]> git.saurik.com Git - apple/icu.git/blob - icuSources/common/rbbi.cpp
ICU-551.30.tar.gz
[apple/icu.git] / icuSources / common / rbbi.cpp
1 /*
2 ***************************************************************************
3 * Copyright (C) 1999-2014 International Business Machines Corporation
4 * and others. All rights reserved.
5 ***************************************************************************
6 */
7 //
8 // file: rbbi.c Contains the implementation of the rule based break iterator
9 // runtime engine and the API implementation for
10 // class RuleBasedBreakIterator
11 //
12
13 #include "utypeinfo.h" // for 'typeid' to work
14
15 #include "unicode/utypes.h"
16
17 #if !UCONFIG_NO_BREAK_ITERATION
18
19 #include "unicode/rbbi.h"
20 #include "unicode/schriter.h"
21 #include "unicode/uchriter.h"
22 #include "unicode/udata.h"
23 #include "unicode/uclean.h"
24 #include "rbbidata.h"
25 #include "rbbirb.h"
26 #include "cmemory.h"
27 #include "cstring.h"
28 #include "umutex.h"
29 #include "ucln_cmn.h"
30 #include "brkeng.h"
31
32 #include "uassert.h"
33 #include "uvector.h"
34
35 // if U_LOCAL_SERVICE_HOOK is defined, then localsvc.cpp is expected to be included.
36 #if U_LOCAL_SERVICE_HOOK
37 #include "localsvc.h"
38 #endif
39
40 #ifdef RBBI_DEBUG
41 static UBool fTrace = FALSE;
42 #endif
43
44 U_NAMESPACE_BEGIN
45
46 // The state number of the starting state
47 #define START_STATE 1
48
49 // The state-transition value indicating "stop"
50 #define STOP_STATE 0
51
52
53 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator)
54
55
56 //=======================================================================
57 // constructors
58 //=======================================================================
59
60 /**
61 * Constructs a RuleBasedBreakIterator that uses the already-created
62 * tables object that is passed in as a parameter.
63 */
64 RuleBasedBreakIterator::RuleBasedBreakIterator(RBBIDataHeader* data, UErrorCode &status)
65 {
66 init();
67 fData = new RBBIDataWrapper(data, status); // status checked in constructor
68 if (U_FAILURE(status)) {return;}
69 if(fData == 0) {
70 status = U_MEMORY_ALLOCATION_ERROR;
71 return;
72 }
73 }
74
75 /**
76 * Same as above but does not adopt memory
77 */
78 RuleBasedBreakIterator::RuleBasedBreakIterator(const RBBIDataHeader* data, enum EDontAdopt, UErrorCode &status)
79 {
80 init();
81 fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status); // status checked in constructor
82 if (U_FAILURE(status)) {return;}
83 if(fData == 0) {
84 status = U_MEMORY_ALLOCATION_ERROR;
85 return;
86 }
87 }
88
89
90 //
91 // Construct from precompiled binary rules (tables). This constructor is public API,
92 // taking the rules as a (const uint8_t *) to match the type produced by getBinaryRules().
93 //
94 RuleBasedBreakIterator::RuleBasedBreakIterator(const uint8_t *compiledRules,
95 uint32_t ruleLength,
96 UErrorCode &status) {
97 init();
98 if (U_FAILURE(status)) {
99 return;
100 }
101 if (compiledRules == NULL || ruleLength < sizeof(RBBIDataHeader)) {
102 status = U_ILLEGAL_ARGUMENT_ERROR;
103 return;
104 }
105 const RBBIDataHeader *data = (const RBBIDataHeader *)compiledRules;
106 if (data->fLength > ruleLength) {
107 status = U_ILLEGAL_ARGUMENT_ERROR;
108 return;
109 }
110 fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status);
111 if (U_FAILURE(status)) {return;}
112 if(fData == 0) {
113 status = U_MEMORY_ALLOCATION_ERROR;
114 return;
115 }
116 }
117
118
119 //-------------------------------------------------------------------------------
120 //
121 // Constructor from a UDataMemory handle to precompiled break rules
122 // stored in an ICU data file.
123 //
124 //-------------------------------------------------------------------------------
125 RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UErrorCode &status)
126 {
127 init();
128 fData = new RBBIDataWrapper(udm, status); // status checked in constructor
129 if (U_FAILURE(status)) {return;}
130 if(fData == 0) {
131 status = U_MEMORY_ALLOCATION_ERROR;
132 return;
133 }
134 }
135
136
137
138 //-------------------------------------------------------------------------------
139 //
140 // Constructor from a set of rules supplied as a string.
141 //
142 //-------------------------------------------------------------------------------
143 RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString &rules,
144 UParseError &parseError,
145 UErrorCode &status)
146 {
147 init();
148 if (U_FAILURE(status)) {return;}
149 RuleBasedBreakIterator *bi = (RuleBasedBreakIterator *)
150 RBBIRuleBuilder::createRuleBasedBreakIterator(rules, &parseError, status);
151 // Note: This is a bit awkward. The RBBI ruleBuilder has a factory method that
152 // creates and returns a complete RBBI. From here, in a constructor, we
153 // can't just return the object created by the builder factory, hence
154 // the assignment of the factory created object to "this".
155 if (U_SUCCESS(status)) {
156 *this = *bi;
157 delete bi;
158 }
159 }
160
161
162 //-------------------------------------------------------------------------------
163 //
164 // Default Constructor. Create an empty shell that can be set up later.
165 // Used when creating a RuleBasedBreakIterator from a set
166 // of rules.
167 //-------------------------------------------------------------------------------
168 RuleBasedBreakIterator::RuleBasedBreakIterator() {
169 init();
170 }
171
172
173 //-------------------------------------------------------------------------------
174 //
175 // Copy constructor. Will produce a break iterator with the same behavior,
176 // and which iterates over the same text, as the one passed in.
177 //
178 //-------------------------------------------------------------------------------
179 RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& other)
180 : BreakIterator(other)
181 {
182 this->init();
183 *this = other;
184 }
185
186
187 /**
188 * Destructor
189 */
190 RuleBasedBreakIterator::~RuleBasedBreakIterator() {
191 if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
192 // fCharIter was adopted from the outside.
193 delete fCharIter;
194 }
195 fCharIter = NULL;
196 delete fSCharIter;
197 fCharIter = NULL;
198 delete fDCharIter;
199 fDCharIter = NULL;
200
201 utext_close(fText);
202
203 if (fData != NULL) {
204 fData->removeReference();
205 fData = NULL;
206 }
207 if (fCachedBreakPositions) {
208 uprv_free(fCachedBreakPositions);
209 fCachedBreakPositions = NULL;
210 }
211 if (fLanguageBreakEngines) {
212 delete fLanguageBreakEngines;
213 fLanguageBreakEngines = NULL;
214 }
215 if (fUnhandledBreakEngine) {
216 delete fUnhandledBreakEngine;
217 fUnhandledBreakEngine = NULL;
218 }
219 }
220
221 /**
222 * Assignment operator. Sets this iterator to have the same behavior,
223 * and iterate over the same text, as the one passed in.
224 */
225 RuleBasedBreakIterator&
226 RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator& that) {
227 if (this == &that) {
228 return *this;
229 }
230 reset(); // Delete break cache information
231 fBreakType = that.fBreakType;
232 if (fLanguageBreakEngines != NULL) {
233 delete fLanguageBreakEngines;
234 fLanguageBreakEngines = NULL; // Just rebuild for now
235 }
236 // TODO: clone fLanguageBreakEngines from "that"
237 UErrorCode status = U_ZERO_ERROR;
238 fText = utext_clone(fText, that.fText, FALSE, TRUE, &status);
239
240 if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
241 delete fCharIter;
242 }
243 fCharIter = NULL;
244
245 if (that.fCharIter != NULL ) {
246 // This is a little bit tricky - it will intially appear that
247 // this->fCharIter is adopted, even if that->fCharIter was
248 // not adopted. That's ok.
249 fCharIter = that.fCharIter->clone();
250 }
251
252 if (fData != NULL) {
253 fData->removeReference();
254 fData = NULL;
255 }
256 if (that.fData != NULL) {
257 fData = that.fData->addReference();
258 }
259
260 return *this;
261 }
262
263
264
265 //-----------------------------------------------------------------------------
266 //
267 // init() Shared initialization routine. Used by all the constructors.
268 // Initializes all fields, leaving the object in a consistent state.
269 //
270 //-----------------------------------------------------------------------------
271 void RuleBasedBreakIterator::init() {
272 UErrorCode status = U_ZERO_ERROR;
273 fText = utext_openUChars(NULL, NULL, 0, &status);
274 fCharIter = NULL;
275 fSCharIter = NULL;
276 fDCharIter = NULL;
277 fData = NULL;
278 fLastRuleStatusIndex = 0;
279 fLastStatusIndexValid = TRUE;
280 fDictionaryCharCount = 0;
281 fBreakType = UBRK_WORD; // Defaulting BreakType to word gives reasonable
282 // dictionary behavior for Break Iterators that are
283 // built from rules. Even better would be the ability to
284 // declare the type in the rules.
285
286 fCachedBreakPositions = NULL;
287 fLanguageBreakEngines = NULL;
288 fUnhandledBreakEngine = NULL;
289 fNumCachedBreakPositions = 0;
290 fPositionInCache = 0;
291
292 #ifdef RBBI_DEBUG
293 static UBool debugInitDone = FALSE;
294 if (debugInitDone == FALSE) {
295 char *debugEnv = getenv("U_RBBIDEBUG");
296 if (debugEnv && uprv_strstr(debugEnv, "trace")) {
297 fTrace = TRUE;
298 }
299 debugInitDone = TRUE;
300 }
301 #endif
302 }
303
304
305
306 //-----------------------------------------------------------------------------
307 //
308 // clone - Returns a newly-constructed RuleBasedBreakIterator with the same
309 // behavior, and iterating over the same text, as this one.
310 // Virtual function: does the right thing with subclasses.
311 //
312 //-----------------------------------------------------------------------------
313 BreakIterator*
314 RuleBasedBreakIterator::clone(void) const {
315 return new RuleBasedBreakIterator(*this);
316 }
317
318 /**
319 * Equality operator. Returns TRUE if both BreakIterators are of the
320 * same class, have the same behavior, and iterate over the same text.
321 */
322 UBool
323 RuleBasedBreakIterator::operator==(const BreakIterator& that) const {
324 if (typeid(*this) != typeid(that)) {
325 return FALSE;
326 }
327
328 const RuleBasedBreakIterator& that2 = (const RuleBasedBreakIterator&) that;
329
330 if (!utext_equals(fText, that2.fText)) {
331 // The two break iterators are operating on different text,
332 // or have a different interation position.
333 return FALSE;
334 };
335
336 // TODO: need a check for when in a dictionary region at different offsets.
337
338 if (that2.fData == fData ||
339 (fData != NULL && that2.fData != NULL && *that2.fData == *fData)) {
340 // The two break iterators are using the same rules.
341 return TRUE;
342 }
343 return FALSE;
344 }
345
346 /**
347 * Compute a hash code for this BreakIterator
348 * @return A hash code
349 */
350 int32_t
351 RuleBasedBreakIterator::hashCode(void) const {
352 int32_t hash = 0;
353 if (fData != NULL) {
354 hash = fData->hashCode();
355 }
356 return hash;
357 }
358
359
360 void RuleBasedBreakIterator::setText(UText *ut, UErrorCode &status) {
361 if (U_FAILURE(status)) {
362 return;
363 }
364 reset();
365 fText = utext_clone(fText, ut, FALSE, TRUE, &status);
366
367 // Set up a dummy CharacterIterator to be returned if anyone
368 // calls getText(). With input from UText, there is no reasonable
369 // way to return a characterIterator over the actual input text.
370 // Return one over an empty string instead - this is the closest
371 // we can come to signaling a failure.
372 // (GetText() is obsolete, this failure is sort of OK)
373 if (fDCharIter == NULL) {
374 static const UChar c = 0;
375 fDCharIter = new UCharCharacterIterator(&c, 0);
376 if (fDCharIter == NULL) {
377 status = U_MEMORY_ALLOCATION_ERROR;
378 return;
379 }
380 }
381
382 if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
383 // existing fCharIter was adopted from the outside. Delete it now.
384 delete fCharIter;
385 }
386 fCharIter = fDCharIter;
387
388 this->first();
389 }
390
391
392 UText *RuleBasedBreakIterator::getUText(UText *fillIn, UErrorCode &status) const {
393 UText *result = utext_clone(fillIn, fText, FALSE, TRUE, &status);
394 return result;
395 }
396
397
398
399 /**
400 * Returns the description used to create this iterator
401 */
402 const UnicodeString&
403 RuleBasedBreakIterator::getRules() const {
404 if (fData != NULL) {
405 return fData->getRuleSourceString();
406 } else {
407 static const UnicodeString *s;
408 if (s == NULL) {
409 // TODO: something more elegant here.
410 // perhaps API should return the string by value.
411 // Note: thread unsafe init & leak are semi-ok, better than
412 // what was before. Sould be cleaned up, though.
413 s = new UnicodeString;
414 }
415 return *s;
416 }
417 }
418
419 //=======================================================================
420 // BreakIterator overrides
421 //=======================================================================
422
423 /**
424 * Return a CharacterIterator over the text being analyzed.
425 */
426 CharacterIterator&
427 RuleBasedBreakIterator::getText() const {
428 return *fCharIter;
429 }
430
431 /**
432 * Set the iterator to analyze a new piece of text. This function resets
433 * the current iteration position to the beginning of the text.
434 * @param newText An iterator over the text to analyze.
435 */
436 void
437 RuleBasedBreakIterator::adoptText(CharacterIterator* newText) {
438 // If we are holding a CharacterIterator adopted from a
439 // previous call to this function, delete it now.
440 if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
441 delete fCharIter;
442 }
443
444 fCharIter = newText;
445 UErrorCode status = U_ZERO_ERROR;
446 reset();
447 if (newText==NULL || newText->startIndex() != 0) {
448 // startIndex !=0 wants to be an error, but there's no way to report it.
449 // Make the iterator text be an empty string.
450 fText = utext_openUChars(fText, NULL, 0, &status);
451 } else {
452 fText = utext_openCharacterIterator(fText, newText, &status);
453 }
454 this->first();
455 }
456
457 /**
458 * Set the iterator to analyze a new piece of text. This function resets
459 * the current iteration position to the beginning of the text.
460 * @param newText An iterator over the text to analyze.
461 */
462 void
463 RuleBasedBreakIterator::setText(const UnicodeString& newText) {
464 UErrorCode status = U_ZERO_ERROR;
465 reset();
466 fText = utext_openConstUnicodeString(fText, &newText, &status);
467
468 // Set up a character iterator on the string.
469 // Needed in case someone calls getText().
470 // Can not, unfortunately, do this lazily on the (probably never)
471 // call to getText(), because getText is const.
472 if (fSCharIter == NULL) {
473 fSCharIter = new StringCharacterIterator(newText);
474 } else {
475 fSCharIter->setText(newText);
476 }
477
478 if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
479 // old fCharIter was adopted from the outside. Delete it.
480 delete fCharIter;
481 }
482 fCharIter = fSCharIter;
483
484 this->first();
485 }
486
487
488 /**
489 * Provide a new UText for the input text. Must reference text with contents identical
490 * to the original.
491 * Intended for use with text data originating in Java (garbage collected) environments
492 * where the data may be moved in memory at arbitrary times.
493 */
494 RuleBasedBreakIterator &RuleBasedBreakIterator::refreshInputText(UText *input, UErrorCode &status) {
495 if (U_FAILURE(status)) {
496 return *this;
497 }
498 if (input == NULL) {
499 status = U_ILLEGAL_ARGUMENT_ERROR;
500 return *this;
501 }
502 int64_t pos = utext_getNativeIndex(fText);
503 // Shallow read-only clone of the new UText into the existing input UText
504 fText = utext_clone(fText, input, FALSE, TRUE, &status);
505 if (U_FAILURE(status)) {
506 return *this;
507 }
508 utext_setNativeIndex(fText, pos);
509 if (utext_getNativeIndex(fText) != pos) {
510 // Sanity check. The new input utext is supposed to have the exact same
511 // contents as the old. If we can't set to the same position, it doesn't.
512 // The contents underlying the old utext might be invalid at this point,
513 // so it's not safe to check directly.
514 status = U_ILLEGAL_ARGUMENT_ERROR;
515 }
516 return *this;
517 }
518
519
520 /**
521 * Sets the current iteration position to the beginning of the text, position zero.
522 * @return The new iterator position, which is zero.
523 */
524 int32_t RuleBasedBreakIterator::first(void) {
525 reset();
526 fLastRuleStatusIndex = 0;
527 fLastStatusIndexValid = TRUE;
528 //if (fText == NULL)
529 // return BreakIterator::DONE;
530
531 utext_setNativeIndex(fText, 0);
532 return 0;
533 }
534
535 /**
536 * Sets the current iteration position to the end of the text.
537 * @return The text's past-the-end offset.
538 */
539 int32_t RuleBasedBreakIterator::last(void) {
540 reset();
541 if (fText == NULL) {
542 fLastRuleStatusIndex = 0;
543 fLastStatusIndexValid = TRUE;
544 return BreakIterator::DONE;
545 }
546
547 fLastStatusIndexValid = FALSE;
548 int32_t pos = (int32_t)utext_nativeLength(fText);
549 utext_setNativeIndex(fText, pos);
550 return pos;
551 }
552
553 /**
554 * Advances the iterator either forward or backward the specified number of steps.
555 * Negative values move backward, and positive values move forward. This is
556 * equivalent to repeatedly calling next() or previous().
557 * @param n The number of steps to move. The sign indicates the direction
558 * (negative is backwards, and positive is forwards).
559 * @return The character offset of the boundary position n boundaries away from
560 * the current one.
561 */
562 int32_t RuleBasedBreakIterator::next(int32_t n) {
563 int32_t result = current();
564 while (n > 0) {
565 result = next();
566 --n;
567 }
568 while (n < 0) {
569 result = previous();
570 ++n;
571 }
572 return result;
573 }
574
575 /**
576 * Advances the iterator to the next boundary position.
577 * @return The position of the first boundary after this one.
578 */
579 int32_t RuleBasedBreakIterator::next(void) {
580 // if we have cached break positions and we're still in the range
581 // covered by them, just move one step forward in the cache
582 if (fCachedBreakPositions != NULL) {
583 if (fPositionInCache < fNumCachedBreakPositions - 1) {
584 ++fPositionInCache;
585 int32_t pos = fCachedBreakPositions[fPositionInCache];
586 utext_setNativeIndex(fText, pos);
587 return pos;
588 }
589 else {
590 reset();
591 }
592 }
593
594 int32_t startPos = current();
595 fDictionaryCharCount = 0;
596 int32_t result = handleNext(fData->fForwardTable);
597 if (fDictionaryCharCount > 0) {
598 result = checkDictionary(startPos, result, FALSE);
599 }
600 return result;
601 }
602
603 /**
604 * Advances the iterator backwards, to the last boundary preceding this one.
605 * @return The position of the last boundary position preceding this one.
606 */
607 int32_t RuleBasedBreakIterator::previous(void) {
608 int32_t result;
609 int32_t startPos;
610
611 // if we have cached break positions and we're still in the range
612 // covered by them, just move one step backward in the cache
613 if (fCachedBreakPositions != NULL) {
614 if (fPositionInCache > 0) {
615 --fPositionInCache;
616 // If we're at the beginning of the cache, need to reevaluate the
617 // rule status
618 if (fPositionInCache <= 0) {
619 fLastStatusIndexValid = FALSE;
620 }
621 int32_t pos = fCachedBreakPositions[fPositionInCache];
622 utext_setNativeIndex(fText, pos);
623 return pos;
624 }
625 else {
626 reset();
627 }
628 }
629
630 // if we're already sitting at the beginning of the text, return DONE
631 if (fText == NULL || (startPos = current()) == 0) {
632 fLastRuleStatusIndex = 0;
633 fLastStatusIndexValid = TRUE;
634 return BreakIterator::DONE;
635 }
636
637 if (fData->fSafeRevTable != NULL || fData->fSafeFwdTable != NULL) {
638 result = handlePrevious(fData->fReverseTable);
639 if (fDictionaryCharCount > 0) {
640 result = checkDictionary(result, startPos, TRUE);
641 }
642 return result;
643 }
644
645 // old rule syntax
646 // set things up. handlePrevious() will back us up to some valid
647 // break position before the current position (we back our internal
648 // iterator up one step to prevent handlePrevious() from returning
649 // the current position), but not necessarily the last one before
650 // where we started
651
652 int32_t start = current();
653
654 (void)UTEXT_PREVIOUS32(fText);
655 int32_t lastResult = handlePrevious(fData->fReverseTable);
656 if (lastResult == UBRK_DONE) {
657 lastResult = 0;
658 utext_setNativeIndex(fText, 0);
659 }
660 result = lastResult;
661 int32_t lastTag = 0;
662 UBool breakTagValid = FALSE;
663
664 // iterate forward from the known break position until we pass our
665 // starting point. The last break position before the starting
666 // point is our return value
667
668 for (;;) {
669 result = next();
670 if (result == BreakIterator::DONE || result >= start) {
671 break;
672 }
673 lastResult = result;
674 lastTag = fLastRuleStatusIndex;
675 breakTagValid = TRUE;
676 }
677
678 // fLastBreakTag wants to have the value for section of text preceding
679 // the result position that we are to return (in lastResult.) If
680 // the backwards rules overshot and the above loop had to do two or more
681 // next()s to move up to the desired return position, we will have a valid
682 // tag value. But, if handlePrevious() took us to exactly the correct result position,
683 // we wont have a tag value for that position, which is only set by handleNext().
684
685 // Set the current iteration position to be the last break position
686 // before where we started, and then return that value.
687 utext_setNativeIndex(fText, lastResult);
688 fLastRuleStatusIndex = lastTag; // for use by getRuleStatus()
689 fLastStatusIndexValid = breakTagValid;
690
691 // No need to check the dictionary; it will have been handled by
692 // next()
693
694 return lastResult;
695 }
696
697 /**
698 * Sets the iterator to refer to the first boundary position following
699 * the specified position.
700 * @offset The position from which to begin searching for a break position.
701 * @return The position of the first break after the current position.
702 */
703 int32_t RuleBasedBreakIterator::following(int32_t offset) {
704 // if the offset passed in is already past the end of the text,
705 // just return DONE; if it's before the beginning, return the
706 // text's starting offset
707 if (fText == NULL || offset >= utext_nativeLength(fText)) {
708 last();
709 return next();
710 }
711 else if (offset < 0) {
712 return first();
713 }
714
715 // Move requested offset to a code point start. It might be on a trail surrogate,
716 // or on a trail byte if the input is UTF-8.
717 utext_setNativeIndex(fText, offset);
718 offset = utext_getNativeIndex(fText);
719
720 // if we have cached break positions and offset is in the range
721 // covered by them, use them
722 // TODO: could use binary search
723 // TODO: what if offset is outside range, but break is not?
724 if (fCachedBreakPositions != NULL) {
725 if (offset >= fCachedBreakPositions[0]
726 && offset < fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
727 fPositionInCache = 0;
728 // We are guaranteed not to leave the array due to range test above
729 while (offset >= fCachedBreakPositions[fPositionInCache]) {
730 ++fPositionInCache;
731 }
732 int32_t pos = fCachedBreakPositions[fPositionInCache];
733 utext_setNativeIndex(fText, pos);
734 return pos;
735 }
736 else {
737 reset();
738 }
739 }
740
741 // Set our internal iteration position (temporarily)
742 // to the position passed in. If this is the _beginning_ position,
743 // then we can just use next() to get our return value
744
745 int32_t result = 0;
746
747 if (fData->fSafeRevTable != NULL) {
748 // new rule syntax
749 utext_setNativeIndex(fText, offset);
750 // move forward one codepoint to prepare for moving back to a
751 // safe point.
752 // this handles offset being between a supplementary character
753 // TODO: is this still needed, with move to code point boundary handled above?
754 (void)UTEXT_NEXT32(fText);
755 // handlePrevious will move most of the time to < 1 boundary away
756 handlePrevious(fData->fSafeRevTable);
757 int32_t result = next();
758 while (result <= offset) {
759 result = next();
760 }
761 return result;
762 }
763 if (fData->fSafeFwdTable != NULL) {
764 // backup plan if forward safe table is not available
765 utext_setNativeIndex(fText, offset);
766 (void)UTEXT_PREVIOUS32(fText);
767 // handle next will give result >= offset
768 handleNext(fData->fSafeFwdTable);
769 // previous will give result 0 or 1 boundary away from offset,
770 // most of the time
771 // we have to
772 int32_t oldresult = previous();
773 while (oldresult > offset) {
774 int32_t result = previous();
775 if (result <= offset) {
776 return oldresult;
777 }
778 oldresult = result;
779 }
780 int32_t result = next();
781 if (result <= offset) {
782 return next();
783 }
784 return result;
785 }
786 // otherwise, we have to sync up first. Use handlePrevious() to back
787 // up to a known break position before the specified position (if
788 // we can determine that the specified position is a break position,
789 // we don't back up at all). This may or may not be the last break
790 // position at or before our starting position. Advance forward
791 // from here until we've passed the starting position. The position
792 // we stop on will be the first break position after the specified one.
793 // old rule syntax
794
795 utext_setNativeIndex(fText, offset);
796 if (offset==0 ||
797 (offset==1 && utext_getNativeIndex(fText)==0)) {
798 return next();
799 }
800 result = previous();
801
802 while (result != BreakIterator::DONE && result <= offset) {
803 result = next();
804 }
805
806 return result;
807 }
808
809 /**
810 * Sets the iterator to refer to the last boundary position before the
811 * specified position.
812 * @offset The position to begin searching for a break from.
813 * @return The position of the last boundary before the starting position.
814 */
815 int32_t RuleBasedBreakIterator::preceding(int32_t offset) {
816 // if the offset passed in is already past the end of the text,
817 // just return DONE; if it's before the beginning, return the
818 // text's starting offset
819 if (fText == NULL || offset > utext_nativeLength(fText)) {
820 return last();
821 }
822 else if (offset < 0) {
823 return first();
824 }
825
826 // Move requested offset to a code point start. It might be on a trail surrogate,
827 // or on a trail byte if the input is UTF-8.
828 utext_setNativeIndex(fText, offset);
829 offset = utext_getNativeIndex(fText);
830
831 // if we have cached break positions and offset is in the range
832 // covered by them, use them
833 if (fCachedBreakPositions != NULL) {
834 // TODO: binary search?
835 // TODO: What if offset is outside range, but break is not?
836 if (offset > fCachedBreakPositions[0]
837 && offset <= fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
838 fPositionInCache = 0;
839 while (fPositionInCache < fNumCachedBreakPositions
840 && offset > fCachedBreakPositions[fPositionInCache])
841 ++fPositionInCache;
842 --fPositionInCache;
843 // If we're at the beginning of the cache, need to reevaluate the
844 // rule status
845 if (fPositionInCache <= 0) {
846 fLastStatusIndexValid = FALSE;
847 }
848 utext_setNativeIndex(fText, fCachedBreakPositions[fPositionInCache]);
849 return fCachedBreakPositions[fPositionInCache];
850 }
851 else {
852 reset();
853 }
854 }
855
856 // if we start by updating the current iteration position to the
857 // position specified by the caller, we can just use previous()
858 // to carry out this operation
859
860 if (fData->fSafeFwdTable != NULL) {
861 // new rule syntax
862 utext_setNativeIndex(fText, offset);
863 int32_t newOffset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
864 if (newOffset != offset) {
865 // Will come here if specified offset was not a code point boundary AND
866 // the underlying implmentation is using UText, which snaps any non-code-point-boundary
867 // indices to the containing code point.
868 // For breakitereator::preceding only, these non-code-point indices need to be moved
869 // up to refer to the following codepoint.
870 (void)UTEXT_NEXT32(fText);
871 offset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
872 }
873
874 // TODO: (synwee) would it be better to just check for being in the middle of a surrogate pair,
875 // rather than adjusting the position unconditionally?
876 // (Change would interact with safe rules.)
877 // TODO: change RBBI behavior for off-boundary indices to match that of UText?
878 // affects only preceding(), seems cleaner, but is slightly different.
879 (void)UTEXT_PREVIOUS32(fText);
880 handleNext(fData->fSafeFwdTable);
881 int32_t result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
882 while (result >= offset) {
883 result = previous();
884 }
885 return result;
886 }
887 if (fData->fSafeRevTable != NULL) {
888 // backup plan if forward safe table is not available
889 // TODO: check whether this path can be discarded
890 // It's probably OK to say that rules must supply both safe tables
891 // if they use safe tables at all. We have certainly never described
892 // to anyone how to work with just one safe table.
893 utext_setNativeIndex(fText, offset);
894 (void)UTEXT_NEXT32(fText);
895
896 // handle previous will give result <= offset
897 handlePrevious(fData->fSafeRevTable);
898
899 // next will give result 0 or 1 boundary away from offset,
900 // most of the time
901 // we have to
902 int32_t oldresult = next();
903 while (oldresult < offset) {
904 int32_t result = next();
905 if (result >= offset) {
906 return oldresult;
907 }
908 oldresult = result;
909 }
910 int32_t result = previous();
911 if (result >= offset) {
912 return previous();
913 }
914 return result;
915 }
916
917 // old rule syntax
918 utext_setNativeIndex(fText, offset);
919 return previous();
920 }
921
922 /**
923 * Returns true if the specfied position is a boundary position. As a side
924 * effect, leaves the iterator pointing to the first boundary position at
925 * or after "offset".
926 * @param offset the offset to check.
927 * @return True if "offset" is a boundary position.
928 */
929 UBool RuleBasedBreakIterator::isBoundary(int32_t offset) {
930 // the beginning index of the iterator is always a boundary position by definition
931 if (offset == 0) {
932 first(); // For side effects on current position, tag values.
933 return TRUE;
934 }
935
936 if (offset == (int32_t)utext_nativeLength(fText)) {
937 last(); // For side effects on current position, tag values.
938 return TRUE;
939 }
940
941 // out-of-range indexes are never boundary positions
942 if (offset < 0) {
943 first(); // For side effects on current position, tag values.
944 return FALSE;
945 }
946
947 if (offset > utext_nativeLength(fText)) {
948 last(); // For side effects on current position, tag values.
949 return FALSE;
950 }
951
952 // otherwise, we can use following() on the position before the specified
953 // one and return true if the position we get back is the one the user
954 // specified
955 utext_previous32From(fText, offset);
956 int32_t backOne = (int32_t)UTEXT_GETNATIVEINDEX(fText);
957 UBool result = following(backOne) == offset;
958 return result;
959 }
960
961 /**
962 * Returns the current iteration position.
963 * @return The current iteration position.
964 */
965 int32_t RuleBasedBreakIterator::current(void) const {
966 int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText);
967 return pos;
968 }
969
970 //=======================================================================
971 // implementation
972 //=======================================================================
973
974 //
975 // RBBIRunMode - the state machine runs an extra iteration at the beginning and end
976 // of user text. A variable with this enum type keeps track of where we
977 // are. The state machine only fetches user input while in the RUN mode.
978 //
979 enum RBBIRunMode {
980 RBBI_START, // state machine processing is before first char of input
981 RBBI_RUN, // state machine processing is in the user text
982 RBBI_END // state machine processing is after end of user text.
983 };
984
985
986 //-----------------------------------------------------------------------------------
987 //
988 // handleNext(stateTable)
989 // This method is the actual implementation of the rbbi next() method.
990 // This method initializes the state machine to state 1
991 // and advances through the text character by character until we reach the end
992 // of the text or the state machine transitions to state 0. We update our return
993 // value every time the state machine passes through an accepting state.
994 //
995 //-----------------------------------------------------------------------------------
996 int32_t RuleBasedBreakIterator::handleNext(const RBBIStateTable *statetable) {
997 int32_t state;
998 uint16_t category = 0;
999 RBBIRunMode mode;
1000
1001 RBBIStateTableRow *row;
1002 UChar32 c;
1003 int32_t lookaheadStatus = 0;
1004 int32_t lookaheadTagIdx = 0;
1005 int32_t result = 0;
1006 int32_t initialPosition = 0;
1007 int32_t lookaheadResult = 0;
1008 UBool lookAheadHardBreak = (statetable->fFlags & RBBI_LOOKAHEAD_HARD_BREAK) != 0;
1009 const char *tableData = statetable->fTableData;
1010 uint32_t tableRowLen = statetable->fRowLen;
1011
1012 #ifdef RBBI_DEBUG
1013 if (fTrace) {
1014 RBBIDebugPuts("Handle Next pos char state category");
1015 }
1016 #endif
1017
1018 // No matter what, handleNext alway correctly sets the break tag value.
1019 fLastStatusIndexValid = TRUE;
1020 fLastRuleStatusIndex = 0;
1021
1022 // if we're already at the end of the text, return DONE.
1023 initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1024 result = initialPosition;
1025 c = UTEXT_NEXT32(fText);
1026 if (fData == NULL || c==U_SENTINEL) {
1027 return BreakIterator::DONE;
1028 }
1029
1030 // Set the initial state for the state machine
1031 state = START_STATE;
1032 row = (RBBIStateTableRow *)
1033 //(statetable->fTableData + (statetable->fRowLen * state));
1034 (tableData + tableRowLen * state);
1035
1036
1037 mode = RBBI_RUN;
1038 if (statetable->fFlags & RBBI_BOF_REQUIRED) {
1039 category = 2;
1040 mode = RBBI_START;
1041 }
1042
1043
1044 // loop until we reach the end of the text or transition to state 0
1045 //
1046 for (;;) {
1047 if (c == U_SENTINEL) {
1048 // Reached end of input string.
1049 if (mode == RBBI_END) {
1050 // We have already run the loop one last time with the
1051 // character set to the psueudo {eof} value. Now it is time
1052 // to unconditionally bail out.
1053 if (lookaheadResult > result) {
1054 // We ran off the end of the string with a pending look-ahead match.
1055 // Treat this as if the look-ahead condition had been met, and return
1056 // the match at the / position from the look-ahead rule.
1057 result = lookaheadResult;
1058 fLastRuleStatusIndex = lookaheadTagIdx;
1059 lookaheadStatus = 0;
1060 }
1061 break;
1062 }
1063 // Run the loop one last time with the fake end-of-input character category.
1064 mode = RBBI_END;
1065 category = 1;
1066 }
1067
1068 //
1069 // Get the char category. An incoming category of 1 or 2 means that
1070 // we are preset for doing the beginning or end of input, and
1071 // that we shouldn't get a category from an actual text input character.
1072 //
1073 if (mode == RBBI_RUN) {
1074 // look up the current character's character category, which tells us
1075 // which column in the state table to look at.
1076 // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned,
1077 // not the size of the character going in, which is a UChar32.
1078 //
1079 UTRIE_GET16(&fData->fTrie, c, category);
1080
1081 // Check the dictionary bit in the character's category.
1082 // Counter is only used by dictionary based iterators (subclasses).
1083 // Chars that need to be handled by a dictionary have a flag bit set
1084 // in their category values.
1085 //
1086 if ((category & 0x4000) != 0) {
1087 fDictionaryCharCount++;
1088 // And off the dictionary flag bit.
1089 category &= ~0x4000;
1090 }
1091 }
1092
1093 #ifdef RBBI_DEBUG
1094 if (fTrace) {
1095 RBBIDebugPrintf(" %4ld ", utext_getNativeIndex(fText));
1096 if (0x20<=c && c<0x7f) {
1097 RBBIDebugPrintf("\"%c\" ", c);
1098 } else {
1099 RBBIDebugPrintf("%5x ", c);
1100 }
1101 RBBIDebugPrintf("%3d %3d\n", state, category);
1102 }
1103 #endif
1104
1105 // State Transition - move machine to its next state
1106 //
1107
1108 // Note: fNextState is defined as uint16_t[2], but we are casting
1109 // a generated RBBI table to RBBIStateTableRow and some tables
1110 // actually have more than 2 categories.
1111 U_ASSERT(category<fData->fHeader->fCatCount);
1112 state = row->fNextState[category]; /*Not accessing beyond memory*/
1113 row = (RBBIStateTableRow *)
1114 // (statetable->fTableData + (statetable->fRowLen * state));
1115 (tableData + tableRowLen * state);
1116
1117
1118 if (row->fAccepting == -1) {
1119 // Match found, common case.
1120 if (mode != RBBI_START) {
1121 result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1122 }
1123 fLastRuleStatusIndex = row->fTagIdx; // Remember the break status (tag) values.
1124 }
1125
1126 if (row->fLookAhead != 0) {
1127 if (lookaheadStatus != 0
1128 && row->fAccepting == lookaheadStatus) {
1129 // Lookahead match is completed.
1130 result = lookaheadResult;
1131 fLastRuleStatusIndex = lookaheadTagIdx;
1132 lookaheadStatus = 0;
1133 // TODO: make a standalone hard break in a rule work.
1134 if (lookAheadHardBreak) {
1135 UTEXT_SETNATIVEINDEX(fText, result);
1136 return result;
1137 }
1138 // Look-ahead completed, but other rules may match further. Continue on
1139 // TODO: junk this feature? I don't think it's used anywhwere.
1140 goto continueOn;
1141 }
1142
1143 int32_t r = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1144 lookaheadResult = r;
1145 lookaheadStatus = row->fLookAhead;
1146 lookaheadTagIdx = row->fTagIdx;
1147 goto continueOn;
1148 }
1149
1150
1151 if (row->fAccepting != 0) {
1152 // Because this is an accepting state, any in-progress look-ahead match
1153 // is no longer relavant. Clear out the pending lookahead status.
1154 lookaheadStatus = 0; // clear out any pending look-ahead match.
1155 }
1156
1157 continueOn:
1158 if (state == STOP_STATE) {
1159 // This is the normal exit from the lookup state machine.
1160 // We have advanced through the string until it is certain that no
1161 // longer match is possible, no matter what characters follow.
1162 break;
1163 }
1164
1165 // Advance to the next character.
1166 // If this is a beginning-of-input loop iteration, don't advance
1167 // the input position. The next iteration will be processing the
1168 // first real input character.
1169 if (mode == RBBI_RUN) {
1170 c = UTEXT_NEXT32(fText);
1171 } else {
1172 if (mode == RBBI_START) {
1173 mode = RBBI_RUN;
1174 }
1175 }
1176
1177
1178 }
1179
1180 // The state machine is done. Check whether it found a match...
1181
1182 // If the iterator failed to advance in the match engine, force it ahead by one.
1183 // (This really indicates a defect in the break rules. They should always match
1184 // at least one character.)
1185 if (result == initialPosition) {
1186 UTEXT_SETNATIVEINDEX(fText, initialPosition);
1187 UTEXT_NEXT32(fText);
1188 result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1189 }
1190
1191 // Leave the iterator at our result position.
1192 UTEXT_SETNATIVEINDEX(fText, result);
1193 #ifdef RBBI_DEBUG
1194 if (fTrace) {
1195 RBBIDebugPrintf("result = %d\n\n", result);
1196 }
1197 #endif
1198 return result;
1199 }
1200
1201
1202
1203 //-----------------------------------------------------------------------------------
1204 //
1205 // handlePrevious()
1206 //
1207 // Iterate backwards, according to the logic of the reverse rules.
1208 // This version handles the exact style backwards rules.
1209 //
1210 // The logic of this function is very similar to handleNext(), above.
1211 //
1212 //-----------------------------------------------------------------------------------
1213 int32_t RuleBasedBreakIterator::handlePrevious(const RBBIStateTable *statetable) {
1214 int32_t state;
1215 uint16_t category = 0;
1216 RBBIRunMode mode;
1217 RBBIStateTableRow *row;
1218 UChar32 c;
1219 int32_t lookaheadStatus = 0;
1220 int32_t result = 0;
1221 int32_t initialPosition = 0;
1222 int32_t lookaheadResult = 0;
1223 UBool lookAheadHardBreak = (statetable->fFlags & RBBI_LOOKAHEAD_HARD_BREAK) != 0;
1224
1225 #ifdef RBBI_DEBUG
1226 if (fTrace) {
1227 RBBIDebugPuts("Handle Previous pos char state category");
1228 }
1229 #endif
1230
1231 // handlePrevious() never gets the rule status.
1232 // Flag the status as invalid; if the user ever asks for status, we will need
1233 // to back up, then re-find the break position using handleNext(), which does
1234 // get the status value.
1235 fLastStatusIndexValid = FALSE;
1236 fLastRuleStatusIndex = 0;
1237
1238 // if we're already at the start of the text, return DONE.
1239 if (fText == NULL || fData == NULL || UTEXT_GETNATIVEINDEX(fText)==0) {
1240 return BreakIterator::DONE;
1241 }
1242
1243 // Set up the starting char.
1244 initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1245 result = initialPosition;
1246 c = UTEXT_PREVIOUS32(fText);
1247
1248 // Set the initial state for the state machine
1249 state = START_STATE;
1250 row = (RBBIStateTableRow *)
1251 (statetable->fTableData + (statetable->fRowLen * state));
1252 category = 3;
1253 mode = RBBI_RUN;
1254 if (statetable->fFlags & RBBI_BOF_REQUIRED) {
1255 category = 2;
1256 mode = RBBI_START;
1257 }
1258
1259
1260 // loop until we reach the start of the text or transition to state 0
1261 //
1262 for (;;) {
1263 if (c == U_SENTINEL) {
1264 // Reached end of input string.
1265 if (mode == RBBI_END) {
1266 // We have already run the loop one last time with the
1267 // character set to the psueudo {eof} value. Now it is time
1268 // to unconditionally bail out.
1269 if (lookaheadResult < result) {
1270 // We ran off the end of the string with a pending look-ahead match.
1271 // Treat this as if the look-ahead condition had been met, and return
1272 // the match at the / position from the look-ahead rule.
1273 result = lookaheadResult;
1274 lookaheadStatus = 0;
1275 } else if (result == initialPosition) {
1276 // Ran off start, no match found.
1277 // move one index one (towards the start, since we are doing a previous())
1278 UTEXT_SETNATIVEINDEX(fText, initialPosition);
1279 (void)UTEXT_PREVIOUS32(fText); // TODO: shouldn't be necessary. We're already at beginning. Check.
1280 }
1281 break;
1282 }
1283 // Run the loop one last time with the fake end-of-input character category.
1284 mode = RBBI_END;
1285 category = 1;
1286 }
1287
1288 //
1289 // Get the char category. An incoming category of 1 or 2 means that
1290 // we are preset for doing the beginning or end of input, and
1291 // that we shouldn't get a category from an actual text input character.
1292 //
1293 if (mode == RBBI_RUN) {
1294 // look up the current character's character category, which tells us
1295 // which column in the state table to look at.
1296 // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned,
1297 // not the size of the character going in, which is a UChar32.
1298 //
1299 UTRIE_GET16(&fData->fTrie, c, category);
1300
1301 // Check the dictionary bit in the character's category.
1302 // Counter is only used by dictionary based iterators (subclasses).
1303 // Chars that need to be handled by a dictionary have a flag bit set
1304 // in their category values.
1305 //
1306 if ((category & 0x4000) != 0) {
1307 fDictionaryCharCount++;
1308 // And off the dictionary flag bit.
1309 category &= ~0x4000;
1310 }
1311 }
1312
1313 #ifdef RBBI_DEBUG
1314 if (fTrace) {
1315 RBBIDebugPrintf(" %4d ", (int32_t)utext_getNativeIndex(fText));
1316 if (0x20<=c && c<0x7f) {
1317 RBBIDebugPrintf("\"%c\" ", c);
1318 } else {
1319 RBBIDebugPrintf("%5x ", c);
1320 }
1321 RBBIDebugPrintf("%3d %3d\n", state, category);
1322 }
1323 #endif
1324
1325 // State Transition - move machine to its next state
1326 //
1327
1328 // Note: fNextState is defined as uint16_t[2], but we are casting
1329 // a generated RBBI table to RBBIStateTableRow and some tables
1330 // actually have more than 2 categories.
1331 U_ASSERT(category<fData->fHeader->fCatCount);
1332 state = row->fNextState[category]; /*Not accessing beyond memory*/
1333 row = (RBBIStateTableRow *)
1334 (statetable->fTableData + (statetable->fRowLen * state));
1335
1336 if (row->fAccepting == -1) {
1337 // Match found, common case.
1338 result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1339 }
1340
1341 if (row->fLookAhead != 0) {
1342 if (lookaheadStatus != 0
1343 && row->fAccepting == lookaheadStatus) {
1344 // Lookahead match is completed.
1345 result = lookaheadResult;
1346 lookaheadStatus = 0;
1347 // TODO: make a standalone hard break in a rule work.
1348 if (lookAheadHardBreak) {
1349 UTEXT_SETNATIVEINDEX(fText, result);
1350 return result;
1351 }
1352 // Look-ahead completed, but other rules may match further. Continue on
1353 // TODO: junk this feature? I don't think it's used anywhwere.
1354 goto continueOn;
1355 }
1356
1357 int32_t r = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1358 lookaheadResult = r;
1359 lookaheadStatus = row->fLookAhead;
1360 goto continueOn;
1361 }
1362
1363
1364 if (row->fAccepting != 0) {
1365 // Because this is an accepting state, any in-progress look-ahead match
1366 // is no longer relavant. Clear out the pending lookahead status.
1367 lookaheadStatus = 0;
1368 }
1369
1370 continueOn:
1371 if (state == STOP_STATE) {
1372 // This is the normal exit from the lookup state machine.
1373 // We have advanced through the string until it is certain that no
1374 // longer match is possible, no matter what characters follow.
1375 break;
1376 }
1377
1378 // Move (backwards) to the next character to process.
1379 // If this is a beginning-of-input loop iteration, don't advance
1380 // the input position. The next iteration will be processing the
1381 // first real input character.
1382 if (mode == RBBI_RUN) {
1383 c = UTEXT_PREVIOUS32(fText);
1384 } else {
1385 if (mode == RBBI_START) {
1386 mode = RBBI_RUN;
1387 }
1388 }
1389 }
1390
1391 // The state machine is done. Check whether it found a match...
1392
1393 // If the iterator failed to advance in the match engine, force it ahead by one.
1394 // (This really indicates a defect in the break rules. They should always match
1395 // at least one character.)
1396 if (result == initialPosition) {
1397 UTEXT_SETNATIVEINDEX(fText, initialPosition);
1398 UTEXT_PREVIOUS32(fText);
1399 result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1400 }
1401
1402 // Leave the iterator at our result position.
1403 UTEXT_SETNATIVEINDEX(fText, result);
1404 #ifdef RBBI_DEBUG
1405 if (fTrace) {
1406 RBBIDebugPrintf("result = %d\n\n", result);
1407 }
1408 #endif
1409 return result;
1410 }
1411
1412
1413 void
1414 RuleBasedBreakIterator::reset()
1415 {
1416 if (fCachedBreakPositions) {
1417 uprv_free(fCachedBreakPositions);
1418 }
1419 fCachedBreakPositions = NULL;
1420 fNumCachedBreakPositions = 0;
1421 fDictionaryCharCount = 0;
1422 fPositionInCache = 0;
1423 }
1424
1425
1426
1427 //-------------------------------------------------------------------------------
1428 //
1429 // getRuleStatus() Return the break rule tag associated with the current
1430 // iterator position. If the iterator arrived at its current
1431 // position by iterating forwards, the value will have been
1432 // cached by the handleNext() function.
1433 //
1434 // If no cached status value is available, the status is
1435 // found by doing a previous() followed by a next(), which
1436 // leaves the iterator where it started, and computes the
1437 // status while doing the next().
1438 //
1439 //-------------------------------------------------------------------------------
1440 void RuleBasedBreakIterator::makeRuleStatusValid() {
1441 if (fLastStatusIndexValid == FALSE) {
1442 // No cached status is available.
1443 if (fText == NULL || current() == 0) {
1444 // At start of text, or there is no text. Status is always zero.
1445 fLastRuleStatusIndex = 0;
1446 fLastStatusIndexValid = TRUE;
1447 } else {
1448 // Not at start of text. Find status the tedious way.
1449 int32_t pa = current();
1450 previous();
1451 if (fNumCachedBreakPositions > 0) {
1452 reset(); // Blow off the dictionary cache
1453 }
1454 int32_t pb = next();
1455 if (pa != pb) {
1456 // note: the if (pa != pb) test is here only to eliminate warnings for
1457 // unused local variables on gcc. Logically, it isn't needed.
1458 U_ASSERT(pa == pb);
1459 }
1460 }
1461 }
1462 U_ASSERT(fLastRuleStatusIndex >= 0 && fLastRuleStatusIndex < fData->fStatusMaxIdx);
1463 }
1464
1465
1466 int32_t RuleBasedBreakIterator::getRuleStatus() const {
1467 RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this;
1468 nonConstThis->makeRuleStatusValid();
1469
1470 // fLastRuleStatusIndex indexes to the start of the appropriate status record
1471 // (the number of status values.)
1472 // This function returns the last (largest) of the array of status values.
1473 int32_t idx = fLastRuleStatusIndex + fData->fRuleStatusTable[fLastRuleStatusIndex];
1474 int32_t tagVal = fData->fRuleStatusTable[idx];
1475
1476 return tagVal;
1477 }
1478
1479
1480
1481
1482 int32_t RuleBasedBreakIterator::getRuleStatusVec(
1483 int32_t *fillInVec, int32_t capacity, UErrorCode &status)
1484 {
1485 if (U_FAILURE(status)) {
1486 return 0;
1487 }
1488
1489 RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this;
1490 nonConstThis->makeRuleStatusValid();
1491 int32_t numVals = fData->fRuleStatusTable[fLastRuleStatusIndex];
1492 int32_t numValsToCopy = numVals;
1493 if (numVals > capacity) {
1494 status = U_BUFFER_OVERFLOW_ERROR;
1495 numValsToCopy = capacity;
1496 }
1497 int i;
1498 for (i=0; i<numValsToCopy; i++) {
1499 fillInVec[i] = fData->fRuleStatusTable[fLastRuleStatusIndex + i + 1];
1500 }
1501 return numVals;
1502 }
1503
1504
1505
1506 //-------------------------------------------------------------------------------
1507 //
1508 // getBinaryRules Access to the compiled form of the rules,
1509 // for use by build system tools that save the data
1510 // for standard iterator types.
1511 //
1512 //-------------------------------------------------------------------------------
1513 const uint8_t *RuleBasedBreakIterator::getBinaryRules(uint32_t &length) {
1514 const uint8_t *retPtr = NULL;
1515 length = 0;
1516
1517 if (fData != NULL) {
1518 retPtr = (const uint8_t *)fData->fHeader;
1519 length = fData->fHeader->fLength;
1520 }
1521 return retPtr;
1522 }
1523
1524
1525 BreakIterator * RuleBasedBreakIterator::createBufferClone(void * /*stackBuffer*/,
1526 int32_t &bufferSize,
1527 UErrorCode &status)
1528 {
1529 if (U_FAILURE(status)){
1530 return NULL;
1531 }
1532
1533 if (bufferSize == 0) {
1534 bufferSize = 1; // preflighting for deprecated functionality
1535 return NULL;
1536 }
1537
1538 BreakIterator *clonedBI = clone();
1539 if (clonedBI == NULL) {
1540 status = U_MEMORY_ALLOCATION_ERROR;
1541 } else {
1542 status = U_SAFECLONE_ALLOCATED_WARNING;
1543 }
1544 return (RuleBasedBreakIterator *)clonedBI;
1545 }
1546
1547
1548 //-------------------------------------------------------------------------------
1549 //
1550 // isDictionaryChar Return true if the category lookup for this char
1551 // indicates that it is in the set of dictionary lookup
1552 // chars.
1553 //
1554 // This function is intended for use by dictionary based
1555 // break iterators.
1556 //
1557 //-------------------------------------------------------------------------------
1558 /*UBool RuleBasedBreakIterator::isDictionaryChar(UChar32 c) {
1559 if (fData == NULL) {
1560 return FALSE;
1561 }
1562 uint16_t category;
1563 UTRIE_GET16(&fData->fTrie, c, category);
1564 return (category & 0x4000) != 0;
1565 }*/
1566
1567
1568 //-------------------------------------------------------------------------------
1569 //
1570 // checkDictionary This function handles all processing of characters in
1571 // the "dictionary" set. It will determine the appropriate
1572 // course of action, and possibly set up a cache in the
1573 // process.
1574 //
1575 //-------------------------------------------------------------------------------
1576 int32_t RuleBasedBreakIterator::checkDictionary(int32_t startPos,
1577 int32_t endPos,
1578 UBool reverse) {
1579 // Reset the old break cache first.
1580 reset();
1581
1582 // note: code segment below assumes that dictionary chars are in the
1583 // startPos-endPos range
1584 // value returned should be next character in sequence
1585 if ((endPos - startPos) <= 1) {
1586 return (reverse ? startPos : endPos);
1587 }
1588
1589 // Starting from the starting point, scan towards the proposed result,
1590 // looking for the first dictionary character (which may be the one
1591 // we're on, if we're starting in the middle of a range).
1592 utext_setNativeIndex(fText, reverse ? endPos : startPos);
1593 if (reverse) {
1594 UTEXT_PREVIOUS32(fText);
1595 }
1596
1597 int32_t rangeStart = startPos;
1598 int32_t rangeEnd = endPos;
1599
1600 uint16_t category;
1601 int32_t current;
1602 UErrorCode status = U_ZERO_ERROR;
1603 UStack breaks(status);
1604 int32_t foundBreakCount = 0;
1605 UChar32 c = utext_current32(fText);
1606
1607 UTRIE_GET16(&fData->fTrie, c, category);
1608
1609 // Is the character we're starting on a dictionary character? If so, we
1610 // need to back up to include the entire run; otherwise the results of
1611 // the break algorithm will differ depending on where we start. Since
1612 // the result is cached and there is typically a non-dictionary break
1613 // within a small number of words, there should be little performance impact.
1614 if (category & 0x4000) {
1615 if (reverse) {
1616 do {
1617 utext_next32(fText); // TODO: recast to work directly with postincrement.
1618 c = utext_current32(fText);
1619 UTRIE_GET16(&fData->fTrie, c, category);
1620 } while (c != U_SENTINEL && (category & 0x4000));
1621 // Back up to the last dictionary character
1622 rangeEnd = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1623 if (c == U_SENTINEL) {
1624 // c = fText->last32();
1625 // TODO: why was this if needed?
1626 c = UTEXT_PREVIOUS32(fText);
1627 }
1628 else {
1629 c = UTEXT_PREVIOUS32(fText);
1630 }
1631 }
1632 else {
1633 do {
1634 c = UTEXT_PREVIOUS32(fText);
1635 UTRIE_GET16(&fData->fTrie, c, category);
1636 }
1637 while (c != U_SENTINEL && (category & 0x4000));
1638 // Back up to the last dictionary character
1639 if (c == U_SENTINEL) {
1640 // c = fText->first32();
1641 c = utext_current32(fText);
1642 }
1643 else {
1644 utext_next32(fText);
1645 c = utext_current32(fText);
1646 }
1647 rangeStart = (int32_t)UTEXT_GETNATIVEINDEX(fText);;
1648 }
1649 UTRIE_GET16(&fData->fTrie, c, category);
1650 }
1651
1652 // Loop through the text, looking for ranges of dictionary characters.
1653 // For each span, find the appropriate break engine, and ask it to find
1654 // any breaks within the span.
1655 // Note: we always do this in the forward direction, so that the break
1656 // cache is built in the right order.
1657 if (reverse) {
1658 utext_setNativeIndex(fText, rangeStart);
1659 c = utext_current32(fText);
1660 UTRIE_GET16(&fData->fTrie, c, category);
1661 }
1662 while(U_SUCCESS(status)) {
1663 while((current = (int32_t)UTEXT_GETNATIVEINDEX(fText)) < rangeEnd && (category & 0x4000) == 0) {
1664 utext_next32(fText); // TODO: tweak for post-increment operation
1665 c = utext_current32(fText);
1666 UTRIE_GET16(&fData->fTrie, c, category);
1667 }
1668 if (current >= rangeEnd) {
1669 break;
1670 }
1671
1672 // We now have a dictionary character. Get the appropriate language object
1673 // to deal with it.
1674 const LanguageBreakEngine *lbe = getLanguageBreakEngine(c);
1675
1676 // Ask the language object if there are any breaks. It will leave the text
1677 // pointer on the other side of its range, ready to search for the next one.
1678 if (lbe != NULL) {
1679 foundBreakCount += lbe->findBreaks(fText, rangeStart, rangeEnd, FALSE, fBreakType, breaks);
1680 }
1681
1682 // Reload the loop variables for the next go-round
1683 c = utext_current32(fText);
1684 UTRIE_GET16(&fData->fTrie, c, category);
1685 }
1686
1687 // If we found breaks, build a new break cache. The first and last entries must
1688 // be the original starting and ending position.
1689 if (foundBreakCount > 0) {
1690 U_ASSERT(foundBreakCount == breaks.size());
1691 int32_t totalBreaks = foundBreakCount;
1692 if (startPos < breaks.elementAti(0)) {
1693 totalBreaks += 1;
1694 }
1695 if (endPos > breaks.peeki()) {
1696 totalBreaks += 1;
1697 }
1698 fCachedBreakPositions = (int32_t *)uprv_malloc(totalBreaks * sizeof(int32_t));
1699 if (fCachedBreakPositions != NULL) {
1700 int32_t out = 0;
1701 fNumCachedBreakPositions = totalBreaks;
1702 if (startPos < breaks.elementAti(0)) {
1703 fCachedBreakPositions[out++] = startPos;
1704 }
1705 for (int32_t i = 0; i < foundBreakCount; ++i) {
1706 fCachedBreakPositions[out++] = breaks.elementAti(i);
1707 }
1708 if (endPos > fCachedBreakPositions[out-1]) {
1709 fCachedBreakPositions[out] = endPos;
1710 }
1711 // If there are breaks, then by definition, we are replacing the original
1712 // proposed break by one of the breaks we found. Use following() and
1713 // preceding() to do the work. They should never recurse in this case.
1714 if (reverse) {
1715 return preceding(endPos);
1716 }
1717 else {
1718 return following(startPos);
1719 }
1720 }
1721 // If the allocation failed, just fall through to the "no breaks found" case.
1722 }
1723
1724 // If we get here, there were no language-based breaks. Set the text pointer
1725 // to the original proposed break.
1726 utext_setNativeIndex(fText, reverse ? startPos : endPos);
1727 return (reverse ? startPos : endPos);
1728 }
1729
1730 U_NAMESPACE_END
1731
1732
1733 static icu::UStack *gLanguageBreakFactories = NULL;
1734 static icu::UInitOnce gLanguageBreakFactoriesInitOnce = U_INITONCE_INITIALIZER;
1735
1736 /**
1737 * Release all static memory held by breakiterator.
1738 */
1739 U_CDECL_BEGIN
1740 static UBool U_CALLCONV breakiterator_cleanup_dict(void) {
1741 if (gLanguageBreakFactories) {
1742 delete gLanguageBreakFactories;
1743 gLanguageBreakFactories = NULL;
1744 }
1745 gLanguageBreakFactoriesInitOnce.reset();
1746 return TRUE;
1747 }
1748 U_CDECL_END
1749
1750 U_CDECL_BEGIN
1751 static void U_CALLCONV _deleteFactory(void *obj) {
1752 delete (icu::LanguageBreakFactory *) obj;
1753 }
1754 U_CDECL_END
1755 U_NAMESPACE_BEGIN
1756
1757 static void U_CALLCONV initLanguageFactories() {
1758 UErrorCode status = U_ZERO_ERROR;
1759 U_ASSERT(gLanguageBreakFactories == NULL);
1760 gLanguageBreakFactories = new UStack(_deleteFactory, NULL, status);
1761 if (gLanguageBreakFactories != NULL && U_SUCCESS(status)) {
1762 ICULanguageBreakFactory *builtIn = new ICULanguageBreakFactory(status);
1763 gLanguageBreakFactories->push(builtIn, status);
1764 #ifdef U_LOCAL_SERVICE_HOOK
1765 LanguageBreakFactory *extra = (LanguageBreakFactory *)uprv_svc_hook("languageBreakFactory", &status);
1766 if (extra != NULL) {
1767 gLanguageBreakFactories->push(extra, status);
1768 }
1769 #endif
1770 }
1771 ucln_common_registerCleanup(UCLN_COMMON_BREAKITERATOR_DICT, breakiterator_cleanup_dict);
1772 }
1773
1774
1775 static const LanguageBreakEngine*
1776 getLanguageBreakEngineFromFactory(UChar32 c, int32_t breakType)
1777 {
1778 umtx_initOnce(gLanguageBreakFactoriesInitOnce, &initLanguageFactories);
1779 if (gLanguageBreakFactories == NULL) {
1780 return NULL;
1781 }
1782
1783 int32_t i = gLanguageBreakFactories->size();
1784 const LanguageBreakEngine *lbe = NULL;
1785 while (--i >= 0) {
1786 LanguageBreakFactory *factory = (LanguageBreakFactory *)(gLanguageBreakFactories->elementAt(i));
1787 lbe = factory->getEngineFor(c, breakType);
1788 if (lbe != NULL) {
1789 break;
1790 }
1791 }
1792 return lbe;
1793 }
1794
1795
1796 //-------------------------------------------------------------------------------
1797 //
1798 // getLanguageBreakEngine Find an appropriate LanguageBreakEngine for the
1799 // the character c.
1800 //
1801 //-------------------------------------------------------------------------------
1802 const LanguageBreakEngine *
1803 RuleBasedBreakIterator::getLanguageBreakEngine(UChar32 c) {
1804 const LanguageBreakEngine *lbe = NULL;
1805 UErrorCode status = U_ZERO_ERROR;
1806
1807 if (fLanguageBreakEngines == NULL) {
1808 fLanguageBreakEngines = new UStack(status);
1809 if (fLanguageBreakEngines == NULL || U_FAILURE(status)) {
1810 delete fLanguageBreakEngines;
1811 fLanguageBreakEngines = 0;
1812 return NULL;
1813 }
1814 }
1815
1816 int32_t i = fLanguageBreakEngines->size();
1817 while (--i >= 0) {
1818 lbe = (const LanguageBreakEngine *)(fLanguageBreakEngines->elementAt(i));
1819 if (lbe->handles(c, fBreakType)) {
1820 return lbe;
1821 }
1822 }
1823
1824 // No existing dictionary took the character. See if a factory wants to
1825 // give us a new LanguageBreakEngine for this character.
1826 lbe = getLanguageBreakEngineFromFactory(c, fBreakType);
1827
1828 // If we got one, use it and push it on our stack.
1829 if (lbe != NULL) {
1830 fLanguageBreakEngines->push((void *)lbe, status);
1831 // Even if we can't remember it, we can keep looking it up, so
1832 // return it even if the push fails.
1833 return lbe;
1834 }
1835
1836 // No engine is forthcoming for this character. Add it to the
1837 // reject set. Create the reject break engine if needed.
1838 if (fUnhandledBreakEngine == NULL) {
1839 fUnhandledBreakEngine = new UnhandledEngine(status);
1840 if (U_SUCCESS(status) && fUnhandledBreakEngine == NULL) {
1841 status = U_MEMORY_ALLOCATION_ERROR;
1842 }
1843 // Put it last so that scripts for which we have an engine get tried
1844 // first.
1845 fLanguageBreakEngines->insertElementAt(fUnhandledBreakEngine, 0, status);
1846 // If we can't insert it, or creation failed, get rid of it
1847 if (U_FAILURE(status)) {
1848 delete fUnhandledBreakEngine;
1849 fUnhandledBreakEngine = 0;
1850 return NULL;
1851 }
1852 }
1853
1854 // Tell the reject engine about the character; at its discretion, it may
1855 // add more than just the one character.
1856 fUnhandledBreakEngine->handleCharacter(c, fBreakType);
1857
1858 return fUnhandledBreakEngine;
1859 }
1860
1861
1862
1863 /*int32_t RuleBasedBreakIterator::getBreakType() const {
1864 return fBreakType;
1865 }*/
1866
1867 void RuleBasedBreakIterator::setBreakType(int32_t type) {
1868 fBreakType = type;
1869 reset();
1870 }
1871
1872 U_NAMESPACE_END
1873
1874 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */