2 *****************************************************************************
3 * Copyright (C) 1996-2014, International Business Machines Corporation and
4 * others. All Rights Reserved.
5 *****************************************************************************
8 #include "unicode/utypes.h"
10 #if !UCONFIG_NO_NORMALIZATION
12 #include "unicode/caniter.h"
13 #include "unicode/normalizer2.h"
14 #include "unicode/uchar.h"
15 #include "unicode/uniset.h"
16 #include "unicode/usetiter.h"
17 #include "unicode/ustring.h"
18 #include "unicode/utf16.h"
21 #include "normalizer2impl.h"
24 * This class allows one to iterate through all the strings that are canonically equivalent to a given
25 * string. For example, here are some sample results:
26 Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
27 1: \u0041\u030A\u0064\u0307\u0327
28 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
29 2: \u0041\u030A\u0064\u0327\u0307
30 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
31 3: \u0041\u030A\u1E0B\u0327
32 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
33 4: \u0041\u030A\u1E11\u0307
34 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
35 5: \u00C5\u0064\u0307\u0327
36 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
37 6: \u00C5\u0064\u0327\u0307
38 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
40 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
42 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
43 9: \u212B\u0064\u0307\u0327
44 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
45 10: \u212B\u0064\u0327\u0307
46 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
47 11: \u212B\u1E0B\u0327
48 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
49 12: \u212B\u1E11\u0307
50 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
51 *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones,
52 * since it has not been optimized for that situation.
61 // TODO: add boilerplate methods.
63 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator
)
66 *@param source string to get results for
68 CanonicalIterator::CanonicalIterator(const UnicodeString
&sourceStr
, UErrorCode
&status
) :
74 nfd(*Normalizer2::getNFDInstance(status
)),
75 nfcImpl(*Normalizer2Factory::getNFCImpl(status
))
77 if(U_SUCCESS(status
) && nfcImpl
.ensureCanonIterData(status
)) {
78 setSource(sourceStr
, status
);
82 CanonicalIterator::~CanonicalIterator() {
86 void CanonicalIterator::cleanPieces() {
89 for(i
= 0; i
< pieces_length
; i
++) {
90 if(pieces
[i
] != NULL
) {
98 if(pieces_lengths
!= NULL
) {
99 uprv_free(pieces_lengths
);
100 pieces_lengths
= NULL
;
102 if(current
!= NULL
) {
110 *@return gets the source: NOTE: it is the NFD form of source
112 UnicodeString
CanonicalIterator::getSource() {
117 * Resets the iterator so that one can start again from the beginning.
119 void CanonicalIterator::reset() {
121 for (int i
= 0; i
< current_length
; ++i
) {
127 *@return the next string that is canonically equivalent. The value null is returned when
128 * the iteration is done.
130 UnicodeString
CanonicalIterator::next() {
138 // delete old contents
141 // construct return value
143 for (i
= 0; i
< pieces_length
; ++i
) {
144 buffer
.append(pieces
[i
][current
[i
]]);
146 //String result = buffer.toString(); // not needed
148 // find next value for next time
150 for (i
= current_length
- 1; ; --i
) {
156 if (current
[i
] < pieces_lengths
[i
]) break; // got sequence
163 *@param set the source string to iterate against. This allows the same iterator to be used
164 * while changing the source string, saving object creation.
166 void CanonicalIterator::setSource(const UnicodeString
&newSource
, UErrorCode
&status
) {
167 int32_t list_length
= 0;
171 UnicodeString
*list
= NULL
;
173 nfd
.normalize(newSource
, source
, status
);
174 if(U_FAILURE(status
)) {
181 // catch degenerate case
182 if (newSource
.length() == 0) {
183 pieces
= (UnicodeString
**)uprv_malloc(sizeof(UnicodeString
*));
184 pieces_lengths
= (int32_t*)uprv_malloc(1 * sizeof(int32_t));
186 current
= (int32_t*)uprv_malloc(1 * sizeof(int32_t));
188 if (pieces
== NULL
|| pieces_lengths
== NULL
|| current
== NULL
) {
189 status
= U_MEMORY_ALLOCATION_ERROR
;
190 goto CleanPartialInitialization
;
193 pieces
[0] = new UnicodeString
[1];
194 pieces_lengths
[0] = 1;
195 if (pieces
[0] == 0) {
196 status
= U_MEMORY_ALLOCATION_ERROR
;
197 goto CleanPartialInitialization
;
203 list
= new UnicodeString
[source
.length()];
205 status
= U_MEMORY_ALLOCATION_ERROR
;
206 goto CleanPartialInitialization
;
209 // i should initialy be the number of code units at the
210 // start of the string
211 i
= U16_LENGTH(source
.char32At(0));
214 // This code iterates through the source string and
215 // extracts segments that end up on a codepoint that
216 // doesn't start any decompositions. (Analysis is done
217 // on the NFD form - see above).
218 for (; i
< source
.length(); i
+= U16_LENGTH(cp
)) {
219 cp
= source
.char32At(i
);
220 if (nfcImpl
.isCanonSegmentStarter(cp
)) {
221 source
.extract(start
, i
-start
, list
[list_length
++]); // add up to i
225 source
.extract(start
, i
-start
, list
[list_length
++]); // add last one
228 // allocate the arrays, and find the strings that are CE to each segment
229 pieces
= (UnicodeString
**)uprv_malloc(list_length
* sizeof(UnicodeString
*));
230 pieces_length
= list_length
;
231 pieces_lengths
= (int32_t*)uprv_malloc(list_length
* sizeof(int32_t));
232 current
= (int32_t*)uprv_malloc(list_length
* sizeof(int32_t));
233 current_length
= list_length
;
234 if (pieces
== NULL
|| pieces_lengths
== NULL
|| current
== NULL
) {
235 status
= U_MEMORY_ALLOCATION_ERROR
;
236 goto CleanPartialInitialization
;
239 for (i
= 0; i
< current_length
; i
++) {
242 // for each segment, get all the combinations that can produce
243 // it after NFD normalization
244 for (i
= 0; i
< pieces_length
; ++i
) {
245 //if (PROGRESS) printf("SEGMENT\n");
246 pieces
[i
] = getEquivalents(list
[i
], pieces_lengths
[i
], status
);
251 // Common section to cleanup all local variables and reset object variables.
252 CleanPartialInitialization
:
260 * Dumb recursive implementation of permutation.
262 * @param source the string to find permutations for
263 * @return the results in a set.
265 void U_EXPORT2
CanonicalIterator::permute(UnicodeString
&source
, UBool skipZeros
, Hashtable
*result
, UErrorCode
&status
) {
266 if(U_FAILURE(status
)) {
269 //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source)));
273 // if zero or one character, just return a set with it
274 // we check for length < 2 to keep from counting code points all the time
275 if (source
.length() <= 2 && source
.countChar32() <= 1) {
276 UnicodeString
*toPut
= new UnicodeString(source
);
279 status
= U_MEMORY_ALLOCATION_ERROR
;
282 result
->put(source
, toPut
, status
);
286 // otherwise iterate through the string, and recursively permute all the other characters
288 Hashtable
subpermute(status
);
289 if(U_FAILURE(status
)) {
292 subpermute
.setValueDeleter(uprv_deleteUObject
);
294 for (i
= 0; i
< source
.length(); i
+= U16_LENGTH(cp
)) {
295 cp
= source
.char32At(i
);
296 const UHashElement
*ne
= NULL
;
297 int32_t el
= UHASH_FIRST
;
298 UnicodeString subPermuteString
= source
;
301 // if the character is canonical combining class zero,
303 if (skipZeros
&& i
!= 0 && u_getCombiningClass(cp
) == 0) {
304 //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i)));
308 subpermute
.removeAll();
310 // see what the permutations of the characters before and after this one are
311 //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp)));
312 permute(subPermuteString
.replace(i
, U16_LENGTH(cp
), NULL
, 0), skipZeros
, &subpermute
, status
);
313 /* Test for buffer overflows */
314 if(U_FAILURE(status
)) {
317 // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents
318 // of source at this point.
320 // prefix this character to all of them
321 ne
= subpermute
.nextElement(el
);
323 UnicodeString
*permRes
= (UnicodeString
*)(ne
->value
.pointer
);
324 UnicodeString
*chStr
= new UnicodeString(cp
);
327 status
= U_MEMORY_ALLOCATION_ERROR
;
330 chStr
->append(*permRes
); //*((UnicodeString *)(ne->value.pointer));
331 //if (PROGRESS) printf(" Piece: %s\n", UToS(*chStr));
332 result
->put(*chStr
, chStr
, status
);
333 ne
= subpermute
.nextElement(el
);
341 // we have a segment, in NFD. Find all the strings that are canonically equivalent to it.
342 UnicodeString
* CanonicalIterator::getEquivalents(const UnicodeString
&segment
, int32_t &result_len
, UErrorCode
&status
) {
343 Hashtable
result(status
);
344 Hashtable
permutations(status
);
345 Hashtable
basic(status
);
346 if (U_FAILURE(status
)) {
349 result
.setValueDeleter(uprv_deleteUObject
);
350 permutations
.setValueDeleter(uprv_deleteUObject
);
351 basic
.setValueDeleter(uprv_deleteUObject
);
354 int32_t segLen
= segment
.extract(USeg
, 256, status
);
355 getEquivalents2(&basic
, USeg
, segLen
, status
);
357 // now get all the permutations
358 // add only the ones that are canonically equivalent
359 // TODO: optimize by not permuting any class zero.
361 const UHashElement
*ne
= NULL
;
362 int32_t el
= UHASH_FIRST
;
363 //Iterator it = basic.iterator();
364 ne
= basic
.nextElement(el
);
365 //while (it.hasNext())
367 //String item = (String) it.next();
368 UnicodeString item
= *((UnicodeString
*)(ne
->value
.pointer
));
370 permutations
.removeAll();
371 permute(item
, CANITER_SKIP_ZEROES
, &permutations
, status
);
372 const UHashElement
*ne2
= NULL
;
373 int32_t el2
= UHASH_FIRST
;
374 //Iterator it2 = permutations.iterator();
375 ne2
= permutations
.nextElement(el2
);
376 //while (it2.hasNext())
377 while (ne2
!= NULL
) {
378 //String possible = (String) it2.next();
379 //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer)));
380 UnicodeString
possible(*((UnicodeString
*)(ne2
->value
.pointer
)));
381 UnicodeString attempt
;
382 nfd
.normalize(possible
, attempt
, status
);
384 // TODO: check if operator == is semanticaly the same as attempt.equals(segment)
385 if (attempt
==segment
) {
386 //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible)));
387 // TODO: use the hashtable just to catch duplicates - store strings directly (somehow).
388 result
.put(possible
, new UnicodeString(possible
), status
); //add(possible);
390 //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible)));
393 ne2
= permutations
.nextElement(el2
);
395 ne
= basic
.nextElement(el
);
398 /* Test for buffer overflows */
399 if(U_FAILURE(status
)) {
402 // convert into a String[] to clean up storage
403 //String[] finalResult = new String[result.size()];
404 UnicodeString
*finalResult
= NULL
;
406 if((resultCount
= result
.count())) {
407 finalResult
= new UnicodeString
[resultCount
];
408 if (finalResult
== 0) {
409 status
= U_MEMORY_ALLOCATION_ERROR
;
414 status
= U_ILLEGAL_ARGUMENT_ERROR
;
417 //result.toArray(finalResult);
420 ne
= result
.nextElement(el
);
422 finalResult
[result_len
++] = *((UnicodeString
*)(ne
->value
.pointer
));
423 ne
= result
.nextElement(el
);
430 Hashtable
*CanonicalIterator::getEquivalents2(Hashtable
*fillinResult
, const UChar
*segment
, int32_t segLen
, UErrorCode
&status
) {
432 if (U_FAILURE(status
)) {
436 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment)));
438 UnicodeString
toPut(segment
, segLen
);
440 fillinResult
->put(toPut
, new UnicodeString(toPut
), status
);
444 // cycle through all the characters
446 for (int32_t i
= 0; i
< segLen
; i
+= U16_LENGTH(cp
)) {
447 // see if any character is at the start of some decomposition
448 U16_GET(segment
, 0, i
, segLen
, cp
);
449 if (!nfcImpl
.getCanonStartSet(cp
, starts
)) {
452 // if so, see which decompositions match
453 UnicodeSetIterator
iter(starts
);
454 while (iter
.next()) {
455 UChar32 cp2
= iter
.getCodepoint();
456 Hashtable
remainder(status
);
457 remainder
.setValueDeleter(uprv_deleteUObject
);
458 if (extract(&remainder
, cp2
, segment
, segLen
, i
, status
) == NULL
) {
462 // there were some matches, so add all the possibilities to the set.
463 UnicodeString
prefix(segment
, i
);
466 int32_t el
= UHASH_FIRST
;
467 const UHashElement
*ne
= remainder
.nextElement(el
);
469 UnicodeString item
= *((UnicodeString
*)(ne
->value
.pointer
));
470 UnicodeString
*toAdd
= new UnicodeString(prefix
);
473 status
= U_MEMORY_ALLOCATION_ERROR
;
477 fillinResult
->put(*toAdd
, toAdd
, status
);
479 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd)));
481 ne
= remainder
.nextElement(el
);
486 /* Test for buffer overflows */
487 if(U_FAILURE(status
)) {
494 * See if the decomposition of cp2 is at segment starting at segmentPos
495 * (with canonical rearrangment!)
496 * If so, take the remainder, and return the equivalents
498 Hashtable
*CanonicalIterator::extract(Hashtable
*fillinResult
, UChar32 comp
, const UChar
*segment
, int32_t segLen
, int32_t segmentPos
, UErrorCode
&status
) {
499 //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
500 //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp))));
501 //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos);
503 if (U_FAILURE(status
)) {
507 UnicodeString
temp(comp
);
508 int32_t inputLen
=temp
.length();
509 UnicodeString decompString
;
510 nfd
.normalize(temp
, decompString
, status
);
511 const UChar
*decomp
=decompString
.getBuffer();
512 int32_t decompLen
=decompString
.length();
514 // See if it matches the start of segment (at segmentPos)
517 int32_t decompPos
= 0;
519 U16_NEXT(decomp
, decompPos
, decompLen
, decompCp
);
521 int32_t i
= segmentPos
;
523 U16_NEXT(segment
, i
, segLen
, cp
);
525 if (cp
== decompCp
) { // if equal, eat another cp from decomp
527 //if (PROGRESS) printf(" matches: %s\n", UToS(Tr(UnicodeString(cp))));
529 if (decompPos
== decompLen
) { // done, have all decomp characters!
530 temp
.append(segment
+i
, segLen
-i
);
534 U16_NEXT(decomp
, decompPos
, decompLen
, decompCp
);
536 //if (PROGRESS) printf(" buffer: %s\n", UToS(Tr(UnicodeString(cp))));
538 // brute force approach
542 // since we know that the classes are monotonically increasing, after zero
544 // we can do an optimization
545 // there are only a few cases that work: zero, less, same, greater
546 // if both classes are the same, we fail
547 // if the decomp class < the segment class, we fail
549 segClass = getClass(cp);
550 if (decompClass <= segClass) return null;
555 return NULL
; // we failed, characters left over
557 //if (PROGRESS) printf("Matches\n");
559 if (inputLen
== temp
.length()) {
560 fillinResult
->put(UnicodeString(), new UnicodeString(), status
);
561 return fillinResult
; // succeed, but no remainder
564 // brute force approach
565 // check to make sure result is canonically equivalent
567 nfd
.normalize(temp
, trial
, status
);
568 if(U_FAILURE(status
) || trial
.compare(segment
+segmentPos
, segLen
- segmentPos
) != 0) {
572 return getEquivalents2(fillinResult
, temp
.getBuffer()+inputLen
, temp
.length()-inputLen
, status
);
577 #endif /* #if !UCONFIG_NO_NORMALIZATION */