]> git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/rbt_pars.cpp
ICU-461.18.tar.gz
[apple/icu.git] / icuSources / i18n / rbt_pars.cpp
1 /*
2 **********************************************************************
3 * Copyright (C) 1999-2008, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 **********************************************************************
6 * Date Name Description
7 * 11/17/99 aliu Creation.
8 **********************************************************************
9 */
10
11 #include "unicode/utypes.h"
12
13 #if !UCONFIG_NO_TRANSLITERATION
14
15 #include "unicode/uobject.h"
16 #include "unicode/parseerr.h"
17 #include "unicode/parsepos.h"
18 #include "unicode/putil.h"
19 #include "unicode/uchar.h"
20 #include "unicode/ustring.h"
21 #include "unicode/uniset.h"
22 #include "cstring.h"
23 #include "funcrepl.h"
24 #include "hash.h"
25 #include "quant.h"
26 #include "rbt.h"
27 #include "rbt_data.h"
28 #include "rbt_pars.h"
29 #include "rbt_rule.h"
30 #include "strmatch.h"
31 #include "strrepl.h"
32 #include "unicode/symtable.h"
33 #include "tridpars.h"
34 #include "uvector.h"
35 #include "hash.h"
36 #include "util.h"
37 #include "cmemory.h"
38 #include "uprops.h"
39 #include "putilimp.h"
40
41 // Operators
42 #define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/
43 #define FORWARD_RULE_OP ((UChar)0x003E) /*>*/
44 #define REVERSE_RULE_OP ((UChar)0x003C) /*<*/
45 #define FWDREV_RULE_OP ((UChar)0x007E) /*~*/ // internal rep of <> op
46
47 // Other special characters
48 #define QUOTE ((UChar)0x0027) /*'*/
49 #define ESCAPE ((UChar)0x005C) /*\*/
50 #define END_OF_RULE ((UChar)0x003B) /*;*/
51 #define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/
52
53 #define SEGMENT_OPEN ((UChar)0x0028) /*(*/
54 #define SEGMENT_CLOSE ((UChar)0x0029) /*)*/
55 #define CONTEXT_ANTE ((UChar)0x007B) /*{*/
56 #define CONTEXT_POST ((UChar)0x007D) /*}*/
57 #define CURSOR_POS ((UChar)0x007C) /*|*/
58 #define CURSOR_OFFSET ((UChar)0x0040) /*@*/
59 #define ANCHOR_START ((UChar)0x005E) /*^*/
60 #define KLEENE_STAR ((UChar)0x002A) /***/
61 #define ONE_OR_MORE ((UChar)0x002B) /*+*/
62 #define ZERO_OR_ONE ((UChar)0x003F) /*?*/
63
64 #define DOT ((UChar)46) /*.*/
65
66 static const UChar DOT_SET[] = { // "[^[:Zp:][:Zl:]\r\n$]";
67 91, 94, 91, 58, 90, 112, 58, 93, 91, 58, 90,
68 108, 58, 93, 92, 114, 92, 110, 36, 93, 0
69 };
70
71 // A function is denoted &Source-Target/Variant(text)
72 #define FUNCTION ((UChar)38) /*&*/
73
74 // Aliases for some of the syntax characters. These are provided so
75 // transliteration rules can be expressed in XML without clashing with
76 // XML syntax characters '<', '>', and '&'.
77 #define ALT_REVERSE_RULE_OP ((UChar)0x2190) // Left Arrow
78 #define ALT_FORWARD_RULE_OP ((UChar)0x2192) // Right Arrow
79 #define ALT_FWDREV_RULE_OP ((UChar)0x2194) // Left Right Arrow
80 #define ALT_FUNCTION ((UChar)0x2206) // Increment (~Greek Capital Delta)
81
82 // Special characters disallowed at the top level
83 static const UChar ILLEGAL_TOP[] = {41,0}; // ")"
84
85 // Special characters disallowed within a segment
86 static const UChar ILLEGAL_SEG[] = {123,125,124,64,0}; // "{}|@"
87
88 // Special characters disallowed within a function argument
89 static const UChar ILLEGAL_FUNC[] = {94,40,46,42,43,63,123,125,124,64,0}; // "^(.*+?{}|@"
90
91 // By definition, the ANCHOR_END special character is a
92 // trailing SymbolTable.SYMBOL_REF character.
93 // private static final char ANCHOR_END = '$';
94
95 static const UChar gOPERATORS[] = { // "=><"
96 VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP,
97 ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP,
98 0
99 };
100
101 static const UChar HALF_ENDERS[] = { // "=><;"
102 VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP,
103 ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP,
104 END_OF_RULE,
105 0
106 };
107
108 // These are also used in Transliterator::toRules()
109 static const int32_t ID_TOKEN_LEN = 2;
110 static const UChar ID_TOKEN[] = { 0x3A, 0x3A }; // ':', ':'
111
112 /*
113 commented out until we do real ::BEGIN/::END functionality
114 static const int32_t BEGIN_TOKEN_LEN = 5;
115 static const UChar BEGIN_TOKEN[] = { 0x42, 0x45, 0x47, 0x49, 0x4e }; // 'BEGIN'
116
117 static const int32_t END_TOKEN_LEN = 3;
118 static const UChar END_TOKEN[] = { 0x45, 0x4e, 0x44 }; // 'END'
119 */
120
121 U_NAMESPACE_BEGIN
122
123 //----------------------------------------------------------------------
124 // BEGIN ParseData
125 //----------------------------------------------------------------------
126
127 /**
128 * This class implements the SymbolTable interface. It is used
129 * during parsing to give UnicodeSet access to variables that
130 * have been defined so far. Note that it uses variablesVector,
131 * _not_ data.setVariables.
132 */
133 class ParseData : public UMemory, public SymbolTable {
134 public:
135 const TransliterationRuleData* data; // alias
136
137 const UVector* variablesVector; // alias
138
139 const Hashtable* variableNames; // alias
140
141 ParseData(const TransliterationRuleData* data = 0,
142 const UVector* variablesVector = 0,
143 const Hashtable* variableNames = 0);
144
145 virtual const UnicodeString* lookup(const UnicodeString& s) const;
146
147 virtual const UnicodeFunctor* lookupMatcher(UChar32 ch) const;
148
149 virtual UnicodeString parseReference(const UnicodeString& text,
150 ParsePosition& pos, int32_t limit) const;
151 /**
152 * Return true if the given character is a matcher standin or a plain
153 * character (non standin).
154 */
155 UBool isMatcher(UChar32 ch);
156
157 /**
158 * Return true if the given character is a replacer standin or a plain
159 * character (non standin).
160 */
161 UBool isReplacer(UChar32 ch);
162
163 private:
164 ParseData(const ParseData &other); // forbid copying of this class
165 ParseData &operator=(const ParseData &other); // forbid copying of this class
166 };
167
168 ParseData::ParseData(const TransliterationRuleData* d,
169 const UVector* sets,
170 const Hashtable* vNames) :
171 data(d), variablesVector(sets), variableNames(vNames) {}
172
173 /**
174 * Implement SymbolTable API.
175 */
176 const UnicodeString* ParseData::lookup(const UnicodeString& name) const {
177 return (const UnicodeString*) variableNames->get(name);
178 }
179
180 /**
181 * Implement SymbolTable API.
182 */
183 const UnicodeFunctor* ParseData::lookupMatcher(UChar32 ch) const {
184 // Note that we cannot use data.lookupSet() because the
185 // set array has not been constructed yet.
186 const UnicodeFunctor* set = NULL;
187 int32_t i = ch - data->variablesBase;
188 if (i >= 0 && i < variablesVector->size()) {
189 int32_t i = ch - data->variablesBase;
190 set = (i < variablesVector->size()) ?
191 (UnicodeFunctor*) variablesVector->elementAt(i) : 0;
192 }
193 return set;
194 }
195
196 /**
197 * Implement SymbolTable API. Parse out a symbol reference
198 * name.
199 */
200 UnicodeString ParseData::parseReference(const UnicodeString& text,
201 ParsePosition& pos, int32_t limit) const {
202 int32_t start = pos.getIndex();
203 int32_t i = start;
204 UnicodeString result;
205 while (i < limit) {
206 UChar c = text.charAt(i);
207 if ((i==start && !u_isIDStart(c)) || !u_isIDPart(c)) {
208 break;
209 }
210 ++i;
211 }
212 if (i == start) { // No valid name chars
213 return result; // Indicate failure with empty string
214 }
215 pos.setIndex(i);
216 text.extractBetween(start, i, result);
217 return result;
218 }
219
220 UBool ParseData::isMatcher(UChar32 ch) {
221 // Note that we cannot use data.lookup() because the
222 // set array has not been constructed yet.
223 int32_t i = ch - data->variablesBase;
224 if (i >= 0 && i < variablesVector->size()) {
225 UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i);
226 return f != NULL && f->toMatcher() != NULL;
227 }
228 return TRUE;
229 }
230
231 /**
232 * Return true if the given character is a replacer standin or a plain
233 * character (non standin).
234 */
235 UBool ParseData::isReplacer(UChar32 ch) {
236 // Note that we cannot use data.lookup() because the
237 // set array has not been constructed yet.
238 int i = ch - data->variablesBase;
239 if (i >= 0 && i < variablesVector->size()) {
240 UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i);
241 return f != NULL && f->toReplacer() != NULL;
242 }
243 return TRUE;
244 }
245
246 //----------------------------------------------------------------------
247 // BEGIN RuleHalf
248 //----------------------------------------------------------------------
249
250 /**
251 * A class representing one side of a rule. This class knows how to
252 * parse half of a rule. It is tightly coupled to the method
253 * RuleBasedTransliterator.Parser.parseRule().
254 */
255 class RuleHalf : public UMemory {
256
257 public:
258
259 UnicodeString text;
260
261 int32_t cursor; // position of cursor in text
262 int32_t ante; // position of ante context marker '{' in text
263 int32_t post; // position of post context marker '}' in text
264
265 // Record the offset to the cursor either to the left or to the
266 // right of the key. This is indicated by characters on the output
267 // side that allow the cursor to be positioned arbitrarily within
268 // the matching text. For example, abc{def} > | @@@ xyz; changes
269 // def to xyz and moves the cursor to before abc. Offset characters
270 // must be at the start or end, and they cannot move the cursor past
271 // the ante- or postcontext text. Placeholders are only valid in
272 // output text. The length of the ante and post context is
273 // determined at runtime, because of supplementals and quantifiers.
274 int32_t cursorOffset; // only nonzero on output side
275
276 // Position of first CURSOR_OFFSET on _right_. This will be -1
277 // for |@, -2 for |@@, etc., and 1 for @|, 2 for @@|, etc.
278 int32_t cursorOffsetPos;
279
280 UBool anchorStart;
281 UBool anchorEnd;
282
283 /**
284 * The segment number from 1..n of the next '(' we see
285 * during parsing; 1-based.
286 */
287 int32_t nextSegmentNumber;
288
289 TransliteratorParser& parser;
290
291 //--------------------------------------------------
292 // Methods
293
294 RuleHalf(TransliteratorParser& parser);
295 ~RuleHalf();
296
297 int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status);
298
299 int32_t parseSection(const UnicodeString& rule, int32_t pos, int32_t limit,
300 UnicodeString& buf,
301 const UnicodeString& illegal,
302 UBool isSegment,
303 UErrorCode& status);
304
305 /**
306 * Remove context.
307 */
308 void removeContext();
309
310 /**
311 * Return true if this half looks like valid output, that is, does not
312 * contain quantifiers or other special input-only elements.
313 */
314 UBool isValidOutput(TransliteratorParser& parser);
315
316 /**
317 * Return true if this half looks like valid input, that is, does not
318 * contain functions or other special output-only elements.
319 */
320 UBool isValidInput(TransliteratorParser& parser);
321
322 int syntaxError(UErrorCode code,
323 const UnicodeString& rule,
324 int32_t start,
325 UErrorCode& status) {
326 return parser.syntaxError(code, rule, start, status);
327 }
328
329 private:
330 // Disallowed methods; no impl.
331 RuleHalf(const RuleHalf&);
332 RuleHalf& operator=(const RuleHalf&);
333 };
334
335 RuleHalf::RuleHalf(TransliteratorParser& p) :
336 parser(p)
337 {
338 cursor = -1;
339 ante = -1;
340 post = -1;
341 cursorOffset = 0;
342 cursorOffsetPos = 0;
343 anchorStart = anchorEnd = FALSE;
344 nextSegmentNumber = 1;
345 }
346
347 RuleHalf::~RuleHalf() {
348 }
349
350 /**
351 * Parse one side of a rule, stopping at either the limit,
352 * the END_OF_RULE character, or an operator.
353 * @return the index after the terminating character, or
354 * if limit was reached, limit
355 */
356 int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
357 int32_t start = pos;
358 text.truncate(0);
359 pos = parseSection(rule, pos, limit, text, ILLEGAL_TOP, FALSE, status);
360
361 if (cursorOffset > 0 && cursor != cursorOffsetPos) {
362 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
363 }
364
365 return pos;
366 }
367
368 /**
369 * Parse a section of one side of a rule, stopping at either
370 * the limit, the END_OF_RULE character, an operator, or a
371 * segment close character. This method parses both a
372 * top-level rule half and a segment within such a rule half.
373 * It calls itself recursively to parse segments and nested
374 * segments.
375 * @param buf buffer into which to accumulate the rule pattern
376 * characters, either literal characters from the rule or
377 * standins for UnicodeMatcher objects including segments.
378 * @param illegal the set of special characters that is illegal during
379 * this parse.
380 * @param isSegment if true, then we've already seen a '(' and
381 * pos on entry points right after it. Accumulate everything
382 * up to the closing ')', put it in a segment matcher object,
383 * generate a standin for it, and add the standin to buf. As
384 * a side effect, update the segments vector with a reference
385 * to the segment matcher. This works recursively for nested
386 * segments. If isSegment is false, just accumulate
387 * characters into buf.
388 * @return the index after the terminating character, or
389 * if limit was reached, limit
390 */
391 int32_t RuleHalf::parseSection(const UnicodeString& rule, int32_t pos, int32_t limit,
392 UnicodeString& buf,
393 const UnicodeString& illegal,
394 UBool isSegment, UErrorCode& status) {
395 int32_t start = pos;
396 ParsePosition pp;
397 UnicodeString scratch;
398 UBool done = FALSE;
399 int32_t quoteStart = -1; // Most recent 'single quoted string'
400 int32_t quoteLimit = -1;
401 int32_t varStart = -1; // Most recent $variableReference
402 int32_t varLimit = -1;
403 int32_t bufStart = buf.length();
404
405 while (pos < limit && !done) {
406 // Since all syntax characters are in the BMP, fetching
407 // 16-bit code units suffices here.
408 UChar c = rule.charAt(pos++);
409 if (uprv_isRuleWhiteSpace(c)) {
410 // Ignore whitespace. Note that this is not Unicode
411 // spaces, but Java spaces -- a subset, representing
412 // whitespace likely to be seen in code.
413 continue;
414 }
415 if (u_strchr(HALF_ENDERS, c) != NULL) {
416 if (isSegment) {
417 // Unclosed segment
418 return syntaxError(U_UNCLOSED_SEGMENT, rule, start, status);
419 }
420 break;
421 }
422 if (anchorEnd) {
423 // Text after a presumed end anchor is a syntax err
424 return syntaxError(U_MALFORMED_VARIABLE_REFERENCE, rule, start, status);
425 }
426 if (UnicodeSet::resemblesPattern(rule, pos-1)) {
427 pp.setIndex(pos-1); // Backup to opening '['
428 buf.append(parser.parseSet(rule, pp, status));
429 if (U_FAILURE(status)) {
430 return syntaxError(U_MALFORMED_SET, rule, start, status);
431 }
432 pos = pp.getIndex();
433 continue;
434 }
435 // Handle escapes
436 if (c == ESCAPE) {
437 if (pos == limit) {
438 return syntaxError(U_TRAILING_BACKSLASH, rule, start, status);
439 }
440 UChar32 escaped = rule.unescapeAt(pos); // pos is already past '\\'
441 if (escaped == (UChar32) -1) {
442 return syntaxError(U_MALFORMED_UNICODE_ESCAPE, rule, start, status);
443 }
444 if (!parser.checkVariableRange(escaped)) {
445 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
446 }
447 buf.append(escaped);
448 continue;
449 }
450 // Handle quoted matter
451 if (c == QUOTE) {
452 int32_t iq = rule.indexOf(QUOTE, pos);
453 if (iq == pos) {
454 buf.append(c); // Parse [''] outside quotes as [']
455 ++pos;
456 } else {
457 /* This loop picks up a run of quoted text of the
458 * form 'aaaa' each time through. If this run
459 * hasn't really ended ('aaaa''bbbb') then it keeps
460 * looping, each time adding on a new run. When it
461 * reaches the final quote it breaks.
462 */
463 quoteStart = buf.length();
464 for (;;) {
465 if (iq < 0) {
466 return syntaxError(U_UNTERMINATED_QUOTE, rule, start, status);
467 }
468 scratch.truncate(0);
469 rule.extractBetween(pos, iq, scratch);
470 buf.append(scratch);
471 pos = iq+1;
472 if (pos < limit && rule.charAt(pos) == QUOTE) {
473 // Parse [''] inside quotes as [']
474 iq = rule.indexOf(QUOTE, pos+1);
475 // Continue looping
476 } else {
477 break;
478 }
479 }
480 quoteLimit = buf.length();
481
482 for (iq=quoteStart; iq<quoteLimit; ++iq) {
483 if (!parser.checkVariableRange(buf.charAt(iq))) {
484 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
485 }
486 }
487 }
488 continue;
489 }
490
491 if (!parser.checkVariableRange(c)) {
492 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
493 }
494
495 if (illegal.indexOf(c) >= 0) {
496 syntaxError(U_ILLEGAL_CHARACTER, rule, start, status);
497 }
498
499 switch (c) {
500
501 //------------------------------------------------------
502 // Elements allowed within and out of segments
503 //------------------------------------------------------
504 case ANCHOR_START:
505 if (buf.length() == 0 && !anchorStart) {
506 anchorStart = TRUE;
507 } else {
508 return syntaxError(U_MISPLACED_ANCHOR_START,
509 rule, start, status);
510 }
511 break;
512 case SEGMENT_OPEN:
513 {
514 // bufSegStart is the offset in buf to the first
515 // character of the segment we are parsing.
516 int32_t bufSegStart = buf.length();
517
518 // Record segment number now, since nextSegmentNumber
519 // will be incremented during the call to parseSection
520 // if there are nested segments.
521 int32_t segmentNumber = nextSegmentNumber++; // 1-based
522
523 // Parse the segment
524 pos = parseSection(rule, pos, limit, buf, ILLEGAL_SEG, TRUE, status);
525
526 // After parsing a segment, the relevant characters are
527 // in buf, starting at offset bufSegStart. Extract them
528 // into a string matcher, and replace them with a
529 // standin for that matcher.
530 StringMatcher* m =
531 new StringMatcher(buf, bufSegStart, buf.length(),
532 segmentNumber, *parser.curData);
533 if (m == NULL) {
534 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
535 }
536
537 // Record and associate object and segment number
538 parser.setSegmentObject(segmentNumber, m, status);
539 buf.truncate(bufSegStart);
540 buf.append(parser.getSegmentStandin(segmentNumber, status));
541 }
542 break;
543 case FUNCTION:
544 case ALT_FUNCTION:
545 {
546 int32_t iref = pos;
547 TransliteratorIDParser::SingleID* single =
548 TransliteratorIDParser::parseFilterID(rule, iref);
549 // The next character MUST be a segment open
550 if (single == NULL ||
551 !ICU_Utility::parseChar(rule, iref, SEGMENT_OPEN)) {
552 return syntaxError(U_INVALID_FUNCTION, rule, start, status);
553 }
554
555 Transliterator *t = single->createInstance();
556 delete single;
557 if (t == NULL) {
558 return syntaxError(U_INVALID_FUNCTION, rule, start, status);
559 }
560
561 // bufSegStart is the offset in buf to the first
562 // character of the segment we are parsing.
563 int32_t bufSegStart = buf.length();
564
565 // Parse the segment
566 pos = parseSection(rule, iref, limit, buf, ILLEGAL_FUNC, TRUE, status);
567
568 // After parsing a segment, the relevant characters are
569 // in buf, starting at offset bufSegStart.
570 UnicodeString output;
571 buf.extractBetween(bufSegStart, buf.length(), output);
572 FunctionReplacer *r =
573 new FunctionReplacer(t, new StringReplacer(output, parser.curData));
574 if (r == NULL) {
575 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
576 }
577
578 // Replace the buffer contents with a stand-in
579 buf.truncate(bufSegStart);
580 buf.append(parser.generateStandInFor(r, status));
581 }
582 break;
583 case SymbolTable::SYMBOL_REF:
584 // Handle variable references and segment references "$1" .. "$9"
585 {
586 // A variable reference must be followed immediately
587 // by a Unicode identifier start and zero or more
588 // Unicode identifier part characters, or by a digit
589 // 1..9 if it is a segment reference.
590 if (pos == limit) {
591 // A variable ref character at the end acts as
592 // an anchor to the context limit, as in perl.
593 anchorEnd = TRUE;
594 break;
595 }
596 // Parse "$1" "$2" .. "$9" .. (no upper limit)
597 c = rule.charAt(pos);
598 int32_t r = u_digit(c, 10);
599 if (r >= 1 && r <= 9) {
600 r = ICU_Utility::parseNumber(rule, pos, 10);
601 if (r < 0) {
602 return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE,
603 rule, start, status);
604 }
605 buf.append(parser.getSegmentStandin(r, status));
606 } else {
607 pp.setIndex(pos);
608 UnicodeString name = parser.parseData->
609 parseReference(rule, pp, limit);
610 if (name.length() == 0) {
611 // This means the '$' was not followed by a
612 // valid name. Try to interpret it as an
613 // end anchor then. If this also doesn't work
614 // (if we see a following character) then signal
615 // an error.
616 anchorEnd = TRUE;
617 break;
618 }
619 pos = pp.getIndex();
620 // If this is a variable definition statement,
621 // then the LHS variable will be undefined. In
622 // that case appendVariableDef() will append the
623 // special placeholder char variableLimit-1.
624 varStart = buf.length();
625 parser.appendVariableDef(name, buf, status);
626 varLimit = buf.length();
627 }
628 }
629 break;
630 case DOT:
631 buf.append(parser.getDotStandIn(status));
632 break;
633 case KLEENE_STAR:
634 case ONE_OR_MORE:
635 case ZERO_OR_ONE:
636 // Quantifiers. We handle single characters, quoted strings,
637 // variable references, and segments.
638 // a+ matches aaa
639 // 'foo'+ matches foofoofoo
640 // $v+ matches xyxyxy if $v == xy
641 // (seg)+ matches segsegseg
642 {
643 if (isSegment && buf.length() == bufStart) {
644 // The */+ immediately follows '('
645 return syntaxError(U_MISPLACED_QUANTIFIER, rule, start, status);
646 }
647
648 int32_t qstart, qlimit;
649 // The */+ follows an isolated character or quote
650 // or variable reference
651 if (buf.length() == quoteLimit) {
652 // The */+ follows a 'quoted string'
653 qstart = quoteStart;
654 qlimit = quoteLimit;
655 } else if (buf.length() == varLimit) {
656 // The */+ follows a $variableReference
657 qstart = varStart;
658 qlimit = varLimit;
659 } else {
660 // The */+ follows a single character, possibly
661 // a segment standin
662 qstart = buf.length() - 1;
663 qlimit = qstart + 1;
664 }
665
666 UnicodeFunctor *m =
667 new StringMatcher(buf, qstart, qlimit, 0, *parser.curData);
668 if (m == NULL) {
669 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
670 }
671 int32_t min = 0;
672 int32_t max = Quantifier::MAX;
673 switch (c) {
674 case ONE_OR_MORE:
675 min = 1;
676 break;
677 case ZERO_OR_ONE:
678 min = 0;
679 max = 1;
680 break;
681 // case KLEENE_STAR:
682 // do nothing -- min, max already set
683 }
684 m = new Quantifier(m, min, max);
685 if (m == NULL) {
686 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
687 }
688 buf.truncate(qstart);
689 buf.append(parser.generateStandInFor(m, status));
690 }
691 break;
692
693 //------------------------------------------------------
694 // Elements allowed ONLY WITHIN segments
695 //------------------------------------------------------
696 case SEGMENT_CLOSE:
697 // assert(isSegment);
698 // We're done parsing a segment.
699 done = TRUE;
700 break;
701
702 //------------------------------------------------------
703 // Elements allowed ONLY OUTSIDE segments
704 //------------------------------------------------------
705 case CONTEXT_ANTE:
706 if (ante >= 0) {
707 return syntaxError(U_MULTIPLE_ANTE_CONTEXTS, rule, start, status);
708 }
709 ante = buf.length();
710 break;
711 case CONTEXT_POST:
712 if (post >= 0) {
713 return syntaxError(U_MULTIPLE_POST_CONTEXTS, rule, start, status);
714 }
715 post = buf.length();
716 break;
717 case CURSOR_POS:
718 if (cursor >= 0) {
719 return syntaxError(U_MULTIPLE_CURSORS, rule, start, status);
720 }
721 cursor = buf.length();
722 break;
723 case CURSOR_OFFSET:
724 if (cursorOffset < 0) {
725 if (buf.length() > 0) {
726 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
727 }
728 --cursorOffset;
729 } else if (cursorOffset > 0) {
730 if (buf.length() != cursorOffsetPos || cursor >= 0) {
731 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
732 }
733 ++cursorOffset;
734 } else {
735 if (cursor == 0 && buf.length() == 0) {
736 cursorOffset = -1;
737 } else if (cursor < 0) {
738 cursorOffsetPos = buf.length();
739 cursorOffset = 1;
740 } else {
741 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
742 }
743 }
744 break;
745
746
747 //------------------------------------------------------
748 // Non-special characters
749 //------------------------------------------------------
750 default:
751 // Disallow unquoted characters other than [0-9A-Za-z]
752 // in the printable ASCII range. These characters are
753 // reserved for possible future use.
754 if (c >= 0x0021 && c <= 0x007E &&
755 !((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) ||
756 (c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) ||
757 (c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) {
758 return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status);
759 }
760 buf.append(c);
761 break;
762 }
763 }
764
765 return pos;
766 }
767
768 /**
769 * Remove context.
770 */
771 void RuleHalf::removeContext() {
772 //text = text.substring(ante < 0 ? 0 : ante,
773 // post < 0 ? text.length() : post);
774 if (post >= 0) {
775 text.remove(post);
776 }
777 if (ante >= 0) {
778 text.removeBetween(0, ante);
779 }
780 ante = post = -1;
781 anchorStart = anchorEnd = FALSE;
782 }
783
784 /**
785 * Return true if this half looks like valid output, that is, does not
786 * contain quantifiers or other special input-only elements.
787 */
788 UBool RuleHalf::isValidOutput(TransliteratorParser& transParser) {
789 for (int32_t i=0; i<text.length(); ) {
790 UChar32 c = text.char32At(i);
791 i += UTF_CHAR_LENGTH(c);
792 if (!transParser.parseData->isReplacer(c)) {
793 return FALSE;
794 }
795 }
796 return TRUE;
797 }
798
799 /**
800 * Return true if this half looks like valid input, that is, does not
801 * contain functions or other special output-only elements.
802 */
803 UBool RuleHalf::isValidInput(TransliteratorParser& transParser) {
804 for (int32_t i=0; i<text.length(); ) {
805 UChar32 c = text.char32At(i);
806 i += UTF_CHAR_LENGTH(c);
807 if (!transParser.parseData->isMatcher(c)) {
808 return FALSE;
809 }
810 }
811 return TRUE;
812 }
813
814 //----------------------------------------------------------------------
815 // PUBLIC API
816 //----------------------------------------------------------------------
817
818 /**
819 * Constructor.
820 */
821 TransliteratorParser::TransliteratorParser(UErrorCode &statusReturn) :
822 dataVector(statusReturn),
823 idBlockVector(statusReturn),
824 variablesVector(statusReturn),
825 segmentObjects(statusReturn)
826 {
827 idBlockVector.setDeleter(uhash_deleteUnicodeString);
828 curData = NULL;
829 compoundFilter = NULL;
830 parseData = NULL;
831 variableNames.setValueDeleter(uhash_deleteUnicodeString);
832 }
833
834 /**
835 * Destructor.
836 */
837 TransliteratorParser::~TransliteratorParser() {
838 while (!dataVector.isEmpty())
839 delete (TransliterationRuleData*)(dataVector.orphanElementAt(0));
840 delete compoundFilter;
841 delete parseData;
842 while (!variablesVector.isEmpty())
843 delete (UnicodeFunctor*)variablesVector.orphanElementAt(0);
844 }
845
846 void
847 TransliteratorParser::parse(const UnicodeString& rules,
848 UTransDirection transDirection,
849 UParseError& pe,
850 UErrorCode& ec) {
851 if (U_SUCCESS(ec)) {
852 parseRules(rules, transDirection, ec);
853 pe = parseError;
854 }
855 }
856
857 /**
858 * Return the compound filter parsed by parse(). Caller owns result.
859 */
860 UnicodeSet* TransliteratorParser::orphanCompoundFilter() {
861 UnicodeSet* f = compoundFilter;
862 compoundFilter = NULL;
863 return f;
864 }
865
866 //----------------------------------------------------------------------
867 // Private implementation
868 //----------------------------------------------------------------------
869
870 /**
871 * Parse the given string as a sequence of rules, separated by newline
872 * characters ('\n'), and cause this object to implement those rules. Any
873 * previous rules are discarded. Typically this method is called exactly
874 * once, during construction.
875 * @exception IllegalArgumentException if there is a syntax error in the
876 * rules
877 */
878 void TransliteratorParser::parseRules(const UnicodeString& rule,
879 UTransDirection theDirection,
880 UErrorCode& status)
881 {
882 // Clear error struct
883 uprv_memset(&parseError, 0, sizeof(parseError));
884 parseError.line = parseError.offset = -1;
885
886 UBool parsingIDs = TRUE;
887 int32_t ruleCount = 0;
888
889 while (!dataVector.isEmpty()) {
890 delete (TransliterationRuleData*)(dataVector.orphanElementAt(0));
891 }
892 if (U_FAILURE(status)) {
893 return;
894 }
895
896 idBlockVector.removeAllElements();
897 curData = NULL;
898 direction = theDirection;
899 ruleCount = 0;
900
901 delete compoundFilter;
902 compoundFilter = NULL;
903
904 while (!variablesVector.isEmpty()) {
905 delete (UnicodeFunctor*)variablesVector.orphanElementAt(0);
906 }
907 variableNames.removeAll();
908 parseData = new ParseData(0, &variablesVector, &variableNames);
909 if (parseData == NULL) {
910 status = U_MEMORY_ALLOCATION_ERROR;
911 return;
912 }
913
914 dotStandIn = (UChar) -1;
915
916 UnicodeString *tempstr = NULL; // used for memory allocation error checking
917 UnicodeString str; // scratch
918 UnicodeString idBlockResult;
919 int32_t pos = 0;
920 int32_t limit = rule.length();
921
922 // The compound filter offset is an index into idBlockResult.
923 // If it is 0, then the compound filter occurred at the start,
924 // and it is the offset to the _start_ of the compound filter
925 // pattern. Otherwise it is the offset to the _limit_ of the
926 // compound filter pattern within idBlockResult.
927 compoundFilter = NULL;
928 int32_t compoundFilterOffset = -1;
929
930 while (pos < limit && U_SUCCESS(status)) {
931 UChar c = rule.charAt(pos++);
932 if (uprv_isRuleWhiteSpace(c)) {
933 // Ignore leading whitespace.
934 continue;
935 }
936 // Skip lines starting with the comment character
937 if (c == RULE_COMMENT_CHAR) {
938 pos = rule.indexOf((UChar)0x000A /*\n*/, pos) + 1;
939 if (pos == 0) {
940 break; // No "\n" found; rest of rule is a commnet
941 }
942 continue; // Either fall out or restart with next line
943 }
944
945 // skip empty rules
946 if (c == END_OF_RULE)
947 continue;
948
949 // keep track of how many rules we've seen
950 ++ruleCount;
951
952 // We've found the start of a rule or ID. c is its first
953 // character, and pos points past c.
954 --pos;
955 // Look for an ID token. Must have at least ID_TOKEN_LEN + 1
956 // chars left.
957 if ((pos + ID_TOKEN_LEN + 1) <= limit &&
958 rule.compare(pos, ID_TOKEN_LEN, ID_TOKEN) == 0) {
959 pos += ID_TOKEN_LEN;
960 c = rule.charAt(pos);
961 while (uprv_isRuleWhiteSpace(c) && pos < limit) {
962 ++pos;
963 c = rule.charAt(pos);
964 }
965
966 int32_t p = pos;
967
968 if (!parsingIDs) {
969 if (curData != NULL) {
970 if (direction == UTRANS_FORWARD)
971 dataVector.addElement(curData, status);
972 else
973 dataVector.insertElementAt(curData, 0, status);
974 curData = NULL;
975 }
976 parsingIDs = TRUE;
977 }
978
979 TransliteratorIDParser::SingleID* id =
980 TransliteratorIDParser::parseSingleID(rule, p, direction, status);
981 if (p != pos && ICU_Utility::parseChar(rule, p, END_OF_RULE)) {
982 // Successful ::ID parse.
983
984 if (direction == UTRANS_FORWARD) {
985 idBlockResult.append(id->canonID).append(END_OF_RULE);
986 } else {
987 idBlockResult.insert(0, END_OF_RULE);
988 idBlockResult.insert(0, id->canonID);
989 }
990
991 } else {
992 // Couldn't parse an ID. Try to parse a global filter
993 int32_t withParens = -1;
994 UnicodeSet* f = TransliteratorIDParser::parseGlobalFilter(rule, p, direction, withParens, NULL);
995 if (f != NULL) {
996 if (ICU_Utility::parseChar(rule, p, END_OF_RULE)
997 && (direction == UTRANS_FORWARD) == (withParens == 0))
998 {
999 if (compoundFilter != NULL) {
1000 // Multiple compound filters
1001 syntaxError(U_MULTIPLE_COMPOUND_FILTERS, rule, pos, status);
1002 delete f;
1003 } else {
1004 compoundFilter = f;
1005 compoundFilterOffset = ruleCount;
1006 }
1007 } else {
1008 delete f;
1009 }
1010 } else {
1011 // Invalid ::id
1012 // Can be parsed as neither an ID nor a global filter
1013 syntaxError(U_INVALID_ID, rule, pos, status);
1014 }
1015 }
1016 delete id;
1017 pos = p;
1018 } else {
1019 if (parsingIDs) {
1020 tempstr = new UnicodeString(idBlockResult);
1021 // NULL pointer check
1022 if (tempstr == NULL) {
1023 status = U_MEMORY_ALLOCATION_ERROR;
1024 return;
1025 }
1026 if (direction == UTRANS_FORWARD)
1027 idBlockVector.addElement(tempstr, status);
1028 else
1029 idBlockVector.insertElementAt(tempstr, 0, status);
1030 idBlockResult.remove();
1031 parsingIDs = FALSE;
1032 curData = new TransliterationRuleData(status);
1033 // NULL pointer check
1034 if (curData == NULL) {
1035 status = U_MEMORY_ALLOCATION_ERROR;
1036 return;
1037 }
1038 parseData->data = curData;
1039
1040 // By default, rules use part of the private use area
1041 // E000..F8FF for variables and other stand-ins. Currently
1042 // the range F000..F8FF is typically sufficient. The 'use
1043 // variable range' pragma allows rule sets to modify this.
1044 setVariableRange(0xF000, 0xF8FF, status);
1045 }
1046
1047 if (resemblesPragma(rule, pos, limit)) {
1048 int32_t ppp = parsePragma(rule, pos, limit, status);
1049 if (ppp < 0) {
1050 syntaxError(U_MALFORMED_PRAGMA, rule, pos, status);
1051 }
1052 pos = ppp;
1053 // Parse a rule
1054 } else {
1055 pos = parseRule(rule, pos, limit, status);
1056 }
1057 }
1058 }
1059
1060 if (parsingIDs && idBlockResult.length() > 0) {
1061 tempstr = new UnicodeString(idBlockResult);
1062 // NULL pointer check
1063 if (tempstr == NULL) {
1064 status = U_MEMORY_ALLOCATION_ERROR;
1065 return;
1066 }
1067 if (direction == UTRANS_FORWARD)
1068 idBlockVector.addElement(tempstr, status);
1069 else
1070 idBlockVector.insertElementAt(tempstr, 0, status);
1071 }
1072 else if (!parsingIDs && curData != NULL) {
1073 if (direction == UTRANS_FORWARD)
1074 dataVector.addElement(curData, status);
1075 else
1076 dataVector.insertElementAt(curData, 0, status);
1077 }
1078
1079 if (U_SUCCESS(status)) {
1080 // Convert the set vector to an array
1081 int32_t i, dataVectorSize = dataVector.size();
1082 for (i = 0; i < dataVectorSize; i++) {
1083 TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i);
1084 data->variablesLength = variablesVector.size();
1085 if (data->variablesLength == 0) {
1086 data->variables = 0;
1087 } else {
1088 data->variables = (UnicodeFunctor**)uprv_malloc(data->variablesLength * sizeof(UnicodeFunctor*));
1089 // NULL pointer check
1090 if (data->variables == NULL) {
1091 status = U_MEMORY_ALLOCATION_ERROR;
1092 return;
1093 }
1094 data->variablesAreOwned = (i == 0);
1095 }
1096
1097 for (int32_t j = 0; j < data->variablesLength; j++) {
1098 data->variables[j] =
1099 ((UnicodeSet*)variablesVector.elementAt(j));
1100 }
1101
1102 data->variableNames.removeAll();
1103 int32_t pos = -1;
1104 const UHashElement* he = variableNames.nextElement(pos);
1105 while (he != NULL) {
1106 UnicodeString* tempus = (UnicodeString*)(((UnicodeString*)(he->value.pointer))->clone());
1107 if (tempus == NULL) {
1108 status = U_MEMORY_ALLOCATION_ERROR;
1109 return;
1110 }
1111 data->variableNames.put(*((UnicodeString*)(he->key.pointer)),
1112 tempus, status);
1113 he = variableNames.nextElement(pos);
1114 }
1115 }
1116 variablesVector.removeAllElements(); // keeps them from getting deleted when we succeed
1117
1118 // Index the rules
1119 if (compoundFilter != NULL) {
1120 if ((direction == UTRANS_FORWARD && compoundFilterOffset != 1) ||
1121 (direction == UTRANS_REVERSE && compoundFilterOffset != ruleCount)) {
1122 status = U_MISPLACED_COMPOUND_FILTER;
1123 }
1124 }
1125
1126 for (i = 0; i < dataVectorSize; i++) {
1127 TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i);
1128 data->ruleSet.freeze(parseError, status);
1129 }
1130 if (idBlockVector.size() == 1 && ((UnicodeString*)idBlockVector.elementAt(0))->isEmpty()) {
1131 idBlockVector.removeElementAt(0);
1132 }
1133 }
1134 }
1135
1136 /**
1137 * Set the variable range to [start, end] (inclusive).
1138 */
1139 void TransliteratorParser::setVariableRange(int32_t start, int32_t end, UErrorCode& status) {
1140 if (start > end || start < 0 || end > 0xFFFF) {
1141 status = U_MALFORMED_PRAGMA;
1142 return;
1143 }
1144
1145 curData->variablesBase = (UChar) start;
1146 if (dataVector.size() == 0) {
1147 variableNext = (UChar) start;
1148 variableLimit = (UChar) (end + 1);
1149 }
1150 }
1151
1152 /**
1153 * Assert that the given character is NOT within the variable range.
1154 * If it is, return FALSE. This is neccesary to ensure that the
1155 * variable range does not overlap characters used in a rule.
1156 */
1157 UBool TransliteratorParser::checkVariableRange(UChar32 ch) const {
1158 return !(ch >= curData->variablesBase && ch < variableLimit);
1159 }
1160
1161 /**
1162 * Set the maximum backup to 'backup', in response to a pragma
1163 * statement.
1164 */
1165 void TransliteratorParser::pragmaMaximumBackup(int32_t /*backup*/) {
1166 //TODO Finish
1167 }
1168
1169 /**
1170 * Begin normalizing all rules using the given mode, in response
1171 * to a pragma statement.
1172 */
1173 void TransliteratorParser::pragmaNormalizeRules(UNormalizationMode /*mode*/) {
1174 //TODO Finish
1175 }
1176
1177 static const UChar PRAGMA_USE[] = {0x75,0x73,0x65,0x20,0}; // "use "
1178
1179 static const UChar PRAGMA_VARIABLE_RANGE[] = {0x7E,0x76,0x61,0x72,0x69,0x61,0x62,0x6C,0x65,0x20,0x72,0x61,0x6E,0x67,0x65,0x20,0x23,0x20,0x23,0x7E,0x3B,0}; // "~variable range # #~;"
1180
1181 static const UChar PRAGMA_MAXIMUM_BACKUP[] = {0x7E,0x6D,0x61,0x78,0x69,0x6D,0x75,0x6D,0x20,0x62,0x61,0x63,0x6B,0x75,0x70,0x20,0x23,0x7E,0x3B,0}; // "~maximum backup #~;"
1182
1183 static const UChar PRAGMA_NFD_RULES[] = {0x7E,0x6E,0x66,0x64,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfd rules~;"
1184
1185 static const UChar PRAGMA_NFC_RULES[] = {0x7E,0x6E,0x66,0x63,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfc rules~;"
1186
1187 /**
1188 * Return true if the given rule looks like a pragma.
1189 * @param pos offset to the first non-whitespace character
1190 * of the rule.
1191 * @param limit pointer past the last character of the rule.
1192 */
1193 UBool TransliteratorParser::resemblesPragma(const UnicodeString& rule, int32_t pos, int32_t limit) {
1194 // Must start with /use\s/i
1195 return ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_USE, NULL) >= 0;
1196 }
1197
1198 /**
1199 * Parse a pragma. This method assumes resemblesPragma() has
1200 * already returned true.
1201 * @param pos offset to the first non-whitespace character
1202 * of the rule.
1203 * @param limit pointer past the last character of the rule.
1204 * @return the position index after the final ';' of the pragma,
1205 * or -1 on failure.
1206 */
1207 int32_t TransliteratorParser::parsePragma(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
1208 int32_t array[2];
1209
1210 // resemblesPragma() has already returned true, so we
1211 // know that pos points to /use\s/i; we can skip 4 characters
1212 // immediately
1213 pos += 4;
1214
1215 // Here are the pragmas we recognize:
1216 // use variable range 0xE000 0xEFFF;
1217 // use maximum backup 16;
1218 // use nfd rules;
1219 // use nfc rules;
1220 int p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_VARIABLE_RANGE, array);
1221 if (p >= 0) {
1222 setVariableRange(array[0], array[1], status);
1223 return p;
1224 }
1225
1226 p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_MAXIMUM_BACKUP, array);
1227 if (p >= 0) {
1228 pragmaMaximumBackup(array[0]);
1229 return p;
1230 }
1231
1232 p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_NFD_RULES, NULL);
1233 if (p >= 0) {
1234 pragmaNormalizeRules(UNORM_NFD);
1235 return p;
1236 }
1237
1238 p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_NFC_RULES, NULL);
1239 if (p >= 0) {
1240 pragmaNormalizeRules(UNORM_NFC);
1241 return p;
1242 }
1243
1244 // Syntax error: unable to parse pragma
1245 return -1;
1246 }
1247
1248 /**
1249 * MAIN PARSER. Parse the next rule in the given rule string, starting
1250 * at pos. Return the index after the last character parsed. Do not
1251 * parse characters at or after limit.
1252 *
1253 * Important: The character at pos must be a non-whitespace character
1254 * that is not the comment character.
1255 *
1256 * This method handles quoting, escaping, and whitespace removal. It
1257 * parses the end-of-rule character. It recognizes context and cursor
1258 * indicators. Once it does a lexical breakdown of the rule at pos, it
1259 * creates a rule object and adds it to our rule list.
1260 */
1261 int32_t TransliteratorParser::parseRule(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
1262 // Locate the left side, operator, and right side
1263 int32_t start = pos;
1264 UChar op = 0;
1265 int32_t i;
1266
1267 // Set up segments data
1268 segmentStandins.truncate(0);
1269 segmentObjects.removeAllElements();
1270
1271 // Use pointers to automatics to make swapping possible.
1272 RuleHalf _left(*this), _right(*this);
1273 RuleHalf* left = &_left;
1274 RuleHalf* right = &_right;
1275
1276 undefinedVariableName.remove();
1277 pos = left->parse(rule, pos, limit, status);
1278 if (U_FAILURE(status)) {
1279 return start;
1280 }
1281
1282 if (pos == limit || u_strchr(gOPERATORS, (op = rule.charAt(--pos))) == NULL) {
1283 return syntaxError(U_MISSING_OPERATOR, rule, start, status);
1284 }
1285 ++pos;
1286
1287 // Found an operator char. Check for forward-reverse operator.
1288 if (op == REVERSE_RULE_OP &&
1289 (pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) {
1290 ++pos;
1291 op = FWDREV_RULE_OP;
1292 }
1293
1294 // Translate alternate op characters.
1295 switch (op) {
1296 case ALT_FORWARD_RULE_OP:
1297 op = FORWARD_RULE_OP;
1298 break;
1299 case ALT_REVERSE_RULE_OP:
1300 op = REVERSE_RULE_OP;
1301 break;
1302 case ALT_FWDREV_RULE_OP:
1303 op = FWDREV_RULE_OP;
1304 break;
1305 }
1306
1307 pos = right->parse(rule, pos, limit, status);
1308 if (U_FAILURE(status)) {
1309 return start;
1310 }
1311
1312 if (pos < limit) {
1313 if (rule.charAt(--pos) == END_OF_RULE) {
1314 ++pos;
1315 } else {
1316 // RuleHalf parser must have terminated at an operator
1317 return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status);
1318 }
1319 }
1320
1321 if (op == VARIABLE_DEF_OP) {
1322 // LHS is the name. RHS is a single character, either a literal
1323 // or a set (already parsed). If RHS is longer than one
1324 // character, it is either a multi-character string, or multiple
1325 // sets, or a mixture of chars and sets -- syntax error.
1326
1327 // We expect to see a single undefined variable (the one being
1328 // defined).
1329 if (undefinedVariableName.length() == 0) {
1330 // "Missing '$' or duplicate definition"
1331 return syntaxError(U_BAD_VARIABLE_DEFINITION, rule, start, status);
1332 }
1333 if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) {
1334 // "Malformed LHS"
1335 return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status);
1336 }
1337 if (left->anchorStart || left->anchorEnd ||
1338 right->anchorStart || right->anchorEnd) {
1339 return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status);
1340 }
1341 // We allow anything on the right, including an empty string.
1342 UnicodeString* value = new UnicodeString(right->text);
1343 // NULL pointer check
1344 if (value == NULL) {
1345 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
1346 }
1347 variableNames.put(undefinedVariableName, value, status);
1348 ++variableLimit;
1349 return pos;
1350 }
1351
1352 // If this is not a variable definition rule, we shouldn't have
1353 // any undefined variable names.
1354 if (undefinedVariableName.length() != 0) {
1355 return syntaxError(// "Undefined variable $" + undefinedVariableName,
1356 U_UNDEFINED_VARIABLE,
1357 rule, start, status);
1358 }
1359
1360 // Verify segments
1361 if (segmentStandins.length() > segmentObjects.size()) {
1362 syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, rule, start, status);
1363 }
1364 for (i=0; i<segmentStandins.length(); ++i) {
1365 if (segmentStandins.charAt(i) == 0) {
1366 syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen
1367 }
1368 }
1369 for (i=0; i<segmentObjects.size(); ++i) {
1370 if (segmentObjects.elementAt(i) == NULL) {
1371 syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen
1372 }
1373 }
1374
1375 // If the direction we want doesn't match the rule
1376 // direction, do nothing.
1377 if (op != FWDREV_RULE_OP &&
1378 ((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) {
1379 return pos;
1380 }
1381
1382 // Transform the rule into a forward rule by swapping the
1383 // sides if necessary.
1384 if (direction == UTRANS_REVERSE) {
1385 left = &_right;
1386 right = &_left;
1387 }
1388
1389 // Remove non-applicable elements in forward-reverse
1390 // rules. Bidirectional rules ignore elements that do not
1391 // apply.
1392 if (op == FWDREV_RULE_OP) {
1393 right->removeContext();
1394 left->cursor = -1;
1395 left->cursorOffset = 0;
1396 }
1397
1398 // Normalize context
1399 if (left->ante < 0) {
1400 left->ante = 0;
1401 }
1402 if (left->post < 0) {
1403 left->post = left->text.length();
1404 }
1405
1406 // Context is only allowed on the input side. Cursors are only
1407 // allowed on the output side. Segment delimiters can only appear
1408 // on the left, and references on the right. Cursor offset
1409 // cannot appear without an explicit cursor. Cursor offset
1410 // cannot place the cursor outside the limits of the context.
1411 // Anchors are only allowed on the input side.
1412 if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 ||
1413 (right->cursorOffset != 0 && right->cursor < 0) ||
1414 // - The following two checks were used to ensure that the
1415 // - the cursor offset stayed within the ante- or postcontext.
1416 // - However, with the addition of quantifiers, we have to
1417 // - allow arbitrary cursor offsets and do runtime checking.
1418 //(right->cursorOffset > (left->text.length() - left->post)) ||
1419 //(-right->cursorOffset > left->ante) ||
1420 right->anchorStart || right->anchorEnd ||
1421 !left->isValidInput(*this) || !right->isValidOutput(*this) ||
1422 left->ante > left->post) {
1423
1424 return syntaxError(U_MALFORMED_RULE, rule, start, status);
1425 }
1426
1427 // Flatten segment objects vector to an array
1428 UnicodeFunctor** segmentsArray = NULL;
1429 if (segmentObjects.size() > 0) {
1430 segmentsArray = (UnicodeFunctor **)uprv_malloc(segmentObjects.size() * sizeof(UnicodeFunctor *));
1431 // Null pointer check
1432 if (segmentsArray == NULL) {
1433 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
1434 }
1435 segmentObjects.toArray((void**) segmentsArray);
1436 }
1437 TransliterationRule* temptr = new TransliterationRule(
1438 left->text, left->ante, left->post,
1439 right->text, right->cursor, right->cursorOffset,
1440 segmentsArray,
1441 segmentObjects.size(),
1442 left->anchorStart, left->anchorEnd,
1443 curData,
1444 status);
1445 //Null pointer check
1446 if (temptr == NULL) {
1447 uprv_free(segmentsArray);
1448 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
1449 }
1450
1451 curData->ruleSet.addRule(temptr, status);
1452
1453 return pos;
1454 }
1455
1456 /**
1457 * Called by main parser upon syntax error. Search the rule string
1458 * for the probable end of the rule. Of course, if the error is that
1459 * the end of rule marker is missing, then the rule end will not be found.
1460 * In any case the rule start will be correctly reported.
1461 * @param msg error description
1462 * @param rule pattern string
1463 * @param start position of first character of current rule
1464 */
1465 int32_t TransliteratorParser::syntaxError(UErrorCode parseErrorCode,
1466 const UnicodeString& rule,
1467 int32_t pos,
1468 UErrorCode& status)
1469 {
1470 parseError.offset = pos;
1471 parseError.line = 0 ; /* we are not using line numbers */
1472
1473 // for pre-context
1474 const int32_t LEN = U_PARSE_CONTEXT_LEN - 1;
1475 int32_t start = uprv_max(pos - LEN, 0);
1476 int32_t stop = pos;
1477
1478 rule.extract(start,stop-start,parseError.preContext);
1479 //null terminate the buffer
1480 parseError.preContext[stop-start] = 0;
1481
1482 //for post-context
1483 start = pos;
1484 stop = uprv_min(pos + LEN, rule.length());
1485
1486 rule.extract(start,stop-start,parseError.postContext);
1487 //null terminate the buffer
1488 parseError.postContext[stop-start]= 0;
1489
1490 status = (UErrorCode)parseErrorCode;
1491 return pos;
1492
1493 }
1494
1495 /**
1496 * Parse a UnicodeSet out, store it, and return the stand-in character
1497 * used to represent it.
1498 */
1499 UChar TransliteratorParser::parseSet(const UnicodeString& rule,
1500 ParsePosition& pos,
1501 UErrorCode& status) {
1502 UnicodeSet* set = new UnicodeSet(rule, pos, USET_IGNORE_SPACE, parseData, status);
1503 // Null pointer check
1504 if (set == NULL) {
1505 status = U_MEMORY_ALLOCATION_ERROR;
1506 return (UChar)0x0000; // Return empty character with error.
1507 }
1508 set->compact();
1509 return generateStandInFor(set, status);
1510 }
1511
1512 /**
1513 * Generate and return a stand-in for a new UnicodeFunctor. Store
1514 * the matcher (adopt it).
1515 */
1516 UChar TransliteratorParser::generateStandInFor(UnicodeFunctor* adopted, UErrorCode& status) {
1517 // assert(obj != null);
1518
1519 // Look up previous stand-in, if any. This is a short list
1520 // (typical n is 0, 1, or 2); linear search is optimal.
1521 for (int32_t i=0; i<variablesVector.size(); ++i) {
1522 if (variablesVector.elementAt(i) == adopted) { // [sic] pointer comparison
1523 return (UChar) (curData->variablesBase + i);
1524 }
1525 }
1526
1527 if (variableNext >= variableLimit) {
1528 delete adopted;
1529 status = U_VARIABLE_RANGE_EXHAUSTED;
1530 return 0;
1531 }
1532 variablesVector.addElement(adopted, status);
1533 return variableNext++;
1534 }
1535
1536 /**
1537 * Return the standin for segment seg (1-based).
1538 */
1539 UChar TransliteratorParser::getSegmentStandin(int32_t seg, UErrorCode& status) {
1540 // Special character used to indicate an empty spot
1541 UChar empty = curData->variablesBase - 1;
1542 while (segmentStandins.length() < seg) {
1543 segmentStandins.append(empty);
1544 }
1545 UChar c = segmentStandins.charAt(seg-1);
1546 if (c == empty) {
1547 if (variableNext >= variableLimit) {
1548 status = U_VARIABLE_RANGE_EXHAUSTED;
1549 return 0;
1550 }
1551 c = variableNext++;
1552 // Set a placeholder in the master variables vector that will be
1553 // filled in later by setSegmentObject(). We know that we will get
1554 // called first because setSegmentObject() will call us.
1555 variablesVector.addElement((void*) NULL, status);
1556 segmentStandins.setCharAt(seg-1, c);
1557 }
1558 return c;
1559 }
1560
1561 /**
1562 * Set the object for segment seg (1-based).
1563 */
1564 void TransliteratorParser::setSegmentObject(int32_t seg, StringMatcher* adopted, UErrorCode& status) {
1565 // Since we call parseSection() recursively, nested
1566 // segments will result in segment i+1 getting parsed
1567 // and stored before segment i; be careful with the
1568 // vector handling here.
1569 if (segmentObjects.size() < seg) {
1570 segmentObjects.setSize(seg, status);
1571 }
1572 int32_t index = getSegmentStandin(seg, status) - curData->variablesBase;
1573 if (segmentObjects.elementAt(seg-1) != NULL ||
1574 variablesVector.elementAt(index) != NULL) {
1575 // should never happen
1576 status = U_INTERNAL_TRANSLITERATOR_ERROR;
1577 return;
1578 }
1579 segmentObjects.setElementAt(adopted, seg-1);
1580 variablesVector.setElementAt(adopted, index);
1581 }
1582
1583 /**
1584 * Return the stand-in for the dot set. It is allocated the first
1585 * time and reused thereafter.
1586 */
1587 UChar TransliteratorParser::getDotStandIn(UErrorCode& status) {
1588 if (dotStandIn == (UChar) -1) {
1589 UnicodeSet* tempus = new UnicodeSet(DOT_SET, status);
1590 // Null pointer check.
1591 if (tempus == NULL) {
1592 status = U_MEMORY_ALLOCATION_ERROR;
1593 return (UChar)0x0000;
1594 }
1595 dotStandIn = generateStandInFor(tempus, status);
1596 }
1597 return dotStandIn;
1598 }
1599
1600 /**
1601 * Append the value of the given variable name to the given
1602 * UnicodeString.
1603 */
1604 void TransliteratorParser::appendVariableDef(const UnicodeString& name,
1605 UnicodeString& buf,
1606 UErrorCode& status) {
1607 const UnicodeString* s = (const UnicodeString*) variableNames.get(name);
1608 if (s == NULL) {
1609 // We allow one undefined variable so that variable definition
1610 // statements work. For the first undefined variable we return
1611 // the special placeholder variableLimit-1, and save the variable
1612 // name.
1613 if (undefinedVariableName.length() == 0) {
1614 undefinedVariableName = name;
1615 if (variableNext >= variableLimit) {
1616 // throw new RuntimeException("Private use variables exhausted");
1617 status = U_ILLEGAL_ARGUMENT_ERROR;
1618 return;
1619 }
1620 buf.append((UChar) --variableLimit);
1621 } else {
1622 //throw new IllegalArgumentException("Undefined variable $"
1623 // + name);
1624 status = U_ILLEGAL_ARGUMENT_ERROR;
1625 return;
1626 }
1627 } else {
1628 buf.append(*s);
1629 }
1630 }
1631
1632 /**
1633 * Glue method to get around access restrictions in C++.
1634 */
1635 /*Transliterator* TransliteratorParser::createBasicInstance(const UnicodeString& id, const UnicodeString* canonID) {
1636 return Transliterator::createBasicInstance(id, canonID);
1637 }*/
1638
1639 U_NAMESPACE_END
1640
1641 U_CAPI int32_t
1642 utrans_stripRules(const UChar *source, int32_t sourceLen, UChar *target, UErrorCode *status) {
1643 U_NAMESPACE_USE
1644
1645 //const UChar *sourceStart = source;
1646 const UChar *targetStart = target;
1647 const UChar *sourceLimit = source+sourceLen;
1648 UChar *targetLimit = target+sourceLen;
1649 UChar32 c = 0;
1650 UBool quoted = FALSE;
1651 int32_t index;
1652
1653 uprv_memset(target, 0, sourceLen*U_SIZEOF_UCHAR);
1654
1655 /* read the rules into the buffer */
1656 while (source < sourceLimit)
1657 {
1658 index=0;
1659 U16_NEXT_UNSAFE(source, index, c);
1660 source+=index;
1661 if(c == QUOTE) {
1662 quoted = (UBool)!quoted;
1663 }
1664 else if (!quoted) {
1665 if (c == RULE_COMMENT_CHAR) {
1666 /* skip comments and all preceding spaces */
1667 while (targetStart < target && *(target - 1) == 0x0020) {
1668 target--;
1669 }
1670 do {
1671 c = *(source++);
1672 }
1673 while (c != CR && c != LF);
1674 }
1675 else if (c == ESCAPE) {
1676 UChar32 c2 = *source;
1677 if (c2 == CR || c2 == LF) {
1678 /* A backslash at the end of a line. */
1679 /* Since we're stripping lines, ignore the backslash. */
1680 source++;
1681 continue;
1682 }
1683 if (c2 == 0x0075 && source+5 < sourceLimit) { /* \u seen. \U isn't unescaped. */
1684 int32_t escapeOffset = 0;
1685 UnicodeString escapedStr(source, 5);
1686 c2 = escapedStr.unescapeAt(escapeOffset);
1687
1688 if (c2 == (UChar32)0xFFFFFFFF || escapeOffset == 0)
1689 {
1690 *status = U_PARSE_ERROR;
1691 return 0;
1692 }
1693 if (!uprv_isRuleWhiteSpace(c2) && !u_iscntrl(c2) && !u_ispunct(c2)) {
1694 /* It was escaped for a reason. Write what it was suppose to be. */
1695 source+=5;
1696 c = c2;
1697 }
1698 }
1699 else if (c2 == QUOTE) {
1700 /* \' seen. Make sure we don't do anything when we see it again. */
1701 quoted = (UBool)!quoted;
1702 }
1703 }
1704 }
1705 if (c == CR || c == LF)
1706 {
1707 /* ignore spaces carriage returns, and all leading spaces on the next line.
1708 * and line feed unless in the form \uXXXX
1709 */
1710 quoted = FALSE;
1711 while (source < sourceLimit) {
1712 c = *(source);
1713 if (c != CR && c != LF && c != 0x0020) {
1714 break;
1715 }
1716 source++;
1717 }
1718 continue;
1719 }
1720
1721 /* Append UChar * after dissembling if c > 0xffff*/
1722 index=0;
1723 U16_APPEND_UNSAFE(target, index, c);
1724 target+=index;
1725 }
1726 if (target < targetLimit) {
1727 *target = 0;
1728 }
1729 return (int32_t)(target-targetStart);
1730 }
1731
1732 #endif /* #if !UCONFIG_NO_TRANSLITERATION */