2 *******************************************************************************
4 * Copyright (C) 2002-2003, International Business Machines
5 * Corporation and others. All Rights Reserved.
7 *******************************************************************************
10 * tab size: 8 (not used)
13 * created on: 2002feb24
14 * created by: Markus W. Scherer
16 * Implementations for mostly non-core Unicode character properties
17 * stored in uprops.icu.
20 #include "unicode/utypes.h"
21 #include "unicode/uchar.h"
22 #include "unicode/uscript.h"
27 #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
30 * Unicode property names and property value names are compared
31 * "loosely". Property[Value]Aliases.txt say:
32 * "With loose matching of property names, the case distinctions, whitespace,
33 * and '_' are ignored."
35 * This function does just that, for ASCII (char *) name strings.
36 * It is almost identical to ucnv_compareNames() but also ignores
37 * ASCII White_Space characters (U+0009..U+000d).
41 U_CAPI
int32_t U_EXPORT2
42 uprv_comparePropertyNames(const char *name1
, const char *name2
) {
47 /* Ignore delimiters '-', '_', and ASCII White_Space */
48 while((c1
=(unsigned char)*name1
)=='-' || c1
=='_' ||
49 c1
==' ' || c1
=='\t' || c1
=='\n' || c1
=='\v' || c1
=='\f' || c1
=='\r'
53 while((c2
=(unsigned char)*name2
)=='-' || c2
=='_' ||
54 c2
==' ' || c2
=='\t' || c2
=='\n' || c2
=='\v' || c2
=='\f' || c2
=='\r'
59 /* If we reach the ends of both strings then they match */
64 /* Case-insensitive comparison */
66 rc
=(int32_t)(unsigned char)uprv_tolower(c1
)-(int32_t)(unsigned char)uprv_tolower(c2
);
77 /* API functions ------------------------------------------------------------ */
80 u_charAge(UChar32 c
, UVersionInfo versionArray
) {
81 if(versionArray
!=NULL
) {
82 uint32_t version
=u_getUnicodeProperties(c
, 0)>>UPROPS_AGE_SHIFT
;
83 versionArray
[0]=(uint8_t)(version
>>4);
84 versionArray
[1]=(uint8_t)(version
&0xf);
85 versionArray
[2]=versionArray
[3]=0;
89 U_CAPI UScriptCode U_EXPORT2
90 uscript_getScript(UChar32 c
, UErrorCode
*pErrorCode
) {
91 if(pErrorCode
==NULL
|| U_FAILURE(*pErrorCode
)) {
94 if((uint32_t)c
>0x10ffff) {
95 *pErrorCode
=U_ILLEGAL_ARGUMENT_ERROR
;
99 return (UScriptCode
)(u_getUnicodeProperties(c
, 0)&UPROPS_SCRIPT_MASK
);
102 U_CAPI UBlockCode U_EXPORT2
103 ublock_getCode(UChar32 c
) {
104 return (UBlockCode
)((u_getUnicodeProperties(c
, 0)&UPROPS_BLOCK_MASK
)>>UPROPS_BLOCK_SHIFT
);
107 static const struct {
112 * column and mask values for binary properties from u_getUnicodeProperties().
113 * Must be in order of corresponding UProperty,
114 * and there must be exacly one entry per binary UProperty.
116 { 1, U_MASK(UPROPS_ALPHABETIC
) },
117 { 1, U_MASK(UPROPS_ASCII_HEX_DIGIT
) },
118 { 1, U_MASK(UPROPS_BIDI_CONTROL
) },
119 { -1, U_MASK(UPROPS_MIRROR_SHIFT
) },
120 { 1, U_MASK(UPROPS_DASH
) },
121 { 1, U_MASK(UPROPS_DEFAULT_IGNORABLE_CODE_POINT
) },
122 { 1, U_MASK(UPROPS_DEPRECATED
) },
123 { 1, U_MASK(UPROPS_DIACRITIC
) },
124 { 1, U_MASK(UPROPS_EXTENDER
) },
125 { 0, 0 }, /* UCHAR_FULL_COMPOSITION_EXCLUSION */
126 { 1, U_MASK(UPROPS_GRAPHEME_BASE
) },
127 { 1, U_MASK(UPROPS_GRAPHEME_EXTEND
) },
128 { 1, U_MASK(UPROPS_GRAPHEME_LINK
) },
129 { 1, U_MASK(UPROPS_HEX_DIGIT
) },
130 { 1, U_MASK(UPROPS_HYPHEN
) },
131 { 1, U_MASK(UPROPS_ID_CONTINUE
) },
132 { 1, U_MASK(UPROPS_ID_START
) },
133 { 1, U_MASK(UPROPS_IDEOGRAPHIC
) },
134 { 1, U_MASK(UPROPS_IDS_BINARY_OPERATOR
) },
135 { 1, U_MASK(UPROPS_IDS_TRINARY_OPERATOR
) },
136 { 1, U_MASK(UPROPS_JOIN_CONTROL
) },
137 { 1, U_MASK(UPROPS_LOGICAL_ORDER_EXCEPTION
) },
138 { 1, U_MASK(UPROPS_LOWERCASE
) },
139 { 1, U_MASK(UPROPS_MATH
) },
140 { 1, U_MASK(UPROPS_NONCHARACTER_CODE_POINT
) },
141 { 1, U_MASK(UPROPS_QUOTATION_MARK
) },
142 { 1, U_MASK(UPROPS_RADICAL
) },
143 { 1, U_MASK(UPROPS_SOFT_DOTTED
) },
144 { 1, U_MASK(UPROPS_TERMINAL_PUNCTUATION
) },
145 { 1, U_MASK(UPROPS_UNIFIED_IDEOGRAPH
) },
146 { 1, U_MASK(UPROPS_UPPERCASE
) },
147 { 1, U_MASK(UPROPS_WHITE_SPACE
) },
148 { 1, U_MASK(UPROPS_XID_CONTINUE
) },
149 { 1, U_MASK(UPROPS_XID_START
) },
150 { -1, U_MASK(UPROPS_CASE_SENSITIVE_SHIFT
) }
153 U_CAPI UBool U_EXPORT2
154 u_hasBinaryProperty(UChar32 c
, UProperty which
) {
155 /* c is range-checked in the functions that are called from here */
156 if(which
<UCHAR_BINARY_START
|| UCHAR_BINARY_LIMIT
<=which
) {
157 /* not a known binary property */
159 } else if(which
==UCHAR_FULL_COMPOSITION_EXCLUSION
) {
160 #if !UCONFIG_NO_NORMALIZATION
161 return unorm_internalIsFullCompositionExclusion(c
);
166 /* systematic, directly stored properties */
167 return (u_getUnicodeProperties(c
, binProps
[which
].column
)&binProps
[which
].mask
)!=0;
171 U_CAPI UBool U_EXPORT2
172 u_isUAlphabetic(UChar32 c
) {
173 return u_hasBinaryProperty(c
, UCHAR_ALPHABETIC
);
176 U_CAPI UBool U_EXPORT2
177 u_isULowercase(UChar32 c
) {
178 return u_hasBinaryProperty(c
, UCHAR_LOWERCASE
);
181 U_CAPI UBool U_EXPORT2
182 u_isUUppercase(UChar32 c
) {
183 return u_hasBinaryProperty(c
, UCHAR_UPPERCASE
);
186 U_CAPI UBool U_EXPORT2
187 u_isUWhiteSpace(UChar32 c
) {
188 return u_hasBinaryProperty(c
, UCHAR_WHITE_SPACE
);
191 U_CAPI UBool U_EXPORT2
192 uprv_isRuleWhiteSpace(UChar32 c
) {
193 /* "white space" in the sense of ICU rule parsers: Cf+White_Space */
195 u_charType(c
)==U_FORMAT_CHAR
||
196 u_hasBinaryProperty(c
, UCHAR_WHITE_SPACE
);
199 static const UChar _PATTERN
[] = {
200 /* "[[:Cf:][:WSpace:]]" */
201 91, 91, 58, 67, 102, 58, 93, 91, 58, 87,
202 83, 112, 97, 99, 101, 58, 93, 93, 0
205 U_CAPI USet
* U_EXPORT2
206 uprv_openRuleWhiteSpaceSet(UErrorCode
* ec
) {
207 return uset_openPattern(_PATTERN
,
208 sizeof(_PATTERN
)/sizeof(_PATTERN
[0])-1, ec
);
211 U_CAPI
int32_t U_EXPORT2
212 u_getIntPropertyValue(UChar32 c
, UProperty which
) {
213 UErrorCode errorCode
;
215 if(which
<UCHAR_BINARY_START
) {
216 return 0; /* undefined */
217 } else if(which
<UCHAR_BINARY_LIMIT
) {
218 return (int32_t)u_hasBinaryProperty(c
, which
);
219 } else if(which
<UCHAR_INT_START
) {
220 return 0; /* undefined */
221 } else if(which
<UCHAR_INT_LIMIT
) {
223 case UCHAR_BIDI_CLASS
:
224 return (int32_t)u_charDirection(c
);
226 return (int32_t)ublock_getCode(c
);
227 case UCHAR_CANONICAL_COMBINING_CLASS
:
228 #if !UCONFIG_NO_NORMALIZATION
229 return u_getCombiningClass(c
);
233 case UCHAR_DECOMPOSITION_TYPE
:
234 return (int32_t)(u_getUnicodeProperties(c
, 2)&UPROPS_DT_MASK
);
235 case UCHAR_EAST_ASIAN_WIDTH
:
236 return (int32_t)(u_getUnicodeProperties(c
, 0)&UPROPS_EA_MASK
)>>UPROPS_EA_SHIFT
;
237 case UCHAR_GENERAL_CATEGORY
:
238 return (int32_t)u_charType(c
);
239 case UCHAR_JOINING_GROUP
:
240 return (int32_t)(u_getUnicodeProperties(c
, 2)&UPROPS_JG_MASK
)>>UPROPS_JG_SHIFT
;
241 case UCHAR_JOINING_TYPE
:
242 return (int32_t)(u_getUnicodeProperties(c
, 2)&UPROPS_JT_MASK
)>>UPROPS_JT_SHIFT
;
243 case UCHAR_LINE_BREAK
:
244 return (int32_t)(u_getUnicodeProperties(c
, 0)&UPROPS_LB_MASK
)>>UPROPS_LB_SHIFT
;
245 case UCHAR_NUMERIC_TYPE
:
246 return (int32_t)GET_NUMERIC_TYPE(u_getUnicodeProperties(c
, -1));
248 errorCode
=U_ZERO_ERROR
;
249 return (int32_t)uscript_getScript(c
, &errorCode
);
250 case UCHAR_HANGUL_SYLLABLE_TYPE
:
251 /* purely algorithmic; hardcode known characters, check for assigned new ones */
253 /* U_HST_NOT_APPLICABLE */
254 } else if(c
<=0x11ff) {
257 /* Jamo L range, HANGUL CHOSEONG ... */
258 if(c
==0x115f || c
<=0x1159 || u_charType(c
)==U_OTHER_LETTER
) {
259 return U_HST_LEADING_JAMO
;
261 } else if(c
<=0x11a7) {
262 /* Jamo V range, HANGUL JUNGSEONG ... */
263 if(c
<=0x11a2 || u_charType(c
)==U_OTHER_LETTER
) {
264 return U_HST_VOWEL_JAMO
;
268 if(c
<=0x11f9 || u_charType(c
)==U_OTHER_LETTER
) {
269 return U_HST_TRAILING_JAMO
;
272 } else if((c
-=HANGUL_BASE
)<0) {
273 /* U_HST_NOT_APPLICABLE */
274 } else if(c
<HANGUL_COUNT
) {
275 /* Hangul syllable */
276 return c%JAMO_T_COUNT
==0 ? U_HST_LV_SYLLABLE
: U_HST_LVT_SYLLABLE
;
278 return U_HST_NOT_APPLICABLE
;
280 return 0; /* undefined */
282 } else if(which
==UCHAR_GENERAL_CATEGORY_MASK
) {
283 return U_MASK(u_charType(c
));
285 return 0; /* undefined */
289 U_CAPI
int32_t U_EXPORT2
290 u_getIntPropertyMinValue(UProperty which
) {
291 return 0; /* all binary/enum/int properties have a minimum value of 0 */
294 U_CAPI
int32_t U_EXPORT2
295 u_getIntPropertyMaxValue(UProperty which
) {
298 if(which
<UCHAR_BINARY_START
) {
299 return -1; /* undefined */
300 } else if(which
<UCHAR_BINARY_LIMIT
) {
301 return 1; /* maximum TRUE for all binary properties */
302 } else if(which
<UCHAR_INT_START
) {
303 return -1; /* undefined */
304 } else if(which
<UCHAR_INT_LIMIT
) {
306 case UCHAR_BIDI_CLASS
:
307 return (int32_t)U_CHAR_DIRECTION_COUNT
-1;
309 max
=(uprv_getMaxValues(0)&UPROPS_BLOCK_MASK
)>>UPROPS_BLOCK_SHIFT
;
310 return max
!=0 ? max
: (int32_t)UBLOCK_COUNT
-1;
311 case UCHAR_CANONICAL_COMBINING_CLASS
:
312 return 0xff; /* TODO do we need to be more precise, getting the actual maximum? */
313 case UCHAR_DECOMPOSITION_TYPE
:
314 max
=uprv_getMaxValues(2)&UPROPS_DT_MASK
;
315 return max
!=0 ? max
: (int32_t)U_DT_COUNT
-1;
316 case UCHAR_EAST_ASIAN_WIDTH
:
317 max
=(uprv_getMaxValues(0)&UPROPS_EA_MASK
)>>UPROPS_EA_SHIFT
;
318 return max
!=0 ? max
: (int32_t)U_EA_COUNT
-1;
319 case UCHAR_GENERAL_CATEGORY
:
320 return (int32_t)U_CHAR_CATEGORY_COUNT
-1;
321 case UCHAR_JOINING_GROUP
:
322 max
=(uprv_getMaxValues(2)&UPROPS_JG_MASK
)>>UPROPS_JG_SHIFT
;
323 return max
!=0 ? max
: (int32_t)U_JG_COUNT
-1;
324 case UCHAR_JOINING_TYPE
:
325 max
=(uprv_getMaxValues(2)&UPROPS_JT_MASK
)>>UPROPS_JT_SHIFT
;
326 return max
!=0 ? max
: (int32_t)U_JT_COUNT
-1;
327 case UCHAR_LINE_BREAK
:
328 max
=(uprv_getMaxValues(0)&UPROPS_LB_MASK
)>>UPROPS_LB_SHIFT
;
329 return max
!=0 ? max
: (int32_t)U_LB_COUNT
-1;
330 case UCHAR_NUMERIC_TYPE
:
331 return (int32_t)U_NT_COUNT
-1;
333 max
=uprv_getMaxValues(0)&UPROPS_SCRIPT_MASK
;
334 return max
!=0 ? max
: (int32_t)USCRIPT_CODE_LIMIT
-1;
335 case UCHAR_HANGUL_SYLLABLE_TYPE
:
336 return (int32_t)U_HST_COUNT
-1;
338 return -1; /* undefined */
341 return -1; /* undefined */
345 /*----------------------------------------------------------------
347 *----------------------------------------------------------------*/
350 * Return a set of characters for property enumeration.
351 * The set implicitly contains 0x110000 as well, which is one more than the highest
352 * Unicode code point.
354 * This set is used as an ordered list - its code points are ordered, and
355 * consecutive code points (in Unicode code point order) in the set define a range.
356 * For each two consecutive characters (start, limit) in the set,
357 * all of the UCD/normalization and related properties for
358 * all code points start..limit-1 are all the same,
359 * except for character names and ISO comments.
361 * All Unicode code points U+0000..U+10ffff are covered by these ranges.
362 * The ranges define a partition of the Unicode code space.
363 * ICU uses the inclusions set to enumerate properties for generating
364 * UnicodeSets containing all code points that have a certain property value.
366 * The Inclusion List is generated from the UCD. It is generated
367 * by enumerating the data tries, and code points for hardcoded properties
370 * --------------------------------------------------------------------------
372 * The following are ideas for getting properties-unique code point ranges,
373 * with possible optimizations beyond the current implementation.
374 * These optimizations would require more code and be more fragile.
375 * The current implementation generates one single list (set) for all properties.
377 * To enumerate properties efficiently, one needs to know ranges of
378 * repetitive values, so that the value of only each start code point
379 * can be applied to the whole range.
380 * This information is in principle available in the uprops.icu/unorm.icu data.
382 * There are two obstacles:
384 * 1. Some properties are computed from multiple data structures,
385 * making it necessary to get repetitive ranges by intersecting
386 * ranges from multiple tries.
388 * 2. It is not economical to write code for getting repetitive ranges
389 * that are precise for each of some 50 properties.
393 * - Get ranges per trie, not per individual property.
394 * Each range contains the same values for a whole group of properties.
395 * This would generate currently five range sets, two for uprops.icu tries
396 * and three for unorm.icu tries.
398 * - Combine sets of ranges for multiple tries to get sufficient sets
399 * for properties, e.g., the uprops.icu main and auxiliary tries
400 * for all non-normalization properties.
402 * Ideas for representing ranges and combining them:
404 * - A UnicodeSet could hold just the start code points of ranges.
405 * Multiple sets are easily combined by or-ing them together.
407 * - Alternatively, a UnicodeSet could hold each even-numbered range.
408 * All ranges could be enumerated by using each start code point
409 * (for the even-numbered ranges) as well as each limit (end+1) code point
410 * (for the odd-numbered ranges).
411 * It should be possible to combine two such sets by xor-ing them,
412 * but no more than two.
414 * The second way to represent ranges may(?!) yield smaller UnicodeSet arrays,
415 * but the first one is certainly simpler and applicable for combining more than
418 * It is possible to combine all range sets for all uprops/unorm tries into one
419 * set that can be used for all properties.
420 * As an optimization, there could be less-combined range sets for certain
421 * groups of properties.
422 * The relationship of which less-combined range set to use for which property
423 * depends on the implementation of the properties and must be hardcoded
424 * - somewhat error-prone and higher maintenance but can be tested easily
425 * by building property sets "the simple way" in test code.
429 * Do not use a UnicodeSet pattern because that causes infinite recursion;
430 * UnicodeSet depends on the inclusions set.
432 U_CAPI
void U_EXPORT2
433 uprv_getInclusions(USet
* set
, UErrorCode
*pErrorCode
) {
434 if(pErrorCode
==NULL
|| U_FAILURE(*pErrorCode
)) {
440 #if !UCONFIG_NO_NORMALIZATION
441 unorm_addPropertyStarts(set
, pErrorCode
);
443 uchar_addPropertyStarts(set
, pErrorCode
);