2 ***************************************************************************
3 * Copyright (C) 1999-2014 International Business Machines Corporation
4 * and others. All rights reserved.
5 ***************************************************************************
8 // file: rbbi.c Contains the implementation of the rule based break iterator
9 // runtime engine and the API implementation for
10 // class RuleBasedBreakIterator
13 #include "utypeinfo.h" // for 'typeid' to work
15 #include "unicode/utypes.h"
17 #if !UCONFIG_NO_BREAK_ITERATION
19 #include "unicode/rbbi.h"
20 #include "unicode/schriter.h"
21 #include "unicode/uchriter.h"
22 #include "unicode/udata.h"
23 #include "unicode/uclean.h"
35 // if U_LOCAL_SERVICE_HOOK is defined, then localsvc.cpp is expected to be included.
36 #if U_LOCAL_SERVICE_HOOK
41 static UBool fTrace
= FALSE
;
46 // The state number of the starting state
49 // The state-transition value indicating "stop"
53 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator
)
56 //=======================================================================
58 //=======================================================================
61 * Constructs a RuleBasedBreakIterator that uses the already-created
62 * tables object that is passed in as a parameter.
64 RuleBasedBreakIterator::RuleBasedBreakIterator(RBBIDataHeader
* data
, UErrorCode
&status
)
67 fData
= new RBBIDataWrapper(data
, status
); // status checked in constructor
68 if (U_FAILURE(status
)) {return;}
70 status
= U_MEMORY_ALLOCATION_ERROR
;
76 * Same as above but does not adopt memory
78 RuleBasedBreakIterator::RuleBasedBreakIterator(const RBBIDataHeader
* data
, enum EDontAdopt
, UErrorCode
&status
)
81 fData
= new RBBIDataWrapper(data
, RBBIDataWrapper::kDontAdopt
, status
); // status checked in constructor
82 if (U_FAILURE(status
)) {return;}
84 status
= U_MEMORY_ALLOCATION_ERROR
;
91 // Construct from precompiled binary rules (tables). This constructor is public API,
92 // taking the rules as a (const uint8_t *) to match the type produced by getBinaryRules().
94 RuleBasedBreakIterator::RuleBasedBreakIterator(const uint8_t *compiledRules
,
98 if (U_FAILURE(status
)) {
101 if (compiledRules
== NULL
|| ruleLength
< sizeof(RBBIDataHeader
)) {
102 status
= U_ILLEGAL_ARGUMENT_ERROR
;
105 const RBBIDataHeader
*data
= (const RBBIDataHeader
*)compiledRules
;
106 if (data
->fLength
> ruleLength
) {
107 status
= U_ILLEGAL_ARGUMENT_ERROR
;
110 fData
= new RBBIDataWrapper(data
, RBBIDataWrapper::kDontAdopt
, status
);
111 if (U_FAILURE(status
)) {return;}
113 status
= U_MEMORY_ALLOCATION_ERROR
;
119 //-------------------------------------------------------------------------------
121 // Constructor from a UDataMemory handle to precompiled break rules
122 // stored in an ICU data file.
124 //-------------------------------------------------------------------------------
125 RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory
* udm
, UErrorCode
&status
)
128 fData
= new RBBIDataWrapper(udm
, status
); // status checked in constructor
129 if (U_FAILURE(status
)) {return;}
131 status
= U_MEMORY_ALLOCATION_ERROR
;
138 //-------------------------------------------------------------------------------
140 // Constructor from a set of rules supplied as a string.
142 //-------------------------------------------------------------------------------
143 RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString
&rules
,
144 UParseError
&parseError
,
148 if (U_FAILURE(status
)) {return;}
149 RuleBasedBreakIterator
*bi
= (RuleBasedBreakIterator
*)
150 RBBIRuleBuilder::createRuleBasedBreakIterator(rules
, &parseError
, status
);
151 // Note: This is a bit awkward. The RBBI ruleBuilder has a factory method that
152 // creates and returns a complete RBBI. From here, in a constructor, we
153 // can't just return the object created by the builder factory, hence
154 // the assignment of the factory created object to "this".
155 if (U_SUCCESS(status
)) {
162 //-------------------------------------------------------------------------------
164 // Default Constructor. Create an empty shell that can be set up later.
165 // Used when creating a RuleBasedBreakIterator from a set
167 //-------------------------------------------------------------------------------
168 RuleBasedBreakIterator::RuleBasedBreakIterator() {
173 //-------------------------------------------------------------------------------
175 // Copy constructor. Will produce a break iterator with the same behavior,
176 // and which iterates over the same text, as the one passed in.
178 //-------------------------------------------------------------------------------
179 RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator
& other
)
180 : BreakIterator(other
)
190 RuleBasedBreakIterator::~RuleBasedBreakIterator() {
191 if (fCharIter
!=fSCharIter
&& fCharIter
!=fDCharIter
) {
192 // fCharIter was adopted from the outside.
204 fData
->removeReference();
207 if (fCachedBreakPositions
) {
208 uprv_free(fCachedBreakPositions
);
209 fCachedBreakPositions
= NULL
;
211 if (fLanguageBreakEngines
) {
212 delete fLanguageBreakEngines
;
213 fLanguageBreakEngines
= NULL
;
215 if (fUnhandledBreakEngine
) {
216 delete fUnhandledBreakEngine
;
217 fUnhandledBreakEngine
= NULL
;
222 * Assignment operator. Sets this iterator to have the same behavior,
223 * and iterate over the same text, as the one passed in.
225 RuleBasedBreakIterator
&
226 RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator
& that
) {
230 reset(); // Delete break cache information
231 fBreakType
= that
.fBreakType
;
232 if (fLanguageBreakEngines
!= NULL
) {
233 delete fLanguageBreakEngines
;
234 fLanguageBreakEngines
= NULL
; // Just rebuild for now
236 // TODO: clone fLanguageBreakEngines from "that"
237 UErrorCode status
= U_ZERO_ERROR
;
238 fText
= utext_clone(fText
, that
.fText
, FALSE
, TRUE
, &status
);
240 if (fCharIter
!=fSCharIter
&& fCharIter
!=fDCharIter
) {
245 if (that
.fCharIter
!= NULL
) {
246 // This is a little bit tricky - it will intially appear that
247 // this->fCharIter is adopted, even if that->fCharIter was
248 // not adopted. That's ok.
249 fCharIter
= that
.fCharIter
->clone();
253 fData
->removeReference();
256 if (that
.fData
!= NULL
) {
257 fData
= that
.fData
->addReference();
265 //-----------------------------------------------------------------------------
267 // init() Shared initialization routine. Used by all the constructors.
268 // Initializes all fields, leaving the object in a consistent state.
270 //-----------------------------------------------------------------------------
271 void RuleBasedBreakIterator::init() {
272 UErrorCode status
= U_ZERO_ERROR
;
273 fText
= utext_openUChars(NULL
, NULL
, 0, &status
);
278 fLastRuleStatusIndex
= 0;
279 fLastStatusIndexValid
= TRUE
;
280 fDictionaryCharCount
= 0;
281 fBreakType
= UBRK_WORD
; // Defaulting BreakType to word gives reasonable
282 // dictionary behavior for Break Iterators that are
283 // built from rules. Even better would be the ability to
284 // declare the type in the rules.
286 fCachedBreakPositions
= NULL
;
287 fLanguageBreakEngines
= NULL
;
288 fUnhandledBreakEngine
= NULL
;
289 fNumCachedBreakPositions
= 0;
290 fPositionInCache
= 0;
293 static UBool debugInitDone
= FALSE
;
294 if (debugInitDone
== FALSE
) {
295 char *debugEnv
= getenv("U_RBBIDEBUG");
296 if (debugEnv
&& uprv_strstr(debugEnv
, "trace")) {
299 debugInitDone
= TRUE
;
306 //-----------------------------------------------------------------------------
308 // clone - Returns a newly-constructed RuleBasedBreakIterator with the same
309 // behavior, and iterating over the same text, as this one.
310 // Virtual function: does the right thing with subclasses.
312 //-----------------------------------------------------------------------------
314 RuleBasedBreakIterator::clone(void) const {
315 return new RuleBasedBreakIterator(*this);
319 * Equality operator. Returns TRUE if both BreakIterators are of the
320 * same class, have the same behavior, and iterate over the same text.
323 RuleBasedBreakIterator::operator==(const BreakIterator
& that
) const {
324 if (typeid(*this) != typeid(that
)) {
328 const RuleBasedBreakIterator
& that2
= (const RuleBasedBreakIterator
&) that
;
330 if (!utext_equals(fText
, that2
.fText
)) {
331 // The two break iterators are operating on different text,
332 // or have a different interation position.
336 // TODO: need a check for when in a dictionary region at different offsets.
338 if (that2
.fData
== fData
||
339 (fData
!= NULL
&& that2
.fData
!= NULL
&& *that2
.fData
== *fData
)) {
340 // The two break iterators are using the same rules.
347 * Compute a hash code for this BreakIterator
348 * @return A hash code
351 RuleBasedBreakIterator::hashCode(void) const {
354 hash
= fData
->hashCode();
360 void RuleBasedBreakIterator::setText(UText
*ut
, UErrorCode
&status
) {
361 if (U_FAILURE(status
)) {
365 fText
= utext_clone(fText
, ut
, FALSE
, TRUE
, &status
);
367 // Set up a dummy CharacterIterator to be returned if anyone
368 // calls getText(). With input from UText, there is no reasonable
369 // way to return a characterIterator over the actual input text.
370 // Return one over an empty string instead - this is the closest
371 // we can come to signaling a failure.
372 // (GetText() is obsolete, this failure is sort of OK)
373 if (fDCharIter
== NULL
) {
374 static const UChar c
= 0;
375 fDCharIter
= new UCharCharacterIterator(&c
, 0);
376 if (fDCharIter
== NULL
) {
377 status
= U_MEMORY_ALLOCATION_ERROR
;
382 if (fCharIter
!=fSCharIter
&& fCharIter
!=fDCharIter
) {
383 // existing fCharIter was adopted from the outside. Delete it now.
386 fCharIter
= fDCharIter
;
392 UText
*RuleBasedBreakIterator::getUText(UText
*fillIn
, UErrorCode
&status
) const {
393 UText
*result
= utext_clone(fillIn
, fText
, FALSE
, TRUE
, &status
);
400 * Returns the description used to create this iterator
403 RuleBasedBreakIterator::getRules() const {
405 return fData
->getRuleSourceString();
407 static const UnicodeString
*s
;
409 // TODO: something more elegant here.
410 // perhaps API should return the string by value.
411 // Note: thread unsafe init & leak are semi-ok, better than
412 // what was before. Sould be cleaned up, though.
413 s
= new UnicodeString
;
419 //=======================================================================
420 // BreakIterator overrides
421 //=======================================================================
424 * Return a CharacterIterator over the text being analyzed.
427 RuleBasedBreakIterator::getText() const {
432 * Set the iterator to analyze a new piece of text. This function resets
433 * the current iteration position to the beginning of the text.
434 * @param newText An iterator over the text to analyze.
437 RuleBasedBreakIterator::adoptText(CharacterIterator
* newText
) {
438 // If we are holding a CharacterIterator adopted from a
439 // previous call to this function, delete it now.
440 if (fCharIter
!=fSCharIter
&& fCharIter
!=fDCharIter
) {
445 UErrorCode status
= U_ZERO_ERROR
;
447 if (newText
==NULL
|| newText
->startIndex() != 0) {
448 // startIndex !=0 wants to be an error, but there's no way to report it.
449 // Make the iterator text be an empty string.
450 fText
= utext_openUChars(fText
, NULL
, 0, &status
);
452 fText
= utext_openCharacterIterator(fText
, newText
, &status
);
458 * Set the iterator to analyze a new piece of text. This function resets
459 * the current iteration position to the beginning of the text.
460 * @param newText An iterator over the text to analyze.
463 RuleBasedBreakIterator::setText(const UnicodeString
& newText
) {
464 UErrorCode status
= U_ZERO_ERROR
;
466 fText
= utext_openConstUnicodeString(fText
, &newText
, &status
);
468 // Set up a character iterator on the string.
469 // Needed in case someone calls getText().
470 // Can not, unfortunately, do this lazily on the (probably never)
471 // call to getText(), because getText is const.
472 if (fSCharIter
== NULL
) {
473 fSCharIter
= new StringCharacterIterator(newText
);
475 fSCharIter
->setText(newText
);
478 if (fCharIter
!=fSCharIter
&& fCharIter
!=fDCharIter
) {
479 // old fCharIter was adopted from the outside. Delete it.
482 fCharIter
= fSCharIter
;
489 * Provide a new UText for the input text. Must reference text with contents identical
491 * Intended for use with text data originating in Java (garbage collected) environments
492 * where the data may be moved in memory at arbitrary times.
494 RuleBasedBreakIterator
&RuleBasedBreakIterator::refreshInputText(UText
*input
, UErrorCode
&status
) {
495 if (U_FAILURE(status
)) {
499 status
= U_ILLEGAL_ARGUMENT_ERROR
;
502 int64_t pos
= utext_getNativeIndex(fText
);
503 // Shallow read-only clone of the new UText into the existing input UText
504 fText
= utext_clone(fText
, input
, FALSE
, TRUE
, &status
);
505 if (U_FAILURE(status
)) {
508 utext_setNativeIndex(fText
, pos
);
509 if (utext_getNativeIndex(fText
) != pos
) {
510 // Sanity check. The new input utext is supposed to have the exact same
511 // contents as the old. If we can't set to the same position, it doesn't.
512 // The contents underlying the old utext might be invalid at this point,
513 // so it's not safe to check directly.
514 status
= U_ILLEGAL_ARGUMENT_ERROR
;
521 * Sets the current iteration position to the beginning of the text, position zero.
522 * @return The new iterator position, which is zero.
524 int32_t RuleBasedBreakIterator::first(void) {
526 fLastRuleStatusIndex
= 0;
527 fLastStatusIndexValid
= TRUE
;
529 // return BreakIterator::DONE;
531 utext_setNativeIndex(fText
, 0);
536 * Sets the current iteration position to the end of the text.
537 * @return The text's past-the-end offset.
539 int32_t RuleBasedBreakIterator::last(void) {
542 fLastRuleStatusIndex
= 0;
543 fLastStatusIndexValid
= TRUE
;
544 return BreakIterator::DONE
;
547 fLastStatusIndexValid
= FALSE
;
548 int32_t pos
= (int32_t)utext_nativeLength(fText
);
549 utext_setNativeIndex(fText
, pos
);
554 * Advances the iterator either forward or backward the specified number of steps.
555 * Negative values move backward, and positive values move forward. This is
556 * equivalent to repeatedly calling next() or previous().
557 * @param n The number of steps to move. The sign indicates the direction
558 * (negative is backwards, and positive is forwards).
559 * @return The character offset of the boundary position n boundaries away from
562 int32_t RuleBasedBreakIterator::next(int32_t n
) {
563 int32_t result
= current();
576 * Advances the iterator to the next boundary position.
577 * @return The position of the first boundary after this one.
579 int32_t RuleBasedBreakIterator::next(void) {
580 // if we have cached break positions and we're still in the range
581 // covered by them, just move one step forward in the cache
582 if (fCachedBreakPositions
!= NULL
) {
583 if (fPositionInCache
< fNumCachedBreakPositions
- 1) {
585 int32_t pos
= fCachedBreakPositions
[fPositionInCache
];
586 utext_setNativeIndex(fText
, pos
);
594 int32_t startPos
= current();
595 fDictionaryCharCount
= 0;
596 int32_t result
= handleNext(fData
->fForwardTable
);
597 if (fDictionaryCharCount
> 0) {
598 result
= checkDictionary(startPos
, result
, FALSE
);
604 * Advances the iterator backwards, to the last boundary preceding this one.
605 * @return The position of the last boundary position preceding this one.
607 int32_t RuleBasedBreakIterator::previous(void) {
611 // if we have cached break positions and we're still in the range
612 // covered by them, just move one step backward in the cache
613 if (fCachedBreakPositions
!= NULL
) {
614 if (fPositionInCache
> 0) {
616 // If we're at the beginning of the cache, need to reevaluate the
618 if (fPositionInCache
<= 0) {
619 fLastStatusIndexValid
= FALSE
;
621 int32_t pos
= fCachedBreakPositions
[fPositionInCache
];
622 utext_setNativeIndex(fText
, pos
);
630 // if we're already sitting at the beginning of the text, return DONE
631 if (fText
== NULL
|| (startPos
= current()) == 0) {
632 fLastRuleStatusIndex
= 0;
633 fLastStatusIndexValid
= TRUE
;
634 return BreakIterator::DONE
;
637 if (fData
->fSafeRevTable
!= NULL
|| fData
->fSafeFwdTable
!= NULL
) {
638 result
= handlePrevious(fData
->fReverseTable
);
639 if (fDictionaryCharCount
> 0) {
640 result
= checkDictionary(result
, startPos
, TRUE
);
646 // set things up. handlePrevious() will back us up to some valid
647 // break position before the current position (we back our internal
648 // iterator up one step to prevent handlePrevious() from returning
649 // the current position), but not necessarily the last one before
652 int32_t start
= current();
654 (void)UTEXT_PREVIOUS32(fText
);
655 int32_t lastResult
= handlePrevious(fData
->fReverseTable
);
656 if (lastResult
== UBRK_DONE
) {
658 utext_setNativeIndex(fText
, 0);
662 UBool breakTagValid
= FALSE
;
664 // iterate forward from the known break position until we pass our
665 // starting point. The last break position before the starting
666 // point is our return value
670 if (result
== BreakIterator::DONE
|| result
>= start
) {
674 lastTag
= fLastRuleStatusIndex
;
675 breakTagValid
= TRUE
;
678 // fLastBreakTag wants to have the value for section of text preceding
679 // the result position that we are to return (in lastResult.) If
680 // the backwards rules overshot and the above loop had to do two or more
681 // next()s to move up to the desired return position, we will have a valid
682 // tag value. But, if handlePrevious() took us to exactly the correct result position,
683 // we wont have a tag value for that position, which is only set by handleNext().
685 // Set the current iteration position to be the last break position
686 // before where we started, and then return that value.
687 utext_setNativeIndex(fText
, lastResult
);
688 fLastRuleStatusIndex
= lastTag
; // for use by getRuleStatus()
689 fLastStatusIndexValid
= breakTagValid
;
691 // No need to check the dictionary; it will have been handled by
698 * Sets the iterator to refer to the first boundary position following
699 * the specified position.
700 * @offset The position from which to begin searching for a break position.
701 * @return The position of the first break after the current position.
703 int32_t RuleBasedBreakIterator::following(int32_t offset
) {
704 // if the offset passed in is already past the end of the text,
705 // just return DONE; if it's before the beginning, return the
706 // text's starting offset
707 if (fText
== NULL
|| offset
>= utext_nativeLength(fText
)) {
711 else if (offset
< 0) {
715 // Move requested offset to a code point start. It might be on a trail surrogate,
716 // or on a trail byte if the input is UTF-8.
717 utext_setNativeIndex(fText
, offset
);
718 offset
= utext_getNativeIndex(fText
);
720 // if we have cached break positions and offset is in the range
721 // covered by them, use them
722 // TODO: could use binary search
723 // TODO: what if offset is outside range, but break is not?
724 if (fCachedBreakPositions
!= NULL
) {
725 if (offset
>= fCachedBreakPositions
[0]
726 && offset
< fCachedBreakPositions
[fNumCachedBreakPositions
- 1]) {
727 fPositionInCache
= 0;
728 // We are guaranteed not to leave the array due to range test above
729 while (offset
>= fCachedBreakPositions
[fPositionInCache
]) {
732 int32_t pos
= fCachedBreakPositions
[fPositionInCache
];
733 utext_setNativeIndex(fText
, pos
);
741 // Set our internal iteration position (temporarily)
742 // to the position passed in. If this is the _beginning_ position,
743 // then we can just use next() to get our return value
747 if (fData
->fSafeRevTable
!= NULL
) {
749 utext_setNativeIndex(fText
, offset
);
750 // move forward one codepoint to prepare for moving back to a
752 // this handles offset being between a supplementary character
753 // TODO: is this still needed, with move to code point boundary handled above?
754 (void)UTEXT_NEXT32(fText
);
755 // handlePrevious will move most of the time to < 1 boundary away
756 handlePrevious(fData
->fSafeRevTable
);
757 int32_t result
= next();
758 while (result
<= offset
) {
763 if (fData
->fSafeFwdTable
!= NULL
) {
764 // backup plan if forward safe table is not available
765 utext_setNativeIndex(fText
, offset
);
766 (void)UTEXT_PREVIOUS32(fText
);
767 // handle next will give result >= offset
768 handleNext(fData
->fSafeFwdTable
);
769 // previous will give result 0 or 1 boundary away from offset,
772 int32_t oldresult
= previous();
773 while (oldresult
> offset
) {
774 int32_t result
= previous();
775 if (result
<= offset
) {
780 int32_t result
= next();
781 if (result
<= offset
) {
786 // otherwise, we have to sync up first. Use handlePrevious() to back
787 // up to a known break position before the specified position (if
788 // we can determine that the specified position is a break position,
789 // we don't back up at all). This may or may not be the last break
790 // position at or before our starting position. Advance forward
791 // from here until we've passed the starting position. The position
792 // we stop on will be the first break position after the specified one.
795 utext_setNativeIndex(fText
, offset
);
797 (offset
==1 && utext_getNativeIndex(fText
)==0)) {
802 while (result
!= BreakIterator::DONE
&& result
<= offset
) {
810 * Sets the iterator to refer to the last boundary position before the
811 * specified position.
812 * @offset The position to begin searching for a break from.
813 * @return The position of the last boundary before the starting position.
815 int32_t RuleBasedBreakIterator::preceding(int32_t offset
) {
816 // if the offset passed in is already past the end of the text,
817 // just return DONE; if it's before the beginning, return the
818 // text's starting offset
819 if (fText
== NULL
|| offset
> utext_nativeLength(fText
)) {
822 else if (offset
< 0) {
826 // Move requested offset to a code point start. It might be on a trail surrogate,
827 // or on a trail byte if the input is UTF-8.
828 utext_setNativeIndex(fText
, offset
);
829 offset
= utext_getNativeIndex(fText
);
831 // if we have cached break positions and offset is in the range
832 // covered by them, use them
833 if (fCachedBreakPositions
!= NULL
) {
834 // TODO: binary search?
835 // TODO: What if offset is outside range, but break is not?
836 if (offset
> fCachedBreakPositions
[0]
837 && offset
<= fCachedBreakPositions
[fNumCachedBreakPositions
- 1]) {
838 fPositionInCache
= 0;
839 while (fPositionInCache
< fNumCachedBreakPositions
840 && offset
> fCachedBreakPositions
[fPositionInCache
])
843 // If we're at the beginning of the cache, need to reevaluate the
845 if (fPositionInCache
<= 0) {
846 fLastStatusIndexValid
= FALSE
;
848 utext_setNativeIndex(fText
, fCachedBreakPositions
[fPositionInCache
]);
849 return fCachedBreakPositions
[fPositionInCache
];
856 // if we start by updating the current iteration position to the
857 // position specified by the caller, we can just use previous()
858 // to carry out this operation
860 if (fData
->fSafeFwdTable
!= NULL
) {
862 utext_setNativeIndex(fText
, offset
);
863 int32_t newOffset
= (int32_t)UTEXT_GETNATIVEINDEX(fText
);
864 if (newOffset
!= offset
) {
865 // Will come here if specified offset was not a code point boundary AND
866 // the underlying implmentation is using UText, which snaps any non-code-point-boundary
867 // indices to the containing code point.
868 // For breakitereator::preceding only, these non-code-point indices need to be moved
869 // up to refer to the following codepoint.
870 (void)UTEXT_NEXT32(fText
);
871 offset
= (int32_t)UTEXT_GETNATIVEINDEX(fText
);
874 // TODO: (synwee) would it be better to just check for being in the middle of a surrogate pair,
875 // rather than adjusting the position unconditionally?
876 // (Change would interact with safe rules.)
877 // TODO: change RBBI behavior for off-boundary indices to match that of UText?
878 // affects only preceding(), seems cleaner, but is slightly different.
879 (void)UTEXT_PREVIOUS32(fText
);
880 handleNext(fData
->fSafeFwdTable
);
881 int32_t result
= (int32_t)UTEXT_GETNATIVEINDEX(fText
);
882 while (result
>= offset
) {
887 if (fData
->fSafeRevTable
!= NULL
) {
888 // backup plan if forward safe table is not available
889 // TODO: check whether this path can be discarded
890 // It's probably OK to say that rules must supply both safe tables
891 // if they use safe tables at all. We have certainly never described
892 // to anyone how to work with just one safe table.
893 utext_setNativeIndex(fText
, offset
);
894 (void)UTEXT_NEXT32(fText
);
896 // handle previous will give result <= offset
897 handlePrevious(fData
->fSafeRevTable
);
899 // next will give result 0 or 1 boundary away from offset,
902 int32_t oldresult
= next();
903 while (oldresult
< offset
) {
904 int32_t result
= next();
905 if (result
>= offset
) {
910 int32_t result
= previous();
911 if (result
>= offset
) {
918 utext_setNativeIndex(fText
, offset
);
923 * Returns true if the specfied position is a boundary position. As a side
924 * effect, leaves the iterator pointing to the first boundary position at
926 * @param offset the offset to check.
927 * @return True if "offset" is a boundary position.
929 UBool
RuleBasedBreakIterator::isBoundary(int32_t offset
) {
930 // the beginning index of the iterator is always a boundary position by definition
932 first(); // For side effects on current position, tag values.
936 if (offset
== (int32_t)utext_nativeLength(fText
)) {
937 last(); // For side effects on current position, tag values.
941 // out-of-range indexes are never boundary positions
943 first(); // For side effects on current position, tag values.
947 if (offset
> utext_nativeLength(fText
)) {
948 last(); // For side effects on current position, tag values.
952 // otherwise, we can use following() on the position before the specified
953 // one and return true if the position we get back is the one the user
955 utext_previous32From(fText
, offset
);
956 int32_t backOne
= (int32_t)UTEXT_GETNATIVEINDEX(fText
);
957 UBool result
= following(backOne
) == offset
;
962 * Returns the current iteration position.
963 * @return The current iteration position.
965 int32_t RuleBasedBreakIterator::current(void) const {
966 int32_t pos
= (int32_t)UTEXT_GETNATIVEINDEX(fText
);
970 //=======================================================================
972 //=======================================================================
975 // RBBIRunMode - the state machine runs an extra iteration at the beginning and end
976 // of user text. A variable with this enum type keeps track of where we
977 // are. The state machine only fetches user input while in the RUN mode.
980 RBBI_START
, // state machine processing is before first char of input
981 RBBI_RUN
, // state machine processing is in the user text
982 RBBI_END
// state machine processing is after end of user text.
986 //-----------------------------------------------------------------------------------
988 // handleNext(stateTable)
989 // This method is the actual implementation of the rbbi next() method.
990 // This method initializes the state machine to state 1
991 // and advances through the text character by character until we reach the end
992 // of the text or the state machine transitions to state 0. We update our return
993 // value every time the state machine passes through an accepting state.
995 //-----------------------------------------------------------------------------------
996 int32_t RuleBasedBreakIterator::handleNext(const RBBIStateTable
*statetable
) {
998 uint16_t category
= 0;
1001 RBBIStateTableRow
*row
;
1003 int32_t lookaheadStatus
= 0;
1004 int32_t lookaheadTagIdx
= 0;
1006 int32_t initialPosition
= 0;
1007 int32_t lookaheadResult
= 0;
1008 UBool lookAheadHardBreak
= (statetable
->fFlags
& RBBI_LOOKAHEAD_HARD_BREAK
) != 0;
1009 const char *tableData
= statetable
->fTableData
;
1010 uint32_t tableRowLen
= statetable
->fRowLen
;
1014 RBBIDebugPuts("Handle Next pos char state category");
1018 // No matter what, handleNext alway correctly sets the break tag value.
1019 fLastStatusIndexValid
= TRUE
;
1020 fLastRuleStatusIndex
= 0;
1022 // if we're already at the end of the text, return DONE.
1023 initialPosition
= (int32_t)UTEXT_GETNATIVEINDEX(fText
);
1024 result
= initialPosition
;
1025 c
= UTEXT_NEXT32(fText
);
1026 if (fData
== NULL
|| c
==U_SENTINEL
) {
1027 return BreakIterator::DONE
;
1030 // Set the initial state for the state machine
1031 state
= START_STATE
;
1032 row
= (RBBIStateTableRow
*)
1033 //(statetable->fTableData + (statetable->fRowLen * state));
1034 (tableData
+ tableRowLen
* state
);
1038 if (statetable
->fFlags
& RBBI_BOF_REQUIRED
) {
1044 // loop until we reach the end of the text or transition to state 0
1047 if (c
== U_SENTINEL
) {
1048 // Reached end of input string.
1049 if (mode
== RBBI_END
) {
1050 // We have already run the loop one last time with the
1051 // character set to the psueudo {eof} value. Now it is time
1052 // to unconditionally bail out.
1053 if (lookaheadResult
> result
) {
1054 // We ran off the end of the string with a pending look-ahead match.
1055 // Treat this as if the look-ahead condition had been met, and return
1056 // the match at the / position from the look-ahead rule.
1057 result
= lookaheadResult
;
1058 fLastRuleStatusIndex
= lookaheadTagIdx
;
1059 lookaheadStatus
= 0;
1063 // Run the loop one last time with the fake end-of-input character category.
1069 // Get the char category. An incoming category of 1 or 2 means that
1070 // we are preset for doing the beginning or end of input, and
1071 // that we shouldn't get a category from an actual text input character.
1073 if (mode
== RBBI_RUN
) {
1074 // look up the current character's character category, which tells us
1075 // which column in the state table to look at.
1076 // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned,
1077 // not the size of the character going in, which is a UChar32.
1079 UTRIE_GET16(&fData
->fTrie
, c
, category
);
1081 // Check the dictionary bit in the character's category.
1082 // Counter is only used by dictionary based iterators (subclasses).
1083 // Chars that need to be handled by a dictionary have a flag bit set
1084 // in their category values.
1086 if ((category
& 0x4000) != 0) {
1087 fDictionaryCharCount
++;
1088 // And off the dictionary flag bit.
1089 category
&= ~0x4000;
1095 RBBIDebugPrintf(" %4ld ", utext_getNativeIndex(fText
));
1096 if (0x20<=c
&& c
<0x7f) {
1097 RBBIDebugPrintf("\"%c\" ", c
);
1099 RBBIDebugPrintf("%5x ", c
);
1101 RBBIDebugPrintf("%3d %3d\n", state
, category
);
1105 // State Transition - move machine to its next state
1108 // Note: fNextState is defined as uint16_t[2], but we are casting
1109 // a generated RBBI table to RBBIStateTableRow and some tables
1110 // actually have more than 2 categories.
1111 U_ASSERT(category
<fData
->fHeader
->fCatCount
);
1112 state
= row
->fNextState
[category
]; /*Not accessing beyond memory*/
1113 row
= (RBBIStateTableRow
*)
1114 // (statetable->fTableData + (statetable->fRowLen * state));
1115 (tableData
+ tableRowLen
* state
);
1118 if (row
->fAccepting
== -1) {
1119 // Match found, common case.
1120 if (mode
!= RBBI_START
) {
1121 result
= (int32_t)UTEXT_GETNATIVEINDEX(fText
);
1123 fLastRuleStatusIndex
= row
->fTagIdx
; // Remember the break status (tag) values.
1126 if (row
->fLookAhead
!= 0) {
1127 if (lookaheadStatus
!= 0
1128 && row
->fAccepting
== lookaheadStatus
) {
1129 // Lookahead match is completed.
1130 result
= lookaheadResult
;
1131 fLastRuleStatusIndex
= lookaheadTagIdx
;
1132 lookaheadStatus
= 0;
1133 // TODO: make a standalone hard break in a rule work.
1134 if (lookAheadHardBreak
) {
1135 UTEXT_SETNATIVEINDEX(fText
, result
);
1138 // Look-ahead completed, but other rules may match further. Continue on
1139 // TODO: junk this feature? I don't think it's used anywhwere.
1143 int32_t r
= (int32_t)UTEXT_GETNATIVEINDEX(fText
);
1144 lookaheadResult
= r
;
1145 lookaheadStatus
= row
->fLookAhead
;
1146 lookaheadTagIdx
= row
->fTagIdx
;
1151 if (row
->fAccepting
!= 0) {
1152 // Because this is an accepting state, any in-progress look-ahead match
1153 // is no longer relavant. Clear out the pending lookahead status.
1154 lookaheadStatus
= 0; // clear out any pending look-ahead match.
1158 if (state
== STOP_STATE
) {
1159 // This is the normal exit from the lookup state machine.
1160 // We have advanced through the string until it is certain that no
1161 // longer match is possible, no matter what characters follow.
1165 // Advance to the next character.
1166 // If this is a beginning-of-input loop iteration, don't advance
1167 // the input position. The next iteration will be processing the
1168 // first real input character.
1169 if (mode
== RBBI_RUN
) {
1170 c
= UTEXT_NEXT32(fText
);
1172 if (mode
== RBBI_START
) {
1180 // The state machine is done. Check whether it found a match...
1182 // If the iterator failed to advance in the match engine, force it ahead by one.
1183 // (This really indicates a defect in the break rules. They should always match
1184 // at least one character.)
1185 if (result
== initialPosition
) {
1186 UTEXT_SETNATIVEINDEX(fText
, initialPosition
);
1187 UTEXT_NEXT32(fText
);
1188 result
= (int32_t)UTEXT_GETNATIVEINDEX(fText
);
1191 // Leave the iterator at our result position.
1192 UTEXT_SETNATIVEINDEX(fText
, result
);
1195 RBBIDebugPrintf("result = %d\n\n", result
);
1203 //-----------------------------------------------------------------------------------
1207 // Iterate backwards, according to the logic of the reverse rules.
1208 // This version handles the exact style backwards rules.
1210 // The logic of this function is very similar to handleNext(), above.
1212 //-----------------------------------------------------------------------------------
1213 int32_t RuleBasedBreakIterator::handlePrevious(const RBBIStateTable
*statetable
) {
1215 uint16_t category
= 0;
1217 RBBIStateTableRow
*row
;
1219 int32_t lookaheadStatus
= 0;
1221 int32_t initialPosition
= 0;
1222 int32_t lookaheadResult
= 0;
1223 UBool lookAheadHardBreak
= (statetable
->fFlags
& RBBI_LOOKAHEAD_HARD_BREAK
) != 0;
1227 RBBIDebugPuts("Handle Previous pos char state category");
1231 // handlePrevious() never gets the rule status.
1232 // Flag the status as invalid; if the user ever asks for status, we will need
1233 // to back up, then re-find the break position using handleNext(), which does
1234 // get the status value.
1235 fLastStatusIndexValid
= FALSE
;
1236 fLastRuleStatusIndex
= 0;
1238 // if we're already at the start of the text, return DONE.
1239 if (fText
== NULL
|| fData
== NULL
|| UTEXT_GETNATIVEINDEX(fText
)==0) {
1240 return BreakIterator::DONE
;
1243 // Set up the starting char.
1244 initialPosition
= (int32_t)UTEXT_GETNATIVEINDEX(fText
);
1245 result
= initialPosition
;
1246 c
= UTEXT_PREVIOUS32(fText
);
1248 // Set the initial state for the state machine
1249 state
= START_STATE
;
1250 row
= (RBBIStateTableRow
*)
1251 (statetable
->fTableData
+ (statetable
->fRowLen
* state
));
1254 if (statetable
->fFlags
& RBBI_BOF_REQUIRED
) {
1260 // loop until we reach the start of the text or transition to state 0
1263 if (c
== U_SENTINEL
) {
1264 // Reached end of input string.
1265 if (mode
== RBBI_END
) {
1266 // We have already run the loop one last time with the
1267 // character set to the psueudo {eof} value. Now it is time
1268 // to unconditionally bail out.
1269 if (lookaheadResult
< result
) {
1270 // We ran off the end of the string with a pending look-ahead match.
1271 // Treat this as if the look-ahead condition had been met, and return
1272 // the match at the / position from the look-ahead rule.
1273 result
= lookaheadResult
;
1274 lookaheadStatus
= 0;
1275 } else if (result
== initialPosition
) {
1276 // Ran off start, no match found.
1277 // move one index one (towards the start, since we are doing a previous())
1278 UTEXT_SETNATIVEINDEX(fText
, initialPosition
);
1279 (void)UTEXT_PREVIOUS32(fText
); // TODO: shouldn't be necessary. We're already at beginning. Check.
1283 // Run the loop one last time with the fake end-of-input character category.
1289 // Get the char category. An incoming category of 1 or 2 means that
1290 // we are preset for doing the beginning or end of input, and
1291 // that we shouldn't get a category from an actual text input character.
1293 if (mode
== RBBI_RUN
) {
1294 // look up the current character's character category, which tells us
1295 // which column in the state table to look at.
1296 // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned,
1297 // not the size of the character going in, which is a UChar32.
1299 UTRIE_GET16(&fData
->fTrie
, c
, category
);
1301 // Check the dictionary bit in the character's category.
1302 // Counter is only used by dictionary based iterators (subclasses).
1303 // Chars that need to be handled by a dictionary have a flag bit set
1304 // in their category values.
1306 if ((category
& 0x4000) != 0) {
1307 fDictionaryCharCount
++;
1308 // And off the dictionary flag bit.
1309 category
&= ~0x4000;
1315 RBBIDebugPrintf(" %4d ", (int32_t)utext_getNativeIndex(fText
));
1316 if (0x20<=c
&& c
<0x7f) {
1317 RBBIDebugPrintf("\"%c\" ", c
);
1319 RBBIDebugPrintf("%5x ", c
);
1321 RBBIDebugPrintf("%3d %3d\n", state
, category
);
1325 // State Transition - move machine to its next state
1328 // Note: fNextState is defined as uint16_t[2], but we are casting
1329 // a generated RBBI table to RBBIStateTableRow and some tables
1330 // actually have more than 2 categories.
1331 U_ASSERT(category
<fData
->fHeader
->fCatCount
);
1332 state
= row
->fNextState
[category
]; /*Not accessing beyond memory*/
1333 row
= (RBBIStateTableRow
*)
1334 (statetable
->fTableData
+ (statetable
->fRowLen
* state
));
1336 if (row
->fAccepting
== -1) {
1337 // Match found, common case.
1338 result
= (int32_t)UTEXT_GETNATIVEINDEX(fText
);
1341 if (row
->fLookAhead
!= 0) {
1342 if (lookaheadStatus
!= 0
1343 && row
->fAccepting
== lookaheadStatus
) {
1344 // Lookahead match is completed.
1345 result
= lookaheadResult
;
1346 lookaheadStatus
= 0;
1347 // TODO: make a standalone hard break in a rule work.
1348 if (lookAheadHardBreak
) {
1349 UTEXT_SETNATIVEINDEX(fText
, result
);
1352 // Look-ahead completed, but other rules may match further. Continue on
1353 // TODO: junk this feature? I don't think it's used anywhwere.
1357 int32_t r
= (int32_t)UTEXT_GETNATIVEINDEX(fText
);
1358 lookaheadResult
= r
;
1359 lookaheadStatus
= row
->fLookAhead
;
1364 if (row
->fAccepting
!= 0) {
1365 // Because this is an accepting state, any in-progress look-ahead match
1366 // is no longer relavant. Clear out the pending lookahead status.
1367 lookaheadStatus
= 0;
1371 if (state
== STOP_STATE
) {
1372 // This is the normal exit from the lookup state machine.
1373 // We have advanced through the string until it is certain that no
1374 // longer match is possible, no matter what characters follow.
1378 // Move (backwards) to the next character to process.
1379 // If this is a beginning-of-input loop iteration, don't advance
1380 // the input position. The next iteration will be processing the
1381 // first real input character.
1382 if (mode
== RBBI_RUN
) {
1383 c
= UTEXT_PREVIOUS32(fText
);
1385 if (mode
== RBBI_START
) {
1391 // The state machine is done. Check whether it found a match...
1393 // If the iterator failed to advance in the match engine, force it ahead by one.
1394 // (This really indicates a defect in the break rules. They should always match
1395 // at least one character.)
1396 if (result
== initialPosition
) {
1397 UTEXT_SETNATIVEINDEX(fText
, initialPosition
);
1398 UTEXT_PREVIOUS32(fText
);
1399 result
= (int32_t)UTEXT_GETNATIVEINDEX(fText
);
1402 // Leave the iterator at our result position.
1403 UTEXT_SETNATIVEINDEX(fText
, result
);
1406 RBBIDebugPrintf("result = %d\n\n", result
);
1414 RuleBasedBreakIterator::reset()
1416 if (fCachedBreakPositions
) {
1417 uprv_free(fCachedBreakPositions
);
1419 fCachedBreakPositions
= NULL
;
1420 fNumCachedBreakPositions
= 0;
1421 fDictionaryCharCount
= 0;
1422 fPositionInCache
= 0;
1427 //-------------------------------------------------------------------------------
1429 // getRuleStatus() Return the break rule tag associated with the current
1430 // iterator position. If the iterator arrived at its current
1431 // position by iterating forwards, the value will have been
1432 // cached by the handleNext() function.
1434 // If no cached status value is available, the status is
1435 // found by doing a previous() followed by a next(), which
1436 // leaves the iterator where it started, and computes the
1437 // status while doing the next().
1439 //-------------------------------------------------------------------------------
1440 void RuleBasedBreakIterator::makeRuleStatusValid() {
1441 if (fLastStatusIndexValid
== FALSE
) {
1442 // No cached status is available.
1443 if (fText
== NULL
|| current() == 0) {
1444 // At start of text, or there is no text. Status is always zero.
1445 fLastRuleStatusIndex
= 0;
1446 fLastStatusIndexValid
= TRUE
;
1448 // Not at start of text. Find status the tedious way.
1449 int32_t pa
= current();
1451 if (fNumCachedBreakPositions
> 0) {
1452 reset(); // Blow off the dictionary cache
1454 int32_t pb
= next();
1456 // note: the if (pa != pb) test is here only to eliminate warnings for
1457 // unused local variables on gcc. Logically, it isn't needed.
1462 U_ASSERT(fLastRuleStatusIndex
>= 0 && fLastRuleStatusIndex
< fData
->fStatusMaxIdx
);
1466 int32_t RuleBasedBreakIterator::getRuleStatus() const {
1467 RuleBasedBreakIterator
*nonConstThis
= (RuleBasedBreakIterator
*)this;
1468 nonConstThis
->makeRuleStatusValid();
1470 // fLastRuleStatusIndex indexes to the start of the appropriate status record
1471 // (the number of status values.)
1472 // This function returns the last (largest) of the array of status values.
1473 int32_t idx
= fLastRuleStatusIndex
+ fData
->fRuleStatusTable
[fLastRuleStatusIndex
];
1474 int32_t tagVal
= fData
->fRuleStatusTable
[idx
];
1482 int32_t RuleBasedBreakIterator::getRuleStatusVec(
1483 int32_t *fillInVec
, int32_t capacity
, UErrorCode
&status
)
1485 if (U_FAILURE(status
)) {
1489 RuleBasedBreakIterator
*nonConstThis
= (RuleBasedBreakIterator
*)this;
1490 nonConstThis
->makeRuleStatusValid();
1491 int32_t numVals
= fData
->fRuleStatusTable
[fLastRuleStatusIndex
];
1492 int32_t numValsToCopy
= numVals
;
1493 if (numVals
> capacity
) {
1494 status
= U_BUFFER_OVERFLOW_ERROR
;
1495 numValsToCopy
= capacity
;
1498 for (i
=0; i
<numValsToCopy
; i
++) {
1499 fillInVec
[i
] = fData
->fRuleStatusTable
[fLastRuleStatusIndex
+ i
+ 1];
1506 //-------------------------------------------------------------------------------
1508 // getBinaryRules Access to the compiled form of the rules,
1509 // for use by build system tools that save the data
1510 // for standard iterator types.
1512 //-------------------------------------------------------------------------------
1513 const uint8_t *RuleBasedBreakIterator::getBinaryRules(uint32_t &length
) {
1514 const uint8_t *retPtr
= NULL
;
1517 if (fData
!= NULL
) {
1518 retPtr
= (const uint8_t *)fData
->fHeader
;
1519 length
= fData
->fHeader
->fLength
;
1525 BreakIterator
* RuleBasedBreakIterator::createBufferClone(void * /*stackBuffer*/,
1526 int32_t &bufferSize
,
1529 if (U_FAILURE(status
)){
1533 if (bufferSize
== 0) {
1534 bufferSize
= 1; // preflighting for deprecated functionality
1538 BreakIterator
*clonedBI
= clone();
1539 if (clonedBI
== NULL
) {
1540 status
= U_MEMORY_ALLOCATION_ERROR
;
1542 status
= U_SAFECLONE_ALLOCATED_WARNING
;
1544 return (RuleBasedBreakIterator
*)clonedBI
;
1548 //-------------------------------------------------------------------------------
1550 // isDictionaryChar Return true if the category lookup for this char
1551 // indicates that it is in the set of dictionary lookup
1554 // This function is intended for use by dictionary based
1557 //-------------------------------------------------------------------------------
1558 /*UBool RuleBasedBreakIterator::isDictionaryChar(UChar32 c) {
1559 if (fData == NULL) {
1563 UTRIE_GET16(&fData->fTrie, c, category);
1564 return (category & 0x4000) != 0;
1568 //-------------------------------------------------------------------------------
1570 // checkDictionary This function handles all processing of characters in
1571 // the "dictionary" set. It will determine the appropriate
1572 // course of action, and possibly set up a cache in the
1575 //-------------------------------------------------------------------------------
1576 int32_t RuleBasedBreakIterator::checkDictionary(int32_t startPos
,
1579 // Reset the old break cache first.
1582 // note: code segment below assumes that dictionary chars are in the
1583 // startPos-endPos range
1584 // value returned should be next character in sequence
1585 if ((endPos
- startPos
) <= 1) {
1586 return (reverse
? startPos
: endPos
);
1589 // Starting from the starting point, scan towards the proposed result,
1590 // looking for the first dictionary character (which may be the one
1591 // we're on, if we're starting in the middle of a range).
1592 utext_setNativeIndex(fText
, reverse
? endPos
: startPos
);
1594 UTEXT_PREVIOUS32(fText
);
1597 int32_t rangeStart
= startPos
;
1598 int32_t rangeEnd
= endPos
;
1602 UErrorCode status
= U_ZERO_ERROR
;
1603 UStack
breaks(status
);
1604 int32_t foundBreakCount
= 0;
1605 UChar32 c
= utext_current32(fText
);
1607 UTRIE_GET16(&fData
->fTrie
, c
, category
);
1609 // Is the character we're starting on a dictionary character? If so, we
1610 // need to back up to include the entire run; otherwise the results of
1611 // the break algorithm will differ depending on where we start. Since
1612 // the result is cached and there is typically a non-dictionary break
1613 // within a small number of words, there should be little performance impact.
1614 if (category
& 0x4000) {
1617 utext_next32(fText
); // TODO: recast to work directly with postincrement.
1618 c
= utext_current32(fText
);
1619 UTRIE_GET16(&fData
->fTrie
, c
, category
);
1620 } while (c
!= U_SENTINEL
&& (category
& 0x4000));
1621 // Back up to the last dictionary character
1622 rangeEnd
= (int32_t)UTEXT_GETNATIVEINDEX(fText
);
1623 if (c
== U_SENTINEL
) {
1624 // c = fText->last32();
1625 // TODO: why was this if needed?
1626 c
= UTEXT_PREVIOUS32(fText
);
1629 c
= UTEXT_PREVIOUS32(fText
);
1634 c
= UTEXT_PREVIOUS32(fText
);
1635 UTRIE_GET16(&fData
->fTrie
, c
, category
);
1637 while (c
!= U_SENTINEL
&& (category
& 0x4000));
1638 // Back up to the last dictionary character
1639 if (c
== U_SENTINEL
) {
1640 // c = fText->first32();
1641 c
= utext_current32(fText
);
1644 utext_next32(fText
);
1645 c
= utext_current32(fText
);
1647 rangeStart
= (int32_t)UTEXT_GETNATIVEINDEX(fText
);;
1649 UTRIE_GET16(&fData
->fTrie
, c
, category
);
1652 // Loop through the text, looking for ranges of dictionary characters.
1653 // For each span, find the appropriate break engine, and ask it to find
1654 // any breaks within the span.
1655 // Note: we always do this in the forward direction, so that the break
1656 // cache is built in the right order.
1658 utext_setNativeIndex(fText
, rangeStart
);
1659 c
= utext_current32(fText
);
1660 UTRIE_GET16(&fData
->fTrie
, c
, category
);
1662 while(U_SUCCESS(status
)) {
1663 while((current
= (int32_t)UTEXT_GETNATIVEINDEX(fText
)) < rangeEnd
&& (category
& 0x4000) == 0) {
1664 utext_next32(fText
); // TODO: tweak for post-increment operation
1665 c
= utext_current32(fText
);
1666 UTRIE_GET16(&fData
->fTrie
, c
, category
);
1668 if (current
>= rangeEnd
) {
1672 // We now have a dictionary character. Get the appropriate language object
1674 const LanguageBreakEngine
*lbe
= getLanguageBreakEngine(c
);
1676 // Ask the language object if there are any breaks. It will leave the text
1677 // pointer on the other side of its range, ready to search for the next one.
1679 foundBreakCount
+= lbe
->findBreaks(fText
, rangeStart
, rangeEnd
, FALSE
, fBreakType
, breaks
);
1682 // Reload the loop variables for the next go-round
1683 c
= utext_current32(fText
);
1684 UTRIE_GET16(&fData
->fTrie
, c
, category
);
1687 // If we found breaks, build a new break cache. The first and last entries must
1688 // be the original starting and ending position.
1689 if (foundBreakCount
> 0) {
1690 U_ASSERT(foundBreakCount
== breaks
.size());
1691 int32_t totalBreaks
= foundBreakCount
;
1692 if (startPos
< breaks
.elementAti(0)) {
1695 if (endPos
> breaks
.peeki()) {
1698 fCachedBreakPositions
= (int32_t *)uprv_malloc(totalBreaks
* sizeof(int32_t));
1699 if (fCachedBreakPositions
!= NULL
) {
1701 fNumCachedBreakPositions
= totalBreaks
;
1702 if (startPos
< breaks
.elementAti(0)) {
1703 fCachedBreakPositions
[out
++] = startPos
;
1705 for (int32_t i
= 0; i
< foundBreakCount
; ++i
) {
1706 fCachedBreakPositions
[out
++] = breaks
.elementAti(i
);
1708 if (endPos
> fCachedBreakPositions
[out
-1]) {
1709 fCachedBreakPositions
[out
] = endPos
;
1711 // If there are breaks, then by definition, we are replacing the original
1712 // proposed break by one of the breaks we found. Use following() and
1713 // preceding() to do the work. They should never recurse in this case.
1715 return preceding(endPos
);
1718 return following(startPos
);
1721 // If the allocation failed, just fall through to the "no breaks found" case.
1724 // If we get here, there were no language-based breaks. Set the text pointer
1725 // to the original proposed break.
1726 utext_setNativeIndex(fText
, reverse
? startPos
: endPos
);
1727 return (reverse
? startPos
: endPos
);
1733 static icu::UStack
*gLanguageBreakFactories
= NULL
;
1734 static icu::UInitOnce gLanguageBreakFactoriesInitOnce
= U_INITONCE_INITIALIZER
;
1737 * Release all static memory held by breakiterator.
1740 static UBool U_CALLCONV
breakiterator_cleanup_dict(void) {
1741 if (gLanguageBreakFactories
) {
1742 delete gLanguageBreakFactories
;
1743 gLanguageBreakFactories
= NULL
;
1745 gLanguageBreakFactoriesInitOnce
.reset();
1751 static void U_CALLCONV
_deleteFactory(void *obj
) {
1752 delete (icu::LanguageBreakFactory
*) obj
;
1757 static void U_CALLCONV
initLanguageFactories() {
1758 UErrorCode status
= U_ZERO_ERROR
;
1759 U_ASSERT(gLanguageBreakFactories
== NULL
);
1760 gLanguageBreakFactories
= new UStack(_deleteFactory
, NULL
, status
);
1761 if (gLanguageBreakFactories
!= NULL
&& U_SUCCESS(status
)) {
1762 ICULanguageBreakFactory
*builtIn
= new ICULanguageBreakFactory(status
);
1763 gLanguageBreakFactories
->push(builtIn
, status
);
1764 #ifdef U_LOCAL_SERVICE_HOOK
1765 LanguageBreakFactory
*extra
= (LanguageBreakFactory
*)uprv_svc_hook("languageBreakFactory", &status
);
1766 if (extra
!= NULL
) {
1767 gLanguageBreakFactories
->push(extra
, status
);
1771 ucln_common_registerCleanup(UCLN_COMMON_BREAKITERATOR_DICT
, breakiterator_cleanup_dict
);
1775 static const LanguageBreakEngine
*
1776 getLanguageBreakEngineFromFactory(UChar32 c
, int32_t breakType
)
1778 umtx_initOnce(gLanguageBreakFactoriesInitOnce
, &initLanguageFactories
);
1779 if (gLanguageBreakFactories
== NULL
) {
1783 int32_t i
= gLanguageBreakFactories
->size();
1784 const LanguageBreakEngine
*lbe
= NULL
;
1786 LanguageBreakFactory
*factory
= (LanguageBreakFactory
*)(gLanguageBreakFactories
->elementAt(i
));
1787 lbe
= factory
->getEngineFor(c
, breakType
);
1796 //-------------------------------------------------------------------------------
1798 // getLanguageBreakEngine Find an appropriate LanguageBreakEngine for the
1801 //-------------------------------------------------------------------------------
1802 const LanguageBreakEngine
*
1803 RuleBasedBreakIterator::getLanguageBreakEngine(UChar32 c
) {
1804 const LanguageBreakEngine
*lbe
= NULL
;
1805 UErrorCode status
= U_ZERO_ERROR
;
1807 if (fLanguageBreakEngines
== NULL
) {
1808 fLanguageBreakEngines
= new UStack(status
);
1809 if (fLanguageBreakEngines
== NULL
|| U_FAILURE(status
)) {
1810 delete fLanguageBreakEngines
;
1811 fLanguageBreakEngines
= 0;
1816 int32_t i
= fLanguageBreakEngines
->size();
1818 lbe
= (const LanguageBreakEngine
*)(fLanguageBreakEngines
->elementAt(i
));
1819 if (lbe
->handles(c
, fBreakType
)) {
1824 // No existing dictionary took the character. See if a factory wants to
1825 // give us a new LanguageBreakEngine for this character.
1826 lbe
= getLanguageBreakEngineFromFactory(c
, fBreakType
);
1828 // If we got one, use it and push it on our stack.
1830 fLanguageBreakEngines
->push((void *)lbe
, status
);
1831 // Even if we can't remember it, we can keep looking it up, so
1832 // return it even if the push fails.
1836 // No engine is forthcoming for this character. Add it to the
1837 // reject set. Create the reject break engine if needed.
1838 if (fUnhandledBreakEngine
== NULL
) {
1839 fUnhandledBreakEngine
= new UnhandledEngine(status
);
1840 if (U_SUCCESS(status
) && fUnhandledBreakEngine
== NULL
) {
1841 status
= U_MEMORY_ALLOCATION_ERROR
;
1843 // Put it last so that scripts for which we have an engine get tried
1845 fLanguageBreakEngines
->insertElementAt(fUnhandledBreakEngine
, 0, status
);
1846 // If we can't insert it, or creation failed, get rid of it
1847 if (U_FAILURE(status
)) {
1848 delete fUnhandledBreakEngine
;
1849 fUnhandledBreakEngine
= 0;
1854 // Tell the reject engine about the character; at its discretion, it may
1855 // add more than just the one character.
1856 fUnhandledBreakEngine
->handleCharacter(c
, fBreakType
);
1858 return fUnhandledBreakEngine
;
1863 /*int32_t RuleBasedBreakIterator::getBreakType() const {
1867 void RuleBasedBreakIterator::setBreakType(int32_t type
) {
1874 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */