup;
1635 int32_t i = startIdx = backup = parsePosition.getIndex();
1636
1637 // clear any old contents in the result. In particular, clears any DigitList
1638 // that it may be holding.
1639 result.setLong(0);
1640
1641 // Handle NaN as a special case:
1642
1643 // Skip padding characters, if around prefix
1644 if (fFormatWidth > 0 && (fPadPosition == kPadBeforePrefix ||
1645 fPadPosition == kPadAfterPrefix)) {
1646 i = skipPadding(text, i);
1647 }
1648
1649 if (isLenient()) {
1650 // skip any leading whitespace
1651 i = backup = skipUWhiteSpace(text, i);
1652 }
1653
1654 // If the text is composed of the representation of NaN, returns NaN.length
1655 const UnicodeString *nan = &getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
1656 int32_t nanLen = (text.compare(i, nan->length(), *nan)
1657 ? 0 : nan->length());
1658 if (nanLen) {
1659 i += nanLen;
1660 if (fFormatWidth > 0 && (fPadPosition == kPadBeforeSuffix ||
1661 fPadPosition == kPadAfterSuffix)) {
1662 i = skipPadding(text, i);
1663 }
1664 parsePosition.setIndex(i);
1665 result.setDouble(uprv_getNaN());
1666 return;
1667 }
1668
1669 // NaN parse failed; start over
1670 i = backup;
1671 parsePosition.setIndex(i);
1672
1673 // status is used to record whether a number is infinite.
1674 UBool status[fgStatusLength];
1675 DigitList *digits = new DigitList;
1676 if (digits == NULL) {
1677 return; // no way to report error from here.
1678 }
1679
1680 if (fCurrencySignCount > fgCurrencySignCountZero) {
1681 if (!parseForCurrency(text, parsePosition, *digits,
1682 status, currency)) {
1683 delete digits;
1684 return;
1685 }
1686 } else {
1687 if (!subparse(text,
1688 fNegPrefixPattern, fNegSuffixPattern,
1689 fPosPrefixPattern, fPosSuffixPattern,
1690 FALSE, UCURR_SYMBOL_NAME,
1691 parsePosition, *digits, status, currency)) {
1692 parsePosition.setIndex(startIdx);
1693 delete digits;
1694 return;
1695 }
1696 }
1697
1698 // Handle infinity
1699 if (status[fgStatusInfinite]) {
1700 double inf = uprv_getInfinity();
1701 result.setDouble(digits->isPositive() ? inf : -inf);
1702 delete digits; // TODO: set the dl to infinity, and let it fall into the code below.
1703 }
1704
1705 else {
1706
1707 if (fMultiplier != NULL) {
1708 UErrorCode ec = U_ZERO_ERROR;
1709 digits->div(*fMultiplier, ec);
1710 }
1711
1712 // Negative zero special case:
1713 // if parsing integerOnly, change to +0, which goes into an int32 in a Formattable.
1714 // if not parsing integerOnly, leave as -0, which a double can represent.
1715 if (digits->isZero() && !digits->isPositive() && isParseIntegerOnly()) {
1716 digits->setPositive(TRUE);
1717 }
1718 result.adoptDigitList(digits);
1719 }
1720 }
1721
1722
1723
1724 UBool
1725 DecimalFormat::parseForCurrency(const UnicodeString& text,
1726 ParsePosition& parsePosition,
1727 DigitList& digits,
1728 UBool* status,
1729 UChar* currency) const {
1730 int origPos = parsePosition.getIndex();
1731 int maxPosIndex = origPos;
1732 int maxErrorPos = -1;
1733 // First, parse against current pattern.
1734 // Since current pattern could be set by applyPattern(),
1735 // it could be an arbitrary pattern, and it may not be the one
1736 // defined in current locale.
1737 UBool tmpStatus[fgStatusLength];
1738 ParsePosition tmpPos(origPos);
1739 DigitList tmpDigitList;
1740 UBool found;
1741 if (fStyle == UNUM_CURRENCY_PLURAL) {
1742 found = subparse(text,
1743 fNegPrefixPattern, fNegSuffixPattern,
1744 fPosPrefixPattern, fPosSuffixPattern,
1745 TRUE, UCURR_LONG_NAME,
1746 tmpPos, tmpDigitList, tmpStatus, currency);
1747 } else {
1748 found = subparse(text,
1749 fNegPrefixPattern, fNegSuffixPattern,
1750 fPosPrefixPattern, fPosSuffixPattern,
1751 TRUE, UCURR_SYMBOL_NAME,
1752 tmpPos, tmpDigitList, tmpStatus, currency);
1753 }
1754 if (found) {
1755 if (tmpPos.getIndex() > maxPosIndex) {
1756 maxPosIndex = tmpPos.getIndex();
1757 for (int32_t i = 0; i < fgStatusLength; ++i) {
1758 status[i] = tmpStatus[i];
1759 }
1760 digits = tmpDigitList;
1761 }
1762 } else {
1763 maxErrorPos = tmpPos.getErrorIndex();
1764 }
1765 // Then, parse against affix patterns.
1766 // Those are currency patterns and currency plural patterns.
1767 int32_t pos = -1;
1768 const UHashElement* element = NULL;
1769 while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
1770 const UHashTok valueTok = element->value;
1771 const AffixPatternsForCurrency* affixPtn = (AffixPatternsForCurrency*)valueTok.pointer;
1772 UBool tmpStatus[fgStatusLength];
1773 ParsePosition tmpPos(origPos);
1774 DigitList tmpDigitList;
1775 UBool result = subparse(text,
1776 &affixPtn->negPrefixPatternForCurrency,
1777 &affixPtn->negSuffixPatternForCurrency,
1778 &affixPtn->posPrefixPatternForCurrency,
1779 &affixPtn->posSuffixPatternForCurrency,
1780 TRUE, affixPtn->patternType,
1781 tmpPos, tmpDigitList, tmpStatus, currency);
1782 if (result) {
1783 found = true;
1784 if (tmpPos.getIndex() > maxPosIndex) {
1785 maxPosIndex = tmpPos.getIndex();
1786 for (int32_t i = 0; i < fgStatusLength; ++i) {
1787 status[i] = tmpStatus[i];
1788 }
1789 digits = tmpDigitList;
1790 }
1791 } else {
1792 maxErrorPos = (tmpPos.getErrorIndex() > maxErrorPos) ?
1793 tmpPos.getErrorIndex() : maxErrorPos;
1794 }
1795 }
1796 // Finally, parse against simple affix to find the match.
1797 // For example, in TestMonster suite,
1798 // if the to-be-parsed text is "-\u00A40,00".
1799 // complexAffixCompare will not find match,
1800 // since there is no ISO code matches "\u00A4",
1801 // and the parse stops at "\u00A4".
1802 // We will just use simple affix comparison (look for exact match)
1803 // to pass it.
1804 UBool tmpStatus_2[fgStatusLength];
1805 ParsePosition tmpPos_2(origPos);
1806 DigitList tmpDigitList_2;
1807 // set currencySignCount to 0 so that compareAffix function will
1808 // fall to compareSimpleAffix path, not compareComplexAffix path.
1809 // ?? TODO: is it right? need "false"?
1810 UBool result = subparse(text,
1811 &fNegativePrefix, &fNegativeSuffix,
1812 &fPositivePrefix, &fPositiveSuffix,
1813 FALSE, UCURR_SYMBOL_NAME,
1814 tmpPos_2, tmpDigitList_2, tmpStatus_2,
1815 currency);
1816 if (result) {
1817 if (tmpPos_2.getIndex() > maxPosIndex) {
1818 maxPosIndex = tmpPos_2.getIndex();
1819 for (int32_t i = 0; i < fgStatusLength; ++i) {
1820 status[i] = tmpStatus_2[i];
1821 }
1822 digits = tmpDigitList_2;
1823 }
1824 found = true;
1825 } else {
1826 maxErrorPos = (tmpPos_2.getErrorIndex() > maxErrorPos) ?
1827 tmpPos_2.getErrorIndex() : maxErrorPos;
1828 }
1829
1830 if (!found) {
1831 //parsePosition.setIndex(origPos);
1832 parsePosition.setErrorIndex(maxErrorPos);
1833 } else {
1834 parsePosition.setIndex(maxPosIndex);
1835 parsePosition.setErrorIndex(-1);
1836 }
1837 return found;
1838 }
1839
1840
1841 /**
1842 * Parse the given text into a number. The text is parsed beginning at
1843 * parsePosition, until an unparseable character is seen.
1844 * @param text the string to parse.
1845 * @param negPrefix negative prefix.
1846 * @param negSuffix negative suffix.
1847 * @param posPrefix positive prefix.
1848 * @param posSuffix positive suffix.
1849 * @param currencyParsing whether it is currency parsing or not.
1850 * @param type the currency type to parse against, LONG_NAME only or not.
1851 * @param parsePosition The position at which to being parsing. Upon
1852 * return, the first unparsed character.
1853 * @param digits the DigitList to set to the parsed value.
1854 * @param status output param containing boolean status flags indicating
1855 * whether the value was infinite and whether it was positive.
1856 * @param currency return value for parsed currency, for generic
1857 * currency parsing mode, or NULL for normal parsing. In generic
1858 * currency parsing mode, any currency is parsed, not just the
1859 * currency that this formatter is set to.
1860 */
1861 UBool DecimalFormat::subparse(const UnicodeString& text,
1862 const UnicodeString* negPrefix,
1863 const UnicodeString* negSuffix,
1864 const UnicodeString* posPrefix,
1865 const UnicodeString* posSuffix,
1866 UBool currencyParsing,
1867 int8_t type,
1868 ParsePosition& parsePosition,
1869 DigitList& digits, UBool* status,
1870 UChar* currency) const
1871 {
1872 // The parsing process builds up the number as char string, in the neutral format that
1873 // will be acceptable to the decNumber library, then at the end passes that string
1874 // off for conversion to a decNumber.
1875 UErrorCode err = U_ZERO_ERROR;
1876 CharString parsedNum;
1877 digits.setToZero();
1878
1879 int32_t position = parsePosition.getIndex();
1880 int32_t oldStart = position;
1881 UBool strictParse = !isLenient();
1882
1883 // Match padding before prefix
1884 if (fFormatWidth > 0 && fPadPosition == kPadBeforePrefix) {
1885 position = skipPadding(text, position);
1886 }
1887
1888 // Match positive and negative prefixes; prefer longest match.
1889 int32_t posMatch = compareAffix(text, position, FALSE, TRUE, posPrefix, currencyParsing, type, currency);
1890 int32_t negMatch = compareAffix(text, position, TRUE, TRUE, negPrefix, currencyParsing, type, currency);
1891 if (posMatch >= 0 && negMatch >= 0) {
1892 if (posMatch > negMatch) {
1893 negMatch = -1;
1894 } else if (negMatch > posMatch) {
1895 posMatch = -1;
1896 }
1897 }
1898 if (posMatch >= 0) {
1899 position += posMatch;
1900 parsedNum.append('+', err);
1901 } else if (negMatch >= 0) {
1902 position += negMatch;
1903 parsedNum.append('-', err);
1904 } else if (strictParse){
1905 parsePosition.setErrorIndex(position);
1906 return FALSE;
1907 } else {
1908 // Temporary set positive. This might be changed after checking suffix
1909 parsedNum.append('+', err);
1910 }
1911
1912 // Match padding before prefix
1913 if (fFormatWidth > 0 && fPadPosition == kPadAfterPrefix) {
1914 position = skipPadding(text, position);
1915 }
1916
1917 if (! strictParse) {
1918 position = skipUWhiteSpace(text, position);
1919 }
1920
1921 // process digits or Inf, find decimal position
1922 const UnicodeString *inf = &getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
1923 int32_t infLen = (text.compare(position, inf->length(), *inf)
1924 ? 0 : inf->length());
1925 position += infLen; // infLen is non-zero when it does equal to infinity
1926 status[fgStatusInfinite] = infLen != 0;
1927
1928 if (infLen != 0) {
1929 parsedNum.append("Infinity", err);
1930 } else {
1931 // We now have a string of digits, possibly with grouping symbols,
1932 // and decimal points. We want to process these into a DigitList.
1933 // We don't want to put a bunch of leading zeros into the DigitList
1934 // though, so we keep track of the location of the decimal point,
1935 // put only significant digits into the DigitList, and adjust the
1936 // exponent as needed.
1937
1938 UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
1939
1940 UBool strictFail = FALSE; // did we exit with a strict parse failure?
1941 int32_t lastGroup = -1; // where did we last see a grouping separator?
1942 int32_t digitStart = position;
1943 int32_t gs2 = fGroupingSize2 == 0 ? fGroupingSize : fGroupingSize2;
1944
1945 const UnicodeString *decimalString;
1946 if (fCurrencySignCount > fgCurrencySignCountZero) {
1947 decimalString = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
1948 } else {
1949 decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
1950 }
1951 UChar32 decimalChar = decimalString->char32At(0);
1952
1953 const UnicodeString *groupingString = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
1954 UChar32 groupingChar = groupingString->char32At(0);
1955 UBool sawDecimal = FALSE;
1956 UChar32 sawDecimalChar = 0xFFFF;
1957 UBool sawGrouping = FALSE;
1958 UChar32 sawGroupingChar = 0xFFFF;
1959 UBool sawDigit = FALSE;
1960 int32_t backup = -1;
1961 int32_t digit;
1962 int32_t textLength = text.length(); // One less pointer to follow
1963 int32_t decimalStringLength = decimalString->length();
1964 int32_t decimalCharLength = U16_LENGTH(decimalChar);
1965 int32_t groupingStringLength = groupingString->length();
1966 int32_t groupingCharLength = U16_LENGTH(groupingChar);
1967
1968 // equivalent grouping and decimal support
1969 const UnicodeSet *decimalSet = NULL;
1970 const UnicodeSet *groupingSet = NULL;
1971
1972 if (decimalCharLength == decimalStringLength) {
1973 decimalSet = DecimalFormatStaticSets::getSimilarDecimals(decimalChar, strictParse);
1974 }
1975
1976 if (groupingCharLength == groupingStringLength) {
1977 if (strictParse) {
1978 groupingSet = DecimalFormatStaticSets::gStaticSets->fStrictDefaultGroupingSeparators;
1979 } else {
1980 groupingSet = DecimalFormatStaticSets::gStaticSets->fDefaultGroupingSeparators;
1981 }
1982 }
1983
1984 // We need to test groupingChar and decimalChar separately from groupingSet and decimalSet, if the sets are even initialized.
1985 // If sawDecimal is TRUE, only consider sawDecimalChar and NOT decimalSet
1986 // If a character matches decimalSet, don't consider it to be a member of the groupingSet.
1987
1988 // We have to track digitCount ourselves, because digits.fCount will
1989 // pin when the maximum allowable digits is reached.
1990 int32_t digitCount = 0;
1991 int32_t integerDigitCount = 0;
1992
1993 for (; position < textLength; )
1994 {
1995 UChar32 ch = text.char32At(position);
1996
1997 /* We recognize all digit ranges, not only the Latin digit range
1998 * '0'..'9'. We do so by using the Character.digit() method,
1999 * which converts a valid Unicode digit to the range 0..9.
2000 *
2001 * The character 'ch' may be a digit. If so, place its value
2002 * from 0 to 9 in 'digit'. First try using the locale digit,
2003 * which may or MAY NOT be a standard Unicode digit range. If
2004 * this fails, try using the standard Unicode digit ranges by
2005 * calling Character.digit(). If this also fails, digit will
2006 * have a value outside the range 0..9.
2007 */
2008 digit = ch - zero;
2009 if (digit < 0 || digit > 9)
2010 {
2011 digit = u_charDigitValue(ch);
2012 }
2013
2014 // As a last resort, look through the localized digits if the zero digit
2015 // is not a "standard" Unicode digit.
2016 if ( (digit < 0 || digit > 9) && u_charDigitValue(zero) != 0) {
2017 digit = 0;
2018 // Already check above (digit = ch - zero) for ch==zero; the only check we need to do here is:
2019 // if \u3007 is treated as 0 for parsing, \u96F6 should be too. Otherwise check for nonzero digits.
2020 if ( zero!=0x3007 || ch!=0x96F6 ) {
2021 for (digit = 1 ; digit < 10 ; digit++ ) {
2022 if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kOneDigitSymbol+digit-1)).char32At(0) == ch ) {
2023 break;
2024 }
2025 }
2026 }
2027 }
2028
2029 if (digit >= 0 && digit <= 9)
2030 {
2031 if (strictParse && backup != -1) {
2032 // comma followed by digit, so group before comma is a
2033 // secondary group. If there was a group separator
2034 // before that, the group must == the secondary group
2035 // length, else it can be <= the the secondary group
2036 // length.
2037 if ((lastGroup != -1 && backup - lastGroup - 1 != gs2) ||
2038 (lastGroup == -1 && position - digitStart - 1 > gs2)) {
2039 strictFail = TRUE;
2040 break;
2041 }
2042
2043 lastGroup = backup;
2044 }
2045
2046 // Cancel out backup setting (see grouping handler below)
2047 backup = -1;
2048 sawDigit = TRUE;
2049
2050 // Note: this will append leading zeros
2051 parsedNum.append((char)(digit + '0'), err);
2052
2053 // count any digit that's not a leading zero
2054 if (digit > 0 || digitCount > 0 || sawDecimal) {
2055 digitCount += 1;
2056
2057 // count any integer digit that's not a leading zero
2058 if (! sawDecimal) {
2059 integerDigitCount += 1;
2060 }
2061 }
2062
2063 position += U16_LENGTH(ch);
2064 }
2065 else if (groupingStringLength > 0 &&
2066 matchGrouping(groupingChar, sawGrouping, sawGroupingChar, groupingSet,
2067 decimalChar, decimalSet,
2068 ch) && isGroupingUsed())
2069 {
2070 if (sawDecimal) {
2071 break;
2072 }
2073
2074 if (strictParse) {
2075 if ( (!sawDigit && groupingSet!=NULL && u_isWhitespace(ch)) || backup != -1 ) {
2076 // We differ from the ICU4J code by allowing a leading group sep in strict mode (for
2077 // backward compatibility) as long as it is not one of the breaking whitespace characters
2078 // that is only treated as a group separator because of the equivalence set. If we get
2079 // here it is because the leading sep was such a breaking space, or there were multiple
2080 // group separators in a row. Note that the DecimalFormat documentation says
2081 // "During parsing, grouping separators are ignored" and that was for strict parsing,
2082 // so we may need to further revisit this strictParse restriction to ensure compatibility.
2083 // Also note: u_isWhitespace is true for all Zs/Zl/Zp except the no-break ones: 00A0,2007,202F.
2084 // In CLDR, all locales that have space as a group separator use 00A0 (NBSP).
2085 strictFail = TRUE;
2086 break;
2087 }
2088 }
2089
2090 // Ignore grouping characters, if we are using them, but require
2091 // that they be followed by a digit. Otherwise we backup and
2092 // reprocess them.
2093 backup = position;
2094 position += groupingStringLength;
2095 sawGrouping=TRUE;
2096 // Once we see a grouping character, we only accept that grouping character from then on.
2097 sawGroupingChar=ch;
2098 }
2099 else if (matchDecimal(decimalChar,sawDecimal,sawDecimalChar, decimalSet, ch))
2100 {
2101 if (strictParse) {
2102 if (backup != -1 ||
2103 (lastGroup != -1 && position - lastGroup != fGroupingSize + 1)) {
2104 strictFail = TRUE;
2105 break;
2106 }
2107 }
2108
2109 // If we're only parsing integers, or if we ALREADY saw the
2110 // decimal, then don't parse this one.
2111 if (isParseIntegerOnly() || sawDecimal) {
2112 break;
2113 }
2114
2115 parsedNum.append('.', err);
2116 position += decimalStringLength;
2117 sawDecimal = TRUE;
2118 // Once we see a decimal character, we only accept that decimal character from then on.
2119 sawDecimalChar=ch;
2120 // decimalSet is considered to consist of (ch,ch)
2121 }
2122 else {
2123 const UnicodeString *tmp;
2124 tmp = &getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
2125 if (!text.caseCompare(position, tmp->length(), *tmp, U_FOLD_CASE_DEFAULT)) // error code is set below if !sawDigit
2126 {
2127 // Parse sign, if present
2128 int32_t pos = position + tmp->length();
2129 char exponentSign = '+';
2130
2131 if (pos < textLength)
2132 {
2133 tmp = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
2134 if (!text.compare(pos, tmp->length(), *tmp))
2135 {
2136 pos += tmp->length();
2137 }
2138 else {
2139 tmp = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
2140 if (!text.compare(pos, tmp->length(), *tmp))
2141 {
2142 exponentSign = '-';
2143 pos += tmp->length();
2144 }
2145 }
2146 }
2147
2148 UBool sawExponentDigit = FALSE;
2149 while (pos < textLength) {
2150 ch = text[(int32_t)pos];
2151 digit = ch - zero;
2152
2153 if (digit < 0 || digit > 9) {
2154 digit = u_charDigitValue(ch);
2155 }
2156 if (0 <= digit && digit <= 9) {
2157 if (!sawExponentDigit) {
2158 parsedNum.append('E', err);
2159 parsedNum.append(exponentSign, err);
2160 sawExponentDigit = TRUE;
2161 }
2162 ++pos;
2163 parsedNum.append((char)(digit + '0'), err);
2164 } else {
2165 break;
2166 }
2167 }
2168
2169 if (sawExponentDigit) {
2170 position = pos; // Advance past the exponent
2171 }
2172
2173 break; // Whether we fail or succeed, we exit this loop
2174 }
2175 else {
2176 break;
2177 }
2178 }
2179 }
2180
2181 if (backup != -1)
2182 {
2183 position = backup;
2184 }
2185
2186 if (strictParse && !sawDecimal) {
2187 if (lastGroup != -1 && position - lastGroup != fGroupingSize + 1) {
2188 strictFail = TRUE;
2189 }
2190 }
2191
2192 if (strictFail) {
2193 // only set with strictParse and a grouping separator error
2194
2195 parsePosition.setIndex(oldStart);
2196 parsePosition.setErrorIndex(position);
2197 return FALSE;
2198 }
2199
2200 // If there was no decimal point we have an integer
2201
2202 // If none of the text string was recognized. For example, parse
2203 // "x" with pattern "#0.00" (return index and error index both 0)
2204 // parse "$" with pattern "$#0.00". (return index 0 and error index
2205 // 1).
2206 if (!sawDigit && digitCount == 0) {
2207 parsePosition.setIndex(oldStart);
2208 parsePosition.setErrorIndex(oldStart);
2209 return FALSE;
2210 }
2211 }
2212
2213 // Match padding before suffix
2214 if (fFormatWidth > 0 && fPadPosition == kPadBeforeSuffix) {
2215 position = skipPadding(text, position);
2216 }
2217
2218 int32_t posSuffixMatch = -1, negSuffixMatch = -1;
2219
2220 // Match positive and negative suffixes; prefer longest match.
2221 if (posMatch >= 0 || (!strictParse && negMatch < 0)) {
2222 posSuffixMatch = compareAffix(text, position, FALSE, FALSE, posSuffix, currencyParsing, type, currency);
2223 }
2224 if (negMatch >= 0) {
2225 negSuffixMatch = compareAffix(text, position, TRUE, FALSE, negSuffix, currencyParsing, type, currency);
2226 }
2227 if (posSuffixMatch >= 0 && negSuffixMatch >= 0) {
2228 if (posSuffixMatch > negSuffixMatch) {
2229 negSuffixMatch = -1;
2230 } else if (negSuffixMatch > posSuffixMatch) {
2231 posSuffixMatch = -1;
2232 }
2233 }
2234
2235 // Fail if neither or both
2236 if (strictParse && ((posSuffixMatch >= 0) == (negSuffixMatch >= 0))) {
2237 parsePosition.setErrorIndex(position);
2238 return FALSE;
2239 }
2240
2241 position += (posSuffixMatch >= 0 ? posSuffixMatch : (negSuffixMatch >= 0 ? negSuffixMatch : 0));
2242
2243 // Match padding before suffix
2244 if (fFormatWidth > 0 && fPadPosition == kPadAfterSuffix) {
2245 position = skipPadding(text, position);
2246 }
2247
2248 parsePosition.setIndex(position);
2249
2250 parsedNum.data()[0] = (posSuffixMatch >= 0 || (!strictParse && negMatch < 0 && negSuffixMatch < 0)) ? '+' : '-';
2251
2252 if(parsePosition.getIndex() == oldStart)
2253 {
2254 parsePosition.setErrorIndex(position);
2255 return FALSE;
2256 }
2257 digits.set(parsedNum.toStringPiece(), err);
2258
2259 if (U_FAILURE(err)) {
2260 parsePosition.setErrorIndex(position);
2261 return FALSE;
2262 }
2263 return TRUE;
2264 }
2265
2266 /**
2267 * Starting at position, advance past a run of pad characters, if any.
2268 * Return the index of the first character after position that is not a pad
2269 * character. Result is >= position.
2270 */
2271 int32_t DecimalFormat::skipPadding(const UnicodeString& text, int32_t position) const {
2272 int32_t padLen = U16_LENGTH(fPad);
2273 while (position < text.length() &&
2274 text.char32At(position) == fPad) {
2275 position += padLen;
2276 }
2277 return position;
2278 }
2279
2280 /**
2281 * Return the length matched by the given affix, or -1 if none.
2282 * Runs of white space in the affix, match runs of white space in
2283 * the input. Pattern white space and input white space are
2284 * determined differently; see code.
2285 * @param text input text
2286 * @param pos offset into input at which to begin matching
2287 * @param isNegative
2288 * @param isPrefix
2289 * @param affixPat affix pattern used for currency affix comparison.
2290 * @param currencyParsing whether it is currency parsing or not
2291 * @param type the currency type to parse against, LONG_NAME only or not.
2292 * @param currency return value for parsed currency, for generic
2293 * currency parsing mode, or null for normal parsing. In generic
2294 * currency parsing mode, any currency is parsed, not just the
2295 * currency that this formatter is set to.
2296 * @return length of input that matches, or -1 if match failure
2297 */
2298 int32_t DecimalFormat::compareAffix(const UnicodeString& text,
2299 int32_t pos,
2300 UBool isNegative,
2301 UBool isPrefix,
2302 const UnicodeString* affixPat,
2303 UBool currencyParsing,
2304 int8_t type,
2305 UChar* currency) const
2306 {
2307 const UnicodeString *patternToCompare;
2308 if (fCurrencyChoice != NULL || currency != NULL ||
2309 (fCurrencySignCount > fgCurrencySignCountZero && currencyParsing)) {
2310
2311 if (affixPat != NULL) {
2312 return compareComplexAffix(*affixPat, text, pos, type, currency);
2313 }
2314 }
2315
2316 if (isNegative) {
2317 if (isPrefix) {
2318 patternToCompare = &fNegativePrefix;
2319 }
2320 else {
2321 patternToCompare = &fNegativeSuffix;
2322 }
2323 }
2324 else {
2325 if (isPrefix) {
2326 patternToCompare = &fPositivePrefix;
2327 }
2328 else {
2329 patternToCompare = &fPositiveSuffix;
2330 }
2331 }
2332 return compareSimpleAffix(*patternToCompare, text, pos, isLenient());
2333 }
2334
2335 /**
2336 * Return the length matched by the given affix, or -1 if none.
2337 * Runs of white space in the affix, match runs of white space in
2338 * the input. Pattern white space and input white space are
2339 * determined differently; see code.
2340 * @param affix pattern string, taken as a literal
2341 * @param input input text
2342 * @param pos offset into input at which to begin matching
2343 * @return length of input that matches, or -1 if match failure
2344 */
2345 int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix,
2346 const UnicodeString& input,
2347 int32_t pos,
2348 UBool lenient) {
2349 UErrorCode status = U_ZERO_ERROR;
2350 int32_t start = pos;
2351 UChar32 affixChar = affix.char32At(0);
2352 int32_t affixLength = affix.length();
2353 int32_t inputLength = input.length();
2354 int32_t affixCharLength = U16_LENGTH(affixChar);
2355 UnicodeSet *affixSet;
2356
2357 DecimalFormatStaticSets::initSets(&status);
2358
2359 if (!lenient) {
2360 affixSet = DecimalFormatStaticSets::gStaticSets->fStrictDashEquivalents;
2361
2362 // If the affix is exactly one character long and that character
2363 // is in the dash set and the very next input character is also
2364 // in the dash set, return a match.
2365 if (affixCharLength == affixLength && affixSet->contains(affixChar)) {
2366 if (affixSet->contains(input.char32At(pos))) {
2367 return 1;
2368 }
2369 }
2370
2371 for (int32_t i = 0; i < affixLength; ) {
2372 UChar32 c = affix.char32At(i);
2373 int32_t len = U16_LENGTH(c);
2374 if (PatternProps::isWhiteSpace(c)) {
2375 // We may have a pattern like: \u200F \u0020
2376 // and input text like: \u200F \u0020
2377 // Note that U+200F and U+0020 are Pattern_White_Space but only
2378 // U+0020 is UWhiteSpace. So we have to first do a direct
2379 // match of the run of Pattern_White_Space in the pattern,
2380 // then match any extra characters.
2381 UBool literalMatch = FALSE;
2382 while (pos < inputLength &&
2383 input.char32At(pos) == c) {
2384 literalMatch = TRUE;
2385 i += len;
2386 pos += len;
2387 if (i == affixLength) {
2388 break;
2389 }
2390 c = affix.char32At(i);
2391 len = U16_LENGTH(c);
2392 if (!PatternProps::isWhiteSpace(c)) {
2393 break;
2394 }
2395 }
2396
2397 // Advance over run in pattern
2398 i = skipPatternWhiteSpace(affix, i);
2399
2400 // Advance over run in input text
2401 // Must see at least one white space char in input,
2402 // unless we've already matched some characters literally.
2403 int32_t s = pos;
2404 pos = skipUWhiteSpace(input, pos);
2405 if (pos == s && !literalMatch) {
2406 return -1;
2407 }
2408
2409 // If we skip UWhiteSpace in the input text, we need to skip it in the pattern.
2410 // Otherwise, the previous lines may have skipped over text (such as U+00A0) that
2411 // is also in the affix.
2412 i = skipUWhiteSpace(affix, i);
2413 } else {
2414 if (pos < inputLength &&
2415 input.char32At(pos) == c) {
2416 i += len;
2417 pos += len;
2418 } else {
2419 return -1;
2420 }
2421 }
2422 }
2423 } else {
2424 UBool match = FALSE;
2425
2426 affixSet = DecimalFormatStaticSets::gStaticSets->fDashEquivalents;
2427
2428 if (affixCharLength == affixLength && affixSet->contains(affixChar)) {
2429 pos = skipUWhiteSpace(input, pos);
2430
2431 if (affixSet->contains(input.char32At(pos))) {
2432 return pos - start + 1;
2433 }
2434 }
2435
2436 for (int32_t i = 0; i < affixLength; )
2437 {
2438 //i = skipRuleWhiteSpace(affix, i);
2439 i = skipUWhiteSpace(affix, i);
2440 pos = skipUWhiteSpace(input, pos);
2441
2442 if (i >= affixLength || pos >= inputLength) {
2443 break;
2444 }
2445
2446 UChar32 c = affix.char32At(i);
2447 int32_t len = U16_LENGTH(c);
2448
2449 if (input.char32At(pos) != c) {
2450 return -1;
2451 }
2452
2453 match = TRUE;
2454 i += len;
2455 pos += len;
2456 }
2457
2458 if (affixLength > 0 && ! match) {
2459 return -1;
2460 }
2461 }
2462 return pos - start;
2463 }
2464
2465 /**
2466 * Skip over a run of zero or more Pattern_White_Space characters at
2467 * pos in text.
2468 */
2469 int32_t DecimalFormat::skipPatternWhiteSpace(const UnicodeString& text, int32_t pos) {
2470 const UChar* s = text.getBuffer();
2471 return (int32_t)(PatternProps::skipWhiteSpace(s + pos, text.length() - pos) - s);
2472 }
2473
2474 /**
2475 * Skip over a run of zero or more isUWhiteSpace() characters at pos
2476 * in text.
2477 */
2478 int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) {
2479 while (pos < text.length()) {
2480 UChar32 c = text.char32At(pos);
2481 if (!u_isUWhiteSpace(c)) {
2482 break;
2483 }
2484 pos += U16_LENGTH(c);
2485 }
2486 return pos;
2487 }
2488
2489 /**
2490 * Return the length matched by the given affix, or -1 if none.
2491 * @param affixPat pattern string
2492 * @param input input text
2493 * @param pos offset into input at which to begin matching
2494 * @param type the currency type to parse against, LONG_NAME only or not.
2495 * @param currency return value for parsed currency, for generic
2496 * currency parsing mode, or null for normal parsing. In generic
2497 * currency parsing mode, any currency is parsed, not just the
2498 * currency that this formatter is set to.
2499 * @return length of input that matches, or -1 if match failure
2500 */
2501 int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat,
2502 const UnicodeString& text,
2503 int32_t pos,
2504 int8_t type,
2505 UChar* currency) const
2506 {
2507 int32_t start = pos;
2508 U_ASSERT(currency != NULL ||
2509 (fCurrencyChoice != NULL && *getCurrency() != 0) ||
2510 fCurrencySignCount > fgCurrencySignCountZero);
2511
2512 for (int32_t i=0;
2513 i<affixPat.length() && pos >= 0; ) {
2514 UChar32 c = affixPat.char32At(i);
2515 i += U16_LENGTH(c);
2516
2517 if (c == kQuote) {
2518 U_ASSERT(i <= affixPat.length());
2519 c = affixPat.char32At(i);
2520 i += U16_LENGTH(c);
2521
2522 const UnicodeString* affix = NULL;
2523
2524 switch (c) {
2525 case kCurrencySign: {
2526 // since the currency names in choice format is saved
2527 // the same way as other currency names,
2528 // do not need to do currency choice parsing here.
2529 // the general currency parsing parse against all names,
2530 // including names in choice format.
2531 UBool intl = i<affixPat.length() &&
2532 affixPat.char32At(i) == kCurrencySign;
2533 if (intl) {
2534 ++i;
2535 }
2536 UBool plural = i<affixPat.length() &&
2537 affixPat.char32At(i) == kCurrencySign;
2538 if (plural) {
2539 ++i;
2540 intl = FALSE;
2541 }
2542 // Parse generic currency -- anything for which we
2543 // have a display name, or any 3-letter ISO code.
2544 // Try to parse display name for our locale; first
2545 // determine our locale.
2546 const char* loc = fCurrencyPluralInfo->getLocale().getName();
2547 ParsePosition ppos(pos);
2548 UChar curr[4];
2549 UErrorCode ec = U_ZERO_ERROR;
2550 // Delegate parse of display name => ISO code to Currency
2551 uprv_parseCurrency(loc, text, ppos, type, curr, ec);
2552
2553 // If parse succeeds, populate currency[0]
2554 if (U_SUCCESS(ec) && ppos.getIndex() != pos) {
2555 if (currency) {
2556 u_strcpy(currency, curr);
2557 } else {
2558 // The formatter is currency-style but the client has not requested
2559 // the value of the parsed currency. In this case, if that value does
2560 // not match the formatter's current value, then the parse fails.
2561 UChar effectiveCurr[4];
2562 getEffectiveCurrency(effectiveCurr, ec);
2563 if ( U_FAILURE(ec) || u_strncmp(curr,effectiveCurr,4) != 0 ) {
2564 pos = -1;
2565 continue;
2566 }
2567 }
2568 pos = ppos.getIndex();
2569 } else if (!isLenient()){
2570 pos = -1;
2571 }
2572 continue;
2573 }
2574 case kPatternPercent:
2575 affix = &getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
2576 break;
2577 case kPatternPerMill:
2578 affix = &getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
2579 break;
2580 case kPatternPlus:
2581 affix = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
2582 break;
2583 case kPatternMinus:
2584 affix = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
2585 break;
2586 default:
2587 // fall through to affix!=0 test, which will fail
2588 break;
2589 }
2590
2591 if (affix != NULL) {
2592 pos = match(text, pos, *affix);
2593 continue;
2594 }
2595 }
2596
2597 pos = match(text, pos, c);
2598 if (PatternProps::isWhiteSpace(c)) {
2599 i = skipPatternWhiteSpace(affixPat, i);
2600 }
2601 }
2602 return pos - start;
2603 }
2604
2605 /**
2606 * Match a single character at text[pos] and return the index of the
2607 * next character upon success. Return -1 on failure. If
2608 * ch is a Pattern_White_Space then match a run of white space in text.
2609 */
2610 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) {
2611 if (PatternProps::isWhiteSpace(ch)) {
2612 // Advance over run of white space in input text
2613 // Must see at least one white space char in input
2614 int32_t s = pos;
2615 pos = skipPatternWhiteSpace(text, pos);
2616 if (pos == s) {
2617 return -1;
2618 }
2619 return pos;
2620 }
2621 return (pos >= 0 && text.char32At(pos) == ch) ?
2622 (pos + U16_LENGTH(ch)) : -1;
2623 }
2624
2625 /**
2626 * Match a string at text[pos] and return the index of the next
2627 * character upon success. Return -1 on failure. Match a run of
2628 * white space in str with a run of white space in text.
2629 */
2630 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, const UnicodeString& str) {
2631 for (int32_t i=0; i<str.length() && pos >= 0; ) {
2632 UChar32 ch = str.char32At(i);
2633 i += U16_LENGTH(ch);
2634 if (PatternProps::isWhiteSpace(ch)) {
2635 i = skipPatternWhiteSpace(str, i);
2636 }
2637 pos = match(text, pos, ch);
2638 }
2639 return pos;
2640 }
2641
2642 UBool DecimalFormat::matchSymbol(const UnicodeString &text, int32_t position, int32_t length, const UnicodeString &symbol,
2643 UnicodeSet *sset, UChar32 schar)
2644 {
2645 if (sset != NULL) {
2646 return sset->contains(schar);
2647 }
2648
2649 return text.compare(position, length, symbol) == 0;
2650 }
2651
2652 UBool DecimalFormat::matchDecimal(UChar32 symbolChar,
2653 UBool sawDecimal, UChar32 sawDecimalChar,
2654 const UnicodeSet *sset, UChar32 schar) {
2655 if(sawDecimal) {
2656 return schar==sawDecimalChar;
2657 } else if(schar==symbolChar) {
2658 return TRUE;
2659 } else if(sset!=NULL) {
2660 return sset->contains(schar);
2661 } else {
2662 return FALSE;
2663 }
2664 }
2665
2666 UBool DecimalFormat::matchGrouping(UChar32 groupingChar,
2667 UBool sawGrouping, UChar32 sawGroupingChar,
2668 const UnicodeSet *sset,
2669 UChar32 /*decimalChar*/, const UnicodeSet *decimalSet,
2670 UChar32 schar) {
2671 if(sawGrouping) {
2672 return schar==sawGroupingChar; // previously found
2673 } else if(schar==groupingChar) {
2674 return TRUE; // char from symbols
2675 } else if(sset!=NULL) {
2676 return sset->contains(schar) && // in groupingSet but...
2677 ((decimalSet==NULL) || !decimalSet->contains(schar)); // Exclude decimalSet from groupingSet
2678 } else {
2679 return FALSE;
2680 }
2681 }
2682
2683
2684
2685 //------------------------------------------------------------------------------
2686 // Gets the pointer to the localized decimal format symbols
2687
2688 const DecimalFormatSymbols*
2689 DecimalFormat::getDecimalFormatSymbols() const
2690 {
2691 return fSymbols;
2692 }
2693
2694 //------------------------------------------------------------------------------
2695 // De-owning the current localized symbols and adopt the new symbols.
2696
2697 void
2698 DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt)
2699 {
2700 if (symbolsToAdopt == NULL) {
2701 return; // do not allow caller to set fSymbols to NULL
2702 }
2703
2704 UBool sameSymbols = FALSE;
2705 if (fSymbols != NULL) {
2706 sameSymbols = (UBool)(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) ==
2707 symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) &&
2708 getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) ==
2709 symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
2710 delete fSymbols;
2711 }
2712
2713 fSymbols = symbolsToAdopt;
2714 if (!sameSymbols) {
2715 // If the currency symbols are the same, there is no need to recalculate.
2716 setCurrencyForSymbols();
2717 }
2718 expandAffixes(NULL);
2719 }
2720 //------------------------------------------------------------------------------
2721 // Setting the symbols is equlivalent to adopting a newly created localized
2722 // symbols.
2723
2724 void
2725 DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols)
2726 {
2727 adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols));
2728 }
2729
2730
2731 const CurrencyPluralInfo*
2732 DecimalFormat::getCurrencyPluralInfo(void) const
2733 {
2734 return fCurrencyPluralInfo;
2735 }
2736
2737
2738 void
2739 DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt)
2740 {
2741 if (toAdopt != NULL) {
2742 delete fCurrencyPluralInfo;
2743 fCurrencyPluralInfo = toAdopt;
2744 // re-set currency affix patterns and currency affixes.
2745 if (fCurrencySignCount > fgCurrencySignCountZero) {
2746 UErrorCode status = U_ZERO_ERROR;
2747 if (fAffixPatternsForCurrency) {
2748 deleteHashForAffixPattern();
2749 }
2750 setupCurrencyAffixPatterns(status);
2751 if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
2752 // only setup the affixes of the plural pattern.
2753 setupCurrencyAffixes(fFormatPattern, FALSE, TRUE, status);
2754 }
2755 }
2756 }
2757 }
2758
2759 void
2760 DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info)
2761 {
2762 adoptCurrencyPluralInfo(info.clone());
2763 }
2764
2765
2766 /**
2767 * Update the currency object to match the symbols. This method
2768 * is used only when the caller has passed in a symbols object
2769 * that may not be the default object for its locale.
2770 */
2771 void
2772 DecimalFormat::setCurrencyForSymbols() {
2773 /*Bug 4212072
2774 Update the affix strings accroding to symbols in order to keep
2775 the affix strings up to date.
2776 [Richard/GCL]
2777 */
2778
2779 // With the introduction of the Currency object, the currency
2780 // symbols in the DFS object are ignored. For backward
2781 // compatibility, we check any explicitly set DFS object. If it
2782 // is a default symbols object for its locale, we change the
2783 // currency object to one for that locale. If it is custom,
2784 // we set the currency to null.
2785 UErrorCode ec = U_ZERO_ERROR;
2786 const UChar* c = NULL;
2787 const char* loc = fSymbols->getLocale().getName();
2788 UChar intlCurrencySymbol[4];
2789 ucurr_forLocale(loc, intlCurrencySymbol, 4, &ec);
2790 UnicodeString currencySymbol;
2791
2792 uprv_getStaticCurrencyName(intlCurrencySymbol, loc, currencySymbol, ec);
2793 if (U_SUCCESS(ec)
2794 && getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) == currencySymbol
2795 && getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) == UnicodeString(intlCurrencySymbol))
2796 {
2797 // Trap an error in mapping locale to currency. If we can't
2798 // map, then don't fail and set the currency to "".
2799 c = intlCurrencySymbol;
2800 }
2801 ec = U_ZERO_ERROR; // reset local error code!
2802 setCurrencyInternally(c, ec);
2803 }
2804
2805
2806 //------------------------------------------------------------------------------
2807 // Gets the positive prefix of the number pattern.
2808
2809 UnicodeString&
2810 DecimalFormat::getPositivePrefix(UnicodeString& result) const
2811 {
2812 result = fPositivePrefix;
2813 return result;
2814 }
2815
2816 //------------------------------------------------------------------------------
2817 // Sets the positive prefix of the number pattern.
2818
2819 void
2820 DecimalFormat::setPositivePrefix(const UnicodeString& newValue)
2821 {
2822 fPositivePrefix = newValue;
2823 delete fPosPrefixPattern;
2824 fPosPrefixPattern = 0;
2825 }
2826
2827 //------------------------------------------------------------------------------
2828 // Gets the negative prefix of the number pattern.
2829
2830 UnicodeString&
2831 DecimalFormat::getNegativePrefix(UnicodeString& result) const
2832 {
2833 result = fNegativePrefix;
2834 return result;
2835 }
2836
2837 //------------------------------------------------------------------------------
2838 // Gets the negative prefix of the number pattern.
2839
2840 void
2841 DecimalFormat::setNegativePrefix(const UnicodeString& newValue)
2842 {
2843 fNegativePrefix = newValue;
2844 delete fNegPrefixPattern;
2845 fNegPrefixPattern = 0;
2846 }
2847
2848 //------------------------------------------------------------------------------
2849 // Gets the positive suffix of the number pattern.
2850
2851 UnicodeString&
2852 DecimalFormat::getPositiveSuffix(UnicodeString& result) const
2853 {
2854 result = fPositiveSuffix;
2855 return result;
2856 }
2857
2858 //------------------------------------------------------------------------------
2859 // Sets the positive suffix of the number pattern.
2860
2861 void
2862 DecimalFormat::setPositiveSuffix(const UnicodeString& newValue)
2863 {
2864 fPositiveSuffix = newValue;
2865 delete fPosSuffixPattern;
2866 fPosSuffixPattern = 0;
2867 }
2868
2869 //------------------------------------------------------------------------------
2870 // Gets the negative suffix of the number pattern.
2871
2872 UnicodeString&
2873 DecimalFormat::getNegativeSuffix(UnicodeString& result) const
2874 {
2875 result = fNegativeSuffix;
2876 return result;
2877 }
2878
2879 //------------------------------------------------------------------------------
2880 // Sets the negative suffix of the number pattern.
2881
2882 void
2883 DecimalFormat::setNegativeSuffix(const UnicodeString& newValue)
2884 {
2885 fNegativeSuffix = newValue;
2886 delete fNegSuffixPattern;
2887 fNegSuffixPattern = 0;
2888 }
2889
2890 //------------------------------------------------------------------------------
2891 // Gets the multiplier of the number pattern.
2892 // Multipliers are stored as decimal numbers (DigitLists) because that
2893 // is the most convenient for muliplying or dividing the numbers to be formatted.
2894 // A NULL multiplier implies one, and the scaling operations are skipped.
2895
2896 int32_t
2897 DecimalFormat::getMultiplier() const
2898 {
2899 if (fMultiplier == NULL) {
2900 return 1;
2901 } else {
2902 return fMultiplier->getLong();
2903 }
2904 }
2905
2906 //------------------------------------------------------------------------------
2907 // Sets the multiplier of the number pattern.
2908 void
2909 DecimalFormat::setMultiplier(int32_t newValue)
2910 {
2911 // if (newValue == 0) {
2912 // throw new IllegalArgumentException("Bad multiplier: " + newValue);
2913 // }
2914 if (newValue == 0) {
2915 newValue = 1; // one being the benign default value for a multiplier.
2916 }
2917 if (newValue == 1) {
2918 delete fMultiplier;
2919 fMultiplier = NULL;
2920 } else {
2921 if (fMultiplier == NULL) {
2922 fMultiplier = new DigitList;
2923 }
2924 if (fMultiplier != NULL) {
2925 fMultiplier->set(newValue);
2926 }
2927 }
2928 }
2929
2930 /**
2931 * Get the rounding increment.
2932 * @return A positive rounding increment, or 0.0 if rounding
2933 * is not in effect.
2934 * @see #setRoundingIncrement
2935 * @see #getRoundingMode
2936 * @see #setRoundingMode
2937 */
2938 double DecimalFormat::getRoundingIncrement() const {
2939 if (fRoundingIncrement == NULL) {
2940 return 0.0;
2941 } else {
2942 return fRoundingIncrement->getDouble();
2943 }
2944 }
2945
2946 /**
2947 * Set the rounding increment. This method also controls whether
2948 * rounding is enabled.
2949 * @param newValue A positive rounding increment, or 0.0 to disable rounding.
2950 * Negative increments are equivalent to 0.0.
2951 * @see #getRoundingIncrement
2952 * @see #getRoundingMode
2953 * @see #setRoundingMode
2954 */
2955 void DecimalFormat::setRoundingIncrement(double newValue) {
2956 if (newValue > 0.0) {
2957 if (fRoundingIncrement == NULL) {
2958 fRoundingIncrement = new DigitList();
2959 }
2960 if (fRoundingIncrement != NULL) {
2961 fRoundingIncrement->set(newValue);
2962 return;
2963 }
2964 }
2965 // These statements are executed if newValue is less than 0.0
2966 // or fRoundingIncrement could not be created.
2967 delete fRoundingIncrement;
2968 fRoundingIncrement = NULL;
2969 }
2970
2971 /**
2972 * Get the rounding mode.
2973 * @return A rounding mode
2974 * @see #setRoundingIncrement
2975 * @see #getRoundingIncrement
2976 * @see #setRoundingMode
2977 */
2978 DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() const {
2979 return fRoundingMode;
2980 }
2981
2982 /**
2983 * Set the rounding mode. This has no effect unless the rounding
2984 * increment is greater than zero.
2985 * @param roundingMode A rounding mode
2986 * @see #setRoundingIncrement
2987 * @see #getRoundingIncrement
2988 * @see #getRoundingMode
2989 */
2990 void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
2991 fRoundingMode = roundingMode;
2992 }
2993
2994 /**
2995 * Get the width to which the output of <code>format()</code> is padded.
2996 * @return the format width, or zero if no padding is in effect
2997 * @see #setFormatWidth
2998 * @see #getPadCharacter
2999 * @see #setPadCharacter
3000 * @see #getPadPosition
3001 * @see #setPadPosition
3002 */
3003 int32_t DecimalFormat::getFormatWidth() const {
3004 return fFormatWidth;
3005 }
3006
3007 /**
3008 * Set the width to which the output of <code>format()</code> is padded.
3009 * This method also controls whether padding is enabled.
3010 * @param width the width to which to pad the result of
3011 * <code>format()</code>, or zero to disable padding. A negative
3012 * width is equivalent to 0.
3013 * @see #getFormatWidth
3014 * @see #getPadCharacter
3015 * @see #setPadCharacter
3016 * @see #getPadPosition
3017 * @see #setPadPosition
3018 */
3019 void DecimalFormat::setFormatWidth(int32_t width) {
3020 fFormatWidth = (width > 0) ? width : 0;
3021 }
3022
3023 UnicodeString DecimalFormat::getPadCharacterString() const {
3024 return UnicodeString(fPad);
3025 }
3026
3027 void DecimalFormat::setPadCharacter(const UnicodeString &padChar) {
3028 if (padChar.length() > 0) {
3029 fPad = padChar.char32At(0);
3030 }
3031 else {
3032 fPad = kDefaultPad;
3033 }
3034 }
3035
3036 /**
3037 * Get the position at which padding will take place. This is the location
3038 * at which padding will be inserted if the result of <code>format()</code>
3039 * is shorter than the format width.
3040 * @return the pad position, one of <code>kPadBeforePrefix</code>,
3041 * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
3042 * <code>kPadAfterSuffix</code>.
3043 * @see #setFormatWidth
3044 * @see #getFormatWidth
3045 * @see #setPadCharacter
3046 * @see #getPadCharacter
3047 * @see #setPadPosition
3048 * @see #kPadBeforePrefix
3049 * @see #kPadAfterPrefix
3050 * @see #kPadBeforeSuffix
3051 * @see #kPadAfterSuffix
3052 */
3053 DecimalFormat::EPadPosition DecimalFormat::getPadPosition() const {
3054 return fPadPosition;
3055 }
3056
3057 /**
3058 * <strong><font face=helvetica color=red>NEW</font></strong>
3059 * Set the position at which padding will take place. This is the location
3060 * at which padding will be inserted if the result of <code>format()</code>
3061 * is shorter than the format width. This has no effect unless padding is
3062 * enabled.
3063 * @param padPos the pad position, one of <code>kPadBeforePrefix</code>,
3064 * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
3065 * <code>kPadAfterSuffix</code>.
3066 * @see #setFormatWidth
3067 * @see #getFormatWidth
3068 * @see #setPadCharacter
3069 * @see #getPadCharacter
3070 * @see #getPadPosition
3071 * @see #kPadBeforePrefix
3072 * @see #kPadAfterPrefix
3073 * @see #kPadBeforeSuffix
3074 * @see #kPadAfterSuffix
3075 */
3076 void DecimalFormat::setPadPosition(EPadPosition padPos) {
3077 fPadPosition = padPos;
3078 }
3079
3080 /**
3081 * Return whether or not scientific notation is used.
3082 * @return TRUE if this object formats and parses scientific notation
3083 * @see #setScientificNotation
3084 * @see #getMinimumExponentDigits
3085 * @see #setMinimumExponentDigits
3086 * @see #isExponentSignAlwaysShown
3087 * @see #setExponentSignAlwaysShown
3088 */
3089 UBool DecimalFormat::isScientificNotation() {
3090 return fUseExponentialNotation;
3091 }
3092
3093 /**
3094 * Set whether or not scientific notation is used.
3095 * @param useScientific TRUE if this object formats and parses scientific
3096 * notation
3097 * @see #isScientificNotation
3098 * @see #getMinimumExponentDigits
3099 * @see #setMinimumExponentDigits
3100 * @see #isExponentSignAlwaysShown
3101 * @see #setExponentSignAlwaysShown
3102 */
3103 void DecimalFormat::setScientificNotation(UBool useScientific) {
3104 fUseExponentialNotation = useScientific;
3105 }
3106
3107 /**
3108 * Return the minimum exponent digits that will be shown.
3109 * @return the minimum exponent digits that will be shown
3110 * @see #setScientificNotation
3111 * @see #isScientificNotation
3112 * @see #setMinimumExponentDigits
3113 * @see #isExponentSignAlwaysShown
3114 * @see #setExponentSignAlwaysShown
3115 */
3116 int8_t DecimalFormat::getMinimumExponentDigits() const {
3117 return fMinExponentDigits;
3118 }
3119
3120 /**
3121 * Set the minimum exponent digits that will be shown. This has no
3122 * effect unless scientific notation is in use.
3123 * @param minExpDig a value >= 1 indicating the fewest exponent digits
3124 * that will be shown. Values less than 1 will be treated as 1.
3125 * @see #setScientificNotation
3126 * @see #isScientificNotation
3127 * @see #getMinimumExponentDigits
3128 * @see #isExponentSignAlwaysShown
3129 * @see #setExponentSignAlwaysShown
3130 */
3131 void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
3132 fMinExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1);
3133 }
3134
3135 /**
3136 * Return whether the exponent sign is always shown.
3137 * @return TRUE if the exponent is always prefixed with either the
3138 * localized minus sign or the localized plus sign, false if only negative
3139 * exponents are prefixed with the localized minus sign.
3140 * @see #setScientificNotation
3141 * @see #isScientificNotation
3142 * @see #setMinimumExponentDigits
3143 * @see #getMinimumExponentDigits
3144 * @see #setExponentSignAlwaysShown
3145 */
3146 UBool DecimalFormat::isExponentSignAlwaysShown() {
3147 return fExponentSignAlwaysShown;
3148 }
3149
3150 /**
3151 * Set whether the exponent sign is always shown. This has no effect
3152 * unless scientific notation is in use.
3153 * @param expSignAlways TRUE if the exponent is always prefixed with either
3154 * the localized minus sign or the localized plus sign, false if only
3155 * negative exponents are prefixed with the localized minus sign.
3156 * @see #setScientificNotation
3157 * @see #isScientificNotation
3158 * @see #setMinimumExponentDigits
3159 * @see #getMinimumExponentDigits
3160 * @see #isExponentSignAlwaysShown
3161 */
3162 void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
3163 fExponentSignAlwaysShown = expSignAlways;
3164 }
3165
3166 //------------------------------------------------------------------------------
3167 // Gets the grouping size of the number pattern. For example, thousand or 10
3168 // thousand groupings.
3169
3170 int32_t
3171 DecimalFormat::getGroupingSize() const
3172 {
3173 return fGroupingSize;
3174 }
3175
3176 //------------------------------------------------------------------------------
3177 // Gets the grouping size of the number pattern.
3178
3179 void
3180 DecimalFormat::setGroupingSize(int32_t newValue)
3181 {
3182 fGroupingSize = newValue;
3183 }
3184
3185 //------------------------------------------------------------------------------
3186
3187 int32_t
3188 DecimalFormat::getSecondaryGroupingSize() const
3189 {
3190 return fGroupingSize2;
3191 }
3192
3193 //------------------------------------------------------------------------------
3194
3195 void
3196 DecimalFormat::setSecondaryGroupingSize(int32_t newValue)
3197 {
3198 fGroupingSize2 = newValue;
3199 }
3200
3201 //------------------------------------------------------------------------------
3202 // Checks if to show the decimal separator.
3203
3204 UBool
3205 DecimalFormat::isDecimalSeparatorAlwaysShown() const
3206 {
3207 return fDecimalSeparatorAlwaysShown;
3208 }
3209
3210 //------------------------------------------------------------------------------
3211 // Sets to always show the decimal separator.
3212
3213 void
3214 DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue)
3215 {
3216 fDecimalSeparatorAlwaysShown = newValue;
3217 }
3218
3219 //------------------------------------------------------------------------------
3220 // Emits the pattern of this DecimalFormat instance.
3221
3222 UnicodeString&
3223 DecimalFormat::toPattern(UnicodeString& result) const
3224 {
3225 return toPattern(result, FALSE);
3226 }
3227
3228 //------------------------------------------------------------------------------
3229 // Emits the localized pattern this DecimalFormat instance.
3230
3231 UnicodeString&
3232 DecimalFormat::toLocalizedPattern(UnicodeString& result) const
3233 {
3234 return toPattern(result, TRUE);
3235 }
3236
3237 //------------------------------------------------------------------------------
3238 /**
3239 * Expand the affix pattern strings into the expanded affix strings. If any
3240 * affix pattern string is null, do not expand it. This method should be
3241 * called any time the symbols or the affix patterns change in order to keep
3242 * the expanded affix strings up to date.
3243 * This method also will be called before formatting if format currency
3244 * plural names, since the plural name is not a static one, it is
3245 * based on the currency plural count, the affix will be known only
3246 * after the currency plural count is know.
3247 * In which case, the parameter
3248 * 'pluralCount' will be a non-null currency plural count.
3249 * In all other cases, the 'pluralCount' is null, which means it is not needed.
3250 */
3251 void DecimalFormat::expandAffixes(const UnicodeString* pluralCount) {
3252 FieldPositionHandler none;
3253 if (fPosPrefixPattern != 0) {
3254 expandAffix(*fPosPrefixPattern, fPositivePrefix, 0, none, FALSE, pluralCount);
3255 }
3256 if (fPosSuffixPattern != 0) {
3257 expandAffix(*fPosSuffixPattern, fPositiveSuffix, 0, none, FALSE, pluralCount);
3258 }
3259 if (fNegPrefixPattern != 0) {
3260 expandAffix(*fNegPrefixPattern, fNegativePrefix, 0, none, FALSE, pluralCount);
3261 }
3262 if (fNegSuffixPattern != 0) {
3263 expandAffix(*fNegSuffixPattern, fNegativeSuffix, 0, none, FALSE, pluralCount);
3264 }
3265 #ifdef FMT_DEBUG
3266 UnicodeString s;
3267 s.append("[")
3268 .append(*fPosPrefixPattern).append("|").append(*fPosSuffixPattern)
3269 .append(";") .append(*fNegPrefixPattern).append("|").append(*fNegSuffixPattern)
3270 .append("]->[")
3271 .append(fPositivePrefix).append("|").append(fPositiveSuffix)
3272 .append(";") .append(fNegativePrefix).append("|").append(fNegativeSuffix)
3273 .append("]\n");
3274 debugout(s);
3275 #endif
3276 }
3277
3278 /**
3279 * Expand an affix pattern into an affix string. All characters in the
3280 * pattern are literal unless prefixed by kQuote. The following characters
3281 * after kQuote are recognized: PATTERN_PERCENT, PATTERN_PER_MILLE,
3282 * PATTERN_MINUS, and kCurrencySign. If kCurrencySign is doubled (kQuote +
3283 * kCurrencySign + kCurrencySign), it is interpreted as an international
3284 * currency sign. If CURRENCY_SIGN is tripled, it is interpreted as
3285 * currency plural long names, such as "US Dollars".
3286 * Any other character after a kQuote represents itself.
3287 * kQuote must be followed by another character; kQuote may not occur by
3288 * itself at the end of the pattern.
3289 *
3290 * This method is used in two distinct ways. First, it is used to expand
3291 * the stored affix patterns into actual affixes. For this usage, doFormat
3292 * must be false. Second, it is used to expand the stored affix patterns
3293 * given a specific number (doFormat == true), for those rare cases in
3294 * which a currency format references a ChoiceFormat (e.g., en_IN display
3295 * name for INR). The number itself is taken from digitList.
3296 *
3297 * When used in the first way, this method has a side effect: It sets
3298 * currencyChoice to a ChoiceFormat object, if the currency's display name
3299 * in this locale is a ChoiceFormat pattern (very rare). It only does this
3300 * if currencyChoice is null to start with.
3301 *
3302 * @param pattern the non-null, fPossibly empty pattern
3303 * @param affix string to receive the expanded equivalent of pattern.
3304 * Previous contents are deleted.
3305 * @param doFormat if false, then the pattern will be expanded, and if a
3306 * currency symbol is encountered that expands to a ChoiceFormat, the
3307 * currencyChoice member variable will be initialized if it is null. If
3308 * doFormat is true, then it is assumed that the currencyChoice has been
3309 * created, and it will be used to format the value in digitList.
3310 * @param pluralCount the plural count. It is only used for currency
3311 * plural format. In which case, it is the plural
3312 * count of the currency amount. For example,
3313 * in en_US, it is the singular "one", or the plural
3314 * "other". For all other cases, it is null, and
3315 * is not being used.
3316 */
3317 void DecimalFormat::expandAffix(const UnicodeString& pattern,
3318 UnicodeString& affix,
3319 double number,
3320 FieldPositionHandler& handler,
3321 UBool doFormat,
3322 const UnicodeString* pluralCount) const {
3323 affix.remove();
3324 for (int i=0; i<pattern.length(); ) {
3325 UChar32 c = pattern.char32At(i);
3326 i += U16_LENGTH(c);
3327 if (c == kQuote) {
3328 c = pattern.char32At(i);
3329 i += U16_LENGTH(c);
3330 int beginIdx = affix.length();
3331 switch (c) {
3332 case kCurrencySign: {
3333 // As of ICU 2.2 we use the currency object, and
3334 // ignore the currency symbols in the DFS, unless
3335 // we have a null currency object. This occurs if
3336 // resurrecting a pre-2.2 object or if the user
3337 // sets a custom DFS.
3338 UBool intl = i<pattern.length() &&
3339 pattern.char32At(i) == kCurrencySign;
3340 UBool plural = FALSE;
3341 if (intl) {
3342 ++i;
3343 plural = i<pattern.length() &&
3344 pattern.char32At(i) == kCurrencySign;
3345 if (plural) {
3346 intl = FALSE;
3347 ++i;
3348 }
3349 }
3350 const UChar* currencyUChars = getCurrency();
3351 if (currencyUChars[0] != 0) {
3352 UErrorCode ec = U_ZERO_ERROR;
3353 if (plural && pluralCount != NULL) {
3354 // plural name is only needed when pluralCount != null,
3355 // which means when formatting currency plural names.
3356 // For other cases, pluralCount == null,
3357 // and plural names are not needed.
3358 int32_t len;
3359 CharString pluralCountChar;
3360 pluralCountChar.appendInvariantChars(*pluralCount, ec);
3361 UBool isChoiceFormat;
3362 const UChar* s = ucurr_getPluralName(currencyUChars,
3363 fSymbols != NULL ? fSymbols->getLocale().getName() :
3364 Locale::getDefault().getName(), &isChoiceFormat,
3365 pluralCountChar.data(), &len, &ec);
3366 affix += UnicodeString(s, len);
3367 handler.addAttribute(kCurrencyField, beginIdx, affix.length());
3368 } else if(intl) {
3369 affix.append(currencyUChars, -1);
3370 handler.addAttribute(kCurrencyField, beginIdx, affix.length());
3371 } else {
3372 int32_t len;
3373 UBool isChoiceFormat;
3374 // If fSymbols is NULL, use default locale
3375 const UChar* s = ucurr_getName(currencyUChars,
3376 fSymbols != NULL ? fSymbols->getLocale().getName() : Locale::getDefault().getName(),
3377 UCURR_SYMBOL_NAME, &isChoiceFormat, &len, &ec);
3378 if (isChoiceFormat) {
3379 // Two modes here: If doFormat is false, we set up
3380 // currencyChoice. If doFormat is true, we use the
3381 // previously created currencyChoice to format the
3382 // value in digitList.
3383 if (!doFormat) {
3384 // If the currency is handled by a ChoiceFormat,
3385 // then we're not going to use the expanded
3386 // patterns. Instantiate the ChoiceFormat and
3387 // return.
3388 if (fCurrencyChoice == NULL) {
3389 // TODO Replace double-check with proper thread-safe code
3390 ChoiceFormat* fmt = new ChoiceFormat(UnicodeString(s), ec);
3391 if (U_SUCCESS(ec)) {
3392 umtx_lock(NULL);
3393 if (fCurrencyChoice == NULL) {
3394 // Cast away const
3395 ((DecimalFormat*)this)->fCurrencyChoice = fmt;
3396 fmt = NULL;
3397 }
3398 umtx_unlock(NULL);
3399 delete fmt;
3400 }
3401 }
3402 // We could almost return null or "" here, since the
3403 // expanded affixes are almost not used at all
3404 // in this situation. However, one method --
3405 // toPattern() -- still does use the expanded
3406 // affixes, in order to set up a padding
3407 // pattern. We use the CURRENCY_SIGN as a
3408 // placeholder.
3409 affix.append(kCurrencySign);
3410 } else {
3411 if (fCurrencyChoice != NULL) {
3412 FieldPosition pos(0); // ignored
3413 if (number < 0) {
3414 number = -number;
3415 }
3416 fCurrencyChoice->format(number, affix, pos);
3417 } else {
3418 // We only arrive here if the currency choice
3419 // format in the locale data is INVALID.
3420 affix.append(currencyUChars, -1);
3421 handler.addAttribute(kCurrencyField, beginIdx, affix.length());
3422 }
3423 }
3424 continue;
3425 }
3426 affix += UnicodeString(s, len);
3427 handler.addAttribute(kCurrencyField, beginIdx, affix.length());
3428 }
3429 } else {
3430 if(intl) {
3431 affix += getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
3432 } else {
3433 affix += getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
3434 }
3435 handler.addAttribute(kCurrencyField, beginIdx, affix.length());
3436 }
3437 break;
3438 }
3439 case kPatternPercent:
3440 affix += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
3441 handler.addAttribute(kPercentField, beginIdx, affix.length());
3442 break;
3443 case kPatternPerMill:
3444 affix += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
3445 handler.addAttribute(kPermillField, beginIdx, affix.length());
3446 break;
3447 case kPatternPlus:
3448 affix += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
3449 handler.addAttribute(kSignField, beginIdx, affix.length());
3450 break;
3451 case kPatternMinus:
3452 affix += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
3453 handler.addAttribute(kSignField, beginIdx, affix.length());
3454 break;
3455 default:
3456 affix.append(c);
3457 break;
3458 }
3459 }
3460 else {
3461 affix.append(c);
3462 }
3463 }
3464 }
3465
3466 /**
3467 * Append an affix to the given StringBuffer.
3468 * @param buf buffer to append to
3469 * @param isNegative
3470 * @param isPrefix
3471 */
3472 int32_t DecimalFormat::appendAffix(UnicodeString& buf, double number,
3473 FieldPositionHandler& handler,
3474 UBool isNegative, UBool isPrefix) const {
3475 // plural format precedes choice format
3476 if (fCurrencyChoice != 0 &&
3477 fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
3478 const UnicodeString* affixPat;
3479 if (isPrefix) {
3480 affixPat = isNegative ? fNegPrefixPattern : fPosPrefixPattern;
3481 } else {
3482 affixPat = isNegative ? fNegSuffixPattern : fPosSuffixPattern;
3483 }
3484 if (affixPat) {
3485 UnicodeString affixBuf;
3486 expandAffix(*affixPat, affixBuf, number, handler, TRUE, NULL);
3487 buf.append(affixBuf);
3488 return affixBuf.length();
3489 }
3490 // else someone called a function that reset the pattern.
3491 }
3492
3493 const UnicodeString* affix;
3494 if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
3495 UnicodeString pluralCount = fCurrencyPluralInfo->getPluralRules()->select(number);
3496 AffixesForCurrency* oneSet;
3497 if (fStyle == UNUM_CURRENCY_PLURAL) {
3498 oneSet = (AffixesForCurrency*)fPluralAffixesForCurrency->get(pluralCount);
3499 } else {
3500 oneSet = (AffixesForCurrency*)fAffixesForCurrency->get(pluralCount);
3501 }
3502 if (isPrefix) {
3503 affix = isNegative ? &oneSet->negPrefixForCurrency :
3504 &oneSet->posPrefixForCurrency;
3505 } else {
3506 affix = isNegative ? &oneSet->negSuffixForCurrency :
3507 &oneSet->posSuffixForCurrency;
3508 }
3509 } else {
3510 if (isPrefix) {
3511 affix = isNegative ? &fNegativePrefix : &fPositivePrefix;
3512 } else {
3513 affix = isNegative ? &fNegativeSuffix : &fPositiveSuffix;
3514 }
3515 }
3516
3517 int32_t begin = (int) buf.length();
3518
3519 buf.append(*affix);
3520
3521 if (handler.isRecording()) {
3522 int32_t offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol));
3523 if (offset > -1) {
3524 UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
3525 handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
3526 }
3527
3528 offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
3529 if (offset > -1) {
3530 UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
3531 handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
3532 }
3533
3534 offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
3535 if (offset > -1) {
3536 UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
3537 handler.addAttribute(kSignField, begin + offset, begin + offset + aff.length());
3538 }
3539
3540 offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
3541 if (offset > -1) {
3542 UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
3543 handler.addAttribute(kPercentField, begin + offset, begin + offset + aff.length());
3544 }
3545
3546 offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
3547 if (offset > -1) {
3548 UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
3549 handler.addAttribute(kPermillField, begin + offset, begin + offset + aff.length());
3550 }
3551 }
3552 return affix->length();
3553 }
3554
3555 /**
3556 * Appends an affix pattern to the given StringBuffer, quoting special
3557 * characters as needed. Uses the internal affix pattern, if that exists,
3558 * or the literal affix, if the internal affix pattern is null. The
3559 * appended string will generate the same affix pattern (or literal affix)
3560 * when passed to toPattern().
3561 *
3562 * @param appendTo the affix string is appended to this
3563 * @param affixPattern a pattern such as fPosPrefixPattern; may be null
3564 * @param expAffix a corresponding expanded affix, such as fPositivePrefix.
3565 * Ignored unless affixPattern is null. If affixPattern is null, then
3566 * expAffix is appended as a literal affix.
3567 * @param localized true if the appended pattern should contain localized
3568 * pattern characters; otherwise, non-localized pattern chars are appended
3569 */
3570 void DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
3571 const UnicodeString* affixPattern,
3572 const UnicodeString& expAffix,
3573 UBool localized) const {
3574 if (affixPattern == 0) {
3575 appendAffixPattern(appendTo, expAffix, localized);
3576 } else {
3577 int i;
3578 for (int pos=0; pos<affixPattern->length(); pos=i) {
3579 i = affixPattern->indexOf(kQuote, pos);
3580 if (i < 0) {
3581 UnicodeString s;
3582 affixPattern->extractBetween(pos, affixPattern->length(), s);
3583 appendAffixPattern(appendTo, s, localized);
3584 break;
3585 }
3586 if (i > pos) {
3587 UnicodeString s;
3588 affixPattern->extractBetween(pos, i, s);
3589 appendAffixPattern(appendTo, s, localized);
3590 }
3591 UChar32 c = affixPattern->char32At(++i);
3592 ++i;
3593 if (c == kQuote) {
3594 appendTo.append(c).append(c);
3595 // Fall through and append another kQuote below
3596 } else if (c == kCurrencySign &&
3597 i<affixPattern->length() &&
3598 affixPattern->char32At(i) == kCurrencySign) {
3599 ++i;
3600 appendTo.append(c).append(c);
3601 } else if (localized) {
3602 switch (c) {
3603 case kPatternPercent:
3604 appendTo += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
3605 break;
3606 case kPatternPerMill:
3607 appendTo += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
3608 break;
3609 case kPatternPlus:
3610 appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
3611 break;
3612 case kPatternMinus:
3613 appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
3614 break;
3615 default:
3616 appendTo.append(c);
3617 }
3618 } else {
3619 appendTo.append(c);
3620 }
3621 }
3622 }
3623 }
3624
3625 /**
3626 * Append an affix to the given StringBuffer, using quotes if
3627 * there are special characters. Single quotes themselves must be
3628 * escaped in either case.
3629 */
3630 void
3631 DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
3632 const UnicodeString& affix,
3633 UBool localized) const {
3634 UBool needQuote;
3635 if(localized) {
3636 needQuote = affix.indexOf(getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol)) >= 0
3637 || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol)) >= 0
3638 || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol)) >= 0
3639 || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol)) >= 0
3640 || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol)) >= 0
3641 || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDigitSymbol)) >= 0
3642 || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol)) >= 0
3643 || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol)) >= 0
3644 || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) >= 0
3645 || affix.indexOf(kCurrencySign) >= 0;
3646 }
3647 else {
3648 needQuote = affix.indexOf(kPatternZeroDigit) >= 0
3649 || affix.indexOf(kPatternGroupingSeparator) >= 0
3650 || affix.indexOf(kPatternDecimalSeparator) >= 0
3651 || affix.indexOf(kPatternPercent) >= 0
3652 || affix.indexOf(kPatternPerMill) >= 0
3653 || affix.indexOf(kPatternDigit) >= 0
3654 || affix.indexOf(kPatternSeparator) >= 0
3655 || affix.indexOf(kPatternExponent) >= 0
3656 || affix.indexOf(kPatternPlus) >= 0
3657 || affix.indexOf(kPatternMinus) >= 0
3658 || affix.indexOf(kCurrencySign) >= 0;
3659 }
3660 if (needQuote)
3661 appendTo += (UChar)0x0027 /*'\''*/;
3662 if (affix.indexOf((UChar)0x0027 /*'\''*/) < 0)
3663 appendTo += affix;
3664 else {
3665 for (int32_t j = 0; j < affix.length(); ) {
3666 UChar32 c = affix.char32At(j);
3667 j += U16_LENGTH(c);
3668 appendTo += c;
3669 if (c == 0x0027 /*'\''*/)
3670 appendTo += c;
3671 }
3672 }
3673 if (needQuote)
3674 appendTo += (UChar)0x0027 /*'\''*/;
3675 }
3676
3677 //------------------------------------------------------------------------------
3678
3679 UnicodeString&
3680 DecimalFormat::toPattern(UnicodeString& result, UBool localized) const
3681 {
3682 if (fStyle == UNUM_CURRENCY_PLURAL) {
3683 // the prefix or suffix pattern might not be defined yet,
3684 // so they can not be synthesized,
3685 // instead, get them directly.
3686 // but it might not be the actual pattern used in formatting.
3687 // the actual pattern used in formatting depends on the
3688 // formatted number's plural count.
3689 result = fFormatPattern;
3690 return result;
3691 }
3692 result.remove();
3693 UChar32 zero, sigDigit = kPatternSignificantDigit;
3694 UnicodeString digit, group;
3695 int32_t i;
3696 int32_t roundingDecimalPos = 0; // Pos of decimal in roundingDigits
3697 UnicodeString roundingDigits;
3698 int32_t padPos = (fFormatWidth > 0) ? fPadPosition : -1;
3699 UnicodeString padSpec;
3700 UBool useSigDig = areSignificantDigitsUsed();
3701
3702 if (localized) {
3703 digit.append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
3704 group.append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
3705 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
3706 if (useSigDig) {
3707 sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
3708 }
3709 }
3710 else {
3711 digit.append((UChar)kPatternDigit);
3712 group.append((UChar)kPatternGroupingSeparator);
3713 zero = (UChar32)kPatternZeroDigit;
3714 }
3715 if (fFormatWidth > 0) {
3716 if (localized) {
3717 padSpec.append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
3718 }
3719 else {
3720 padSpec.append((UChar)kPatternPadEscape);
3721 }
3722 padSpec.append(fPad);
3723 }
3724 if (fRoundingIncrement != NULL) {
3725 for(i=0; i<fRoundingIncrement->getCount(); ++i) {
3726 roundingDigits.append(zero+(fRoundingIncrement->getDigitValue(i))); // Convert to Unicode digit
3727 }
3728 roundingDecimalPos = fRoundingIncrement->getDecimalAt();
3729 }
3730 for (int32_t part=0; part<2; ++part) {
3731 if (padPos == kPadBeforePrefix) {
3732 result.append(padSpec);
3733 }
3734 appendAffixPattern(result,
3735 (part==0 ? fPosPrefixPattern : fNegPrefixPattern),
3736 (part==0 ? fPositivePrefix : fNegativePrefix),
3737 localized);
3738 if (padPos == kPadAfterPrefix && ! padSpec.isEmpty()) {
3739 result.append(padSpec);
3740 }
3741 int32_t sub0Start = result.length();
3742 int32_t g = isGroupingUsed() ? _max(0, fGroupingSize) : 0;
3743 if (g > 0 && fGroupingSize2 > 0 && fGroupingSize2 != fGroupingSize) {
3744 g += fGroupingSize2;
3745 }
3746 int32_t maxDig = 0, minDig = 0, maxSigDig = 0;
3747 if (useSigDig) {
3748 minDig = getMinimumSignificantDigits();
3749 maxDig = maxSigDig = getMaximumSignificantDigits();
3750 } else {
3751 minDig = getMinimumIntegerDigits();
3752 maxDig = getMaximumIntegerDigits();
3753 }
3754 if (fUseExponentialNotation) {
3755 if (maxDig > kMaxScientificIntegerDigits) {
3756 maxDig = 1;
3757 }
3758 } else if (useSigDig) {
3759 maxDig = _max(maxDig, g+1);
3760 } else {
3761 maxDig = _max(_max(g, getMinimumIntegerDigits()),
3762 roundingDecimalPos) + 1;
3763 }
3764 for (i = maxDig; i > 0; --i) {
3765 if (!fUseExponentialNotation && i<maxDig &&
3766 isGroupingPosition(i)) {
3767 result.append(group);
3768 }
3769 if (useSigDig) {
3770 // #@,@### (maxSigDig == 5, minSigDig == 2)
3771 // 65 4321 (1-based pos, count from the right)
3772 // Use # if pos > maxSigDig or 1 <= pos <= (maxSigDig - minSigDig)
3773 // Use @ if (maxSigDig - minSigDig) < pos <= maxSigDig
3774 if (maxSigDig >= i && i > (maxSigDig - minDig)) {
3775 result.append(sigDigit);
3776 } else {
3777 result.append(digit);
3778 }
3779 } else {
3780 if (! roundingDigits.isEmpty()) {
3781 int32_t pos = roundingDecimalPos - i;
3782 if (pos >= 0 && pos < roundingDigits.length()) {
3783 result.append((UChar) (roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
3784 continue;
3785 }
3786 }
3787 if (i<=minDig) {
3788 result.append(zero);
3789 } else {
3790 result.append(digit);
3791 }
3792 }
3793 }
3794 if (!useSigDig) {
3795 if (getMaximumFractionDigits() > 0 || fDecimalSeparatorAlwaysShown) {
3796 if (localized) {
3797 result += getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
3798 }
3799 else {
3800 result.append((UChar)kPatternDecimalSeparator);
3801 }
3802 }
3803 int32_t pos = roundingDecimalPos;
3804 for (i = 0; i < getMaximumFractionDigits(); ++i) {
3805 if (! roundingDigits.isEmpty() && pos < roundingDigits.length()) {
3806 if (pos < 0) {
3807 result.append(zero);
3808 }
3809 else {
3810 result.append((UChar)(roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
3811 }
3812 ++pos;
3813 continue;
3814 }
3815 if (i<getMinimumFractionDigits()) {
3816 result.append(zero);
3817 }
3818 else {
3819 result.append(digit);
3820 }
3821 }
3822 }
3823 if (fUseExponentialNotation) {
3824 if (localized) {
3825 result += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
3826 }
3827 else {
3828 result.append((UChar)kPatternExponent);
3829 }
3830 if (fExponentSignAlwaysShown) {
3831 if (localized) {
3832 result += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
3833 }
3834 else {
3835 result.append((UChar)kPatternPlus);
3836 }
3837 }
3838 for (i=0; i<fMinExponentDigits; ++i) {
3839 result.append(zero);
3840 }
3841 }
3842 if (! padSpec.isEmpty() && !fUseExponentialNotation) {
3843 int32_t add = fFormatWidth - result.length() + sub0Start
3844 - ((part == 0)
3845 ? fPositivePrefix.length() + fPositiveSuffix.length()
3846 : fNegativePrefix.length() + fNegativeSuffix.length());
3847 while (add > 0) {
3848 result.insert(sub0Start, digit);
3849 ++maxDig;
3850 --add;
3851 // Only add a grouping separator if we have at least
3852 // 2 additional characters to be added, so we don't
3853 // end up with ",###".
3854 if (add>1 && isGroupingPosition(maxDig)) {
3855 result.insert(sub0Start, group);
3856 --add;
3857 }
3858 }
3859 }
3860 if (fPadPosition == kPadBeforeSuffix && ! padSpec.isEmpty()) {
3861 result.append(padSpec);
3862 }
3863 if (part == 0) {
3864 appendAffixPattern(result, fPosSuffixPattern, fPositiveSuffix, localized);
3865 if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
3866 result.append(padSpec);
3867 }
3868 UBool isDefault = FALSE;
3869 if ((fNegSuffixPattern == fPosSuffixPattern && // both null
3870 fNegativeSuffix == fPositiveSuffix)
3871 || (fNegSuffixPattern != 0 && fPosSuffixPattern != 0 &&
3872 *fNegSuffixPattern == *fPosSuffixPattern))
3873 {
3874 if (fNegPrefixPattern != NULL && fPosPrefixPattern != NULL)
3875 {
3876 int32_t length = fPosPrefixPattern->length();
3877 isDefault = fNegPrefixPattern->length() == (length+2) &&
3878 (*fNegPrefixPattern)[(int32_t)0] == kQuote &&
3879 (*fNegPrefixPattern)[(int32_t)1] == kPatternMinus &&
3880 fNegPrefixPattern->compare(2, length, *fPosPrefixPattern, 0, length) == 0;
3881 }
3882 if (!isDefault &&
3883 fNegPrefixPattern == NULL && fPosPrefixPattern == NULL)
3884 {
3885 int32_t length = fPositivePrefix.length();
3886 isDefault = fNegativePrefix.length() == (length+1) &&
3887 fNegativePrefix.compare(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) == 0 &&
3888 fNegativePrefix.compare(1, length, fPositivePrefix, 0, length) == 0;
3889 }
3890 }
3891 if (isDefault) {
3892 break; // Don't output default negative subpattern
3893 } else {
3894 if (localized) {
3895 result += getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol);
3896 }
3897 else {
3898 result.append((UChar)kPatternSeparator);
3899 }
3900 }
3901 } else {
3902 appendAffixPattern(result, fNegSuffixPattern, fNegativeSuffix, localized);
3903 if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
3904 result.append(padSpec);
3905 }
3906 }
3907 }
3908
3909 return result;
3910 }
3911
3912 //------------------------------------------------------------------------------
3913
3914 void
3915 DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
3916 {
3917 UParseError parseError;
3918 applyPattern(pattern, FALSE, parseError, status);
3919 }
3920
3921 //------------------------------------------------------------------------------
3922
3923 void
3924 DecimalFormat::applyPattern(const UnicodeString& pattern,
3925 UParseError& parseError,
3926 UErrorCode& status)
3927 {
3928 applyPattern(pattern, FALSE, parseError, status);
3929 }
3930 //------------------------------------------------------------------------------
3931
3932 void
3933 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
3934 {
3935 UParseError parseError;
3936 applyPattern(pattern, TRUE,parseError,status);
3937 }
3938
3939 //------------------------------------------------------------------------------
3940
3941 void
3942 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
3943 UParseError& parseError,
3944 UErrorCode& status)
3945 {
3946 applyPattern(pattern, TRUE,parseError,status);
3947 }
3948
3949 //------------------------------------------------------------------------------
3950
3951 void
3952 DecimalFormat::applyPatternWithoutExpandAffix(const UnicodeString& pattern,
3953 UBool localized,
3954 UParseError& parseError,
3955 UErrorCode& status)
3956 {
3957 if (U_FAILURE(status))
3958 {
3959 return;
3960 }
3961 // Clear error struct
3962 parseError.offset = -1;
3963 parseError.preContext[0] = parseError.postContext[0] = (UChar)0;
3964
3965 // Set the significant pattern symbols
3966 UChar32 zeroDigit = kPatternZeroDigit; // '0'
3967 UChar32 sigDigit = kPatternSignificantDigit; // '@'
3968 UnicodeString groupingSeparator ((UChar)kPatternGroupingSeparator);
3969 UnicodeString decimalSeparator ((UChar)kPatternDecimalSeparator);
3970 UnicodeString percent ((UChar)kPatternPercent);
3971 UnicodeString perMill ((UChar)kPatternPerMill);
3972 UnicodeString digit ((UChar)kPatternDigit); // '#'
3973 UnicodeString separator ((UChar)kPatternSeparator);
3974 UnicodeString exponent ((UChar)kPatternExponent);
3975 UnicodeString plus ((UChar)kPatternPlus);
3976 UnicodeString minus ((UChar)kPatternMinus);
3977 UnicodeString padEscape ((UChar)kPatternPadEscape);
3978 // Substitute with the localized symbols if necessary
3979 if (localized) {
3980 zeroDigit = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
3981 sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
3982 groupingSeparator. remove().append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
3983 decimalSeparator. remove().append(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol));
3984 percent. remove().append(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
3985 perMill. remove().append(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
3986 digit. remove().append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
3987 separator. remove().append(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol));
3988 exponent. remove().append(getConstSymbol(DecimalFormatSymbols::kExponentialSymbol));
3989 plus. remove().append(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol));
3990 minus. remove().append(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
3991 padEscape. remove().append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
3992 }
3993 UChar nineDigit = (UChar)(zeroDigit + 9);
3994 int32_t digitLen = digit.length();
3995 int32_t groupSepLen = groupingSeparator.length();
3996 int32_t decimalSepLen = decimalSeparator.length();
3997
3998 int32_t pos = 0;
3999 int32_t patLen = pattern.length();
4000 // Part 0 is the positive pattern. Part 1, if present, is the negative
4001 // pattern.
4002 for (int32_t part=0; part<2 && pos<patLen; ++part) {
4003 // The subpart ranges from 0 to 4: 0=pattern proper, 1=prefix,
4004 // 2=suffix, 3=prefix in quote, 4=suffix in quote. Subpart 0 is
4005 // between the prefix and suffix, and consists of pattern
4006 // characters. In the prefix and suffix, percent, perMill, and
4007 // currency symbols are recognized and translated.
4008 int32_t subpart = 1, sub0Start = 0, sub0Limit = 0, sub2Limit = 0;
4009
4010 // It's important that we don't change any fields of this object
4011 // prematurely. We set the following variables for the multiplier,
4012 // grouping, etc., and then only change the actual object fields if
4013 // everything parses correctly. This also lets us register
4014 // the data from part 0 and ignore the part 1, except for the
4015 // prefix and suffix.
4016 UnicodeString prefix;
4017 UnicodeString suffix;
4018 int32_t decimalPos = -1;
4019 int32_t multiplier = 1;
4020 int32_t digitLeftCount = 0, zeroDigitCount = 0, digitRightCount = 0, sigDigitCount = 0;
4021 int8_t groupingCount = -1;
4022 int8_t groupingCount2 = -1;
4023 int32_t padPos = -1;
4024 UChar32 padChar = 0;
4025 int32_t roundingPos = -1;
4026 DigitList roundingInc;
4027 int8_t expDigits = -1;
4028 UBool expSignAlways = FALSE;
4029
4030 // The affix is either the prefix or the suffix.
4031 UnicodeString* affix = &prefix;
4032
4033 int32_t start = pos;
4034 UBool isPartDone = FALSE;
4035 UChar32 ch;
4036
4037 for (; !isPartDone && pos < patLen; ) {
4038 // Todo: account for surrogate pairs
4039 ch = pattern.char32At(pos);
4040 switch (subpart) {
4041 case 0: // Pattern proper subpart (between prefix & suffix)
4042 // Process the digits, decimal, and grouping characters. We
4043 // record five pieces of information. We expect the digits
4044 // to occur in the pattern ####00.00####, and we record the
4045 // number of left digits, zero (central) digits, and right
4046 // digits. The position of the last grouping character is
4047 // recorded (should be somewhere within the first two blocks
4048 // of characters), as is the position of the decimal point,
4049 // if any (should be in the zero digits). If there is no
4050 // decimal point, then there should be no right digits.
4051 if (pattern.compare(pos, digitLen, digit) == 0) {
4052 if (zeroDigitCount > 0 || sigDigitCount > 0) {
4053 ++digitRightCount;
4054 } else {
4055 ++digitLeftCount;
4056 }
4057 if (groupingCount >= 0 && decimalPos < 0) {
4058 ++groupingCount;
4059 }
4060 pos += digitLen;
4061 } else if ((ch >= zeroDigit && ch <= nineDigit) ||
4062 ch == sigDigit) {
4063 if (digitRightCount > 0) {
4064 // Unexpected '0'
4065 debug("Unexpected '0'")
4066 status = U_UNEXPECTED_TOKEN;
4067 syntaxError(pattern,pos,parseError);
4068 return;
4069 }
4070 if (ch == sigDigit) {
4071 ++sigDigitCount;
4072 } else {
4073 if (ch != zeroDigit && roundingPos < 0) {
4074 roundingPos = digitLeftCount + zeroDigitCount;
4075 }
4076 if (roundingPos >= 0) {
4077 roundingInc.append((char)(ch - zeroDigit + '0'));
4078 }
4079 ++zeroDigitCount;
4080 }
4081 if (groupingCount >= 0 && decimalPos < 0) {
4082 ++groupingCount;
4083 }
4084 pos += U16_LENGTH(ch);
4085 } else if (pattern.compare(pos, groupSepLen, groupingSeparator) == 0) {
4086 if (decimalPos >= 0) {
4087 // Grouping separator after decimal
4088 debug("Grouping separator after decimal")
4089 status = U_UNEXPECTED_TOKEN;
4090 syntaxError(pattern,pos,parseError);
4091 return;
4092 }
4093 groupingCount2 = groupingCount;
4094 groupingCount = 0;
4095 pos += groupSepLen;
4096 } else if (pattern.compare(pos, decimalSepLen, decimalSeparator) == 0) {
4097 if (decimalPos >= 0) {
4098 // Multiple decimal separators
4099 debug("Multiple decimal separators")
4100 status = U_MULTIPLE_DECIMAL_SEPARATORS;
4101 syntaxError(pattern,pos,parseError);
4102 return;
4103 }
4104 // Intentionally incorporate the digitRightCount,
4105 // even though it is illegal for this to be > 0
4106 // at this point. We check pattern syntax below.
4107 decimalPos = digitLeftCount + zeroDigitCount + digitRightCount;
4108 pos += decimalSepLen;
4109 } else {
4110 if (pattern.compare(pos, exponent.length(), exponent) == 0) {
4111 if (expDigits >= 0) {
4112 // Multiple exponential symbols
4113 debug("Multiple exponential symbols")
4114 status = U_MULTIPLE_EXPONENTIAL_SYMBOLS;
4115 syntaxError(pattern,pos,parseError);
4116 return;
4117 }
4118 if (groupingCount >= 0) {
4119 // Grouping separator in exponential pattern
4120 debug("Grouping separator in exponential pattern")
4121 status = U_MALFORMED_EXPONENTIAL_PATTERN;
4122 syntaxError(pattern,pos,parseError);
4123 return;
4124 }
4125 pos += exponent.length();
4126 // Check for positive prefix
4127 if (pos < patLen
4128 && pattern.compare(pos, plus.length(), plus) == 0) {
4129 expSignAlways = TRUE;
4130 pos += plus.length();
4131 }
4132 // Use lookahead to parse out the exponential part of the
4133 // pattern, then jump into suffix subpart.
4134 expDigits = 0;
4135 while (pos < patLen &&
4136 pattern.char32At(pos) == zeroDigit) {
4137 ++expDigits;
4138 pos += U16_LENGTH(zeroDigit);
4139 }
4140
4141 // 1. Require at least one mantissa pattern digit
4142 // 2. Disallow "#+ @" in mantissa
4143 // 3. Require at least one exponent pattern digit
4144 if (((digitLeftCount + zeroDigitCount) < 1 &&
4145 (sigDigitCount + digitRightCount) < 1) ||
4146 (sigDigitCount > 0 && digitLeftCount > 0) ||
4147 expDigits < 1) {
4148 // Malformed exponential pattern
4149 debug("Malformed exponential pattern")
4150 status = U_MALFORMED_EXPONENTIAL_PATTERN;
4151 syntaxError(pattern,pos,parseError);
4152 return;
4153 }
4154 }
4155 // Transition to suffix subpart
4156 subpart = 2; // suffix subpart
4157 affix = &suffix;
4158 sub0Limit = pos;
4159 continue;
4160 }
4161 break;
4162 case 1: // Prefix subpart
4163 case 2: // Suffix subpart
4164 // Process the prefix / suffix characters
4165 // Process unquoted characters seen in prefix or suffix
4166 // subpart.
4167
4168 // Several syntax characters implicitly begins the
4169 // next subpart if we are in the prefix; otherwise
4170 // they are illegal if unquoted.
4171 if (!pattern.compare(pos, digitLen, digit) ||
4172 !pattern.compare(pos, groupSepLen, groupingSeparator) ||
4173 !pattern.compare(pos, decimalSepLen, decimalSeparator) ||
4174 (ch >= zeroDigit && ch <= nineDigit) ||
4175 ch == sigDigit) {
4176 if (subpart == 1) { // prefix subpart
4177 subpart = 0; // pattern proper subpart
4178 sub0Start = pos; // Reprocess this character
4179 continue;
4180 } else {
4181 status = U_UNQUOTED_SPECIAL;
4182 syntaxError(pattern,pos,parseError);
4183 return;
4184 }
4185 } else if (ch == kCurrencySign) {
4186 affix->append(kQuote); // Encode currency
4187 // Use lookahead to determine if the currency sign is
4188 // doubled or not.
4189 U_ASSERT(U16_LENGTH(kCurrencySign) == 1);
4190 if ((pos+1) < pattern.length() && pattern[pos+1] == kCurrencySign) {
4191 affix->append(kCurrencySign);
4192 ++pos; // Skip over the doubled character
4193 if ((pos+1) < pattern.length() &&
4194 pattern[pos+1] == kCurrencySign) {
4195 affix->append(kCurrencySign);
4196 ++pos; // Skip over the doubled character
4197 fCurrencySignCount = fgCurrencySignCountInPluralFormat;
4198 } else {
4199 fCurrencySignCount = fgCurrencySignCountInISOFormat;
4200 }
4201 } else {
4202 fCurrencySignCount = fgCurrencySignCountInSymbolFormat;
4203 }
4204 // Fall through to append(ch)
4205 } else if (ch == kQuote) {
4206 // A quote outside quotes indicates either the opening
4207 // quote or two quotes, which is a quote literal. That is,
4208 // we have the first quote in 'do' or o''clock.
4209 U_ASSERT(U16_LENGTH(kQuote) == 1);
4210 ++pos;
4211 if (pos < pattern.length() && pattern[pos] == kQuote) {
4212 affix->append(kQuote); // Encode quote
4213 // Fall through to append(ch)
4214 } else {
4215 subpart += 2; // open quote
4216 continue;
4217 }
4218 } else if (pattern.compare(pos, separator.length(), separator) == 0) {
4219 // Don't allow separators in the prefix, and don't allow
4220 // separators in the second pattern (part == 1).
4221 if (subpart == 1 || part == 1) {
4222 // Unexpected separator
4223 debug("Unexpected separator")
4224 status = U_UNEXPECTED_TOKEN;
4225 syntaxError(pattern,pos,parseError);
4226 return;
4227 }
4228 sub2Limit = pos;
4229 isPartDone = TRUE; // Go to next part
4230 pos += separator.length();
4231 break;
4232 } else if (pattern.compare(pos, percent.length(), percent) == 0) {
4233 // Next handle characters which are appended directly.
4234 if (multiplier != 1) {
4235 // Too many percent/perMill characters
4236 debug("Too many percent characters")
4237 status = U_MULTIPLE_PERCENT_SYMBOLS;
4238 syntaxError(pattern,pos,parseError);
4239 return;
4240 }
4241 affix->append(kQuote); // Encode percent/perMill
4242 affix->append(kPatternPercent); // Use unlocalized pattern char
4243 multiplier = 100;
4244 pos += percent.length();
4245 break;
4246 } else if (pattern.compare(pos, perMill.length(), perMill) == 0) {
4247 // Next handle characters which are appended directly.
4248 if (multiplier != 1) {
4249 // Too many percent/perMill characters
4250 debug("Too many perMill characters")
4251 status = U_MULTIPLE_PERMILL_SYMBOLS;
4252 syntaxError(pattern,pos,parseError);
4253 return;
4254 }
4255 affix->append(kQuote); // Encode percent/perMill
4256 affix->append(kPatternPerMill); // Use unlocalized pattern char
4257 multiplier = 1000;
4258 pos += perMill.length();
4259 break;
4260 } else if (pattern.compare(pos, padEscape.length(), padEscape) == 0) {
4261 if (padPos >= 0 || // Multiple pad specifiers
4262 (pos+1) == pattern.length()) { // Nothing after padEscape
4263 debug("Multiple pad specifiers")
4264 status = U_MULTIPLE_PAD_SPECIFIERS;
4265 syntaxError(pattern,pos,parseError);
4266 return;
4267 }
4268 padPos = pos;
4269 pos += padEscape.length();
4270 padChar = pattern.char32At(pos);
4271 pos += U16_LENGTH(padChar);
4272 break;
4273 } else if (pattern.compare(pos, minus.length(), minus) == 0) {
4274 affix->append(kQuote); // Encode minus
4275 affix->append(kPatternMinus);
4276 pos += minus.length();
4277 break;
4278 } else if (pattern.compare(pos, plus.length(), plus) == 0) {
4279 affix->append(kQuote); // Encode plus
4280 affix->append(kPatternPlus);
4281 pos += plus.length();
4282 break;
4283 }
4284 // Unquoted, non-special characters fall through to here, as
4285 // well as other code which needs to append something to the
4286 // affix.
4287 affix->append(ch);
4288 pos += U16_LENGTH(ch);
4289 break;
4290 case 3: // Prefix subpart, in quote
4291 case 4: // Suffix subpart, in quote
4292 // A quote within quotes indicates either the closing
4293 // quote or two quotes, which is a quote literal. That is,
4294 // we have the second quote in 'do' or 'don''t'.
4295 if (ch == kQuote) {
4296 ++pos;
4297 if (pos < pattern.length() && pattern[pos] == kQuote) {
4298 affix->append(kQuote); // Encode quote
4299 // Fall through to append(ch)
4300 } else {
4301 subpart -= 2; // close quote
4302 continue;
4303 }
4304 }
4305 affix->append(ch);
4306 pos += U16_LENGTH(ch);
4307 break;
4308 }
4309 }
4310
4311 if (sub0Limit == 0) {
4312 sub0Limit = pattern.length();
4313 }
4314
4315 if (sub2Limit == 0) {
4316 sub2Limit = pattern.length();
4317 }
4318
4319 /* Handle patterns with no '0' pattern character. These patterns
4320 * are legal, but must be recodified to make sense. "##.###" ->
4321 * "#0.###". ".###" -> ".0##".
4322 *
4323 * We allow patterns of the form "####" to produce a zeroDigitCount
4324 * of zero (got that?); although this seems like it might make it
4325 * possible for format() to produce empty strings, format() checks
4326 * for this condition and outputs a zero digit in this situation.
4327 * Having a zeroDigitCount of zero yields a minimum integer digits
4328 * of zero, which allows proper round-trip patterns. We don't want
4329 * "#" to become "#0" when toPattern() is called (even though that's
4330 * what it really is, semantically).
4331 */
4332 if (zeroDigitCount == 0 && sigDigitCount == 0 &&
4333 digitLeftCount > 0 && decimalPos >= 0) {
4334 // Handle "###.###" and "###." and ".###"
4335 int n = decimalPos;
4336 if (n == 0)
4337 ++n; // Handle ".###"
4338 digitRightCount = digitLeftCount - n;
4339 digitLeftCount = n - 1;
4340 zeroDigitCount = 1;
4341 }
4342
4343 // Do syntax checking on the digits, decimal points, and quotes.
4344 if ((decimalPos < 0 && digitRightCount > 0 && sigDigitCount == 0) ||
4345 (decimalPos >= 0 &&
4346 (sigDigitCount > 0 ||
4347 decimalPos < digitLeftCount ||
4348 decimalPos > (digitLeftCount + zeroDigitCount))) ||
4349 groupingCount == 0 || groupingCount2 == 0 ||
4350 (sigDigitCount > 0 && zeroDigitCount > 0) ||
4351 subpart > 2)
4352 { // subpart > 2 == unmatched quote
4353 debug("Syntax error")
4354 status = U_PATTERN_SYNTAX_ERROR;
4355 syntaxError(pattern,pos,parseError);
4356 return;
4357 }
4358
4359 // Make sure pad is at legal position before or after affix.
4360 if (padPos >= 0) {
4361 if (padPos == start) {
4362 padPos = kPadBeforePrefix;
4363 } else if (padPos+2 == sub0Start) {
4364 padPos = kPadAfterPrefix;
4365 } else if (padPos == sub0Limit) {
4366 padPos = kPadBeforeSuffix;
4367 } else if (padPos+2 == sub2Limit) {
4368 padPos = kPadAfterSuffix;
4369 } else {
4370 // Illegal pad position
4371 debug("Illegal pad position")
4372 status = U_ILLEGAL_PAD_POSITION;
4373 syntaxError(pattern,pos,parseError);
4374 return;
4375 }
4376 }
4377
4378 if (part == 0) {
4379 delete fPosPrefixPattern;
4380 delete fPosSuffixPattern;
4381 delete fNegPrefixPattern;
4382 delete fNegSuffixPattern;
4383 fPosPrefixPattern = new UnicodeString(prefix);
4384 /* test for NULL */
4385 if (fPosPrefixPattern == 0) {
4386 status = U_MEMORY_ALLOCATION_ERROR;
4387 return;
4388 }
4389 fPosSuffixPattern = new UnicodeString(suffix);
4390 /* test for NULL */
4391 if (fPosSuffixPattern == 0) {
4392 status = U_MEMORY_ALLOCATION_ERROR;
4393 delete fPosPrefixPattern;
4394 return;
4395 }
4396 fNegPrefixPattern = 0;
4397 fNegSuffixPattern = 0;
4398
4399 fUseExponentialNotation = (expDigits >= 0);
4400 if (fUseExponentialNotation) {
4401 fMinExponentDigits = expDigits;
4402 }
4403 fExponentSignAlwaysShown = expSignAlways;
4404 int32_t digitTotalCount = digitLeftCount + zeroDigitCount + digitRightCount;
4405 // The effectiveDecimalPos is the position the decimal is at or
4406 // would be at if there is no decimal. Note that if
4407 // decimalPos<0, then digitTotalCount == digitLeftCount +
4408 // zeroDigitCount.
4409 int32_t effectiveDecimalPos = decimalPos >= 0 ? decimalPos : digitTotalCount;
4410 UBool isSigDig = (sigDigitCount > 0);
4411 setSignificantDigitsUsed(isSigDig);
4412 if (isSigDig) {
4413 setMinimumSignificantDigits(sigDigitCount);
4414 setMaximumSignificantDigits(sigDigitCount + digitRightCount);
4415 } else {
4416 int32_t minInt = effectiveDecimalPos - digitLeftCount;
4417 setMinimumIntegerDigits(minInt);
4418 setMaximumIntegerDigits(fUseExponentialNotation
4419 ? digitLeftCount + getMinimumIntegerDigits()
4420 : kDoubleIntegerDigits);
4421 setMaximumFractionDigits(decimalPos >= 0
4422 ? (digitTotalCount - decimalPos) : 0);
4423 setMinimumFractionDigits(decimalPos >= 0
4424 ? (digitLeftCount + zeroDigitCount - decimalPos) : 0);
4425 }
4426 setGroupingUsed(groupingCount > 0);
4427 fGroupingSize = (groupingCount > 0) ? groupingCount : 0;
4428 fGroupingSize2 = (groupingCount2 > 0 && groupingCount2 != groupingCount)
4429 ? groupingCount2 : 0;
4430 setMultiplier(multiplier);
4431 setDecimalSeparatorAlwaysShown(decimalPos == 0
4432 || decimalPos == digitTotalCount);
4433 if (padPos >= 0) {
4434 fPadPosition = (EPadPosition) padPos;
4435 // To compute the format width, first set up sub0Limit -
4436 // sub0Start. Add in prefix/suffix length later.
4437
4438 // fFormatWidth = prefix.length() + suffix.length() +
4439 // sub0Limit - sub0Start;
4440 fFormatWidth = sub0Limit - sub0Start;
4441 fPad = padChar;
4442 } else {
4443 fFormatWidth = 0;
4444 }
4445 if (roundingPos >= 0) {
4446 roundingInc.setDecimalAt(effectiveDecimalPos - roundingPos);
4447 if (fRoundingIncrement != NULL) {
4448 *fRoundingIncrement = roundingInc;
4449 } else {
4450 fRoundingIncrement = new DigitList(roundingInc);
4451 /* test for NULL */
4452 if (fRoundingIncrement == NULL) {
4453 status = U_MEMORY_ALLOCATION_ERROR;
4454 delete fPosPrefixPattern;
4455 delete fPosSuffixPattern;
4456 return;
4457 }
4458 }
4459 fRoundingMode = kRoundHalfEven;
4460 } else {
4461 setRoundingIncrement(0.0);
4462 }
4463 } else {
4464 fNegPrefixPattern = new UnicodeString(prefix);
4465 /* test for NULL */
4466 if (fNegPrefixPattern == 0) {
4467 status = U_MEMORY_ALLOCATION_ERROR;
4468 return;
4469 }
4470 fNegSuffixPattern = new UnicodeString(suffix);
4471 /* test for NULL */
4472 if (fNegSuffixPattern == 0) {
4473 delete fNegPrefixPattern;
4474 status = U_MEMORY_ALLOCATION_ERROR;
4475 return;
4476 }
4477 }
4478 }
4479
4480 if (pattern.length() == 0) {
4481 delete fNegPrefixPattern;
4482 delete fNegSuffixPattern;
4483 fNegPrefixPattern = NULL;
4484 fNegSuffixPattern = NULL;
4485 if (fPosPrefixPattern != NULL) {
4486 fPosPrefixPattern->remove();
4487 } else {
4488 fPosPrefixPattern = new UnicodeString();
4489 /* test for NULL */
4490 if (fPosPrefixPattern == 0) {
4491 status = U_MEMORY_ALLOCATION_ERROR;
4492 return;
4493 }
4494 }
4495 if (fPosSuffixPattern != NULL) {
4496 fPosSuffixPattern->remove();
4497 } else {
4498 fPosSuffixPattern = new UnicodeString();
4499 /* test for NULL */
4500 if (fPosSuffixPattern == 0) {
4501 delete fPosPrefixPattern;
4502 status = U_MEMORY_ALLOCATION_ERROR;
4503 return;
4504 }
4505 }
4506
4507 setMinimumIntegerDigits(0);
4508 setMaximumIntegerDigits(kDoubleIntegerDigits);
4509 setMinimumFractionDigits(0);
4510 setMaximumFractionDigits(kDoubleFractionDigits);
4511
4512 fUseExponentialNotation = FALSE;
4513 fCurrencySignCount = 0;
4514 setGroupingUsed(FALSE);
4515 fGroupingSize = 0;
4516 fGroupingSize2 = 0;
4517 setMultiplier(1);
4518 setDecimalSeparatorAlwaysShown(FALSE);
4519 fFormatWidth = 0;
4520 setRoundingIncrement(0.0);
4521 }
4522
4523 // If there was no negative pattern, or if the negative pattern is
4524 // identical to the positive pattern, then prepend the minus sign to the
4525 // positive pattern to form the negative pattern.
4526 if (fNegPrefixPattern == NULL ||
4527 (*fNegPrefixPattern == *fPosPrefixPattern
4528 && *fNegSuffixPattern == *fPosSuffixPattern)) {
4529 _copy_us_ptr(&fNegSuffixPattern, fPosSuffixPattern);
4530 if (fNegPrefixPattern == NULL) {
4531 fNegPrefixPattern = new UnicodeString();
4532 /* test for NULL */
4533 if (fNegPrefixPattern == 0) {
4534 status = U_MEMORY_ALLOCATION_ERROR;
4535 return;
4536 }
4537 } else {
4538 fNegPrefixPattern->remove();
4539 }
4540 fNegPrefixPattern->append(kQuote).append(kPatternMinus)
4541 .append(*fPosPrefixPattern);
4542 }
4543 #ifdef FMT_DEBUG
4544 UnicodeString s;
4545 s.append("\"").append(pattern).append("\"->");
4546 debugout(s);
4547 #endif
4548
4549 // save the pattern
4550 fFormatPattern = pattern;
4551 }
4552
4553
4554 void
4555 DecimalFormat::expandAffixAdjustWidth(const UnicodeString* pluralCount) {
4556 expandAffixes(pluralCount);
4557 if (fFormatWidth > 0) {
4558 // Finish computing format width (see above)
4559 // TODO: how to handle fFormatWidth,
4560 // need to save in f(Plural)AffixesForCurrecy?
4561 fFormatWidth += fPositivePrefix.length() + fPositiveSuffix.length();
4562 }
4563 }
4564
4565
4566 void
4567 DecimalFormat::applyPattern(const UnicodeString& pattern,
4568 UBool localized,
4569 UParseError& parseError,
4570 UErrorCode& status)
4571 {
4572 // do the following re-set first. since they change private data by
4573 // apply pattern again.
4574 if (pattern.indexOf(kCurrencySign) != -1) {
4575 if (fCurrencyPluralInfo == NULL) {
4576 // initialize currencyPluralInfo if needed
4577 fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
4578 }
4579 if (fAffixPatternsForCurrency == NULL) {
4580 setupCurrencyAffixPatterns(status);
4581 }
4582 if (pattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
4583 // only setup the affixes of the current pattern.
4584 setupCurrencyAffixes(pattern, TRUE, FALSE, status);
4585 }
4586 }
4587 applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
4588 expandAffixAdjustWidth(NULL);
4589 }
4590
4591
4592 void
4593 DecimalFormat::applyPatternInternally(const UnicodeString& pluralCount,
4594 const UnicodeString& pattern,
4595 UBool localized,
4596 UParseError& parseError,
4597 UErrorCode& status) {
4598 applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
4599 expandAffixAdjustWidth(&pluralCount);
4600 }
4601
4602
4603 /**
4604 * Sets the maximum number of digits allowed in the integer portion of a
4605 * number. This override limits the integer digit count to 309.
4606 * @see NumberFormat#setMaximumIntegerDigits
4607 */
4608 void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) {
4609 NumberFormat::setMaximumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
4610 }
4611
4612 /**
4613 * Sets the minimum number of digits allowed in the integer portion of a
4614 * number. This override limits the integer digit count to 309.
4615 * @see NumberFormat#setMinimumIntegerDigits
4616 */
4617 void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) {
4618 NumberFormat::setMinimumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
4619 }
4620
4621 /**
4622 * Sets the maximum number of digits allowed in the fraction portion of a
4623 * number. This override limits the fraction digit count to 340.
4624 * @see NumberFormat#setMaximumFractionDigits
4625 */
4626 void DecimalFormat::setMaximumFractionDigits(int32_t newValue) {
4627 NumberFormat::setMaximumFractionDigits(_min(newValue, kDoubleFractionDigits));
4628 }
4629
4630 /**
4631 * Sets the minimum number of digits allowed in the fraction portion of a
4632 * number. This override limits the fraction digit count to 340.
4633 * @see NumberFormat#setMinimumFractionDigits
4634 */
4635 void DecimalFormat::setMinimumFractionDigits(int32_t newValue) {
4636 NumberFormat::setMinimumFractionDigits(_min(newValue, kDoubleFractionDigits));
4637 }
4638
4639 int32_t DecimalFormat::getMinimumSignificantDigits() const {
4640 return fMinSignificantDigits;
4641 }
4642
4643 int32_t DecimalFormat::getMaximumSignificantDigits() const {
4644 return fMaxSignificantDigits;
4645 }
4646
4647 void DecimalFormat::setMinimumSignificantDigits(int32_t min) {
4648 if (min < 1) {
4649 min = 1;
4650 }
4651 // pin max sig dig to >= min
4652 int32_t max = _max(fMaxSignificantDigits, min);
4653 fMinSignificantDigits = min;
4654 fMaxSignificantDigits = max;
4655 }
4656
4657 void DecimalFormat::setMaximumSignificantDigits(int32_t max) {
4658 if (max < 1) {
4659 max = 1;
4660 }
4661 // pin min sig dig to 1..max
4662 U_ASSERT(fMinSignificantDigits >= 1);
4663 int32_t min = _min(fMinSignificantDigits, max);
4664 fMinSignificantDigits = min;
4665 fMaxSignificantDigits = max;
4666 }
4667
4668 UBool DecimalFormat::areSignificantDigitsUsed() const {
4669 return fUseSignificantDigits;
4670 }
4671
4672 void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) {
4673 fUseSignificantDigits = useSignificantDigits;
4674 }
4675
4676 void DecimalFormat::setCurrencyInternally(const UChar* theCurrency,
4677 UErrorCode& ec) {
4678 // If we are a currency format, then modify our affixes to
4679 // encode the currency symbol for the given currency in our
4680 // locale, and adjust the decimal digits and rounding for the
4681 // given currency.
4682
4683 // Note: The code is ordered so that this object is *not changed*
4684 // until we are sure we are going to succeed.
4685
4686 // NULL or empty currency is *legal* and indicates no currency.
4687 UBool isCurr = (theCurrency && *theCurrency);
4688
4689 double rounding = 0.0;
4690 int32_t frac = 0;
4691 if (fCurrencySignCount > fgCurrencySignCountZero && isCurr) {
4692 rounding = ucurr_getRoundingIncrement(theCurrency, &ec);
4693 frac = ucurr_getDefaultFractionDigits(theCurrency, &ec);
4694 }
4695
4696 NumberFormat::setCurrency(theCurrency, ec);
4697 if (U_FAILURE(ec)) return;
4698
4699 if (fCurrencySignCount > fgCurrencySignCountZero) {
4700 // NULL or empty currency is *legal* and indicates no currency.
4701 if (isCurr) {
4702 setRoundingIncrement(rounding);
4703 setMinimumFractionDigits(frac);
4704 setMaximumFractionDigits(frac);
4705 }
4706 expandAffixes(NULL);
4707 }
4708 }
4709
4710 void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) {
4711 // set the currency before compute affixes to get the right currency names
4712 NumberFormat::setCurrency(theCurrency, ec);
4713 if (fFormatPattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
4714 UnicodeString savedPtn = fFormatPattern;
4715 setupCurrencyAffixes(fFormatPattern, TRUE, TRUE, ec);
4716 UParseError parseErr;
4717 applyPattern(savedPtn, FALSE, parseErr, ec);
4718 }
4719 // set the currency after apply pattern to get the correct rounding/fraction
4720 setCurrencyInternally(theCurrency, ec);
4721 }
4722
4723 // Deprecated variant with no UErrorCode parameter
4724 void DecimalFormat::setCurrency(const UChar* theCurrency) {
4725 UErrorCode ec = U_ZERO_ERROR;
4726 setCurrency(theCurrency, ec);
4727 }
4728
4729 void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& ec) const {
4730 if (fSymbols == NULL) {
4731 ec = U_MEMORY_ALLOCATION_ERROR;
4732 return;
4733 }
4734 ec = U_ZERO_ERROR;
4735 const UChar* c = getCurrency();
4736 if (*c == 0) {
4737 const UnicodeString &intl =
4738 fSymbols->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
4739 c = intl.getBuffer(); // ok for intl to go out of scope
4740 }
4741 u_strncpy(result, c, 3);
4742 result[3] = 0;
4743 }
4744
4745 /**
4746 * Return the number of fraction digits to display, or the total
4747 * number of digits for significant digit formats and exponential
4748 * formats.
4749 */
4750 int32_t
4751 DecimalFormat::precision() const {
4752 if (areSignificantDigitsUsed()) {
4753 return getMaximumSignificantDigits();
4754 } else if (fUseExponentialNotation) {
4755 return getMinimumIntegerDigits() + getMaximumFractionDigits();
4756 } else {
4757 return getMaximumFractionDigits();
4758 }
4759 }
4760
4761
4762 // TODO: template algorithm
4763 Hashtable*
4764 DecimalFormat::initHashForAffix(UErrorCode& status) {
4765 if ( U_FAILURE(status) ) {
4766 return NULL;
4767 }
4768 Hashtable* hTable;
4769 if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
4770 status = U_MEMORY_ALLOCATION_ERROR;
4771 return NULL;
4772 }
4773 if ( U_FAILURE(status) ) {
4774 delete hTable;
4775 return NULL;
4776 }
4777 hTable->setValueComparator(decimfmtAffixValueComparator);
4778 return hTable;
4779 }
4780
4781 Hashtable*
4782 DecimalFormat::initHashForAffixPattern(UErrorCode& status) {
4783 if ( U_FAILURE(status) ) {
4784 return NULL;
4785 }
4786 Hashtable* hTable;
4787 if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
4788 status = U_MEMORY_ALLOCATION_ERROR;
4789 return NULL;
4790 }
4791 if ( U_FAILURE(status) ) {
4792 delete hTable;
4793 return NULL;
4794 }
4795 hTable->setValueComparator(decimfmtAffixPatternValueComparator);
4796 return hTable;
4797 }
4798
4799 void
4800 DecimalFormat::deleteHashForAffix(Hashtable*& table)
4801 {
4802 if ( table == NULL ) {
4803 return;
4804 }
4805 int32_t pos = -1;
4806 const UHashElement* element = NULL;
4807 while ( (element = table->nextElement(pos)) != NULL ) {
4808 const UHashTok valueTok = element->value;
4809 const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
4810 delete value;
4811 }
4812 delete table;
4813 table = NULL;
4814 }
4815
4816
4817
4818 void
4819 DecimalFormat::deleteHashForAffixPattern()
4820 {
4821 if ( fAffixPatternsForCurrency == NULL ) {
4822 return;
4823 }
4824 int32_t pos = -1;
4825 const UHashElement* element = NULL;
4826 while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
4827 const UHashTok valueTok = element->value;
4828 const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
4829 delete value;
4830 }
4831 delete fAffixPatternsForCurrency;
4832 fAffixPatternsForCurrency = NULL;
4833 }
4834
4835
4836 void
4837 DecimalFormat::copyHashForAffixPattern(const Hashtable* source,
4838 Hashtable* target,
4839 UErrorCode& status) {
4840 if ( U_FAILURE(status) ) {
4841 return;
4842 }
4843 int32_t pos = -1;
4844 const UHashElement* element = NULL;
4845 if ( source ) {
4846 while ( (element = source->nextElement(pos)) != NULL ) {
4847 const UHashTok keyTok = element->key;
4848 const UnicodeString* key = (UnicodeString*)keyTok.pointer;
4849 const UHashTok valueTok = element->value;
4850 const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
4851 AffixPatternsForCurrency* copy = new AffixPatternsForCurrency(
4852 value->negPrefixPatternForCurrency,
4853 value->negSuffixPatternForCurrency,
4854 value->posPrefixPatternForCurrency,
4855 value->posSuffixPatternForCurrency,
4856 value->patternType);
4857 target->put(UnicodeString(*key), copy, status);
4858 if ( U_FAILURE(status) ) {
4859 return;
4860 }
4861 }
4862 }
4863 }
4864
4865
4866
4867 void
4868 DecimalFormat::copyHashForAffix(const Hashtable* source,
4869 Hashtable* target,
4870 UErrorCode& status) {
4871 if ( U_FAILURE(status) ) {
4872 return;
4873 }
4874 int32_t pos = -1;
4875 const UHashElement* element = NULL;
4876 if ( source ) {
4877 while ( (element = source->nextElement(pos)) != NULL ) {
4878 const UHashTok keyTok = element->key;
4879 const UnicodeString* key = (UnicodeString*)keyTok.pointer;
4880
4881 const UHashTok valueTok = element->value;
4882 const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
4883 AffixesForCurrency* copy = new AffixesForCurrency(
4884 value->negPrefixForCurrency,
4885 value->negSuffixForCurrency,
4886 value->posPrefixForCurrency,
4887 value->posSuffixForCurrency);
4888 target->put(UnicodeString(*key), copy, status);
4889 if ( U_FAILURE(status) ) {
4890 return;
4891 }
4892 }
4893 }
4894 }
4895
4896 U_NAMESPACE_END
4897
4898 #endif /* #if !UCONFIG_NO_FORMATTING */
4899
4900 //eof