]> git.saurik.com Git - apple/icu.git/blob - icuSources/test/intltest/utxttest.cpp
ICU-551.51.4.tar.gz
[apple/icu.git] / icuSources / test / intltest / utxttest.cpp
1 /********************************************************************
2 * COPYRIGHT:
3 * Copyright (c) 2005-2014, International Business Machines Corporation and
4 * others. All Rights Reserved.
5 ********************************************************************/
6 /************************************************************************
7 * Tests for the UText and UTextIterator text abstraction classses
8 *
9 ************************************************************************/
10
11 #include <string.h>
12 #include <stdio.h>
13 #include <stdlib.h>
14 #include "unicode/utypes.h"
15 #include "unicode/utext.h"
16 #include "unicode/utf8.h"
17 #include "unicode/ustring.h"
18 #include "unicode/uchriter.h"
19 #include "utxttest.h"
20
21 static UBool gFailed = FALSE;
22 static int gTestNum = 0;
23
24 // Forward decl
25 UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status);
26
27 #define TEST_ASSERT(x) \
28 { if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\
29 gFailed = TRUE;\
30 }}
31
32
33 #define TEST_SUCCESS(status) \
34 { if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \
35 gTestNum, __FILE__, __LINE__, u_errorName(status)); \
36 gFailed = TRUE;\
37 }}
38
39 UTextTest::UTextTest() {
40 }
41
42 UTextTest::~UTextTest() {
43 }
44
45
46 void
47 UTextTest::runIndexedTest(int32_t index, UBool exec,
48 const char* &name, char* /*par*/) {
49 switch (index) {
50 case 0: name = "TextTest";
51 if (exec) TextTest(); break;
52 case 1: name = "ErrorTest";
53 if (exec) ErrorTest(); break;
54 case 2: name = "FreezeTest";
55 if (exec) FreezeTest(); break;
56 case 3: name = "Ticket5560";
57 if (exec) Ticket5560(); break;
58 case 4: name = "Ticket6847";
59 if (exec) Ticket6847(); break;
60 case 5: name = "Ticket10562";
61 if (exec) Ticket10562(); break;
62 case 6: name = "Ticket10983";
63 if (exec) Ticket10983(); break;
64 default: name = ""; break;
65 }
66 }
67
68 //
69 // Quick and dirty random number generator.
70 // (don't use library so that results are portable.
71 static uint32_t m_seed = 1;
72 static uint32_t m_rand()
73 {
74 m_seed = m_seed * 1103515245 + 12345;
75 return (uint32_t)(m_seed/65536) % 32768;
76 }
77
78
79 //
80 // TextTest()
81 //
82 // Top Level function for UText testing.
83 // Specifies the strings to be tested, with the acutal testing itself
84 // being carried out in another function, TestString().
85 //
86 void UTextTest::TextTest() {
87 int32_t i, j;
88
89 TestString("abcd\\U00010001xyz");
90 TestString("");
91
92 // Supplementary chars at start or end
93 TestString("\\U00010001");
94 TestString("abc\\U00010001");
95 TestString("\\U00010001abc");
96
97 // Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries
98 UnicodeString s;
99 for (i=1; i<60; i++) {
100 s.truncate(0);
101 for (j=0; j<i; j++) {
102 if (j+0x30 == 0x5c) {
103 // backslash. Needs to be escaped
104 s.append((UChar)0x5c);
105 }
106 s.append(UChar(j+0x30));
107 }
108 TestString(s);
109 }
110
111 // Test strings with odd-aligned supplementary chars,
112 // looking for glitches at buffer boundaries
113 for (i=1; i<60; i++) {
114 s.truncate(0);
115 s.append((UChar)0x41);
116 for (j=0; j<i; j++) {
117 s.append(UChar32(j+0x11000));
118 }
119 TestString(s);
120 }
121
122 // String of chars of randomly varying size in utf-8 representation.
123 // Exercise the mapping, and the varying sized buffer.
124 //
125 s.truncate(0);
126 UChar32 c1 = 0;
127 UChar32 c2 = 0x100;
128 UChar32 c3 = 0xa000;
129 UChar32 c4 = 0x11000;
130 for (i=0; i<1000; i++) {
131 int len8 = m_rand()%4 + 1;
132 switch (len8) {
133 case 1:
134 c1 = (c1+1)%0x80;
135 // don't put 0 into string (0 terminated strings for some tests)
136 // don't put '\', will cause unescape() to fail.
137 if (c1==0x5c || c1==0) {
138 c1++;
139 }
140 s.append(c1);
141 break;
142 case 2:
143 s.append(c2++);
144 break;
145 case 3:
146 s.append(c3++);
147 break;
148 case 4:
149 s.append(c4++);
150 break;
151 }
152 }
153 TestString(s);
154 }
155
156
157 //
158 // TestString() Run a suite of UText tests on a string.
159 // The test string is unescaped before use.
160 //
161 void UTextTest::TestString(const UnicodeString &s) {
162 int32_t i;
163 int32_t j;
164 UChar32 c;
165 int32_t cpCount = 0;
166 UErrorCode status = U_ZERO_ERROR;
167 UText *ut = NULL;
168 int32_t saLen;
169
170 UnicodeString sa = s.unescape();
171 saLen = sa.length();
172
173 //
174 // Build up a mapping between code points and UTF-16 code unit indexes.
175 //
176 m *cpMap = new m[sa.length() + 1];
177 j = 0;
178 for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) {
179 c = sa.char32At(i);
180 cpMap[j].nativeIdx = i;
181 cpMap[j].cp = c;
182 j++;
183 cpCount++;
184 }
185 cpMap[j].nativeIdx = i; // position following the last char in utf-16 string.
186
187
188 // UChar * test, null terminated
189 status = U_ZERO_ERROR;
190 UChar *buf = new UChar[saLen+1];
191 sa.extract(buf, saLen+1, status);
192 TEST_SUCCESS(status);
193 ut = utext_openUChars(NULL, buf, -1, &status);
194 TEST_SUCCESS(status);
195 TestAccess(sa, ut, cpCount, cpMap);
196 utext_close(ut);
197 delete [] buf;
198
199 // UChar * test, with length
200 status = U_ZERO_ERROR;
201 buf = new UChar[saLen+1];
202 sa.extract(buf, saLen+1, status);
203 TEST_SUCCESS(status);
204 ut = utext_openUChars(NULL, buf, saLen, &status);
205 TEST_SUCCESS(status);
206 TestAccess(sa, ut, cpCount, cpMap);
207 utext_close(ut);
208 delete [] buf;
209
210
211 // UnicodeString test
212 status = U_ZERO_ERROR;
213 ut = utext_openUnicodeString(NULL, &sa, &status);
214 TEST_SUCCESS(status);
215 TestAccess(sa, ut, cpCount, cpMap);
216 TestCMR(sa, ut, cpCount, cpMap, cpMap);
217 utext_close(ut);
218
219
220 // Const UnicodeString test
221 status = U_ZERO_ERROR;
222 ut = utext_openConstUnicodeString(NULL, &sa, &status);
223 TEST_SUCCESS(status);
224 TestAccess(sa, ut, cpCount, cpMap);
225 utext_close(ut);
226
227
228 // Replaceable test. (UnicodeString inherits Replaceable)
229 status = U_ZERO_ERROR;
230 ut = utext_openReplaceable(NULL, &sa, &status);
231 TEST_SUCCESS(status);
232 TestAccess(sa, ut, cpCount, cpMap);
233 TestCMR(sa, ut, cpCount, cpMap, cpMap);
234 utext_close(ut);
235
236 // Character Iterator Tests
237 status = U_ZERO_ERROR;
238 const UChar *cbuf = sa.getBuffer();
239 CharacterIterator *ci = new UCharCharacterIterator(cbuf, saLen, status);
240 TEST_SUCCESS(status);
241 ut = utext_openCharacterIterator(NULL, ci, &status);
242 TEST_SUCCESS(status);
243 TestAccess(sa, ut, cpCount, cpMap);
244 utext_close(ut);
245 delete ci;
246
247
248 // Fragmented UnicodeString (Chunk size of one)
249 //
250 status = U_ZERO_ERROR;
251 ut = openFragmentedUnicodeString(NULL, &sa, &status);
252 TEST_SUCCESS(status);
253 TestAccess(sa, ut, cpCount, cpMap);
254 utext_close(ut);
255
256 //
257 // UTF-8 test
258 //
259
260 // Convert the test string from UnicodeString to (char *) in utf-8 format
261 int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8");
262 char *u8String = new char[u8Len + 1];
263 sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8");
264
265 // Build up the map of code point indices in the utf-8 string
266 m * u8Map = new m[sa.length() + 1];
267 i = 0; // native utf-8 index
268 for (j=0; j<cpCount ; j++) { // code point number
269 u8Map[j].nativeIdx = i;
270 U8_NEXT(u8String, i, u8Len, c)
271 u8Map[j].cp = c;
272 }
273 u8Map[cpCount].nativeIdx = u8Len; // position following the last char in utf-8 string.
274
275 // Do the test itself
276 status = U_ZERO_ERROR;
277 ut = utext_openUTF8(NULL, u8String, -1, &status);
278 TEST_SUCCESS(status);
279 TestAccess(sa, ut, cpCount, u8Map);
280 utext_close(ut);
281
282
283
284 delete []cpMap;
285 delete []u8Map;
286 delete []u8String;
287 }
288
289 // TestCMR test Copy, Move and Replace operations.
290 // us UnicodeString containing the test text.
291 // ut UText containing the same test text.
292 // cpCount number of code points in the test text.
293 // nativeMap Mapping from code points to native indexes for the UText.
294 // u16Map Mapping from code points to UTF-16 indexes, for use with the UnicodeString.
295 //
296 // This function runs a whole series of opertions on each incoming UText.
297 // The UText is deep-cloned prior to each operation, so that the original UText remains unchanged.
298 //
299 void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) {
300 TEST_ASSERT(utext_isWritable(ut) == TRUE);
301
302 int srcLengthType; // Loop variables for selecting the postion and length
303 int srcPosType; // of the block to operate on within the source text.
304 int destPosType;
305
306 int srcIndex = 0; // Code Point indexes of the block to operate on for
307 int srcLength = 0; // a specific test.
308
309 int destIndex = 0; // Code point index of the destination for a copy/move test.
310
311 int32_t nativeStart = 0; // Native unit indexes for a test.
312 int32_t nativeLimit = 0;
313 int32_t nativeDest = 0;
314
315 int32_t u16Start = 0; // UTF-16 indexes for a test.
316 int32_t u16Limit = 0; // used when performing the same operation in a Unicode String
317 int32_t u16Dest = 0;
318
319 // Iterate over a whole series of source index, length and a target indexes.
320 // This is done with code point indexes; these will be later translated to native
321 // indexes using the cpMap.
322 for (srcLengthType=1; srcLengthType<=3; srcLengthType++) {
323 switch (srcLengthType) {
324 case 1: srcLength = 1; break;
325 case 2: srcLength = 5; break;
326 case 3: srcLength = cpCount / 3;
327 }
328 for (srcPosType=1; srcPosType<=5; srcPosType++) {
329 switch (srcPosType) {
330 case 1: srcIndex = 0; break;
331 case 2: srcIndex = 1; break;
332 case 3: srcIndex = cpCount - srcLength; break;
333 case 4: srcIndex = cpCount - srcLength - 1; break;
334 case 5: srcIndex = cpCount / 2; break;
335 }
336 if (srcIndex < 0 || srcIndex + srcLength > cpCount) {
337 // filter out bogus test cases -
338 // those with a source range that falls of an edge of the string.
339 continue;
340 }
341
342 //
343 // Copy and move tests.
344 // iterate over a variety of destination positions.
345 //
346 for (destPosType=1; destPosType<=4; destPosType++) {
347 switch (destPosType) {
348 case 1: destIndex = 0; break;
349 case 2: destIndex = 1; break;
350 case 3: destIndex = srcIndex - 1; break;
351 case 4: destIndex = srcIndex + srcLength + 1; break;
352 case 5: destIndex = cpCount-1; break;
353 case 6: destIndex = cpCount; break;
354 }
355 if (destIndex<0 || destIndex>cpCount) {
356 // filter out bogus test cases.
357 continue;
358 }
359
360 nativeStart = nativeMap[srcIndex].nativeIdx;
361 nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx;
362 nativeDest = nativeMap[destIndex].nativeIdx;
363
364 u16Start = u16Map[srcIndex].nativeIdx;
365 u16Limit = u16Map[srcIndex+srcLength].nativeIdx;
366 u16Dest = u16Map[destIndex].nativeIdx;
367
368 gFailed = FALSE;
369 TestCopyMove(us, ut, FALSE,
370 nativeStart, nativeLimit, nativeDest,
371 u16Start, u16Limit, u16Dest);
372
373 TestCopyMove(us, ut, TRUE,
374 nativeStart, nativeLimit, nativeDest,
375 u16Start, u16Limit, u16Dest);
376
377 if (gFailed) {
378 return;
379 }
380 }
381
382 //
383 // Replace tests.
384 //
385 UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text");
386 for (int32_t replStrLen=0; replStrLen<20; replStrLen++) {
387 UnicodeString repStr(fullRepString, 0, replStrLen);
388 TestReplace(us, ut,
389 nativeStart, nativeLimit,
390 u16Start, u16Limit,
391 repStr);
392 if (gFailed) {
393 return;
394 }
395 }
396
397 }
398 }
399
400 }
401
402 //
403 // TestCopyMove run a single test case for utext_copy.
404 // Test cases are created in TestCMR and dispatched here for execution.
405 //
406 void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move,
407 int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest,
408 int32_t u16Start, int32_t u16Limit, int32_t u16Dest)
409 {
410 UErrorCode status = U_ZERO_ERROR;
411 UText *targetUT = NULL;
412 gTestNum++;
413 gFailed = FALSE;
414
415 //
416 // clone the UText. The test will be run in the cloned copy
417 // so that we don't alter the original.
418 //
419 targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status);
420 TEST_SUCCESS(status);
421 UnicodeString targetUS(us); // And copy the reference string.
422
423 // do the test operation first in the reference
424 targetUS.copy(u16Start, u16Limit, u16Dest);
425 if (move) {
426 // delete out the source range.
427 if (u16Limit < u16Dest) {
428 targetUS.removeBetween(u16Start, u16Limit);
429 } else {
430 int32_t amtCopied = u16Limit - u16Start;
431 targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied);
432 }
433 }
434
435 // Do the same operation in the UText under test
436 utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status);
437 if (nativeDest > nativeStart && nativeDest < nativeLimit) {
438 TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR);
439 } else {
440 TEST_SUCCESS(status);
441
442 // Compare the results of the two parallel tests
443 int32_t usi = 0; // UnicodeString postion, utf-16 index.
444 int64_t uti = 0; // UText position, native index.
445 int32_t cpi; // char32 position (code point index)
446 UChar32 usc; // code point from Unicode String
447 UChar32 utc; // code point from UText
448 utext_setNativeIndex(targetUT, 0);
449 for (cpi=0; ; cpi++) {
450 usc = targetUS.char32At(usi);
451 utc = utext_next32(targetUT);
452 if (utc < 0) {
453 break;
454 }
455 TEST_ASSERT(uti == usi);
456 TEST_ASSERT(utc == usc);
457 usi = targetUS.moveIndex32(usi, 1);
458 uti = utext_getNativeIndex(targetUT);
459 if (gFailed) {
460 goto cleanupAndReturn;
461 }
462 }
463 int64_t expectedNativeLength = utext_nativeLength(ut);
464 if (move == FALSE) {
465 expectedNativeLength += nativeLimit - nativeStart;
466 }
467 uti = utext_getNativeIndex(targetUT);
468 TEST_ASSERT(uti == expectedNativeLength);
469 }
470
471 cleanupAndReturn:
472 utext_close(targetUT);
473 }
474
475
476 //
477 // TestReplace Test a single Replace operation.
478 //
479 void UTextTest::TestReplace(
480 const UnicodeString &us, // reference UnicodeString in which to do the replace
481 UText *ut, // UnicodeText object under test.
482 int32_t nativeStart, // Range to be replaced, in UText native units.
483 int32_t nativeLimit,
484 int32_t u16Start, // Range to be replaced, in UTF-16 units
485 int32_t u16Limit, // for use in the reference UnicodeString.
486 const UnicodeString &repStr) // The replacement string
487 {
488 UErrorCode status = U_ZERO_ERROR;
489 UText *targetUT = NULL;
490 gTestNum++;
491 gFailed = FALSE;
492
493 //
494 // clone the target UText. The test will be run in the cloned copy
495 // so that we don't alter the original.
496 //
497 targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status);
498 TEST_SUCCESS(status);
499 UnicodeString targetUS(us); // And copy the reference string.
500
501 //
502 // Do the replace operation in the Unicode String, to
503 // produce a reference result.
504 //
505 targetUS.replace(u16Start, u16Limit-u16Start, repStr);
506
507 //
508 // Do the replace on the UText under test
509 //
510 const UChar *rs = repStr.getBuffer();
511 int32_t rsLen = repStr.length();
512 int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status);
513 int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart);
514 TEST_ASSERT(actualDelta == expectedDelta);
515
516 //
517 // Compare the results
518 //
519 int32_t usi = 0; // UnicodeString postion, utf-16 index.
520 int64_t uti = 0; // UText position, native index.
521 int32_t cpi; // char32 position (code point index)
522 UChar32 usc; // code point from Unicode String
523 UChar32 utc; // code point from UText
524 int64_t expectedNativeLength = 0;
525 utext_setNativeIndex(targetUT, 0);
526 for (cpi=0; ; cpi++) {
527 usc = targetUS.char32At(usi);
528 utc = utext_next32(targetUT);
529 if (utc < 0) {
530 break;
531 }
532 TEST_ASSERT(uti == usi);
533 TEST_ASSERT(utc == usc);
534 usi = targetUS.moveIndex32(usi, 1);
535 uti = utext_getNativeIndex(targetUT);
536 if (gFailed) {
537 goto cleanupAndReturn;
538 }
539 }
540 expectedNativeLength = utext_nativeLength(ut) + expectedDelta;
541 uti = utext_getNativeIndex(targetUT);
542 TEST_ASSERT(uti == expectedNativeLength);
543
544 cleanupAndReturn:
545 utext_close(targetUT);
546 }
547
548 //
549 // TestAccess Test the read only access functions on a UText, including cloning.
550 // The text is accessed in a variety of ways, and compared with
551 // the reference UnicodeString.
552 //
553 void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) {
554 // Run the standard tests on the caller-supplied UText.
555 TestAccessNoClone(us, ut, cpCount, cpMap);
556
557 // Re-run tests on a shallow clone.
558 utext_setNativeIndex(ut, 0);
559 UErrorCode status = U_ZERO_ERROR;
560 UText *shallowClone = utext_clone(NULL, ut, FALSE /*deep*/, FALSE /*readOnly*/, &status);
561 TEST_SUCCESS(status);
562 TestAccessNoClone(us, shallowClone, cpCount, cpMap);
563
564 //
565 // Rerun again on a deep clone.
566 // Note that text providers are not required to provide deep cloning,
567 // so unsupported errors are ignored.
568 //
569 status = U_ZERO_ERROR;
570 utext_setNativeIndex(shallowClone, 0);
571 UText *deepClone = utext_clone(NULL, shallowClone, TRUE, FALSE, &status);
572 utext_close(shallowClone);
573 if (status != U_UNSUPPORTED_ERROR) {
574 TEST_SUCCESS(status);
575 TestAccessNoClone(us, deepClone, cpCount, cpMap);
576 }
577 utext_close(deepClone);
578 }
579
580
581 //
582 // TestAccessNoClone() Test the read only access functions on a UText.
583 // The text is accessed in a variety of ways, and compared with
584 // the reference UnicodeString.
585 //
586 void UTextTest::TestAccessNoClone(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) {
587 UErrorCode status = U_ZERO_ERROR;
588 gTestNum++;
589
590 //
591 // Check the length from the UText
592 //
593 int64_t expectedLen = cpMap[cpCount].nativeIdx;
594 int64_t utlen = utext_nativeLength(ut);
595 TEST_ASSERT(expectedLen == utlen);
596
597 //
598 // Iterate forwards, verify that we get the correct code points
599 // at the correct native offsets.
600 //
601 int i = 0;
602 int64_t index;
603 int64_t expectedIndex = 0;
604 int64_t foundIndex = 0;
605 UChar32 expectedC;
606 UChar32 foundC;
607 int64_t len;
608
609 for (i=0; i<cpCount; i++) {
610 expectedIndex = cpMap[i].nativeIdx;
611 foundIndex = utext_getNativeIndex(ut);
612 TEST_ASSERT(expectedIndex == foundIndex);
613 expectedC = cpMap[i].cp;
614 foundC = utext_next32(ut);
615 TEST_ASSERT(expectedC == foundC);
616 foundIndex = utext_getPreviousNativeIndex(ut);
617 TEST_ASSERT(expectedIndex == foundIndex);
618 if (gFailed) {
619 return;
620 }
621 }
622 foundC = utext_next32(ut);
623 TEST_ASSERT(foundC == U_SENTINEL);
624
625 // Repeat above, using macros
626 utext_setNativeIndex(ut, 0);
627 for (i=0; i<cpCount; i++) {
628 expectedIndex = cpMap[i].nativeIdx;
629 foundIndex = UTEXT_GETNATIVEINDEX(ut);
630 TEST_ASSERT(expectedIndex == foundIndex);
631 expectedC = cpMap[i].cp;
632 foundC = UTEXT_NEXT32(ut);
633 TEST_ASSERT(expectedC == foundC);
634 if (gFailed) {
635 return;
636 }
637 }
638 foundC = UTEXT_NEXT32(ut);
639 TEST_ASSERT(foundC == U_SENTINEL);
640
641 //
642 // Forward iteration (above) should have left index at the
643 // end of the input, which should == length().
644 //
645 len = utext_nativeLength(ut);
646 foundIndex = utext_getNativeIndex(ut);
647 TEST_ASSERT(len == foundIndex);
648
649 //
650 // Iterate backwards over entire test string
651 //
652 len = utext_getNativeIndex(ut);
653 utext_setNativeIndex(ut, len);
654 for (i=cpCount-1; i>=0; i--) {
655 expectedC = cpMap[i].cp;
656 expectedIndex = cpMap[i].nativeIdx;
657 int64_t prevIndex = utext_getPreviousNativeIndex(ut);
658 foundC = utext_previous32(ut);
659 foundIndex = utext_getNativeIndex(ut);
660 TEST_ASSERT(expectedIndex == foundIndex);
661 TEST_ASSERT(expectedC == foundC);
662 TEST_ASSERT(prevIndex == foundIndex);
663 if (gFailed) {
664 return;
665 }
666 }
667
668 //
669 // Backwards iteration, above, should have left our iterator
670 // position at zero, and continued backwards iterationshould fail.
671 //
672 foundIndex = utext_getNativeIndex(ut);
673 TEST_ASSERT(foundIndex == 0);
674 foundIndex = utext_getPreviousNativeIndex(ut);
675 TEST_ASSERT(foundIndex == 0);
676
677
678 foundC = utext_previous32(ut);
679 TEST_ASSERT(foundC == U_SENTINEL);
680 foundIndex = utext_getNativeIndex(ut);
681 TEST_ASSERT(foundIndex == 0);
682 foundIndex = utext_getPreviousNativeIndex(ut);
683 TEST_ASSERT(foundIndex == 0);
684
685
686 // And again, with the macros
687 utext_setNativeIndex(ut, len);
688 for (i=cpCount-1; i>=0; i--) {
689 expectedC = cpMap[i].cp;
690 expectedIndex = cpMap[i].nativeIdx;
691 foundC = UTEXT_PREVIOUS32(ut);
692 foundIndex = UTEXT_GETNATIVEINDEX(ut);
693 TEST_ASSERT(expectedIndex == foundIndex);
694 TEST_ASSERT(expectedC == foundC);
695 if (gFailed) {
696 return;
697 }
698 }
699
700 //
701 // Backwards iteration, above, should have left our iterator
702 // position at zero, and continued backwards iterationshould fail.
703 //
704 foundIndex = UTEXT_GETNATIVEINDEX(ut);
705 TEST_ASSERT(foundIndex == 0);
706
707 foundC = UTEXT_PREVIOUS32(ut);
708 TEST_ASSERT(foundC == U_SENTINEL);
709 foundIndex = UTEXT_GETNATIVEINDEX(ut);
710 TEST_ASSERT(foundIndex == 0);
711 if (gFailed) {
712 return;
713 }
714
715 //
716 // next32From(), prevous32From(), Iterate in a somewhat random order.
717 //
718 int cpIndex = 0;
719 for (i=0; i<cpCount; i++) {
720 cpIndex = (cpIndex + 9973) % cpCount;
721 index = cpMap[cpIndex].nativeIdx;
722 expectedC = cpMap[cpIndex].cp;
723 foundC = utext_next32From(ut, index);
724 TEST_ASSERT(expectedC == foundC);
725 if (gFailed) {
726 return;
727 }
728 }
729
730 cpIndex = 0;
731 for (i=0; i<cpCount; i++) {
732 cpIndex = (cpIndex + 9973) % cpCount;
733 index = cpMap[cpIndex+1].nativeIdx;
734 expectedC = cpMap[cpIndex].cp;
735 foundC = utext_previous32From(ut, index);
736 TEST_ASSERT(expectedC == foundC);
737 if (gFailed) {
738 return;
739 }
740 }
741
742
743 //
744 // moveIndex(int32_t delta);
745 //
746
747 // Walk through frontwards, incrementing by one
748 utext_setNativeIndex(ut, 0);
749 for (i=1; i<=cpCount; i++) {
750 utext_moveIndex32(ut, 1);
751 index = utext_getNativeIndex(ut);
752 expectedIndex = cpMap[i].nativeIdx;
753 TEST_ASSERT(expectedIndex == index);
754 index = UTEXT_GETNATIVEINDEX(ut);
755 TEST_ASSERT(expectedIndex == index);
756 }
757
758 // Walk through frontwards, incrementing by two
759 utext_setNativeIndex(ut, 0);
760 for (i=2; i<cpCount; i+=2) {
761 utext_moveIndex32(ut, 2);
762 index = utext_getNativeIndex(ut);
763 expectedIndex = cpMap[i].nativeIdx;
764 TEST_ASSERT(expectedIndex == index);
765 index = UTEXT_GETNATIVEINDEX(ut);
766 TEST_ASSERT(expectedIndex == index);
767 }
768
769 // walk through the string backwards, decrementing by one.
770 i = cpMap[cpCount].nativeIdx;
771 utext_setNativeIndex(ut, i);
772 for (i=cpCount; i>=0; i--) {
773 expectedIndex = cpMap[i].nativeIdx;
774 index = utext_getNativeIndex(ut);
775 TEST_ASSERT(expectedIndex == index);
776 index = UTEXT_GETNATIVEINDEX(ut);
777 TEST_ASSERT(expectedIndex == index);
778 utext_moveIndex32(ut, -1);
779 }
780
781
782 // walk through backwards, decrementing by three
783 i = cpMap[cpCount].nativeIdx;
784 utext_setNativeIndex(ut, i);
785 for (i=cpCount; i>=0; i-=3) {
786 expectedIndex = cpMap[i].nativeIdx;
787 index = utext_getNativeIndex(ut);
788 TEST_ASSERT(expectedIndex == index);
789 index = UTEXT_GETNATIVEINDEX(ut);
790 TEST_ASSERT(expectedIndex == index);
791 utext_moveIndex32(ut, -3);
792 }
793
794
795 //
796 // Extract
797 //
798 int bufSize = us.length() + 10;
799 UChar *buf = new UChar[bufSize];
800 status = U_ZERO_ERROR;
801 expectedLen = us.length();
802 len = utext_extract(ut, 0, utlen, buf, bufSize, &status);
803 TEST_SUCCESS(status);
804 TEST_ASSERT(len == expectedLen);
805 int compareResult = us.compare(buf, -1);
806 TEST_ASSERT(compareResult == 0);
807
808 status = U_ZERO_ERROR;
809 len = utext_extract(ut, 0, utlen, NULL, 0, &status);
810 if (utlen == 0) {
811 TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
812 } else {
813 TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
814 }
815 TEST_ASSERT(len == expectedLen);
816
817 status = U_ZERO_ERROR;
818 u_memset(buf, 0x5555, bufSize);
819 len = utext_extract(ut, 0, utlen, buf, 1, &status);
820 if (us.length() == 0) {
821 TEST_SUCCESS(status);
822 TEST_ASSERT(buf[0] == 0);
823 } else {
824 // Buf len == 1, extracting a single 16 bit value.
825 // If the data char is supplementary, it doesn't matter whether the buffer remains unchanged,
826 // or whether the lead surrogate of the pair is extracted.
827 // It's a buffer overflow error in either case.
828 TEST_ASSERT(buf[0] == us.charAt(0) ||
829 (buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0))));
830 TEST_ASSERT(buf[1] == 0x5555);
831 if (us.length() == 1) {
832 TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
833 } else {
834 TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
835 }
836 }
837
838 delete []buf;
839 }
840
841 //
842 // ErrorTest() Check various error and edge cases.
843 //
844 void UTextTest::ErrorTest()
845 {
846 // Close of an unitialized UText. Shouldn't blow up.
847 {
848 UText ut;
849 memset(&ut, 0, sizeof(UText));
850 utext_close(&ut);
851 utext_close(NULL);
852 }
853
854 // Double-close of a UText. Shouldn't blow up. UText should still be usable.
855 {
856 UErrorCode status = U_ZERO_ERROR;
857 UText ut = UTEXT_INITIALIZER;
858 UnicodeString s("Hello, World");
859 UText *ut2 = utext_openUnicodeString(&ut, &s, &status);
860 TEST_SUCCESS(status);
861 TEST_ASSERT(ut2 == &ut);
862
863 UText *ut3 = utext_close(&ut);
864 TEST_ASSERT(ut3 == &ut);
865
866 UText *ut4 = utext_close(&ut);
867 TEST_ASSERT(ut4 == &ut);
868
869 utext_openUnicodeString(&ut, &s, &status);
870 TEST_SUCCESS(status);
871 utext_close(&ut);
872 }
873
874 // Re-use of a UText, chaining through each of the types of UText
875 // (If it doesn't blow up, and doesn't leak, it's probably working fine)
876 {
877 UErrorCode status = U_ZERO_ERROR;
878 UText ut = UTEXT_INITIALIZER;
879 UText *utp;
880 UnicodeString s1("Hello, World");
881 UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0};
882 const char *s3 = "\x66\x67\x68";
883
884 utp = utext_openUnicodeString(&ut, &s1, &status);
885 TEST_SUCCESS(status);
886 TEST_ASSERT(utp == &ut);
887
888 utp = utext_openConstUnicodeString(&ut, &s1, &status);
889 TEST_SUCCESS(status);
890 TEST_ASSERT(utp == &ut);
891
892 utp = utext_openUTF8(&ut, s3, -1, &status);
893 TEST_SUCCESS(status);
894 TEST_ASSERT(utp == &ut);
895
896 utp = utext_openUChars(&ut, s2, -1, &status);
897 TEST_SUCCESS(status);
898 TEST_ASSERT(utp == &ut);
899
900 utp = utext_close(&ut);
901 TEST_ASSERT(utp == &ut);
902
903 utp = utext_openUnicodeString(&ut, &s1, &status);
904 TEST_SUCCESS(status);
905 TEST_ASSERT(utp == &ut);
906 }
907
908 // Invalid parameters on open
909 //
910 {
911 UErrorCode status = U_ZERO_ERROR;
912 UText ut = UTEXT_INITIALIZER;
913
914 utext_openUChars(&ut, NULL, 5, &status);
915 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
916
917 status = U_ZERO_ERROR;
918 utext_openUChars(&ut, NULL, -1, &status);
919 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
920
921 status = U_ZERO_ERROR;
922 utext_openUTF8(&ut, NULL, 4, &status);
923 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
924
925 status = U_ZERO_ERROR;
926 utext_openUTF8(&ut, NULL, -1, &status);
927 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
928 }
929
930 //
931 // UTF-8 with malformed sequences.
932 // These should come through as the Unicode replacement char, \ufffd
933 //
934 {
935 UErrorCode status = U_ZERO_ERROR;
936 UText *ut = NULL;
937 const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43";
938 UChar32 c;
939
940 ut = utext_openUTF8(NULL, badUTF8, -1, &status);
941 TEST_SUCCESS(status);
942 c = utext_char32At(ut, 1);
943 TEST_ASSERT(c == 0xfffd);
944 c = utext_char32At(ut, 3);
945 TEST_ASSERT(c == 0xfffd);
946 c = utext_char32At(ut, 5);
947 TEST_ASSERT(c == 0xfffd);
948 c = utext_char32At(ut, 6);
949 TEST_ASSERT(c == 0x43);
950
951 UChar buf[10];
952 int n = utext_extract(ut, 0, 9, buf, 10, &status);
953 TEST_SUCCESS(status);
954 TEST_ASSERT(n==5);
955 TEST_ASSERT(buf[1] == 0xfffd);
956 TEST_ASSERT(buf[3] == 0xfffd);
957 TEST_ASSERT(buf[2] == 0x42);
958 utext_close(ut);
959 }
960
961
962 //
963 // isLengthExpensive - does it make the exptected transitions after
964 // getting the length of a nul terminated string?
965 //
966 {
967 UErrorCode status = U_ZERO_ERROR;
968 UnicodeString sa("Hello, this is a string");
969 UBool isExpensive;
970
971 UChar sb[100];
972 memset(sb, 0x20, sizeof(sb));
973 sb[99] = 0;
974
975 UText *uta = utext_openUnicodeString(NULL, &sa, &status);
976 TEST_SUCCESS(status);
977 isExpensive = utext_isLengthExpensive(uta);
978 TEST_ASSERT(isExpensive == FALSE);
979 utext_close(uta);
980
981 UText *utb = utext_openUChars(NULL, sb, -1, &status);
982 TEST_SUCCESS(status);
983 isExpensive = utext_isLengthExpensive(utb);
984 TEST_ASSERT(isExpensive == TRUE);
985 int64_t len = utext_nativeLength(utb);
986 TEST_ASSERT(len == 99);
987 isExpensive = utext_isLengthExpensive(utb);
988 TEST_ASSERT(isExpensive == FALSE);
989 utext_close(utb);
990 }
991
992 //
993 // Index to positions not on code point boundaries.
994 //
995 {
996 const char *u8str = "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86";
997 int32_t startMap[] = { 0, 0, 2, 2, 2, 5, 5, 5, 5, 9, 9};
998 int32_t nextMap[] = { 2, 2, 5, 5, 5, 9, 9, 9, 9, 9, 9};
999 int32_t prevMap[] = { 0, 0, 0, 0, 0, 2, 2, 2, 2, 5, 5};
1000 UChar32 c32Map[] = {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1};
1001 UChar32 pr32Map[] = { -1, -1, 0x201, 0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146};
1002
1003 // extractLen is the size, in UChars, of what will be extracted between index and index+1.
1004 // is zero when both index positions lie within the same code point.
1005 int32_t exLen[] = { 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0};
1006
1007
1008 UErrorCode status = U_ZERO_ERROR;
1009 UText *ut = utext_openUTF8(NULL, u8str, -1, &status);
1010 TEST_SUCCESS(status);
1011
1012 // Check setIndex
1013 int32_t i;
1014 int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
1015 for (i=0; i<startMapLimit; i++) {
1016 utext_setNativeIndex(ut, i);
1017 int64_t cpIndex = utext_getNativeIndex(ut);
1018 TEST_ASSERT(cpIndex == startMap[i]);
1019 cpIndex = UTEXT_GETNATIVEINDEX(ut);
1020 TEST_ASSERT(cpIndex == startMap[i]);
1021 }
1022
1023 // Check char32At
1024 for (i=0; i<startMapLimit; i++) {
1025 UChar32 c32 = utext_char32At(ut, i);
1026 TEST_ASSERT(c32 == c32Map[i]);
1027 int64_t cpIndex = utext_getNativeIndex(ut);
1028 TEST_ASSERT(cpIndex == startMap[i]);
1029 }
1030
1031 // Check utext_next32From
1032 for (i=0; i<startMapLimit; i++) {
1033 UChar32 c32 = utext_next32From(ut, i);
1034 TEST_ASSERT(c32 == c32Map[i]);
1035 int64_t cpIndex = utext_getNativeIndex(ut);
1036 TEST_ASSERT(cpIndex == nextMap[i]);
1037 }
1038
1039 // check utext_previous32From
1040 for (i=0; i<startMapLimit; i++) {
1041 gTestNum++;
1042 UChar32 c32 = utext_previous32From(ut, i);
1043 TEST_ASSERT(c32 == pr32Map[i]);
1044 int64_t cpIndex = utext_getNativeIndex(ut);
1045 TEST_ASSERT(cpIndex == prevMap[i]);
1046 }
1047
1048 // check Extract
1049 // Extract from i to i+1, which may be zero or one code points,
1050 // depending on whether the indices straddle a cp boundary.
1051 for (i=0; i<startMapLimit; i++) {
1052 UChar buf[3];
1053 status = U_ZERO_ERROR;
1054 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
1055 TEST_SUCCESS(status);
1056 TEST_ASSERT(extractedLen == exLen[i]);
1057 if (extractedLen > 0) {
1058 UChar32 c32;
1059 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
1060 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
1061 TEST_ASSERT(c32 == c32Map[i]);
1062 }
1063 }
1064
1065 utext_close(ut);
1066 }
1067
1068
1069 { // Similar test, with utf16 instead of utf8
1070 // TODO: merge the common parts of these tests.
1071
1072 UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV);
1073 int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6};
1074 int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6};
1075 int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4};
1076 UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1};
1077 UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000};
1078 int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,};
1079
1080 u16str = u16str.unescape();
1081 UErrorCode status = U_ZERO_ERROR;
1082 UText *ut = utext_openUnicodeString(NULL, &u16str, &status);
1083 TEST_SUCCESS(status);
1084
1085 int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
1086 int i;
1087 for (i=0; i<startMapLimit; i++) {
1088 utext_setNativeIndex(ut, i);
1089 int64_t cpIndex = utext_getNativeIndex(ut);
1090 TEST_ASSERT(cpIndex == startMap[i]);
1091 }
1092
1093 // Check char32At
1094 for (i=0; i<startMapLimit; i++) {
1095 UChar32 c32 = utext_char32At(ut, i);
1096 TEST_ASSERT(c32 == c32Map[i]);
1097 int64_t cpIndex = utext_getNativeIndex(ut);
1098 TEST_ASSERT(cpIndex == startMap[i]);
1099 }
1100
1101 // Check utext_next32From
1102 for (i=0; i<startMapLimit; i++) {
1103 UChar32 c32 = utext_next32From(ut, i);
1104 TEST_ASSERT(c32 == c32Map[i]);
1105 int64_t cpIndex = utext_getNativeIndex(ut);
1106 TEST_ASSERT(cpIndex == nextMap[i]);
1107 }
1108
1109 // check utext_previous32From
1110 for (i=0; i<startMapLimit; i++) {
1111 UChar32 c32 = utext_previous32From(ut, i);
1112 TEST_ASSERT(c32 == pr32Map[i]);
1113 int64_t cpIndex = utext_getNativeIndex(ut);
1114 TEST_ASSERT(cpIndex == prevMap[i]);
1115 }
1116
1117 // check Extract
1118 // Extract from i to i+1, which may be zero or one code points,
1119 // depending on whether the indices straddle a cp boundary.
1120 for (i=0; i<startMapLimit; i++) {
1121 UChar buf[3];
1122 status = U_ZERO_ERROR;
1123 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
1124 TEST_SUCCESS(status);
1125 TEST_ASSERT(extractedLen == exLen[i]);
1126 if (extractedLen > 0) {
1127 UChar32 c32;
1128 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
1129 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
1130 TEST_ASSERT(c32 == c32Map[i]);
1131 }
1132 }
1133
1134 utext_close(ut);
1135 }
1136
1137 { // Similar test, with UText over Replaceable
1138 // TODO: merge the common parts of these tests.
1139
1140 UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV);
1141 int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6};
1142 int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6};
1143 int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4};
1144 UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1};
1145 UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000};
1146 int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,};
1147
1148 u16str = u16str.unescape();
1149 UErrorCode status = U_ZERO_ERROR;
1150 UText *ut = utext_openReplaceable(NULL, &u16str, &status);
1151 TEST_SUCCESS(status);
1152
1153 int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
1154 int i;
1155 for (i=0; i<startMapLimit; i++) {
1156 utext_setNativeIndex(ut, i);
1157 int64_t cpIndex = utext_getNativeIndex(ut);
1158 TEST_ASSERT(cpIndex == startMap[i]);
1159 }
1160
1161 // Check char32At
1162 for (i=0; i<startMapLimit; i++) {
1163 UChar32 c32 = utext_char32At(ut, i);
1164 TEST_ASSERT(c32 == c32Map[i]);
1165 int64_t cpIndex = utext_getNativeIndex(ut);
1166 TEST_ASSERT(cpIndex == startMap[i]);
1167 }
1168
1169 // Check utext_next32From
1170 for (i=0; i<startMapLimit; i++) {
1171 UChar32 c32 = utext_next32From(ut, i);
1172 TEST_ASSERT(c32 == c32Map[i]);
1173 int64_t cpIndex = utext_getNativeIndex(ut);
1174 TEST_ASSERT(cpIndex == nextMap[i]);
1175 }
1176
1177 // check utext_previous32From
1178 for (i=0; i<startMapLimit; i++) {
1179 UChar32 c32 = utext_previous32From(ut, i);
1180 TEST_ASSERT(c32 == pr32Map[i]);
1181 int64_t cpIndex = utext_getNativeIndex(ut);
1182 TEST_ASSERT(cpIndex == prevMap[i]);
1183 }
1184
1185 // check Extract
1186 // Extract from i to i+1, which may be zero or one code points,
1187 // depending on whether the indices straddle a cp boundary.
1188 for (i=0; i<startMapLimit; i++) {
1189 UChar buf[3];
1190 status = U_ZERO_ERROR;
1191 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
1192 TEST_SUCCESS(status);
1193 TEST_ASSERT(extractedLen == exLen[i]);
1194 if (extractedLen > 0) {
1195 UChar32 c32;
1196 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
1197 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
1198 TEST_ASSERT(c32 == c32Map[i]);
1199 }
1200 }
1201
1202 utext_close(ut);
1203 }
1204 }
1205
1206
1207 void UTextTest::FreezeTest() {
1208 // Check isWritable() and freeze() behavior.
1209 //
1210
1211 UnicodeString ustr("Hello, World.");
1212 const char u8str[] = {char(0x31), (char)0x32, (char)0x33, 0};
1213 const UChar u16str[] = {(UChar)0x31, (UChar)0x32, (UChar)0x44, 0};
1214
1215 UErrorCode status = U_ZERO_ERROR;
1216 UText *ut = NULL;
1217 UText *ut2 = NULL;
1218
1219 ut = utext_openUTF8(ut, u8str, -1, &status);
1220 TEST_SUCCESS(status);
1221 UBool writable = utext_isWritable(ut);
1222 TEST_ASSERT(writable == FALSE);
1223 utext_copy(ut, 1, 2, 0, TRUE, &status);
1224 TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1225
1226 status = U_ZERO_ERROR;
1227 ut = utext_openUChars(ut, u16str, -1, &status);
1228 TEST_SUCCESS(status);
1229 writable = utext_isWritable(ut);
1230 TEST_ASSERT(writable == FALSE);
1231 utext_copy(ut, 1, 2, 0, TRUE, &status);
1232 TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1233
1234 status = U_ZERO_ERROR;
1235 ut = utext_openUnicodeString(ut, &ustr, &status);
1236 TEST_SUCCESS(status);
1237 writable = utext_isWritable(ut);
1238 TEST_ASSERT(writable == TRUE);
1239 utext_freeze(ut);
1240 writable = utext_isWritable(ut);
1241 TEST_ASSERT(writable == FALSE);
1242 utext_copy(ut, 1, 2, 0, TRUE, &status);
1243 TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1244
1245 status = U_ZERO_ERROR;
1246 ut = utext_openUnicodeString(ut, &ustr, &status);
1247 TEST_SUCCESS(status);
1248 ut2 = utext_clone(ut2, ut, FALSE, FALSE, &status); // clone with readonly = false
1249 TEST_SUCCESS(status);
1250 writable = utext_isWritable(ut2);
1251 TEST_ASSERT(writable == TRUE);
1252 ut2 = utext_clone(ut2, ut, FALSE, TRUE, &status); // clone with readonly = true
1253 TEST_SUCCESS(status);
1254 writable = utext_isWritable(ut2);
1255 TEST_ASSERT(writable == FALSE);
1256 utext_copy(ut2, 1, 2, 0, TRUE, &status);
1257 TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1258
1259 status = U_ZERO_ERROR;
1260 ut = utext_openConstUnicodeString(ut, (const UnicodeString *)&ustr, &status);
1261 TEST_SUCCESS(status);
1262 writable = utext_isWritable(ut);
1263 TEST_ASSERT(writable == FALSE);
1264 utext_copy(ut, 1, 2, 0, TRUE, &status);
1265 TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1266
1267 // Deep Clone of a frozen UText should re-enable writing in the copy.
1268 status = U_ZERO_ERROR;
1269 ut = utext_openUnicodeString(ut, &ustr, &status);
1270 TEST_SUCCESS(status);
1271 utext_freeze(ut);
1272 ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone
1273 TEST_SUCCESS(status);
1274 writable = utext_isWritable(ut2);
1275 TEST_ASSERT(writable == TRUE);
1276
1277
1278 // Deep clone of a frozen UText, where the base type is intrinsically non-writable,
1279 // should NOT enable writing in the copy.
1280 status = U_ZERO_ERROR;
1281 ut = utext_openUChars(ut, u16str, -1, &status);
1282 TEST_SUCCESS(status);
1283 utext_freeze(ut);
1284 ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone
1285 TEST_SUCCESS(status);
1286 writable = utext_isWritable(ut2);
1287 TEST_ASSERT(writable == FALSE);
1288
1289 // cleanup
1290 utext_close(ut);
1291 utext_close(ut2);
1292 }
1293
1294
1295 //
1296 // Fragmented UText
1297 // A UText type that works with a chunk size of 1.
1298 // Intended to test for edge cases.
1299 // Input comes from a UnicodeString.
1300 //
1301 // ut.b the character. Put into both halves.
1302 //
1303
1304 U_CDECL_BEGIN
1305 static UBool U_CALLCONV
1306 fragTextAccess(UText *ut, int64_t index, UBool forward) {
1307 const UnicodeString *us = (const UnicodeString *)ut->context;
1308 UChar c;
1309 int32_t length = us->length();
1310 if (forward && index>=0 && index<length) {
1311 c = us->charAt((int32_t)index);
1312 ut->b = c | c<<16;
1313 ut->chunkOffset = 0;
1314 ut->chunkLength = 1;
1315 ut->chunkNativeStart = index;
1316 ut->chunkNativeLimit = index+1;
1317 return true;
1318 }
1319 if (!forward && index>0 && index <=length) {
1320 c = us->charAt((int32_t)index-1);
1321 ut->b = c | c<<16;
1322 ut->chunkOffset = 1;
1323 ut->chunkLength = 1;
1324 ut->chunkNativeStart = index-1;
1325 ut->chunkNativeLimit = index;
1326 return true;
1327 }
1328 ut->b = 0;
1329 ut->chunkOffset = 0;
1330 ut->chunkLength = 0;
1331 if (index <= 0) {
1332 ut->chunkNativeStart = 0;
1333 ut->chunkNativeLimit = 0;
1334 } else {
1335 ut->chunkNativeStart = length;
1336 ut->chunkNativeLimit = length;
1337 }
1338 return false;
1339 }
1340
1341 // Function table to be used with this fragmented text provider.
1342 // Initialized in the open function.
1343 static UTextFuncs fragmentFuncs;
1344
1345 // Clone function for fragmented text provider.
1346 // Didn't really want to provide this, but it's easier to provide it than to keep it
1347 // out of the tests.
1348 //
1349 UText *
1350 cloneFragmentedUnicodeString(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
1351 if (U_FAILURE(*status)) {
1352 return NULL;
1353 }
1354 if (deep) {
1355 *status = U_UNSUPPORTED_ERROR;
1356 return NULL;
1357 }
1358 dest = utext_openUnicodeString(dest, (UnicodeString *)src->context, status);
1359 utext_setNativeIndex(dest, utext_getNativeIndex(src));
1360 return dest;
1361 }
1362
1363 U_CDECL_END
1364
1365 // Open function for the fragmented text provider.
1366 UText *
1367 openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
1368 ut = utext_openUnicodeString(ut, s, status);
1369 if (U_FAILURE(*status)) {
1370 return ut;
1371 }
1372
1373 // Copy of the function table from the stock UnicodeString UText,
1374 // and replace the entry for the access function.
1375 memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs));
1376 fragmentFuncs.access = fragTextAccess;
1377 fragmentFuncs.clone = cloneFragmentedUnicodeString;
1378 ut->pFuncs = &fragmentFuncs;
1379
1380 ut->chunkContents = (UChar *)&ut->b;
1381 ut->pFuncs->access(ut, 0, TRUE);
1382 return ut;
1383 }
1384
1385 // Regression test for Ticket 5560
1386 // Clone fails to update chunkContentPointer in the cloned copy.
1387 // This is only an issue for UText types that work in a local buffer,
1388 // (UTF-8 wrapper, for example)
1389 //
1390 // The test:
1391 // 1. Create an inital UText
1392 // 2. Deep clone it. Contents should match original.
1393 // 3. Reset original to something different.
1394 // 4. Check that clone contents did not change.
1395 //
1396 void UTextTest::Ticket5560() {
1397 /* The following two strings are in UTF-8 even on EBCDIC platforms. */
1398 static const char s1[] = {0x41,0x42,0x43,0x44,0x45,0x46,0}; /* "ABCDEF" */
1399 static const char s2[] = {0x31,0x32,0x33,0x34,0x35,0x36,0}; /* "123456" */
1400 UErrorCode status = U_ZERO_ERROR;
1401
1402 UText ut1 = UTEXT_INITIALIZER;
1403 UText ut2 = UTEXT_INITIALIZER;
1404
1405 utext_openUTF8(&ut1, s1, -1, &status);
1406 UChar c = utext_next32(&ut1);
1407 TEST_ASSERT(c == 0x41); // c == 'A'
1408
1409 utext_clone(&ut2, &ut1, TRUE, FALSE, &status);
1410 TEST_SUCCESS(status);
1411 c = utext_next32(&ut2);
1412 TEST_ASSERT(c == 0x42); // c == 'B'
1413 c = utext_next32(&ut1);
1414 TEST_ASSERT(c == 0x42); // c == 'B'
1415
1416 utext_openUTF8(&ut1, s2, -1, &status);
1417 c = utext_next32(&ut1);
1418 TEST_ASSERT(c == 0x31); // c == '1'
1419 c = utext_next32(&ut2);
1420 TEST_ASSERT(c == 0x43); // c == 'C'
1421
1422 utext_close(&ut1);
1423 utext_close(&ut2);
1424 }
1425
1426
1427 // Test for Ticket 6847
1428 //
1429 void UTextTest::Ticket6847() {
1430 const int STRLEN = 90;
1431 UChar s[STRLEN+1];
1432 u_memset(s, 0x41, STRLEN);
1433 s[STRLEN] = 0;
1434
1435 UErrorCode status = U_ZERO_ERROR;
1436 UText *ut = utext_openUChars(NULL, s, -1, &status);
1437
1438 utext_setNativeIndex(ut, 0);
1439 int32_t count = 0;
1440 UChar32 c = 0;
1441 int64_t nativeIndex = UTEXT_GETNATIVEINDEX(ut);
1442 TEST_ASSERT(nativeIndex == 0);
1443 while ((c = utext_next32(ut)) != U_SENTINEL) {
1444 TEST_ASSERT(c == 0x41);
1445 TEST_ASSERT(count < STRLEN);
1446 if (count >= STRLEN) {
1447 break;
1448 }
1449 count++;
1450 nativeIndex = UTEXT_GETNATIVEINDEX(ut);
1451 TEST_ASSERT(nativeIndex == count);
1452 }
1453 TEST_ASSERT(count == STRLEN);
1454 nativeIndex = UTEXT_GETNATIVEINDEX(ut);
1455 TEST_ASSERT(nativeIndex == STRLEN);
1456 utext_close(ut);
1457 }
1458
1459
1460 void UTextTest::Ticket10562() {
1461 // Note: failures show as a heap error when the test is run under valgrind.
1462 UErrorCode status = U_ZERO_ERROR;
1463
1464 const char *utf8_string = "\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41";
1465 UText *utf8Text = utext_openUTF8(NULL, utf8_string, -1, &status);
1466 TEST_SUCCESS(status);
1467 UText *deepClone = utext_clone(NULL, utf8Text, TRUE, FALSE, &status);
1468 TEST_SUCCESS(status);
1469 UText *shallowClone = utext_clone(NULL, deepClone, FALSE, FALSE, &status);
1470 TEST_SUCCESS(status);
1471 utext_close(shallowClone);
1472 utext_close(deepClone);
1473 utext_close(utf8Text);
1474
1475 status = U_ZERO_ERROR;
1476 UnicodeString usString("Hello, World.");
1477 UText *usText = utext_openUnicodeString(NULL, &usString, &status);
1478 TEST_SUCCESS(status);
1479 UText *usDeepClone = utext_clone(NULL, usText, TRUE, FALSE, &status);
1480 TEST_SUCCESS(status);
1481 UText *usShallowClone = utext_clone(NULL, usDeepClone, FALSE, FALSE, &status);
1482 TEST_SUCCESS(status);
1483 utext_close(usShallowClone);
1484 utext_close(usDeepClone);
1485 utext_close(usText);
1486 }
1487
1488
1489 void UTextTest::Ticket10983() {
1490 // Note: failure shows as a seg fault when the defect is present.
1491
1492 UErrorCode status = U_ZERO_ERROR;
1493 UnicodeString s("Hello, World");
1494 UText *ut = utext_openConstUnicodeString(NULL, &s, &status);
1495 TEST_SUCCESS(status);
1496
1497 status = U_INVALID_STATE_ERROR;
1498 UText *cloned = utext_clone(NULL, ut, TRUE, TRUE, &status);
1499 TEST_ASSERT(cloned == NULL);
1500 TEST_ASSERT(status == U_INVALID_STATE_ERROR);
1501
1502 utext_close(ut);
1503 }