2 ********************************************************************************
3 * Copyright (C) 1997-2015, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 ********************************************************************************
9 * Modification History:
11 * Date Name Description
12 * 02/19/97 aliu Converted from java.
13 * 03/20/97 clhuang Updated per C++ implementation.
14 * 04/03/97 aliu Rewrote parsing and formatting completely, and
15 * cleaned up and debugged. Actually works now.
16 * 04/17/97 aliu Changed DigitCount to int per code review.
17 * 07/10/97 helena Made ParsePosition a class and get rid of the function
19 * 09/09/97 aliu Ported over support for exponential formats.
20 * 07/20/98 stephen Changed documentation
21 * 01/30/13 emmons Added Scaling methods
22 ********************************************************************************
28 #include "unicode/utypes.h"
31 * \brief C++ API: Formats decimal numbers.
34 #if !UCONFIG_NO_FORMATTING
36 #include "unicode/dcfmtsym.h"
37 #include "unicode/numfmt.h"
38 #include "unicode/locid.h"
39 #include "unicode/fpositer.h"
40 #include "unicode/stringpiece.h"
41 #include "unicode/curramt.h"
42 #include "unicode/enumset.h"
45 * \def UNUM_DECIMALFORMAT_INTERNAL_SIZE
48 #if UCONFIG_FORMAT_FASTPATHS_49
49 #define UNUM_DECIMALFORMAT_INTERNAL_SIZE 16
56 class CurrencyPluralInfo
;
59 class FieldPositionHandler
;
60 class DecimalFormatStaticSets
;
63 // explicit template instantiation. see digitlst.h
64 #if defined (_MSC_VER)
65 template class U_I18N_API EnumSet
<UNumberFormatAttribute
,
66 UNUM_MAX_NONBOOLEAN_ATTRIBUTE
+1,
67 UNUM_LIMIT_BOOLEAN_ATTRIBUTE
>;
71 * DecimalFormat is a concrete subclass of NumberFormat that formats decimal
72 * numbers. It has a variety of features designed to make it possible to parse
73 * and format numbers in any locale, including support for Western, Arabic, or
74 * Indic digits. It also supports different flavors of numbers, including
75 * integers ("123"), fixed-point numbers ("123.4"), scientific notation
76 * ("1.23E4"), percentages ("12%"), and currency amounts ("$123", "USD123",
77 * "123 US dollars"). All of these flavors can be easily localized.
79 * <p>To obtain a NumberFormat for a specific locale (including the default
80 * locale) call one of NumberFormat's factory methods such as
81 * createInstance(). Do not call the DecimalFormat constructors directly, unless
82 * you know what you are doing, since the NumberFormat factory methods may
83 * return subclasses other than DecimalFormat.
85 * <p><strong>Example Usage</strong>
88 * // Normally we would have a GUI with a menu for this
90 * const Locale* locales = NumberFormat::getAvailableLocales(locCount);
92 * double myNumber = -1234.56;
93 * UErrorCode success = U_ZERO_ERROR;
96 * // Print out a number with the localized number, currency and percent
97 * // format for each locale.
98 * UnicodeString countryName;
99 * UnicodeString displayName;
101 * UnicodeString pattern;
102 * Formattable fmtable;
103 * for (int32_t j = 0; j < 3; ++j) {
104 * cout << endl << "FORMAT " << j << endl;
105 * for (int32_t i = 0; i < locCount; ++i) {
106 * if (locales[i].getCountry(countryName).size() == 0) {
107 * // skip language-only
112 * form = NumberFormat::createInstance(locales[i], success ); break;
114 * form = NumberFormat::createCurrencyInstance(locales[i], success ); break;
116 * form = NumberFormat::createPercentInstance(locales[i], success ); break;
120 * pattern = ((DecimalFormat*)form)->toPattern(pattern);
121 * cout << locales[i].getDisplayName(displayName) << ": " << pattern;
122 * cout << " -> " << form->format(myNumber,str) << endl;
123 * form->parse(form->format(myNumber,str), fmtable, success);
130 * Another example use createInstance(style)
133 * <strong>// Print out a number using the localized number, currency,
134 * // percent, scientific, integer, iso currency, and plural currency
135 * // format for each locale</strong>
136 * Locale* locale = new Locale("en", "US");
137 * double myNumber = 1234.56;
138 * UErrorCode success = U_ZERO_ERROR;
140 * Formattable fmtable;
141 * for (int j=NumberFormat::kNumberStyle;
142 * j<=NumberFormat::kPluralCurrencyStyle;
144 * NumberFormat* format = NumberFormat::createInstance(locale, j, success);
146 * cout << "format result " << form->format(myNumber, str) << endl;
147 * format->parse(form->format(myNumber, str), fmtable, success);
151 * <p><strong>Patterns</strong>
153 * <p>A DecimalFormat consists of a <em>pattern</em> and a set of
154 * <em>symbols</em>. The pattern may be set directly using
155 * applyPattern(), or indirectly using other API methods which
156 * manipulate aspects of the pattern, such as the minimum number of integer
157 * digits. The symbols are stored in a DecimalFormatSymbols
158 * object. When using the NumberFormat factory methods, the
159 * pattern and symbols are read from ICU's locale data.
161 * <p><strong>Special Pattern Characters</strong>
163 * <p>Many characters in a pattern are taken literally; they are matched during
164 * parsing and output unchanged during formatting. Special characters, on the
165 * other hand, stand for other characters, strings, or classes of characters.
166 * For example, the '#' character is replaced by a localized digit. Often the
167 * replacement character is the same as the pattern character; in the U.S. locale,
168 * the ',' grouping character is replaced by ','. However, the replacement is
169 * still happening, and if the symbols are modified, the grouping character
170 * changes. Some special characters affect the behavior of the formatter by
171 * their presence; for example, if the percent character is seen, then the
172 * value is multiplied by 100 before being displayed.
174 * <p>To insert a special character in a pattern as a literal, that is, without
175 * any special meaning, the character must be quoted. There are some exceptions to
176 * this which are noted below.
178 * <p>The characters listed here are used in non-localized patterns. Localized
179 * patterns use the corresponding characters taken from this formatter's
180 * DecimalFormatSymbols object instead, and these characters lose
181 * their special status. Two exceptions are the currency sign and quote, which
184 * <table border=0 cellspacing=3 cellpadding=0>
185 * <tr bgcolor="#ccccff">
186 * <td align=left><strong>Symbol</strong>
187 * <td align=left><strong>Location</strong>
188 * <td align=left><strong>Localized?</strong>
189 * <td align=left><strong>Meaning</strong>
195 * <tr valign=top bgcolor="#eeeeff">
196 * <td><code>1-9</code>
199 * <td>'1' through '9' indicate rounding.
201 * <td><code>\htmlonly@\endhtmlonly</code> <!--doxygen doesn't like @-->
204 * <td>Significant digit
205 * <tr valign=top bgcolor="#eeeeff">
209 * <td>Digit, zero shows as absent
214 * <td>Decimal separator or monetary decimal separator
215 * <tr valign=top bgcolor="#eeeeff">
224 * <td>Grouping separator
225 * <tr valign=top bgcolor="#eeeeff">
229 * <td>Separates mantissa and exponent in scientific notation.
230 * <em>Need not be quoted in prefix or suffix.</em>
235 * <td>Prefix positive exponents with localized plus sign.
236 * <em>Need not be quoted in prefix or suffix.</em>
237 * <tr valign=top bgcolor="#eeeeff">
239 * <td>Subpattern boundary
241 * <td>Separates positive and negative subpatterns
243 * <td><code>\%</code>
244 * <td>Prefix or suffix
246 * <td>Multiply by 100 and show as percentage
247 * <tr valign=top bgcolor="#eeeeff">
248 * <td><code>\\u2030</code>
249 * <td>Prefix or suffix
251 * <td>Multiply by 1000 and show as per mille
253 * <td><code>\htmlonly¤\endhtmlonly</code> (<code>\\u00A4</code>)
254 * <td>Prefix or suffix
256 * <td>Currency sign, replaced by currency symbol. If
257 * doubled, replaced by international currency symbol.
258 * If tripled, replaced by currency plural names, for example,
259 * "US dollar" or "US dollars" for America.
260 * If present in a pattern, the monetary decimal separator
261 * is used instead of the decimal separator.
262 * <tr valign=top bgcolor="#eeeeff">
264 * <td>Prefix or suffix
266 * <td>Used to quote special characters in a prefix or suffix,
267 * for example, <code>"'#'#"</code> formats 123 to
268 * <code>"#123"</code>. To create a single quote
269 * itself, use two in a row: <code>"# o''clock"</code>.
272 * <td>Prefix or suffix boundary
274 * <td>Pad escape, precedes pad character
277 * <p>A DecimalFormat pattern contains a postive and negative
278 * subpattern, for example, "#,##0.00;(#,##0.00)". Each subpattern has a
279 * prefix, a numeric part, and a suffix. If there is no explicit negative
280 * subpattern, the negative subpattern is the localized minus sign prefixed to the
281 * positive subpattern. That is, "0.00" alone is equivalent to "0.00;-0.00". If there
282 * is an explicit negative subpattern, it serves only to specify the negative
283 * prefix and suffix; the number of digits, minimal digits, and other
284 * characteristics are ignored in the negative subpattern. That means that
285 * "#,##0.0#;(#)" has precisely the same result as "#,##0.0#;(#,##0.0#)".
287 * <p>The prefixes, suffixes, and various symbols used for infinity, digits,
288 * thousands separators, decimal separators, etc. may be set to arbitrary
289 * values, and they will appear properly during formatting. However, care must
290 * be taken that the symbols and strings do not conflict, or parsing will be
291 * unreliable. For example, either the positive and negative prefixes or the
292 * suffixes must be distinct for parse() to be able
293 * to distinguish positive from negative values. Another example is that the
294 * decimal separator and thousands separator should be distinct characters, or
295 * parsing will be impossible.
297 * <p>The <em>grouping separator</em> is a character that separates clusters of
298 * integer digits to make large numbers more legible. It commonly used for
299 * thousands, but in some locales it separates ten-thousands. The <em>grouping
300 * size</em> is the number of digits between the grouping separators, such as 3
301 * for "100,000,000" or 4 for "1 0000 0000". There are actually two different
302 * grouping sizes: One used for the least significant integer digits, the
303 * <em>primary grouping size</em>, and one used for all others, the
304 * <em>secondary grouping size</em>. In most locales these are the same, but
305 * sometimes they are different. For example, if the primary grouping interval
306 * is 3, and the secondary is 2, then this corresponds to the pattern
307 * "#,##,##0", and the number 123456789 is formatted as "12,34,56,789". If a
308 * pattern contains multiple grouping separators, the interval between the last
309 * one and the end of the integer defines the primary grouping size, and the
310 * interval between the last two defines the secondary grouping size. All others
311 * are ignored, so "#,##,###,####" == "###,###,####" == "##,#,###,####".
313 * <p>Illegal patterns, such as "#.#.#" or "#.###,###", will cause
314 * DecimalFormat to set a failing UErrorCode.
316 * <p><strong>Pattern BNF</strong>
319 * pattern := subpattern (';' subpattern)?
320 * subpattern := prefix? number exponent? suffix?
321 * number := (integer ('.' fraction)?) | sigDigits
322 * prefix := '\\u0000'..'\\uFFFD' - specialCharacters
323 * suffix := '\\u0000'..'\\uFFFD' - specialCharacters
324 * integer := '#'* '0'* '0'
325 * fraction := '0'* '#'*
326 * sigDigits := '#'* '@' '@'* '#'*
327 * exponent := 'E' '+'? '0'* '0'
328 * padSpec := '*' padChar
329 * padChar := '\\u0000'..'\\uFFFD' - quote
332 * X* 0 or more instances of X
333 * X? 0 or 1 instances of X
335 * C..D any character from C up to D, inclusive
336 * S-T characters in S, except those in T
338 * The first subpattern is for positive numbers. The second (optional)
339 * subpattern is for negative numbers.
341 * <p>Not indicated in the BNF syntax above:
343 * <ul><li>The grouping separator ',' can occur inside the integer and
344 * sigDigits elements, between any two pattern characters of that
345 * element, as long as the integer or sigDigits element is not
346 * followed by the exponent element.
348 * <li>Two grouping intervals are recognized: That between the
349 * decimal point and the first grouping symbol, and that
350 * between the first and second grouping symbols. These
351 * intervals are identical in most locales, but in some
352 * locales they differ. For example, the pattern
353 * "#,##,###" formats the number 123456789 as
354 * "12,34,56,789".</li>
356 * <li>The pad specifier <code>padSpec</code> may appear before the prefix,
357 * after the prefix, before the suffix, after the suffix, or not at all.
359 * <li>In place of '0', the digits '1' through '9' may be used to
360 * indicate a rounding increment.
363 * <p><strong>Parsing</strong>
365 * <p>DecimalFormat parses all Unicode characters that represent
366 * decimal digits, as defined by u_charDigitValue(). In addition,
367 * DecimalFormat also recognizes as digits the ten consecutive
368 * characters starting with the localized zero digit defined in the
369 * DecimalFormatSymbols object. During formatting, the
370 * DecimalFormatSymbols-based digits are output.
372 * <p>During parsing, grouping separators are ignored.
374 * <p>For currency parsing, the formatter is able to parse every currency
375 * style formats no matter which style the formatter is constructed with.
376 * For example, a formatter instance gotten from
377 * NumberFormat.getInstance(ULocale, NumberFormat.CURRENCYSTYLE) can parse
378 * formats such as "USD1.00" and "3.00 US dollars".
380 * <p>If parse(UnicodeString&,Formattable&,ParsePosition&)
381 * fails to parse a string, it leaves the parse position unchanged.
382 * The convenience method parse(UnicodeString&,Formattable&,UErrorCode&)
383 * indicates parse failure by setting a failing
386 * <p><strong>Formatting</strong>
388 * <p>Formatting is guided by several parameters, all of which can be
389 * specified either using a pattern or using the API. The following
390 * description applies to formats that do not use <a href="#sci">scientific
391 * notation</a> or <a href="#sigdig">significant digits</a>.
393 * <ul><li>If the number of actual integer digits exceeds the
394 * <em>maximum integer digits</em>, then only the least significant
395 * digits are shown. For example, 1997 is formatted as "97" if the
396 * maximum integer digits is set to 2.
398 * <li>If the number of actual integer digits is less than the
399 * <em>minimum integer digits</em>, then leading zeros are added. For
400 * example, 1997 is formatted as "01997" if the minimum integer digits
403 * <li>If the number of actual fraction digits exceeds the <em>maximum
404 * fraction digits</em>, then rounding is performed to the
405 * maximum fraction digits. For example, 0.125 is formatted as "0.12"
406 * if the maximum fraction digits is 2. This behavior can be changed
407 * by specifying a rounding increment and/or a rounding mode.
409 * <li>If the number of actual fraction digits is less than the
410 * <em>minimum fraction digits</em>, then trailing zeros are added.
411 * For example, 0.125 is formatted as "0.1250" if the mimimum fraction
412 * digits is set to 4.
414 * <li>Trailing fractional zeros are not displayed if they occur
415 * <em>j</em> positions after the decimal, where <em>j</em> is less
416 * than the maximum fraction digits. For example, 0.10004 is
417 * formatted as "0.1" if the maximum fraction digits is four or less.
420 * <p><strong>Special Values</strong>
422 * <p><code>NaN</code> is represented as a single character, typically
423 * <code>\\uFFFD</code>. This character is determined by the
424 * DecimalFormatSymbols object. This is the only value for which
425 * the prefixes and suffixes are not used.
427 * <p>Infinity is represented as a single character, typically
428 * <code>\\u221E</code>, with the positive or negative prefixes and suffixes
429 * applied. The infinity character is determined by the
430 * DecimalFormatSymbols object.
432 * <a name="sci"><strong>Scientific Notation</strong></a>
434 * <p>Numbers in scientific notation are expressed as the product of a mantissa
435 * and a power of ten, for example, 1234 can be expressed as 1.234 x 10<sup>3</sup>. The
436 * mantissa is typically in the half-open interval [1.0, 10.0) or sometimes [0.0, 1.0),
437 * but it need not be. DecimalFormat supports arbitrary mantissas.
438 * DecimalFormat can be instructed to use scientific
439 * notation through the API or through the pattern. In a pattern, the exponent
440 * character immediately followed by one or more digit characters indicates
441 * scientific notation. Example: "0.###E0" formats the number 1234 as
445 * <li>The number of digit characters after the exponent character gives the
446 * minimum exponent digit count. There is no maximum. Negative exponents are
447 * formatted using the localized minus sign, <em>not</em> the prefix and suffix
448 * from the pattern. This allows patterns such as "0.###E0 m/s". To prefix
449 * positive exponents with a localized plus sign, specify '+' between the
450 * exponent and the digits: "0.###E+0" will produce formats "1E+1", "1E+0",
451 * "1E-1", etc. (In localized patterns, use the localized plus sign rather than
454 * <li>The minimum number of integer digits is achieved by adjusting the
455 * exponent. Example: 0.00123 formatted with "00.###E0" yields "12.3E-4". This
456 * only happens if there is no maximum number of integer digits. If there is a
457 * maximum, then the minimum number of integer digits is fixed at one.
459 * <li>The maximum number of integer digits, if present, specifies the exponent
460 * grouping. The most common use of this is to generate <em>engineering
461 * notation</em>, in which the exponent is a multiple of three, e.g.,
462 * "##0.###E0". The number 12345 is formatted using "##0.####E0" as "12.345E3".
464 * <li>When using scientific notation, the formatter controls the
465 * digit counts using significant digits logic. The maximum number of
466 * significant digits limits the total number of integer and fraction
467 * digits that will be shown in the mantissa; it does not affect
468 * parsing. For example, 12345 formatted with "##0.##E0" is "12.3E3".
469 * See the section on significant digits for more details.
471 * <li>The number of significant digits shown is determined as
472 * follows: If areSignificantDigitsUsed() returns false, then the
473 * minimum number of significant digits shown is one, and the maximum
474 * number of significant digits shown is the sum of the <em>minimum
475 * integer</em> and <em>maximum fraction</em> digits, and is
476 * unaffected by the maximum integer digits. If this sum is zero,
477 * then all significant digits are shown. If
478 * areSignificantDigitsUsed() returns true, then the significant digit
479 * counts are specified by getMinimumSignificantDigits() and
480 * getMaximumSignificantDigits(). In this case, the number of
481 * integer digits is fixed at one, and there is no exponent grouping.
483 * <li>Exponential patterns may not contain grouping separators.
486 * <a name="sigdig"><strong>Significant Digits</strong></a>
488 * <code>DecimalFormat</code> has two ways of controlling how many
489 * digits are shows: (a) significant digits counts, or (b) integer and
490 * fraction digit counts. Integer and fraction digit counts are
491 * described above. When a formatter is using significant digits
492 * counts, the number of integer and fraction digits is not specified
493 * directly, and the formatter settings for these counts are ignored.
494 * Instead, the formatter uses however many integer and fraction
495 * digits are required to display the specified number of significant
498 * <table border=0 cellspacing=3 cellpadding=0>
499 * <tr bgcolor="#ccccff">
500 * <td align=left>Pattern
501 * <td align=left>Minimum significant digits
502 * <td align=left>Maximum significant digits
503 * <td align=left>Number
504 * <td align=left>Output of format()
506 * <td><code>\@\@\@</code>
510 * <td><code>12300</code>
511 * <tr valign=top bgcolor="#eeeeff">
512 * <td><code>\@\@\@</code>
516 * <td><code>0.123</code>
518 * <td><code>\@\@##</code>
522 * <td><code>3.142</code>
523 * <tr valign=top bgcolor="#eeeeff">
524 * <td><code>\@\@##</code>
528 * <td><code>1.23</code>
532 * <li>Significant digit counts may be expressed using patterns that
533 * specify a minimum and maximum number of significant digits. These
534 * are indicated by the <code>'@'</code> and <code>'#'</code>
535 * characters. The minimum number of significant digits is the number
536 * of <code>'@'</code> characters. The maximum number of significant
537 * digits is the number of <code>'@'</code> characters plus the number
538 * of <code>'#'</code> characters following on the right. For
539 * example, the pattern <code>"@@@"</code> indicates exactly 3
540 * significant digits. The pattern <code>"@##"</code> indicates from
541 * 1 to 3 significant digits. Trailing zero digits to the right of
542 * the decimal separator are suppressed after the minimum number of
543 * significant digits have been shown. For example, the pattern
544 * <code>"@##"</code> formats the number 0.1203 as
545 * <code>"0.12"</code>.
547 * <li>If a pattern uses significant digits, it may not contain a
548 * decimal separator, nor the <code>'0'</code> pattern character.
549 * Patterns such as <code>"@00"</code> or <code>"@.###"</code> are
552 * <li>Any number of <code>'#'</code> characters may be prepended to
553 * the left of the leftmost <code>'@'</code> character. These have no
554 * effect on the minimum and maximum significant digits counts, but
555 * may be used to position grouping separators. For example,
556 * <code>"#,#@#"</code> indicates a minimum of one significant digits,
557 * a maximum of two significant digits, and a grouping size of three.
559 * <li>In order to enable significant digits formatting, use a pattern
560 * containing the <code>'@'</code> pattern character. Alternatively,
561 * call setSignificantDigitsUsed(TRUE).
563 * <li>In order to disable significant digits formatting, use a
564 * pattern that does not contain the <code>'@'</code> pattern
565 * character. Alternatively, call setSignificantDigitsUsed(FALSE).
567 * <li>The number of significant digits has no effect on parsing.
569 * <li>Significant digits may be used together with exponential notation. Such
570 * patterns are equivalent to a normal exponential pattern with a minimum and
571 * maximum integer digit count of one, a minimum fraction digit count of
572 * <code>getMinimumSignificantDigits() - 1</code>, and a maximum fraction digit
573 * count of <code>getMaximumSignificantDigits() - 1</code>. For example, the
574 * pattern <code>"@@###E0"</code> is equivalent to <code>"0.0###E0"</code>.
576 * <li>If signficant digits are in use, then the integer and fraction
577 * digit counts, as set via the API, are ignored. If significant
578 * digits are not in use, then the signficant digit counts, as set via
579 * the API, are ignored.
583 * <p><strong>Padding</strong>
585 * <p>DecimalFormat supports padding the result of
586 * format() to a specific width. Padding may be specified either
587 * through the API or through the pattern syntax. In a pattern the pad escape
588 * character, followed by a single pad character, causes padding to be parsed
589 * and formatted. The pad escape character is '*' in unlocalized patterns, and
590 * can be localized using DecimalFormatSymbols::setSymbol() with a
591 * DecimalFormatSymbols::kPadEscapeSymbol
592 * selector. For example, <code>"$*x#,##0.00"</code> formats 123 to
593 * <code>"$xx123.00"</code>, and 1234 to <code>"$1,234.00"</code>.
596 * <li>When padding is in effect, the width of the positive subpattern,
597 * including prefix and suffix, determines the format width. For example, in
598 * the pattern <code>"* #0 o''clock"</code>, the format width is 10.
600 * <li>The width is counted in 16-bit code units (UChars).
602 * <li>Some parameters which usually do not matter have meaning when padding is
603 * used, because the pattern width is significant with padding. In the pattern
604 * "* ##,##,#,##0.##", the format width is 14. The initial characters "##,##,"
605 * do not affect the grouping size or maximum integer digits, but they do affect
608 * <li>Padding may be inserted at one of four locations: before the prefix,
609 * after the prefix, before the suffix, or after the suffix. If padding is
610 * specified in any other location, applyPattern()
611 * sets a failing UErrorCode. If there is no prefix,
612 * before the prefix and after the prefix are equivalent, likewise for the
615 * <li>When specified in a pattern, the 32-bit code point immediately
616 * following the pad escape is the pad character. This may be any character,
617 * including a special pattern character. That is, the pad escape
618 * <em>escapes</em> the following character. If there is no character after
619 * the pad escape, then the pattern is illegal.
623 * <p><strong>Rounding</strong>
625 * <p>DecimalFormat supports rounding to a specific increment. For
626 * example, 1230 rounded to the nearest 50 is 1250. 1.234 rounded to the
627 * nearest 0.65 is 1.3. The rounding increment may be specified through the API
628 * or in a pattern. To specify a rounding increment in a pattern, include the
629 * increment in the pattern itself. "#,#50" specifies a rounding increment of
630 * 50. "#,##0.05" specifies a rounding increment of 0.05.
632 * <p>In the absense of an explicit rounding increment numbers are
633 * rounded to their formatted width.
636 * <li>Rounding only affects the string produced by formatting. It does
637 * not affect parsing or change any numerical values.
639 * <li>A <em>rounding mode</em> determines how values are rounded; see
640 * DecimalFormat::ERoundingMode. The default rounding mode is
641 * DecimalFormat::kRoundHalfEven. The rounding mode can only be set
642 * through the API; it can not be set with a pattern.
644 * <li>Some locales use rounding in their currency formats to reflect the
645 * smallest currency denomination.
647 * <li>In a pattern, digits '1' through '9' specify rounding, but otherwise
648 * behave identically to digit '0'.
651 * <p><strong>Synchronization</strong>
653 * <p>DecimalFormat objects are not synchronized. Multiple
654 * threads should not access one formatter concurrently.
656 * <p><strong>Subclassing</strong>
658 * <p><em>User subclasses are not supported.</em> While clients may write
659 * subclasses, such code will not necessarily work and will not be
660 * guaranteed to work stably from release to release.
662 class U_I18N_API DecimalFormat
: public NumberFormat
{
669 kRoundCeiling
, /**< Round towards positive infinity */
670 kRoundFloor
, /**< Round towards negative infinity */
671 kRoundDown
, /**< Round towards zero */
672 kRoundUp
, /**< Round away from zero */
673 kRoundHalfEven
, /**< Round towards the nearest integer, or
674 towards the nearest even integer if equidistant */
675 kRoundHalfDown
, /**< Round towards the nearest integer, or
676 towards zero if equidistant */
677 kRoundHalfUp
, /**< Round towards the nearest integer, or
678 away from zero if equidistant */
680 * Return U_FORMAT_INEXACT_ERROR if number does not format exactly.
698 * Create a DecimalFormat using the default pattern and symbols
699 * for the default locale. This is a convenient way to obtain a
700 * DecimalFormat when internationalization is not the main concern.
702 * To obtain standard formats for a given locale, use the factory methods
703 * on NumberFormat such as createInstance. These factories will
704 * return the most appropriate sub-class of NumberFormat for a given
706 * @param status Output param set to success/failure code. If the
707 * pattern is invalid this will be set to a failure code.
710 DecimalFormat(UErrorCode
& status
);
713 * Create a DecimalFormat from the given pattern and the symbols
714 * for the default locale. This is a convenient way to obtain a
715 * DecimalFormat when internationalization is not the main concern.
717 * To obtain standard formats for a given locale, use the factory methods
718 * on NumberFormat such as createInstance. These factories will
719 * return the most appropriate sub-class of NumberFormat for a given
721 * @param pattern A non-localized pattern string.
722 * @param status Output param set to success/failure code. If the
723 * pattern is invalid this will be set to a failure code.
726 DecimalFormat(const UnicodeString
& pattern
,
730 * Create a DecimalFormat from the given pattern and symbols.
731 * Use this constructor when you need to completely customize the
732 * behavior of the format.
734 * To obtain standard formats for a given
735 * locale, use the factory methods on NumberFormat such as
736 * createInstance or createCurrencyInstance. If you need only minor adjustments
737 * to a standard format, you can modify the format returned by
738 * a NumberFormat factory method.
740 * @param pattern a non-localized pattern string
741 * @param symbolsToAdopt the set of symbols to be used. The caller should not
742 * delete this object after making this call.
743 * @param status Output param set to success/failure code. If the
744 * pattern is invalid this will be set to a failure code.
747 DecimalFormat( const UnicodeString
& pattern
,
748 DecimalFormatSymbols
* symbolsToAdopt
,
751 #ifndef U_HIDE_INTERNAL_API
753 * This API is for ICU use only.
754 * Create a DecimalFormat from the given pattern, symbols, and style.
756 * @param pattern a non-localized pattern string
757 * @param symbolsToAdopt the set of symbols to be used. The caller should not
758 * delete this object after making this call.
759 * @param style style of decimal format
760 * @param status Output param set to success/failure code. If the
761 * pattern is invalid this will be set to a failure code.
764 DecimalFormat( const UnicodeString
& pattern
,
765 DecimalFormatSymbols
* symbolsToAdopt
,
766 UNumberFormatStyle style
,
769 #if UCONFIG_HAVE_PARSEALLINPUT
773 void setParseAllInput(UNumberFormatAttributeValue value
);
776 #endif /* U_HIDE_INTERNAL_API */
780 * Set an integer attribute on this DecimalFormat.
781 * May return U_UNSUPPORTED_ERROR if this instance does not support
782 * the specified attribute.
783 * @param attr the attribute to set
784 * @param newvalue new value
785 * @param status the error type
786 * @return *this - for chaining (example: format.setAttribute(...).setAttribute(...) )
789 virtual DecimalFormat
& setAttribute( UNumberFormatAttribute attr
,
795 * May return U_UNSUPPORTED_ERROR if this instance does not support
796 * the specified attribute.
797 * @param attr the attribute to set
798 * @param status the error type
799 * @return the attribute value. Undefined if there is an error.
802 virtual int32_t getAttribute( UNumberFormatAttribute attr
,
803 UErrorCode
&status
) const;
807 * Set whether or not grouping will be used in this format.
808 * @param newValue True, grouping will be used in this format.
809 * @see getGroupingUsed
812 virtual void setGroupingUsed(UBool newValue
);
815 * Sets whether or not numbers should be parsed as integers only.
816 * @param value set True, this format will parse numbers as integers
818 * @see isParseIntegerOnly
821 virtual void setParseIntegerOnly(UBool value
);
824 * Set a particular UDisplayContext value in the formatter, such as
825 * UDISPCTX_CAPITALIZATION_FOR_STANDALONE.
826 * @param value The UDisplayContext value to set.
827 * @param status Input/output status. If at entry this indicates a failure
828 * status, the function will do nothing; otherwise this will be
829 * updated with any new status from the function.
832 virtual void setContext(UDisplayContext value
, UErrorCode
& status
);
835 * Create a DecimalFormat from the given pattern and symbols.
836 * Use this constructor when you need to completely customize the
837 * behavior of the format.
839 * To obtain standard formats for a given
840 * locale, use the factory methods on NumberFormat such as
841 * createInstance or createCurrencyInstance. If you need only minor adjustments
842 * to a standard format, you can modify the format returned by
843 * a NumberFormat factory method.
845 * @param pattern a non-localized pattern string
846 * @param symbolsToAdopt the set of symbols to be used. The caller should not
847 * delete this object after making this call.
848 * @param parseError Output param to receive errors occured during parsing
849 * @param status Output param set to success/failure code. If the
850 * pattern is invalid this will be set to a failure code.
853 DecimalFormat( const UnicodeString
& pattern
,
854 DecimalFormatSymbols
* symbolsToAdopt
,
855 UParseError
& parseError
,
858 * Create a DecimalFormat from the given pattern and symbols.
859 * Use this constructor when you need to completely customize the
860 * behavior of the format.
862 * To obtain standard formats for a given
863 * locale, use the factory methods on NumberFormat such as
864 * createInstance or createCurrencyInstance. If you need only minor adjustments
865 * to a standard format, you can modify the format returned by
866 * a NumberFormat factory method.
868 * @param pattern a non-localized pattern string
869 * @param symbols the set of symbols to be used
870 * @param status Output param set to success/failure code. If the
871 * pattern is invalid this will be set to a failure code.
874 DecimalFormat( const UnicodeString
& pattern
,
875 const DecimalFormatSymbols
& symbols
,
881 * @param source the DecimalFormat object to be copied from.
884 DecimalFormat(const DecimalFormat
& source
);
887 * Assignment operator.
889 * @param rhs the DecimalFormat object to be copied.
892 DecimalFormat
& operator=(const DecimalFormat
& rhs
);
898 virtual ~DecimalFormat();
901 * Clone this Format object polymorphically. The caller owns the
902 * result and should delete it when done.
904 * @return a polymorphic copy of this DecimalFormat.
907 virtual Format
* clone(void) const;
910 * Return true if the given Format objects are semantically equal.
911 * Objects of different subclasses are considered unequal.
913 * @param other the object to be compared with.
914 * @return true if the given Format objects are semantically equal.
917 virtual UBool
operator==(const Format
& other
) const;
920 using NumberFormat::format
;
923 * Format a double or long number using base-10 representation.
925 * @param number The value to be formatted.
926 * @param appendTo Output parameter to receive result.
927 * Result is appended to existing contents.
928 * @param pos On input: an alignment field, if desired.
929 * On output: the offsets of the alignment field.
930 * @return Reference to 'appendTo' parameter.
933 virtual UnicodeString
& format(double number
,
934 UnicodeString
& appendTo
,
935 FieldPosition
& pos
) const;
939 * Format a double or long number using base-10 representation.
941 * @param number The value to be formatted.
942 * @param appendTo Output parameter to receive result.
943 * Result is appended to existing contents.
944 * @param pos On input: an alignment field, if desired.
945 * On output: the offsets of the alignment field.
947 * @return Reference to 'appendTo' parameter.
950 virtual UnicodeString
& format(double number
,
951 UnicodeString
& appendTo
,
953 UErrorCode
&status
) const;
956 * Format a double or long number using base-10 representation.
958 * @param number The value to be formatted.
959 * @param appendTo Output parameter to receive result.
960 * Result is appended to existing contents.
961 * @param posIter On return, can be used to iterate over positions
962 * of fields generated by this format call.
964 * @param status Output param filled with success/failure status.
965 * @return Reference to 'appendTo' parameter.
968 virtual UnicodeString
& format(double number
,
969 UnicodeString
& appendTo
,
970 FieldPositionIterator
* posIter
,
971 UErrorCode
& status
) const;
974 * Format a long number using base-10 representation.
976 * @param number The value to be formatted.
977 * @param appendTo Output parameter to receive result.
978 * Result is appended to existing contents.
979 * @param pos On input: an alignment field, if desired.
980 * On output: the offsets of the alignment field.
981 * @return Reference to 'appendTo' parameter.
984 virtual UnicodeString
& format(int32_t number
,
985 UnicodeString
& appendTo
,
986 FieldPosition
& pos
) const;
989 * Format a long number using base-10 representation.
991 * @param number The value to be formatted.
992 * @param appendTo Output parameter to receive result.
993 * Result is appended to existing contents.
994 * @param pos On input: an alignment field, if desired.
995 * On output: the offsets of the alignment field.
996 * @return Reference to 'appendTo' parameter.
999 virtual UnicodeString
& format(int32_t number
,
1000 UnicodeString
& appendTo
,
1002 UErrorCode
&status
) const;
1005 * Format a long number using base-10 representation.
1007 * @param number The value to be formatted.
1008 * @param appendTo Output parameter to receive result.
1009 * Result is appended to existing contents.
1010 * @param posIter On return, can be used to iterate over positions
1011 * of fields generated by this format call.
1013 * @param status Output param filled with success/failure status.
1014 * @return Reference to 'appendTo' parameter.
1017 virtual UnicodeString
& format(int32_t number
,
1018 UnicodeString
& appendTo
,
1019 FieldPositionIterator
* posIter
,
1020 UErrorCode
& status
) const;
1023 * Format an int64 number using base-10 representation.
1025 * @param number The value to be formatted.
1026 * @param appendTo Output parameter to receive result.
1027 * Result is appended to existing contents.
1028 * @param pos On input: an alignment field, if desired.
1029 * On output: the offsets of the alignment field.
1030 * @return Reference to 'appendTo' parameter.
1033 virtual UnicodeString
& format(int64_t number
,
1034 UnicodeString
& appendTo
,
1035 FieldPosition
& pos
) const;
1038 * Format an int64 number using base-10 representation.
1040 * @param number The value to be formatted.
1041 * @param appendTo Output parameter to receive result.
1042 * Result is appended to existing contents.
1043 * @param pos On input: an alignment field, if desired.
1044 * On output: the offsets of the alignment field.
1045 * @return Reference to 'appendTo' parameter.
1048 virtual UnicodeString
& format(int64_t number
,
1049 UnicodeString
& appendTo
,
1051 UErrorCode
&status
) const;
1054 * Format an int64 number using base-10 representation.
1056 * @param number The value to be formatted.
1057 * @param appendTo Output parameter to receive result.
1058 * Result is appended to existing contents.
1059 * @param posIter On return, can be used to iterate over positions
1060 * of fields generated by this format call.
1062 * @param status Output param filled with success/failure status.
1063 * @return Reference to 'appendTo' parameter.
1066 virtual UnicodeString
& format(int64_t number
,
1067 UnicodeString
& appendTo
,
1068 FieldPositionIterator
* posIter
,
1069 UErrorCode
& status
) const;
1072 * Format a decimal number.
1073 * The syntax of the unformatted number is a "numeric string"
1074 * as defined in the Decimal Arithmetic Specification, available at
1075 * http://speleotrove.com/decimal
1077 * @param number The unformatted number, as a string.
1078 * @param appendTo Output parameter to receive result.
1079 * Result is appended to existing contents.
1080 * @param posIter On return, can be used to iterate over positions
1081 * of fields generated by this format call.
1083 * @param status Output param filled with success/failure status.
1084 * @return Reference to 'appendTo' parameter.
1087 virtual UnicodeString
& format(const StringPiece
&number
,
1088 UnicodeString
& appendTo
,
1089 FieldPositionIterator
* posIter
,
1090 UErrorCode
& status
) const;
1094 * Format a decimal number.
1095 * The number is a DigitList wrapper onto a floating point decimal number.
1096 * The default implementation in NumberFormat converts the decimal number
1097 * to a double and formats that.
1099 * @param number The number, a DigitList format Decimal Floating Point.
1100 * @param appendTo Output parameter to receive result.
1101 * Result is appended to existing contents.
1102 * @param posIter On return, can be used to iterate over positions
1103 * of fields generated by this format call.
1104 * @param status Output param filled with success/failure status.
1105 * @return Reference to 'appendTo' parameter.
1108 virtual UnicodeString
& format(const DigitList
&number
,
1109 UnicodeString
& appendTo
,
1110 FieldPositionIterator
* posIter
,
1111 UErrorCode
& status
) const;
1114 * Format a decimal number.
1115 * The number is a DigitList wrapper onto a floating point decimal number.
1116 * The default implementation in NumberFormat converts the decimal number
1117 * to a double and formats that.
1119 * @param number The number, a DigitList format Decimal Floating Point.
1120 * @param appendTo Output parameter to receive result.
1121 * Result is appended to existing contents.
1122 * @param pos On input: an alignment field, if desired.
1123 * On output: the offsets of the alignment field.
1124 * @param status Output param filled with success/failure status.
1125 * @return Reference to 'appendTo' parameter.
1128 virtual UnicodeString
& format(const DigitList
&number
,
1129 UnicodeString
& appendTo
,
1131 UErrorCode
& status
) const;
1133 using NumberFormat::parse
;
1136 * Parse the given string using this object's choices. The method
1137 * does string comparisons to try to find an optimal match.
1138 * If no object can be parsed, index is unchanged, and NULL is
1139 * returned. The result is returned as the most parsimonious
1140 * type of Formattable that will accomodate all of the
1141 * necessary precision. For example, if the result is exactly 12,
1142 * it will be returned as a long. However, if it is 1.5, it will
1143 * be returned as a double.
1145 * @param text The text to be parsed.
1146 * @param result Formattable to be set to the parse result.
1147 * If parse fails, return contents are undefined.
1148 * @param parsePosition The position to start parsing at on input.
1149 * On output, moved to after the last successfully
1150 * parse character. On parse failure, does not change.
1154 virtual void parse(const UnicodeString
& text
,
1155 Formattable
& result
,
1156 ParsePosition
& parsePosition
) const;
1159 * Parses text from the given string as a currency amount. Unlike
1160 * the parse() method, this method will attempt to parse a generic
1161 * currency name, searching for a match of this object's locale's
1162 * currency display names, or for a 3-letter ISO currency code.
1163 * This method will fail if this format is not a currency format,
1164 * that is, if it does not contain the currency pattern symbol
1165 * (U+00A4) in its prefix or suffix.
1167 * @param text the string to parse
1168 * @param pos input-output position; on input, the position within text
1169 * to match; must have 0 <= pos.getIndex() < text.length();
1170 * on output, the position after the last matched character.
1171 * If the parse fails, the position in unchanged upon output.
1172 * @return if parse succeeds, a pointer to a newly-created CurrencyAmount
1173 * object (owned by the caller) containing information about
1174 * the parsed currency; if parse fails, this is NULL.
1177 virtual CurrencyAmount
* parseCurrency(const UnicodeString
& text
,
1178 ParsePosition
& pos
) const;
1181 * Returns the decimal format symbols, which is generally not changed
1182 * by the programmer or user.
1183 * @return desired DecimalFormatSymbols
1184 * @see DecimalFormatSymbols
1187 virtual const DecimalFormatSymbols
* getDecimalFormatSymbols(void) const;
1190 * Sets the decimal format symbols, which is generally not changed
1191 * by the programmer or user.
1192 * @param symbolsToAdopt DecimalFormatSymbols to be adopted.
1195 virtual void adoptDecimalFormatSymbols(DecimalFormatSymbols
* symbolsToAdopt
);
1198 * Sets the decimal format symbols, which is generally not changed
1199 * by the programmer or user.
1200 * @param symbols DecimalFormatSymbols.
1203 virtual void setDecimalFormatSymbols(const DecimalFormatSymbols
& symbols
);
1207 * Returns the currency plural format information,
1208 * which is generally not changed by the programmer or user.
1209 * @return desired CurrencyPluralInfo
1212 virtual const CurrencyPluralInfo
* getCurrencyPluralInfo(void) const;
1215 * Sets the currency plural format information,
1216 * which is generally not changed by the programmer or user.
1217 * @param toAdopt CurrencyPluralInfo to be adopted.
1220 virtual void adoptCurrencyPluralInfo(CurrencyPluralInfo
* toAdopt
);
1223 * Sets the currency plural format information,
1224 * which is generally not changed by the programmer or user.
1225 * @param info Currency Plural Info.
1228 virtual void setCurrencyPluralInfo(const CurrencyPluralInfo
& info
);
1232 * Get the positive prefix.
1234 * @param result Output param which will receive the positive prefix.
1235 * @return A reference to 'result'.
1236 * Examples: +123, $123, sFr123
1239 UnicodeString
& getPositivePrefix(UnicodeString
& result
) const;
1242 * Set the positive prefix.
1244 * @param newValue the new value of the the positive prefix to be set.
1245 * Examples: +123, $123, sFr123
1248 virtual void setPositivePrefix(const UnicodeString
& newValue
);
1251 * Get the negative prefix.
1253 * @param result Output param which will receive the negative prefix.
1254 * @return A reference to 'result'.
1255 * Examples: -123, ($123) (with negative suffix), sFr-123
1258 UnicodeString
& getNegativePrefix(UnicodeString
& result
) const;
1261 * Set the negative prefix.
1263 * @param newValue the new value of the the negative prefix to be set.
1264 * Examples: -123, ($123) (with negative suffix), sFr-123
1267 virtual void setNegativePrefix(const UnicodeString
& newValue
);
1270 * Get the positive suffix.
1272 * @param result Output param which will receive the positive suffix.
1273 * @return A reference to 'result'.
1277 UnicodeString
& getPositiveSuffix(UnicodeString
& result
) const;
1280 * Set the positive suffix.
1282 * @param newValue the new value of the positive suffix to be set.
1286 virtual void setPositiveSuffix(const UnicodeString
& newValue
);
1289 * Get the negative suffix.
1291 * @param result Output param which will receive the negative suffix.
1292 * @return A reference to 'result'.
1293 * Examples: -123%, ($123) (with positive suffixes)
1296 UnicodeString
& getNegativeSuffix(UnicodeString
& result
) const;
1299 * Set the negative suffix.
1301 * @param newValue the new value of the negative suffix to be set.
1305 virtual void setNegativeSuffix(const UnicodeString
& newValue
);
1308 * Get the multiplier for use in percent, permill, etc.
1309 * For a percentage, set the suffixes to have "%" and the multiplier to be 100.
1310 * (For Arabic, use arabic percent symbol).
1311 * For a permill, set the suffixes to have "\\u2031" and the multiplier to be 1000.
1313 * @return the multiplier for use in percent, permill, etc.
1314 * Examples: with 100, 1.23 -> "123", and "123" -> 1.23
1317 int32_t getMultiplier(void) const;
1320 * Set the multiplier for use in percent, permill, etc.
1321 * For a percentage, set the suffixes to have "%" and the multiplier to be 100.
1322 * (For Arabic, use arabic percent symbol).
1323 * For a permill, set the suffixes to have "\\u2031" and the multiplier to be 1000.
1325 * @param newValue the new value of the multiplier for use in percent, permill, etc.
1326 * Examples: with 100, 1.23 -> "123", and "123" -> 1.23
1329 virtual void setMultiplier(int32_t newValue
);
1332 * Get the rounding increment.
1333 * @return A positive rounding increment, or 0.0 if a custom rounding
1334 * increment is not in effect.
1335 * @see #setRoundingIncrement
1336 * @see #getRoundingMode
1337 * @see #setRoundingMode
1340 virtual double getRoundingIncrement(void) const;
1343 * Set the rounding increment. In the absence of a rounding increment,
1344 * numbers will be rounded to the number of digits displayed.
1345 * @param newValue A positive rounding increment, or 0.0 to
1346 * use the default rounding increment.
1347 * Negative increments are equivalent to 0.0.
1348 * @see #getRoundingIncrement
1349 * @see #getRoundingMode
1350 * @see #setRoundingMode
1353 virtual void setRoundingIncrement(double newValue
);
1356 * Get the rounding mode.
1357 * @return A rounding mode
1358 * @see #setRoundingIncrement
1359 * @see #getRoundingIncrement
1360 * @see #setRoundingMode
1363 virtual ERoundingMode
getRoundingMode(void) const;
1366 * Set the rounding mode.
1367 * @param roundingMode A rounding mode
1368 * @see #setRoundingIncrement
1369 * @see #getRoundingIncrement
1370 * @see #getRoundingMode
1373 virtual void setRoundingMode(ERoundingMode roundingMode
);
1376 * Get the width to which the output of format() is padded.
1377 * The width is counted in 16-bit code units.
1378 * @return the format width, or zero if no padding is in effect
1379 * @see #setFormatWidth
1380 * @see #getPadCharacterString
1381 * @see #setPadCharacter
1382 * @see #getPadPosition
1383 * @see #setPadPosition
1386 virtual int32_t getFormatWidth(void) const;
1389 * Set the width to which the output of format() is padded.
1390 * The width is counted in 16-bit code units.
1391 * This method also controls whether padding is enabled.
1392 * @param width the width to which to pad the result of
1393 * format(), or zero to disable padding. A negative
1394 * width is equivalent to 0.
1395 * @see #getFormatWidth
1396 * @see #getPadCharacterString
1397 * @see #setPadCharacter
1398 * @see #getPadPosition
1399 * @see #setPadPosition
1402 virtual void setFormatWidth(int32_t width
);
1405 * Get the pad character used to pad to the format width. The
1407 * @return a string containing the pad character. This will always
1408 * have a length of one 32-bit code point.
1409 * @see #setFormatWidth
1410 * @see #getFormatWidth
1411 * @see #setPadCharacter
1412 * @see #getPadPosition
1413 * @see #setPadPosition
1416 virtual UnicodeString
getPadCharacterString() const;
1419 * Set the character used to pad to the format width. If padding
1420 * is not enabled, then this will take effect if padding is later
1422 * @param padChar a string containing the pad charcter. If the string
1423 * has length 0, then the pad characer is set to ' '. Otherwise
1424 * padChar.char32At(0) will be used as the pad character.
1425 * @see #setFormatWidth
1426 * @see #getFormatWidth
1427 * @see #getPadCharacterString
1428 * @see #getPadPosition
1429 * @see #setPadPosition
1432 virtual void setPadCharacter(const UnicodeString
&padChar
);
1435 * Get the position at which padding will take place. This is the location
1436 * at which padding will be inserted if the result of format()
1437 * is shorter than the format width.
1438 * @return the pad position, one of kPadBeforePrefix,
1439 * kPadAfterPrefix, kPadBeforeSuffix, or
1441 * @see #setFormatWidth
1442 * @see #getFormatWidth
1443 * @see #setPadCharacter
1444 * @see #getPadCharacterString
1445 * @see #setPadPosition
1446 * @see #EPadPosition
1449 virtual EPadPosition
getPadPosition(void) const;
1452 * Set the position at which padding will take place. This is the location
1453 * at which padding will be inserted if the result of format()
1454 * is shorter than the format width. This has no effect unless padding is
1456 * @param padPos the pad position, one of kPadBeforePrefix,
1457 * kPadAfterPrefix, kPadBeforeSuffix, or
1459 * @see #setFormatWidth
1460 * @see #getFormatWidth
1461 * @see #setPadCharacter
1462 * @see #getPadCharacterString
1463 * @see #getPadPosition
1464 * @see #EPadPosition
1467 virtual void setPadPosition(EPadPosition padPos
);
1470 * Return whether or not scientific notation is used.
1471 * @return TRUE if this object formats and parses scientific notation
1472 * @see #setScientificNotation
1473 * @see #getMinimumExponentDigits
1474 * @see #setMinimumExponentDigits
1475 * @see #isExponentSignAlwaysShown
1476 * @see #setExponentSignAlwaysShown
1479 virtual UBool
isScientificNotation(void) const;
1482 * Set whether or not scientific notation is used. When scientific notation
1483 * is used, the effective maximum number of integer digits is <= 8. If the
1484 * maximum number of integer digits is set to more than 8, the effective
1485 * maximum will be 1. This allows this call to generate a 'default' scientific
1486 * number format without additional changes.
1487 * @param useScientific TRUE if this object formats and parses scientific
1489 * @see #isScientificNotation
1490 * @see #getMinimumExponentDigits
1491 * @see #setMinimumExponentDigits
1492 * @see #isExponentSignAlwaysShown
1493 * @see #setExponentSignAlwaysShown
1496 virtual void setScientificNotation(UBool useScientific
);
1499 * Return the minimum exponent digits that will be shown.
1500 * @return the minimum exponent digits that will be shown
1501 * @see #setScientificNotation
1502 * @see #isScientificNotation
1503 * @see #setMinimumExponentDigits
1504 * @see #isExponentSignAlwaysShown
1505 * @see #setExponentSignAlwaysShown
1508 virtual int8_t getMinimumExponentDigits(void) const;
1511 * Set the minimum exponent digits that will be shown. This has no
1512 * effect unless scientific notation is in use.
1513 * @param minExpDig a value >= 1 indicating the fewest exponent digits
1514 * that will be shown. Values less than 1 will be treated as 1.
1515 * @see #setScientificNotation
1516 * @see #isScientificNotation
1517 * @see #getMinimumExponentDigits
1518 * @see #isExponentSignAlwaysShown
1519 * @see #setExponentSignAlwaysShown
1522 virtual void setMinimumExponentDigits(int8_t minExpDig
);
1525 * Return whether the exponent sign is always shown.
1526 * @return TRUE if the exponent is always prefixed with either the
1527 * localized minus sign or the localized plus sign, false if only negative
1528 * exponents are prefixed with the localized minus sign.
1529 * @see #setScientificNotation
1530 * @see #isScientificNotation
1531 * @see #setMinimumExponentDigits
1532 * @see #getMinimumExponentDigits
1533 * @see #setExponentSignAlwaysShown
1536 virtual UBool
isExponentSignAlwaysShown(void) const;
1539 * Set whether the exponent sign is always shown. This has no effect
1540 * unless scientific notation is in use.
1541 * @param expSignAlways TRUE if the exponent is always prefixed with either
1542 * the localized minus sign or the localized plus sign, false if only
1543 * negative exponents are prefixed with the localized minus sign.
1544 * @see #setScientificNotation
1545 * @see #isScientificNotation
1546 * @see #setMinimumExponentDigits
1547 * @see #getMinimumExponentDigits
1548 * @see #isExponentSignAlwaysShown
1551 virtual void setExponentSignAlwaysShown(UBool expSignAlways
);
1554 * Return the grouping size. Grouping size is the number of digits between
1555 * grouping separators in the integer portion of a number. For example,
1556 * in the number "123,456.78", the grouping size is 3.
1558 * @return the grouping size.
1559 * @see setGroupingSize
1560 * @see NumberFormat::isGroupingUsed
1561 * @see DecimalFormatSymbols::getGroupingSeparator
1564 int32_t getGroupingSize(void) const;
1567 * Set the grouping size. Grouping size is the number of digits between
1568 * grouping separators in the integer portion of a number. For example,
1569 * in the number "123,456.78", the grouping size is 3.
1571 * @param newValue the new value of the grouping size.
1572 * @see getGroupingSize
1573 * @see NumberFormat::setGroupingUsed
1574 * @see DecimalFormatSymbols::setGroupingSeparator
1577 virtual void setGroupingSize(int32_t newValue
);
1580 * Return the secondary grouping size. In some locales one
1581 * grouping interval is used for the least significant integer
1582 * digits (the primary grouping size), and another is used for all
1583 * others (the secondary grouping size). A formatter supporting a
1584 * secondary grouping size will return a positive integer unequal
1585 * to the primary grouping size returned by
1586 * getGroupingSize(). For example, if the primary
1587 * grouping size is 4, and the secondary grouping size is 2, then
1588 * the number 123456789 formats as "1,23,45,6789", and the pattern
1589 * appears as "#,##,###0".
1590 * @return the secondary grouping size, or a value less than
1591 * one if there is none
1592 * @see setSecondaryGroupingSize
1593 * @see NumberFormat::isGroupingUsed
1594 * @see DecimalFormatSymbols::getGroupingSeparator
1597 int32_t getSecondaryGroupingSize(void) const;
1600 * Set the secondary grouping size. If set to a value less than 1,
1601 * then secondary grouping is turned off, and the primary grouping
1602 * size is used for all intervals, not just the least significant.
1604 * @param newValue the new value of the secondary grouping size.
1605 * @see getSecondaryGroupingSize
1606 * @see NumberFormat#setGroupingUsed
1607 * @see DecimalFormatSymbols::setGroupingSeparator
1610 virtual void setSecondaryGroupingSize(int32_t newValue
);
1613 * Allows you to get the behavior of the decimal separator with integers.
1614 * (The decimal separator will always appear with decimals.)
1616 * @return TRUE if the decimal separator always appear with decimals.
1617 * Example: Decimal ON: 12345 -> 12345.; OFF: 12345 -> 12345
1620 UBool
isDecimalSeparatorAlwaysShown(void) const;
1623 * Allows you to set the behavior of the decimal separator with integers.
1624 * (The decimal separator will always appear with decimals.)
1626 * @param newValue set TRUE if the decimal separator will always appear with decimals.
1627 * Example: Decimal ON: 12345 -> 12345.; OFF: 12345 -> 12345
1630 virtual void setDecimalSeparatorAlwaysShown(UBool newValue
);
1632 #ifndef U_HIDE_DRAFT_API
1634 * Allows you to get the parse behavior of the pattern decimal mark.
1636 * @return TRUE if input must contain a match to decimal mark in pattern
1639 UBool
isDecimalPatternMatchRequired(void) const;
1640 #endif /* U_HIDE_DRAFT_API */
1643 * Allows you to set the behavior of the pattern decimal mark.
1645 * if TRUE, the input must have a decimal mark if one was specified in the pattern. When
1646 * FALSE the decimal mark may be omitted from the input.
1648 * @param newValue set TRUE if input must contain a match to decimal mark in pattern
1651 virtual void setDecimalPatternMatchRequired(UBool newValue
);
1655 * Synthesizes a pattern string that represents the current state
1656 * of this Format object.
1658 * @param result Output param which will receive the pattern.
1659 * Previous contents are deleted.
1660 * @return A reference to 'result'.
1664 virtual UnicodeString
& toPattern(UnicodeString
& result
) const;
1667 * Synthesizes a localized pattern string that represents the current
1668 * state of this Format object.
1670 * @param result Output param which will receive the localized pattern.
1671 * Previous contents are deleted.
1672 * @return A reference to 'result'.
1676 virtual UnicodeString
& toLocalizedPattern(UnicodeString
& result
) const;
1679 * Apply the given pattern to this Format object. A pattern is a
1680 * short-hand specification for the various formatting properties.
1681 * These properties can also be changed individually through the
1682 * various setter methods.
1684 * There is no limit to integer digits are set
1685 * by this routine, since that is the typical end-user desire;
1686 * use setMaximumInteger if you want to set a real value.
1687 * For negative numbers, use a second pattern, separated by a semicolon
1689 * . Example "#,#00.0#" -> 1,234.56
1691 * This means a minimum of 2 integer digits, 1 fraction digit, and
1692 * a maximum of 2 fraction digits.
1694 * . Example: "#,#00.0#;(#,#00.0#)" for negatives in parantheses.
1696 * In negative patterns, the minimum and maximum counts are ignored;
1697 * these are presumed to be set in the positive pattern.
1699 * @param pattern The pattern to be applied.
1700 * @param parseError Struct to recieve information on position
1701 * of error if an error is encountered
1702 * @param status Output param set to success/failure code on
1703 * exit. If the pattern is invalid, this will be
1704 * set to a failure result.
1707 virtual void applyPattern(const UnicodeString
& pattern
,
1708 UParseError
& parseError
,
1709 UErrorCode
& status
);
1712 * @param pattern The pattern to be applied.
1713 * @param status Output param set to success/failure code on
1714 * exit. If the pattern is invalid, this will be
1715 * set to a failure result.
1718 virtual void applyPattern(const UnicodeString
& pattern
,
1719 UErrorCode
& status
);
1722 * Apply the given pattern to this Format object. The pattern
1723 * is assumed to be in a localized notation. A pattern is a
1724 * short-hand specification for the various formatting properties.
1725 * These properties can also be changed individually through the
1726 * various setter methods.
1728 * There is no limit to integer digits are set
1729 * by this routine, since that is the typical end-user desire;
1730 * use setMaximumInteger if you want to set a real value.
1731 * For negative numbers, use a second pattern, separated by a semicolon
1733 * . Example "#,#00.0#" -> 1,234.56
1735 * This means a minimum of 2 integer digits, 1 fraction digit, and
1736 * a maximum of 2 fraction digits.
1738 * Example: "#,#00.0#;(#,#00.0#)" for negatives in parantheses.
1740 * In negative patterns, the minimum and maximum counts are ignored;
1741 * these are presumed to be set in the positive pattern.
1743 * @param pattern The localized pattern to be applied.
1744 * @param parseError Struct to recieve information on position
1745 * of error if an error is encountered
1746 * @param status Output param set to success/failure code on
1747 * exit. If the pattern is invalid, this will be
1748 * set to a failure result.
1751 virtual void applyLocalizedPattern(const UnicodeString
& pattern
,
1752 UParseError
& parseError
,
1753 UErrorCode
& status
);
1756 * Apply the given pattern to this Format object.
1758 * @param pattern The localized pattern to be applied.
1759 * @param status Output param set to success/failure code on
1760 * exit. If the pattern is invalid, this will be
1761 * set to a failure result.
1764 virtual void applyLocalizedPattern(const UnicodeString
& pattern
,
1765 UErrorCode
& status
);
1769 * Sets the maximum number of digits allowed in the integer portion of a
1770 * number. This override limits the integer digit count to 309.
1772 * @param newValue the new value of the maximum number of digits
1773 * allowed in the integer portion of a number.
1774 * @see NumberFormat#setMaximumIntegerDigits
1777 virtual void setMaximumIntegerDigits(int32_t newValue
);
1780 * Sets the minimum number of digits allowed in the integer portion of a
1781 * number. This override limits the integer digit count to 309.
1783 * @param newValue the new value of the minimum number of digits
1784 * allowed in the integer portion of a number.
1785 * @see NumberFormat#setMinimumIntegerDigits
1788 virtual void setMinimumIntegerDigits(int32_t newValue
);
1791 * Sets the maximum number of digits allowed in the fraction portion of a
1792 * number. This override limits the fraction digit count to 340.
1794 * @param newValue the new value of the maximum number of digits
1795 * allowed in the fraction portion of a number.
1796 * @see NumberFormat#setMaximumFractionDigits
1799 virtual void setMaximumFractionDigits(int32_t newValue
);
1802 * Sets the minimum number of digits allowed in the fraction portion of a
1803 * number. This override limits the fraction digit count to 340.
1805 * @param newValue the new value of the minimum number of digits
1806 * allowed in the fraction portion of a number.
1807 * @see NumberFormat#setMinimumFractionDigits
1810 virtual void setMinimumFractionDigits(int32_t newValue
);
1813 * Returns the minimum number of significant digits that will be
1814 * displayed. This value has no effect unless areSignificantDigitsUsed()
1816 * @return the fewest significant digits that will be shown
1819 int32_t getMinimumSignificantDigits() const;
1822 * Returns the maximum number of significant digits that will be
1823 * displayed. This value has no effect unless areSignificantDigitsUsed()
1825 * @return the most significant digits that will be shown
1828 int32_t getMaximumSignificantDigits() const;
1831 * Sets the minimum number of significant digits that will be
1832 * displayed. If <code>min</code> is less than one then it is set
1833 * to one. If the maximum significant digits count is less than
1834 * <code>min</code>, then it is set to <code>min</code>.
1835 * This function also enables the use of significant digits
1836 * by this formatter - areSignificantDigitsUsed() will return TRUE.
1837 * @see #areSignificantDigitsUsed
1838 * @param min the fewest significant digits to be shown
1841 void setMinimumSignificantDigits(int32_t min
);
1844 * Sets the maximum number of significant digits that will be
1845 * displayed. If <code>max</code> is less than one then it is set
1846 * to one. If the minimum significant digits count is greater
1847 * than <code>max</code>, then it is set to <code>max</code>.
1848 * This function also enables the use of significant digits
1849 * by this formatter - areSignificantDigitsUsed() will return TRUE.
1850 * @see #areSignificantDigitsUsed
1851 * @param max the most significant digits to be shown
1854 void setMaximumSignificantDigits(int32_t max
);
1857 * Returns true if significant digits are in use, or false if
1858 * integer and fraction digit counts are in use.
1859 * @return true if significant digits are in use
1862 UBool
areSignificantDigitsUsed() const;
1865 * Sets whether significant digits are in use, or integer and
1866 * fraction digit counts are in use.
1867 * @param useSignificantDigits true to use significant digits, or
1868 * false to use integer and fraction digit counts
1871 void setSignificantDigitsUsed(UBool useSignificantDigits
);
1875 * Sets the currency used to display currency
1876 * amounts. This takes effect immediately, if this format is a
1877 * currency format. If this format is not a currency format, then
1878 * the currency is used if and when this object becomes a
1879 * currency format through the application of a new pattern.
1880 * @param theCurrency a 3-letter ISO code indicating new currency
1881 * to use. It need not be null-terminated. May be the empty
1882 * string or NULL to indicate no currency.
1883 * @param ec input-output error code
1886 virtual void setCurrency(const UChar
* theCurrency
, UErrorCode
& ec
);
1889 * Sets the currency used to display currency amounts. See
1890 * setCurrency(const UChar*, UErrorCode&).
1891 * @deprecated ICU 3.0. Use setCurrency(const UChar*, UErrorCode&).
1893 virtual void setCurrency(const UChar
* theCurrency
);
1895 #ifndef U_HIDE_DRAFT_API
1897 * Sets the <tt>Currency Context</tt> object used to display currency.
1898 * This takes effect immediately, if this format is a
1900 * @param currencyContext new currency context object to use.
1903 void setCurrencyUsage(UCurrencyUsage newUsage
, UErrorCode
* ec
);
1906 * Returns the <tt>Currency Context</tt> object used to display currency
1909 UCurrencyUsage
getCurrencyUsage() const;
1910 #endif /* U_HIDE_DRAFT_API */
1913 #ifndef U_HIDE_DEPRECATED_API
1915 * The resource tags we use to retrieve decimal format data from
1916 * locale resource bundles.
1917 * @deprecated ICU 3.4. This string has no public purpose. Please don't use it.
1919 static const char fgNumberPatterns
[];
1920 #endif /* U_HIDE_DEPRECATED_API */
1922 #ifndef U_HIDE_INTERNAL_API
1924 * Get a FixedDecimal corresponding to a double as it would be
1925 * formatted by this DecimalFormat.
1926 * Internal, not intended for public use.
1929 FixedDecimal
getFixedDecimal(double number
, UErrorCode
&status
) const;
1932 * Get a FixedDecimal corresponding to a formattable as it would be
1933 * formatted by this DecimalFormat.
1934 * Internal, not intended for public use.
1937 FixedDecimal
getFixedDecimal(const Formattable
&number
, UErrorCode
&status
) const;
1940 * Get a FixedDecimal corresponding to a DigitList as it would be
1941 * formatted by this DecimalFormat. Note: the DigitList may be modified.
1942 * Internal, not intended for public use.
1945 FixedDecimal
getFixedDecimal(DigitList
&number
, UErrorCode
&status
) const;
1946 #endif /* U_HIDE_INTERNAL_API */
1951 * Return the class ID for this class. This is useful only for
1952 * comparing to a return value from getDynamicClassID(). For example:
1954 * . Base* polymorphic_pointer = createPolymorphicObject();
1955 * . if (polymorphic_pointer->getDynamicClassID() ==
1956 * . Derived::getStaticClassID()) ...
1958 * @return The class ID for all objects of this class.
1961 static UClassID U_EXPORT2
getStaticClassID(void);
1964 * Returns a unique class ID POLYMORPHICALLY. Pure virtual override.
1965 * This method is to implement a simple version of RTTI, since not all
1966 * C++ compilers support genuine RTTI. Polymorphic operator==() and
1967 * clone() methods call this method.
1969 * @return The class ID for this object. All objects of a
1970 * given class have the same class ID. Objects of
1971 * other classes have different class IDs.
1974 virtual UClassID
getDynamicClassID(void) const;
1978 DecimalFormat(); // default constructor not implemented
1980 int32_t precision() const;
1983 * Initialize all fields of a new DecimalFormatter to a safe default value.
1984 * Common code for use by constructors.
1989 * Do real work of constructing a new DecimalFormat.
1991 void construct(UErrorCode
& status
,
1992 UParseError
& parseErr
,
1993 const UnicodeString
* pattern
= 0,
1994 DecimalFormatSymbols
* symbolsToAdopt
= 0
1998 * Does the real work of generating a pattern.
2000 * @param result Output param which will receive the pattern.
2001 * Previous contents are deleted.
2002 * @param localized TRUE return localized pattern.
2003 * @return A reference to 'result'.
2005 UnicodeString
& toPattern(UnicodeString
& result
, UBool localized
) const;
2008 * Does the real work of applying a pattern.
2009 * @param pattern The pattern to be applied.
2010 * @param localized If true, the pattern is localized; else false.
2011 * @param parseError Struct to recieve information on position
2012 * of error if an error is encountered
2013 * @param status Output param set to success/failure code on
2014 * exit. If the pattern is invalid, this will be
2015 * set to a failure result.
2017 void applyPattern(const UnicodeString
& pattern
,
2019 UParseError
& parseError
,
2020 UErrorCode
& status
);
2023 * similar to applyPattern, but without re-gen affix for currency
2025 void applyPatternInternally(const UnicodeString
& pluralCount
,
2026 const UnicodeString
& pattern
,
2028 UParseError
& parseError
,
2029 UErrorCode
& status
);
2032 * only apply pattern without expand affixes
2034 void applyPatternWithoutExpandAffix(const UnicodeString
& pattern
,
2036 UParseError
& parseError
,
2037 UErrorCode
& status
);
2041 * expand affixes (after apply patter) and re-compute fFormatWidth
2043 void expandAffixAdjustWidth(const UnicodeString
* pluralCount
);
2047 * Do the work of formatting a number, either a double or a long.
2049 * @param appendTo Output parameter to receive result.
2050 * Result is appended to existing contents.
2051 * @param handler Records information about field positions.
2052 * @param digits the digits to be formatted.
2053 * @param isInteger if TRUE format the digits as Integer.
2054 * @return Reference to 'appendTo' parameter.
2056 UnicodeString
& subformat(UnicodeString
& appendTo
,
2057 FieldPositionHandler
& handler
,
2060 UErrorCode
&status
) const;
2063 void parse(const UnicodeString
& text
,
2064 Formattable
& result
,
2066 UChar
* currency
) const;
2070 fgStatusLength
// Leave last in list.
2073 UBool
subparse(const UnicodeString
& text
,
2074 const UnicodeString
* negPrefix
,
2075 const UnicodeString
* negSuffix
,
2076 const UnicodeString
* posPrefix
,
2077 const UnicodeString
* posSuffix
,
2078 UBool complexCurrencyParsing
,
2080 ParsePosition
& parsePosition
,
2081 DigitList
& digits
, UBool
* status
,
2082 UChar
* currency
) const;
2084 // Mixed style parsing for currency.
2085 // It parses against the current currency pattern
2086 // using complex affix comparison
2087 // parses against the currency plural patterns using complex affix comparison,
2088 // and parses against the current pattern using simple affix comparison.
2089 UBool
parseForCurrency(const UnicodeString
& text
,
2090 ParsePosition
& parsePosition
,
2093 UChar
* currency
) const;
2095 int32_t skipPadding(const UnicodeString
& text
, int32_t position
) const;
2097 int32_t compareAffix(const UnicodeString
& input
,
2101 const UnicodeString
* affixPat
,
2102 UBool complexCurrencyParsing
,
2104 UChar
* currency
) const;
2106 static UnicodeString
& trimMarksFromAffix(const UnicodeString
& affix
, UnicodeString
& trimmedAffix
);
2108 UBool
equalWithSignCompatibility(UChar32 lhs
, UChar32 rhs
) const;
2110 int32_t compareSimpleAffix(const UnicodeString
& affix
,
2111 const UnicodeString
& input
,
2113 UBool lenient
) const;
2115 static int32_t skipPatternWhiteSpace(const UnicodeString
& text
, int32_t pos
);
2117 static int32_t skipUWhiteSpace(const UnicodeString
& text
, int32_t pos
);
2119 static int32_t skipUWhiteSpaceAndMarks(const UnicodeString
& text
, int32_t pos
);
2121 static int32_t skipBidiMarks(const UnicodeString
& text
, int32_t pos
);
2123 int32_t compareComplexAffix(const UnicodeString
& affixPat
,
2124 const UnicodeString
& input
,
2127 UChar
* currency
) const;
2129 static int32_t match(const UnicodeString
& text
, int32_t pos
, UChar32 ch
);
2131 static int32_t match(const UnicodeString
& text
, int32_t pos
, const UnicodeString
& str
);
2133 static UBool
matchSymbol(const UnicodeString
&text
, int32_t position
, int32_t length
, const UnicodeString
&symbol
,
2134 UnicodeSet
*sset
, UChar32 schar
);
2136 static UBool
matchDecimal(UChar32 symbolChar
,
2137 UBool sawDecimal
, UChar32 sawDecimalChar
,
2138 const UnicodeSet
*sset
, UChar32 schar
);
2140 static UBool
matchGrouping(UChar32 groupingChar
,
2141 UBool sawGrouping
, UChar32 sawGroupingChar
,
2142 const UnicodeSet
*sset
,
2143 UChar32 decimalChar
, const UnicodeSet
*decimalSet
,
2147 * Get a decimal format symbol.
2148 * Returns a const reference to the symbol string.
2151 inline const UnicodeString
&getConstSymbol(DecimalFormatSymbols::ENumberFormatSymbol symbol
) const;
2153 int32_t appendAffix(UnicodeString
& buf
,
2155 FieldPositionHandler
& handler
,
2157 UBool isPrefix
) const;
2160 * Append an affix to the given UnicodeString, using quotes if
2161 * there are special characters. Single quotes themselves must be
2162 * escaped in either case.
2164 void appendAffixPattern(UnicodeString
& appendTo
, const UnicodeString
& affix
,
2165 UBool localized
) const;
2167 void appendAffixPattern(UnicodeString
& appendTo
,
2168 const UnicodeString
* affixPattern
,
2169 const UnicodeString
& expAffix
, UBool localized
) const;
2171 void expandAffix(const UnicodeString
& pattern
,
2172 UnicodeString
& affix
,
2174 FieldPositionHandler
& handler
,
2176 const UnicodeString
* pluralCount
) const;
2178 void expandAffixes(const UnicodeString
* pluralCount
);
2180 void addPadding(UnicodeString
& appendTo
,
2181 FieldPositionHandler
& handler
,
2182 int32_t prefixLen
, int32_t suffixLen
) const;
2184 UBool
isGroupingPosition(int32_t pos
) const;
2186 void setCurrencyForSymbols();
2188 // similar to setCurrency without re-compute the affixes for currency.
2189 // If currency changes, the affix pattern for currency is not changed,
2190 // but the affix will be changed. So, affixes need to be
2191 // re-computed in setCurrency(), but not in setCurrencyInternally().
2192 virtual void setCurrencyInternally(const UChar
* theCurrency
, UErrorCode
& ec
);
2194 // set up currency affix patterns for mix parsing.
2195 // The patterns saved here are the affix patterns of default currency
2196 // pattern and the unique affix patterns of the plural currency patterns.
2197 // Those patterns are used by parseForCurrency().
2198 void setupCurrencyAffixPatterns(UErrorCode
& status
);
2200 // set up the currency affixes used in currency plural formatting.
2201 // It sets up both fAffixesForCurrency for currency pattern if the current
2202 // pattern contains 3 currency signs,
2203 // and it sets up fPluralAffixesForCurrency for currency plural patterns.
2204 void setupCurrencyAffixes(const UnicodeString
& pattern
,
2205 UBool setupForCurrentPattern
,
2206 UBool setupForPluralPattern
,
2207 UErrorCode
& status
);
2209 // get the currency rounding with respect to currency usage
2210 double getCurrencyRounding(const UChar
* currency
,
2211 UErrorCode
* ec
) const;
2213 // get the currency fraction with respect to currency usage
2214 int getCurrencyFractionDigits(const UChar
* currency
,
2215 UErrorCode
* ec
) const;
2217 // hashtable operations
2218 Hashtable
* initHashForAffixPattern(UErrorCode
& status
);
2219 Hashtable
* initHashForAffix(UErrorCode
& status
);
2221 void deleteHashForAffixPattern();
2222 void deleteHashForAffix(Hashtable
*& table
);
2224 void copyHashForAffixPattern(const Hashtable
* source
,
2225 Hashtable
* target
, UErrorCode
& status
);
2226 void copyHashForAffix(const Hashtable
* source
,
2227 Hashtable
* target
, UErrorCode
& status
);
2229 UnicodeString
& _format(int64_t number
,
2230 UnicodeString
& appendTo
,
2231 FieldPositionHandler
& handler
,
2232 UErrorCode
&status
) const;
2233 UnicodeString
& _format(double number
,
2234 UnicodeString
& appendTo
,
2235 FieldPositionHandler
& handler
,
2236 UErrorCode
&status
) const;
2237 UnicodeString
& _format(const DigitList
&number
,
2238 UnicodeString
& appendTo
,
2239 FieldPositionHandler
& handler
,
2240 UErrorCode
&status
) const;
2246 UnicodeString fPositivePrefix
;
2247 UnicodeString fPositiveSuffix
;
2248 UnicodeString fNegativePrefix
;
2249 UnicodeString fNegativeSuffix
;
2250 UnicodeString
* fPosPrefixPattern
;
2251 UnicodeString
* fPosSuffixPattern
;
2252 UnicodeString
* fNegPrefixPattern
;
2253 UnicodeString
* fNegSuffixPattern
;
2256 * Formatter for ChoiceFormat-based currency names. If this field
2257 * is not null, then delegate to it to format currency symbols.
2260 ChoiceFormat
* fCurrencyChoice
;
2262 DigitList
* fMultiplier
; // NULL for multiplier of one
2264 int32_t fGroupingSize
;
2265 int32_t fGroupingSize2
;
2266 UBool fDecimalSeparatorAlwaysShown
;
2267 DecimalFormatSymbols
* fSymbols
;
2269 UBool fUseSignificantDigits
;
2270 int32_t fMinSignificantDigits
;
2271 int32_t fMaxSignificantDigits
;
2273 UBool fUseExponentialNotation
;
2274 int8_t fMinExponentDigits
;
2275 UBool fExponentSignAlwaysShown
;
2277 EnumSet
<UNumberFormatAttribute
,
2278 UNUM_MAX_NONBOOLEAN_ATTRIBUTE
+1,
2279 UNUM_LIMIT_BOOLEAN_ATTRIBUTE
>
2282 DigitList
* fRoundingIncrement
; // NULL if no rounding increment specified.
2283 ERoundingMode fRoundingMode
;
2286 int32_t fFormatWidth
;
2287 EPadPosition fPadPosition
;
2290 * Following are used for currency format
2292 // pattern used in this formatter
2293 UnicodeString fFormatPattern
;
2294 // style is only valid when decimal formatter is constructed by
2295 // DecimalFormat(pattern, decimalFormatSymbol, style)
2298 * Represents whether this is a currency format, and which
2299 * currency format style.
2300 * 0: not currency format type;
2301 * 1: currency style -- symbol name, such as "$" for US dollar.
2302 * 2: currency style -- ISO name, such as USD for US dollar.
2303 * 3: currency style -- plural long name, such as "US Dollar" for
2304 * "1.00 US Dollar", or "US Dollars" for
2305 * "3.00 US Dollars".
2307 int fCurrencySignCount
;
2310 /* For currency parsing purose,
2311 * Need to remember all prefix patterns and suffix patterns of
2312 * every currency format pattern,
2313 * including the pattern of default currecny style
2314 * and plural currency style. And the patterns are set through applyPattern.
2316 // TODO: innerclass?
2317 /* This is not needed in the class declaration, so it is moved into decimfmp.cpp
2318 struct AffixPatternsForCurrency : public UMemory {
2319 // negative prefix pattern
2320 UnicodeString negPrefixPatternForCurrency;
2321 // negative suffix pattern
2322 UnicodeString negSuffixPatternForCurrency;
2323 // positive prefix pattern
2324 UnicodeString posPrefixPatternForCurrency;
2325 // positive suffix pattern
2326 UnicodeString posSuffixPatternForCurrency;
2329 AffixPatternsForCurrency(const UnicodeString& negPrefix,
2330 const UnicodeString& negSuffix,
2331 const UnicodeString& posPrefix,
2332 const UnicodeString& posSuffix,
2334 negPrefixPatternForCurrency = negPrefix;
2335 negSuffixPatternForCurrency = negSuffix;
2336 posPrefixPatternForCurrency = posPrefix;
2337 posSuffixPatternForCurrency = posSuffix;
2343 /* affix for currency formatting when the currency sign in the pattern
2344 * equals to 3, such as the pattern contains 3 currency sign or
2345 * the formatter style is currency plural format style.
2347 /* This is not needed in the class declaration, so it is moved into decimfmp.cpp
2348 struct AffixesForCurrency : public UMemory {
2350 UnicodeString negPrefixForCurrency;
2352 UnicodeString negSuffixForCurrency;
2354 UnicodeString posPrefixForCurrency;
2356 UnicodeString posSuffixForCurrency;
2358 int32_t formatWidth;
2360 AffixesForCurrency(const UnicodeString& negPrefix,
2361 const UnicodeString& negSuffix,
2362 const UnicodeString& posPrefix,
2363 const UnicodeString& posSuffix) {
2364 negPrefixForCurrency = negPrefix;
2365 negSuffixForCurrency = negSuffix;
2366 posPrefixForCurrency = posPrefix;
2367 posSuffixForCurrency = posSuffix;
2372 // Affix pattern set for currency.
2373 // It is a set of AffixPatternsForCurrency,
2374 // each element of the set saves the negative prefix pattern,
2375 // negative suffix pattern, positive prefix pattern,
2376 // and positive suffix pattern of a pattern.
2377 // It is used for currency mixed style parsing.
2378 // It is actually is a set.
2379 // The set contains the default currency pattern from the locale,
2380 // and the currency plural patterns.
2381 // Since it is a set, it does not contain duplicated items.
2382 // For example, if 2 currency plural patterns are the same, only one pattern
2383 // is included in the set. When parsing, we do not check whether the plural
2384 // count match or not.
2385 Hashtable
* fAffixPatternsForCurrency
;
2387 // Following 2 are affixes for currency.
2388 // It is a hash map from plural count to AffixesForCurrency.
2389 // AffixesForCurrency saves the negative prefix,
2390 // negative suffix, positive prefix, and positive suffix of a pattern.
2391 // It is used during currency formatting only when the currency sign count
2392 // is 3. In which case, the affixes are getting from here, not
2393 // from the fNegativePrefix etc.
2394 Hashtable
* fAffixesForCurrency
; // for current pattern
2395 Hashtable
* fPluralAffixesForCurrency
; // for plural pattern
2397 // Information needed for DecimalFormat to format/parse currency plural.
2398 CurrencyPluralInfo
* fCurrencyPluralInfo
;
2400 #if UCONFIG_HAVE_PARSEALLINPUT
2401 UNumberFormatAttributeValue fParseAllInput
;
2404 // Decimal Format Static Sets singleton.
2405 const DecimalFormatStaticSets
*fStaticSets
;
2407 // Currency Usage(STANDARD vs CASH)
2408 UCurrencyUsage fCurrencyUsage
;
2412 #ifndef U_HIDE_INTERNAL_API
2414 * Rounds a value according to the rules of this object.
2417 DigitList
& _round(const DigitList
& number
, DigitList
& adjustedNum
, UBool
& isNegative
, UErrorCode
& status
) const;
2418 #endif /* U_HIDE_INTERNAL_API */
2421 * Returns the currency in effect for this formatter. Subclasses
2422 * should override this method as needed. Unlike getCurrency(),
2423 * this method should never return "".
2424 * @result output parameter for null-terminated result, which must
2425 * have a capacity of at least 4
2428 virtual void getEffectiveCurrency(UChar
* result
, UErrorCode
& ec
) const;
2430 /** number of integer digits
2433 static const int32_t kDoubleIntegerDigits
;
2434 /** number of fraction digits
2437 static const int32_t kDoubleFractionDigits
;
2440 * When someone turns on scientific mode, we assume that more than this
2441 * number of digits is due to flipping from some other mode that didn't
2442 * restrict the maximum, and so we force 1 integer digit. We don't bother
2443 * to track and see if someone is using exponential notation with more than
2444 * this number, it wouldn't make sense anyway, and this is just to make sure
2445 * that someone turning on scientific mode with default settings doesn't
2446 * end up with lots of zeroes.
2449 static const int32_t kMaxScientificIntegerDigits
;
2451 #if UCONFIG_FORMAT_FASTPATHS_49
2457 uint8_t fReserved
[UNUM_DECIMALFORMAT_INTERNAL_SIZE
];
2461 * Called whenever any state changes. Recomputes whether fastpath is OK to use.
2463 void handleChanged();
2467 inline const UnicodeString
&
2468 DecimalFormat::getConstSymbol(DecimalFormatSymbols::ENumberFormatSymbol symbol
) const {
2469 return fSymbols
->getConstSymbol(symbol
);
2474 #endif /* #if !UCONFIG_NO_FORMATTING */