2 **********************************************************************
3 * Copyright (C) 2000-2015, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 **********************************************************************
6 * file name: ucnv_lmb.cpp
8 * tab size: 4 (not used)
11 * created on: 2000feb09
12 * created by: Brendan Murray
13 * extensively hacked up by: Jim Snyder-Grant
15 * Modification History:
17 * Date Name Description
19 * 06/20/2000 helena OS/400 port changes; mostly typecast.
20 * 06/27/2000 Jim Snyder-Grant Deal with partial characters and small buffers.
21 * Add comments to document LMBCS format and implementation
22 * restructured order & breakdown of functions
23 * 06/28/2000 helena Major rewrite for the callback API changes.
26 #include "unicode/utypes.h"
28 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION && !UCONFIG_ONLY_HTML_CONVERSION
30 #include "unicode/ucnv_err.h"
31 #include "unicode/ucnv.h"
32 #include "unicode/uset.h"
47 (Lotus Multi-Byte Character Set)
49 LMBCS was invented in the late 1980's and is primarily used in Lotus Notes
50 databases and in Lotus 1-2-3 files. Programmers who work with the APIs
51 into these products will sometimes need to deal with strings in this format.
53 The code in this file provides an implementation for an ICU converter of
54 LMBCS to and from Unicode.
56 Since the LMBCS character set is only sparsely documented in existing
57 printed or online material, we have added extensive annotation to this
58 file to serve as a guide to understanding LMBCS.
60 LMBCS was originally designed with these four sometimes-competing design goals:
62 -Provide encodings for the characters in 12 existing national standards
63 (plus a few other characters)
64 -Minimal memory footprint
65 -Maximal speed of conversion into the existing national character sets
66 -No need to track a changing state as you interpret a string.
69 All of the national character sets LMBCS was trying to encode are 'ANSI'
70 based, in that the bytes from 0x20 - 0x7F are almost exactly the
71 same common Latin unaccented characters and symbols in all character sets.
73 So, in order to help meet the speed & memory design goals, the common ANSI
74 bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS.
76 The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as
81 That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2
82 data bytes. The maximum size of a LMBCS chjaracter is 3 bytes:
84 #define ULMBCS_CHARSIZE_MAX 3
86 The single-byte values from 0x20 to 0x7F are examples of single D1 bytes.
87 We often have to figure out if byte values are below or above this, so we
88 use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control
89 characters just above & below the common lower-ANSI range */
90 #define ULMBCS_C0END 0x1F
91 #define ULMBCS_C1START 0x80
93 Since LMBCS is always dealing in byte units. we create a local type here for
94 dealing with these units of LMBCS code units:
97 typedef uint8_t ulmbcs_byte_t
;
100 Most of the values less than 0x20 are reserved in LMBCS to announce
101 which national character standard is being used for the 'D' bytes.
102 In the comments we show the common name and the IBM character-set ID
103 for these character-set announcers:
106 #define ULMBCS_GRP_L1 0x01 /* Latin-1 :ibm-850 */
107 #define ULMBCS_GRP_GR 0x02 /* Greek :ibm-851 */
108 #define ULMBCS_GRP_HE 0x03 /* Hebrew :ibm-1255 */
109 #define ULMBCS_GRP_AR 0x04 /* Arabic :ibm-1256 */
110 #define ULMBCS_GRP_RU 0x05 /* Cyrillic :ibm-1251 */
111 #define ULMBCS_GRP_L2 0x06 /* Latin-2 :ibm-852 */
112 #define ULMBCS_GRP_TR 0x08 /* Turkish :ibm-1254 */
113 #define ULMBCS_GRP_TH 0x0B /* Thai :ibm-874 */
114 #define ULMBCS_GRP_JA 0x10 /* Japanese :ibm-943 */
115 #define ULMBCS_GRP_KO 0x11 /* Korean :ibm-1261 */
116 #define ULMBCS_GRP_TW 0x12 /* Chinese SC :ibm-950 */
117 #define ULMBCS_GRP_CN 0x13 /* Chinese TC :ibm-1386 */
120 So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS
121 character is one of those 12 values, you can interpret the remaining bytes of
122 that character as coming from one of those character sets. Since the lower
123 ANSI bytes already are represented in single bytes, using one of the character
124 set announcers is used to announce a character that starts with a byte of
127 The character sets are arranged so that the single byte sets all appear
128 before the multi-byte character sets. When we need to tell whether a
129 group byte is for a single byte char set or not we use this define: */
131 #define ULMBCS_DOUBLEOPTGROUP_START 0x10
134 However, to fully understand LMBCS, you must also understand a series of
135 exceptions & optimizations made in service of the design goals.
137 First, those of you who are character set mavens may have noticed that
138 the 'double-byte' character sets are actually multi-byte character sets
139 that can have 1 or two bytes, even in the upper-ascii range. To force
140 each group byte to introduce a fixed-width encoding (to make it faster to
141 count characters), we use a convention of doubling up on the group byte
142 to introduce any single-byte character > 0x80 in an otherwise double-byte
143 character set. So, for example, the LMBCS sequence x10 x10 xAE is the
144 same as '0xAE' in the Japanese code page 943.
146 Next, you will notice that the list of group bytes has some gaps.
147 These are used in various ways.
149 We reserve a few special single byte values for common control
150 characters. These are in the same place as their ANSI eqivalents for speed.
153 #define ULMBCS_HT 0x09 /* Fixed control char - Horizontal Tab */
154 #define ULMBCS_LF 0x0A /* Fixed control char - Line Feed */
155 #define ULMBCS_CR 0x0D /* Fixed control char - Carriage Return */
157 /* Then, 1-2-3 reserved a special single-byte character to put at the
158 beginning of internal 'system' range names: */
160 #define ULMBCS_123SYSTEMRANGE 0x19
162 /* Then we needed a place to put all the other ansi control characters
163 that must be moved to different values because LMBCS reserves those
164 values for other purposes. To represent the control characters, we start
165 with a first byte of 0xF & add the control chaarcter value as the
167 #define ULMBCS_GRP_CTRL 0x0F
169 /* For the C0 controls (less than 0x20), we add 0x20 to preserve the
170 useful doctrine that any byte less than 0x20 in a LMBCS char must be
171 the first byte of a character:*/
172 #define ULMBCS_CTRLOFFSET 0x20
175 Where to put the characters that aren't part of any of the 12 national
176 character sets? The first thing that was done, in the earlier years of
177 LMBCS, was to use up the spaces of the form
181 where 'G' was one of the single-byte character groups, and
182 D1 was less than 0x80. These sequences are gathered together
183 into a Lotus-invented doublebyte character set to represent a
184 lot of stray values. Internally, in this implementation, we track this
185 as group '0', as a place to tuck this exceptions list.*/
187 #define ULMBCS_GRP_EXCEPT 0x00
189 Finally, as the durability and usefulness of UNICODE became clear,
190 LOTUS added a new group 0x14 to hold Unicode values not otherwise
191 represented in LMBCS: */
192 #define ULMBCS_GRP_UNICODE 0x14
193 /* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE
194 (Big-Endian) characters. The exception comes when the UTF16
195 representation would have a zero as the second byte. In that case,
196 'F6' is used in its place, and the bytes are swapped. (This prevents
197 LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK:
198 0xF6xx is in the middle of the Private Use Area.)*/
199 #define ULMBCS_UNICOMPATZERO 0xF6
201 /* It is also useful in our code to have a constant for the size of
202 a LMBCS char that holds a literal Unicode value */
203 #define ULMBCS_UNICODE_SIZE 3
206 To squish the LMBCS representations down even further, and to make
207 translations even faster,sometimes the optimization group byte can be dropped
208 from a LMBCS character. This is decided on a process-by-process basis. The
209 group byte that is dropped is called the 'optimization group'.
211 For Notes, the optimzation group is always 0x1.*/
212 #define ULMBCS_DEFAULTOPTGROUP 0x1
213 /* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3
216 In any case, when using ICU, you either pass in the
217 optimization group as part of the name of the converter (LMBCS-1, LMBCS-2,
218 etc.). Using plain 'LMBCS' as the name of the converter will give you
222 *** Implementation strategy ***
225 Because of the extensive use of other character sets, the LMBCS converter
226 keeps a mapping between optimization groups and IBM character sets, so that
227 ICU converters can be created and used as needed. */
229 /* As you can see, even though any byte below 0x20 could be an optimization
230 byte, only those at 0x13 or below can map to an actual converter. To limit
231 some loops and searches, we define a value for that last group converter:*/
233 #define ULMBCS_GRP_LAST 0x13 /* last LMBCS group that has a converter */
235 static const char * const OptGroupByteToCPName
[ULMBCS_GRP_LAST
+ 1] = {
236 /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */
237 /* 0x0001 */ "ibm-850",
238 /* 0x0002 */ "ibm-851",
239 /* 0x0003 */ "windows-1255",
240 /* 0x0004 */ "windows-1256",
241 /* 0x0005 */ "windows-1251",
242 /* 0x0006 */ "ibm-852",
243 /* 0x0007 */ NULL
, /* Unused */
244 /* 0x0008 */ "windows-1254",
245 /* 0x0009 */ NULL
, /* Control char HT */
246 /* 0x000A */ NULL
, /* Control char LF */
247 /* 0x000B */ "windows-874",
248 /* 0x000C */ NULL
, /* Unused */
249 /* 0x000D */ NULL
, /* Control char CR */
250 /* 0x000E */ NULL
, /* Unused */
251 /* 0x000F */ NULL
, /* Control chars: 0x0F20 + C0/C1 character: algorithmic */
252 /* 0x0010 */ "windows-932",
253 /* 0x0011 */ "windows-949",
254 /* 0x0012 */ "windows-950",
255 /* 0x0013 */ "windows-936"
257 /* The rest are null, including the 0x0014 Unicode compatibility region
258 and 0x0019, the 1-2-3 system range control char */
262 /* That's approximately all the data that's needed for translating
266 However, to translate Unicode to LMBCS, we need some more support.
268 That's because there are often more than one possible mappings from a Unicode
269 code point back into LMBCS. The first thing we do is look up into a table
270 to figure out if there are more than one possible mappings. This table,
271 arranged by Unicode values (including ranges) either lists which group
272 to use, or says that it could go into one or more of the SBCS sets, or
273 into one or more of the DBCS sets. (If the character exists in both DBCS &
274 SBCS, the table will place it in the SBCS sets, to make the LMBCS code point
275 length as small as possible. Here's the two special markers we use to indicate
276 ambiguous mappings: */
278 #define ULMBCS_AMBIGUOUS_SBCS 0x80 /* could fit in more than one
279 LMBCS sbcs native encoding
280 (example: most accented latin) */
281 #define ULMBCS_AMBIGUOUS_MBCS 0x81 /* could fit in more than one
282 LMBCS mbcs native encoding
284 #define ULMBCS_AMBIGUOUS_ALL 0x82
285 /* And here's a simple way to see if a group falls in an appropriate range */
286 #define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \
287 ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \
288 (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \
289 (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \
290 (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START)) || \
291 ((agroup) == ULMBCS_AMBIGUOUS_ALL)
294 /* The table & some code to use it: */
297 static const struct _UniLMBCSGrpMap
299 const UChar uniStartRange
;
300 const UChar uniEndRange
;
301 const ulmbcs_byte_t GrpType
;
306 {0x0001, 0x001F, ULMBCS_GRP_CTRL
},
307 {0x0080, 0x009F, ULMBCS_GRP_CTRL
},
308 {0x00A0, 0x00A6, ULMBCS_AMBIGUOUS_SBCS
},
309 {0x00A7, 0x00A8, ULMBCS_AMBIGUOUS_ALL
},
310 {0x00A9, 0x00AF, ULMBCS_AMBIGUOUS_SBCS
},
311 {0x00B0, 0x00B1, ULMBCS_AMBIGUOUS_ALL
},
312 {0x00B2, 0x00B3, ULMBCS_AMBIGUOUS_SBCS
},
313 {0x00B4, 0x00B4, ULMBCS_AMBIGUOUS_ALL
},
314 {0x00B5, 0x00B5, ULMBCS_AMBIGUOUS_SBCS
},
315 {0x00B6, 0x00B6, ULMBCS_AMBIGUOUS_ALL
},
316 {0x00B7, 0x00D6, ULMBCS_AMBIGUOUS_SBCS
},
317 {0x00D7, 0x00D7, ULMBCS_AMBIGUOUS_ALL
},
318 {0x00D8, 0x00F6, ULMBCS_AMBIGUOUS_SBCS
},
319 {0x00F7, 0x00F7, ULMBCS_AMBIGUOUS_ALL
},
320 {0x00F8, 0x01CD, ULMBCS_AMBIGUOUS_SBCS
},
321 {0x01CE, 0x01CE, ULMBCS_GRP_TW
},
322 {0x01CF, 0x02B9, ULMBCS_AMBIGUOUS_SBCS
},
323 {0x02BA, 0x02BA, ULMBCS_GRP_CN
},
324 {0x02BC, 0x02C8, ULMBCS_AMBIGUOUS_SBCS
},
325 {0x02C9, 0x02D0, ULMBCS_AMBIGUOUS_MBCS
},
326 {0x02D8, 0x02DD, ULMBCS_AMBIGUOUS_SBCS
},
327 {0x0384, 0x0390, ULMBCS_AMBIGUOUS_SBCS
},
328 {0x0391, 0x03A9, ULMBCS_AMBIGUOUS_ALL
},
329 {0x03AA, 0x03B0, ULMBCS_AMBIGUOUS_SBCS
},
330 {0x03B1, 0x03C9, ULMBCS_AMBIGUOUS_ALL
},
331 {0x03CA, 0x03CE, ULMBCS_AMBIGUOUS_SBCS
},
332 {0x0400, 0x0400, ULMBCS_GRP_RU
},
333 {0x0401, 0x0401, ULMBCS_AMBIGUOUS_ALL
},
334 {0x0402, 0x040F, ULMBCS_GRP_RU
},
335 {0x0410, 0x0431, ULMBCS_AMBIGUOUS_ALL
},
336 {0x0432, 0x044E, ULMBCS_GRP_RU
},
337 {0x044F, 0x044F, ULMBCS_AMBIGUOUS_ALL
},
338 {0x0450, 0x0491, ULMBCS_GRP_RU
},
339 {0x05B0, 0x05F2, ULMBCS_GRP_HE
},
340 {0x060C, 0x06AF, ULMBCS_GRP_AR
},
341 {0x0E01, 0x0E5B, ULMBCS_GRP_TH
},
342 {0x200C, 0x200F, ULMBCS_AMBIGUOUS_SBCS
},
343 {0x2010, 0x2010, ULMBCS_AMBIGUOUS_MBCS
},
344 {0x2013, 0x2014, ULMBCS_AMBIGUOUS_SBCS
},
345 {0x2015, 0x2015, ULMBCS_AMBIGUOUS_MBCS
},
346 {0x2016, 0x2016, ULMBCS_AMBIGUOUS_MBCS
},
347 {0x2017, 0x2017, ULMBCS_AMBIGUOUS_SBCS
},
348 {0x2018, 0x2019, ULMBCS_AMBIGUOUS_ALL
},
349 {0x201A, 0x201B, ULMBCS_AMBIGUOUS_SBCS
},
350 {0x201C, 0x201D, ULMBCS_AMBIGUOUS_ALL
},
351 {0x201E, 0x201F, ULMBCS_AMBIGUOUS_SBCS
},
352 {0x2020, 0x2021, ULMBCS_AMBIGUOUS_ALL
},
353 {0x2022, 0x2024, ULMBCS_AMBIGUOUS_SBCS
},
354 {0x2025, 0x2025, ULMBCS_AMBIGUOUS_MBCS
},
355 {0x2026, 0x2026, ULMBCS_AMBIGUOUS_ALL
},
356 {0x2027, 0x2027, ULMBCS_GRP_TW
},
357 {0x2030, 0x2030, ULMBCS_AMBIGUOUS_ALL
},
358 {0x2031, 0x2031, ULMBCS_AMBIGUOUS_SBCS
},
359 {0x2032, 0x2033, ULMBCS_AMBIGUOUS_MBCS
},
360 {0x2035, 0x2035, ULMBCS_AMBIGUOUS_MBCS
},
361 {0x2039, 0x203A, ULMBCS_AMBIGUOUS_SBCS
},
362 {0x203B, 0x203B, ULMBCS_AMBIGUOUS_MBCS
},
363 {0x203C, 0x203C, ULMBCS_GRP_EXCEPT
},
364 {0x2074, 0x2074, ULMBCS_GRP_KO
},
365 {0x207F, 0x207F, ULMBCS_GRP_EXCEPT
},
366 {0x2081, 0x2084, ULMBCS_GRP_KO
},
367 {0x20A4, 0x20AC, ULMBCS_AMBIGUOUS_SBCS
},
368 {0x2103, 0x2109, ULMBCS_AMBIGUOUS_MBCS
},
369 {0x2111, 0x2120, ULMBCS_AMBIGUOUS_SBCS
},
370 /*zhujin: upgrade, for regressiont test, spr HKIA4YHTSU*/
371 {0x2121, 0x2121, ULMBCS_AMBIGUOUS_MBCS
},
372 {0x2122, 0x2126, ULMBCS_AMBIGUOUS_SBCS
},
373 {0x212B, 0x212B, ULMBCS_AMBIGUOUS_MBCS
},
374 {0x2135, 0x2135, ULMBCS_AMBIGUOUS_SBCS
},
375 {0x2153, 0x2154, ULMBCS_GRP_KO
},
376 {0x215B, 0x215E, ULMBCS_GRP_EXCEPT
},
377 {0x2160, 0x2179, ULMBCS_AMBIGUOUS_MBCS
},
378 {0x2190, 0x2193, ULMBCS_AMBIGUOUS_ALL
},
379 {0x2194, 0x2195, ULMBCS_GRP_EXCEPT
},
380 {0x2196, 0x2199, ULMBCS_AMBIGUOUS_MBCS
},
381 {0x21A8, 0x21A8, ULMBCS_GRP_EXCEPT
},
382 {0x21B8, 0x21B9, ULMBCS_GRP_CN
},
383 {0x21D0, 0x21D1, ULMBCS_GRP_EXCEPT
},
384 {0x21D2, 0x21D2, ULMBCS_AMBIGUOUS_MBCS
},
385 {0x21D3, 0x21D3, ULMBCS_GRP_EXCEPT
},
386 {0x21D4, 0x21D4, ULMBCS_AMBIGUOUS_MBCS
},
387 {0x21D5, 0x21D5, ULMBCS_GRP_EXCEPT
},
388 {0x21E7, 0x21E7, ULMBCS_GRP_CN
},
389 {0x2200, 0x2200, ULMBCS_AMBIGUOUS_MBCS
},
390 {0x2201, 0x2201, ULMBCS_GRP_EXCEPT
},
391 {0x2202, 0x2202, ULMBCS_AMBIGUOUS_MBCS
},
392 {0x2203, 0x2203, ULMBCS_AMBIGUOUS_MBCS
},
393 {0x2204, 0x2206, ULMBCS_GRP_EXCEPT
},
394 {0x2207, 0x2208, ULMBCS_AMBIGUOUS_MBCS
},
395 {0x2209, 0x220A, ULMBCS_GRP_EXCEPT
},
396 {0x220B, 0x220B, ULMBCS_AMBIGUOUS_MBCS
},
397 {0x220F, 0x2215, ULMBCS_AMBIGUOUS_MBCS
},
398 {0x2219, 0x2219, ULMBCS_GRP_EXCEPT
},
399 {0x221A, 0x221A, ULMBCS_AMBIGUOUS_MBCS
},
400 {0x221B, 0x221C, ULMBCS_GRP_EXCEPT
},
401 {0x221D, 0x221E, ULMBCS_AMBIGUOUS_MBCS
},
402 {0x221F, 0x221F, ULMBCS_GRP_EXCEPT
},
403 {0x2220, 0x2220, ULMBCS_AMBIGUOUS_MBCS
},
404 {0x2223, 0x222A, ULMBCS_AMBIGUOUS_MBCS
},
405 {0x222B, 0x223D, ULMBCS_AMBIGUOUS_MBCS
},
406 {0x2245, 0x2248, ULMBCS_GRP_EXCEPT
},
407 {0x224C, 0x224C, ULMBCS_GRP_TW
},
408 {0x2252, 0x2252, ULMBCS_AMBIGUOUS_MBCS
},
409 {0x2260, 0x2261, ULMBCS_AMBIGUOUS_MBCS
},
410 {0x2262, 0x2265, ULMBCS_GRP_EXCEPT
},
411 {0x2266, 0x226F, ULMBCS_AMBIGUOUS_MBCS
},
412 {0x2282, 0x2283, ULMBCS_AMBIGUOUS_MBCS
},
413 {0x2284, 0x2285, ULMBCS_GRP_EXCEPT
},
414 {0x2286, 0x2287, ULMBCS_AMBIGUOUS_MBCS
},
415 {0x2288, 0x2297, ULMBCS_GRP_EXCEPT
},
416 {0x2299, 0x22BF, ULMBCS_AMBIGUOUS_MBCS
},
417 {0x22C0, 0x22C0, ULMBCS_GRP_EXCEPT
},
418 {0x2310, 0x2310, ULMBCS_GRP_EXCEPT
},
419 {0x2312, 0x2312, ULMBCS_AMBIGUOUS_MBCS
},
420 {0x2318, 0x2321, ULMBCS_GRP_EXCEPT
},
421 {0x2318, 0x2321, ULMBCS_GRP_CN
},
422 {0x2460, 0x24E9, ULMBCS_AMBIGUOUS_MBCS
},
423 {0x2500, 0x2500, ULMBCS_AMBIGUOUS_SBCS
},
424 {0x2501, 0x2501, ULMBCS_AMBIGUOUS_MBCS
},
425 {0x2502, 0x2502, ULMBCS_AMBIGUOUS_ALL
},
426 {0x2503, 0x2503, ULMBCS_AMBIGUOUS_MBCS
},
427 {0x2504, 0x2505, ULMBCS_GRP_TW
},
428 {0x2506, 0x2665, ULMBCS_AMBIGUOUS_ALL
},
429 {0x2666, 0x2666, ULMBCS_GRP_EXCEPT
},
430 {0x2667, 0x2669, ULMBCS_AMBIGUOUS_SBCS
},
431 {0x266A, 0x266A, ULMBCS_AMBIGUOUS_ALL
},
432 {0x266B, 0x266C, ULMBCS_AMBIGUOUS_SBCS
},
433 {0x266D, 0x266D, ULMBCS_AMBIGUOUS_MBCS
},
434 {0x266E, 0x266E, ULMBCS_AMBIGUOUS_SBCS
},
435 {0x266F, 0x266F, ULMBCS_GRP_JA
},
436 {0x2670, 0x2E7F, ULMBCS_AMBIGUOUS_SBCS
},
437 {0x2E80, 0xF861, ULMBCS_AMBIGUOUS_MBCS
},
438 {0xF862, 0xF8FF, ULMBCS_GRP_EXCEPT
},
439 {0xF900, 0xFA2D, ULMBCS_AMBIGUOUS_MBCS
},
440 {0xFB00, 0xFEFF, ULMBCS_AMBIGUOUS_SBCS
},
441 {0xFF01, 0xFFEE, ULMBCS_AMBIGUOUS_MBCS
},
442 {0xFFFF, 0xFFFF, ULMBCS_GRP_UNICODE
}
446 FindLMBCSUniRange(UChar uniChar
)
448 const struct _UniLMBCSGrpMap
* pTable
= UniLMBCSGrpMap
;
450 while (uniChar
> pTable
->uniEndRange
)
455 if (uniChar
>= pTable
->uniStartRange
)
457 return pTable
->GrpType
;
459 return ULMBCS_GRP_UNICODE
;
463 We also ask the creator of a converter to send in a preferred locale
464 that we can use in resolving ambiguous mappings. They send the locale
465 in as a string, and we map it, if possible, to one of the
466 LMBCS groups. We use this table, and the associated code, to
469 /**************************************************
470 This table maps locale ID's to LMBCS opt groups.
471 The default return is group 0x01. Note that for
472 performance reasons, the table is sorted in
473 increasing alphabetic order, with the notable
474 exception of zhTW. This is to force the check
475 for Traditonal Chinese before dropping back to
478 Note too that the Latin-1 groups have been
479 commented out because it's the default, and
480 this shortens the table, allowing a serial
481 search to go quickly.
482 *************************************************/
484 static const struct _LocaleLMBCSGrpMap
486 const char *LocaleID
;
487 const ulmbcs_byte_t OptGroup
;
488 } LocaleLMBCSGrpMap
[] =
490 {"ar", ULMBCS_GRP_AR
},
491 {"be", ULMBCS_GRP_RU
},
492 {"bg", ULMBCS_GRP_L2
},
493 /* {"ca", ULMBCS_GRP_L1}, */
494 {"cs", ULMBCS_GRP_L2
},
495 /* {"da", ULMBCS_GRP_L1}, */
496 /* {"de", ULMBCS_GRP_L1}, */
497 {"el", ULMBCS_GRP_GR
},
498 /* {"en", ULMBCS_GRP_L1}, */
499 /* {"es", ULMBCS_GRP_L1}, */
500 /* {"et", ULMBCS_GRP_L1}, */
501 /* {"fi", ULMBCS_GRP_L1}, */
502 /* {"fr", ULMBCS_GRP_L1}, */
503 {"he", ULMBCS_GRP_HE
},
504 {"hu", ULMBCS_GRP_L2
},
505 /* {"is", ULMBCS_GRP_L1}, */
506 /* {"it", ULMBCS_GRP_L1}, */
507 {"iw", ULMBCS_GRP_HE
},
508 {"ja", ULMBCS_GRP_JA
},
509 {"ko", ULMBCS_GRP_KO
},
510 /* {"lt", ULMBCS_GRP_L1}, */
511 /* {"lv", ULMBCS_GRP_L1}, */
512 {"mk", ULMBCS_GRP_RU
},
513 /* {"nl", ULMBCS_GRP_L1}, */
514 /* {"no", ULMBCS_GRP_L1}, */
515 {"pl", ULMBCS_GRP_L2
},
516 /* {"pt", ULMBCS_GRP_L1}, */
517 {"ro", ULMBCS_GRP_L2
},
518 {"ru", ULMBCS_GRP_RU
},
519 {"sh", ULMBCS_GRP_L2
},
520 {"sk", ULMBCS_GRP_L2
},
521 {"sl", ULMBCS_GRP_L2
},
522 {"sq", ULMBCS_GRP_L2
},
523 {"sr", ULMBCS_GRP_RU
},
524 /* {"sv", ULMBCS_GRP_L1}, */
525 {"th", ULMBCS_GRP_TH
},
526 {"tr", ULMBCS_GRP_TR
},
527 {"uk", ULMBCS_GRP_RU
},
528 /* {"vi", ULMBCS_GRP_L1}, */
529 {"zhTW", ULMBCS_GRP_TW
},
530 {"zh", ULMBCS_GRP_CN
},
531 {NULL
, ULMBCS_GRP_L1
}
536 FindLMBCSLocale(const char *LocaleID
)
538 const struct _LocaleLMBCSGrpMap
*pTable
= LocaleLMBCSGrpMap
;
540 if ((!LocaleID
) || (!*LocaleID
))
545 while (pTable
->LocaleID
)
547 if (*pTable
->LocaleID
== *LocaleID
) /* Check only first char for speed */
549 /* First char matches - check whole name, for entry-length */
550 if (uprv_strncmp(pTable
->LocaleID
, LocaleID
, strlen(pTable
->LocaleID
)) == 0)
551 return pTable
->OptGroup
;
554 if (*pTable
->LocaleID
> *LocaleID
) /* Sorted alphabetically - exit */
558 return ULMBCS_GRP_L1
;
563 Before we get to the main body of code, here's how we hook up to the rest
564 of ICU. ICU converters are required to define a structure that includes
565 some function pointers, and some common data, in the style of a C++
566 vtable. There is also room in there for converter-specific data. LMBCS
567 uses that converter-specific data to keep track of the 12 subconverters
568 we use, the optimization group, and the group (if any) that matches the
569 locale. We have one structure instantiated for each of the 12 possible
570 optimization groups. To avoid typos & to avoid boring the reader, we
571 put the declarations of these structures and functions into macros. To see
572 the definitions of these structures, see unicode\ucnv_bld.h
577 UConverterSharedData
*OptGrpConverter
[ULMBCS_GRP_LAST
+1]; /* Converter per Opt. grp. */
578 uint8_t OptGroup
; /* default Opt. grp. for this LMBCS session */
579 uint8_t localeConverterIndex
; /* reasonable locale match for index */
583 static void _LMBCSClose(UConverter
* _this
);
585 #define DECLARE_LMBCS_DATA(n) \
586 static const UConverterImpl _LMBCSImpl##n={\
592 _LMBCSToUnicodeWithOffsets,\
593 _LMBCSToUnicodeWithOffsets,\
601 ucnv_getCompleteUnicodeSet\
603 static const UConverterStaticData _LMBCSStaticData##n={\
604 sizeof(UConverterStaticData),\
606 0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\
607 { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \
609 const UConverterSharedData _LMBCSData##n={\
610 sizeof(UConverterSharedData), ~((uint32_t) 0),\
611 NULL, NULL, &_LMBCSStaticData##n, FALSE, &_LMBCSImpl##n, \
615 /* The only function we needed to duplicate 12 times was the 'open'
616 function, which will do basically the same thing except set a different
617 optimization group. So, we put the common stuff into a worker function,
618 and set up another macro to stamp out the 12 open functions:*/
619 #define DEFINE_LMBCS_OPEN(n) \
621 _LMBCSOpen##n(UConverter* _this, UConverterLoadArgs* pArgs, UErrorCode* err) \
622 { _LMBCSOpenWorker(_this, pArgs, err, n); }
626 /* Here's the open worker & the common close function */
628 _LMBCSOpenWorker(UConverter
* _this
,
629 UConverterLoadArgs
*pArgs
,
631 ulmbcs_byte_t OptGroup
)
633 UConverterDataLMBCS
* extraInfo
= _this
->extraInfo
=
634 (UConverterDataLMBCS
*)uprv_malloc (sizeof (UConverterDataLMBCS
));
635 if(extraInfo
!= NULL
)
637 UConverterNamePieces stackPieces
;
638 UConverterLoadArgs stackArgs
={ (int32_t)sizeof(UConverterLoadArgs
) };
641 uprv_memset(extraInfo
, 0, sizeof(UConverterDataLMBCS
));
643 stackArgs
.onlyTestIsLoadable
= pArgs
->onlyTestIsLoadable
;
645 for (i
=0; i
<= ULMBCS_GRP_LAST
&& U_SUCCESS(*err
); i
++)
647 if(OptGroupByteToCPName
[i
] != NULL
) {
648 extraInfo
->OptGrpConverter
[i
] = ucnv_loadSharedData(OptGroupByteToCPName
[i
], &stackPieces
, &stackArgs
, err
);
652 if(U_FAILURE(*err
) || pArgs
->onlyTestIsLoadable
) {
656 extraInfo
->OptGroup
= OptGroup
;
657 extraInfo
->localeConverterIndex
= FindLMBCSLocale(pArgs
->locale
);
661 *err
= U_MEMORY_ALLOCATION_ERROR
;
666 _LMBCSClose(UConverter
* _this
)
668 if (_this
->extraInfo
!= NULL
)
671 UConverterDataLMBCS
* extraInfo
= (UConverterDataLMBCS
*) _this
->extraInfo
;
673 for (Ix
=0; Ix
<= ULMBCS_GRP_LAST
; Ix
++)
675 if (extraInfo
->OptGrpConverter
[Ix
] != NULL
)
676 ucnv_unloadSharedDataIfReady(extraInfo
->OptGrpConverter
[Ix
]);
678 if (!_this
->isExtraLocal
) {
679 uprv_free (_this
->extraInfo
);
680 _this
->extraInfo
= NULL
;
685 typedef struct LMBCSClone
{
687 UConverterDataLMBCS lmbcs
;
691 _LMBCSSafeClone(const UConverter
*cnv
,
693 int32_t *pBufferSize
,
694 UErrorCode
*status
) {
695 LMBCSClone
*newLMBCS
;
696 UConverterDataLMBCS
*extraInfo
;
699 if(*pBufferSize
<=0) {
700 *pBufferSize
=(int32_t)sizeof(LMBCSClone
);
704 extraInfo
=(UConverterDataLMBCS
*)cnv
->extraInfo
;
705 newLMBCS
=(LMBCSClone
*)stackBuffer
;
707 /* ucnv.c/ucnv_safeClone() copied the main UConverter already */
709 uprv_memcpy(&newLMBCS
->lmbcs
, extraInfo
, sizeof(UConverterDataLMBCS
));
711 /* share the subconverters */
712 for(i
= 0; i
<= ULMBCS_GRP_LAST
; ++i
) {
713 if(extraInfo
->OptGrpConverter
[i
] != NULL
) {
714 ucnv_incrementRefCount(extraInfo
->OptGrpConverter
[i
]);
718 newLMBCS
->cnv
.extraInfo
= &newLMBCS
->lmbcs
;
719 newLMBCS
->cnv
.isExtraLocal
= TRUE
;
720 return &newLMBCS
->cnv
;
724 * There used to be a _LMBCSGetUnicodeSet() function here (up to svn revision 20117)
725 * which added all code points except for U+F6xx
726 * because those cannot be represented in the Unicode group.
727 * However, it turns out that windows-950 has roundtrips for all of U+F6xx
728 * which means that LMBCS can convert all Unicode code points after all.
729 * We now simply use ucnv_getCompleteUnicodeSet().
731 * This may need to be looked at again as Lotus uses _LMBCSGetUnicodeSet(). (091216)
735 Here's the basic helper function that we use when converting from
736 Unicode to LMBCS, and we suspect that a Unicode character will fit into
737 one of the 12 groups. The return value is the number of bytes written
738 starting at pStartLMBCS (if any).
742 LMBCSConversionWorker (
743 UConverterDataLMBCS
* extraInfo
, /* subconverters, opt & locale groups */
744 ulmbcs_byte_t group
, /* The group to try */
745 ulmbcs_byte_t
* pStartLMBCS
, /* where to put the results */
746 UChar
* pUniChar
, /* The input unicode character */
747 ulmbcs_byte_t
* lastConverterIndex
, /* output: track last successful group used */
748 UBool
* groups_tried
/* output: track any unsuccessful groups */
751 ulmbcs_byte_t
* pLMBCS
= pStartLMBCS
;
752 UConverterSharedData
* xcnv
= extraInfo
->OptGrpConverter
[group
];
756 ulmbcs_byte_t firstByte
;
759 U_ASSERT(group
<ULMBCS_GRP_UNICODE
);
761 bytesConverted
= ucnv_MBCSFromUChar32(xcnv
, *pUniChar
, &value
, FALSE
);
763 /* get the first result byte */
764 if(bytesConverted
> 0) {
765 firstByte
= (ulmbcs_byte_t
)(value
>> ((bytesConverted
- 1) * 8));
767 /* most common failure mode is an unassigned character */
768 groups_tried
[group
] = TRUE
;
772 *lastConverterIndex
= group
;
774 /* All initial byte values in lower ascii range should have been caught by now,
775 except with the exception group.
777 U_ASSERT((firstByte
<= ULMBCS_C0END
) || (firstByte
>= ULMBCS_C1START
) || (group
== ULMBCS_GRP_EXCEPT
));
779 /* use converted data: first write 0, 1 or two group bytes */
780 if (group
!= ULMBCS_GRP_EXCEPT
&& extraInfo
->OptGroup
!= group
)
783 if (bytesConverted
== 1 && group
>= ULMBCS_DOUBLEOPTGROUP_START
)
789 /* don't emit control chars */
790 if ( bytesConverted
== 1 && firstByte
< 0x20 )
794 /* then move over the converted data */
795 switch(bytesConverted
)
798 *pLMBCS
++ = (ulmbcs_byte_t
)(value
>> 24);
799 case 3: /*fall through*/
800 *pLMBCS
++ = (ulmbcs_byte_t
)(value
>> 16);
801 case 2: /*fall through*/
802 *pLMBCS
++ = (ulmbcs_byte_t
)(value
>> 8);
803 case 1: /*fall through*/
804 *pLMBCS
++ = (ulmbcs_byte_t
)value
;
806 /* will never occur */
810 return (pLMBCS
- pStartLMBCS
);
814 /* This is a much simpler version of above, when we
815 know we are writing LMBCS using the Unicode group
818 LMBCSConvertUni(ulmbcs_byte_t
* pLMBCS
, UChar uniChar
)
820 /* encode into LMBCS Unicode range */
821 uint8_t LowCh
= (uint8_t)(uniChar
& 0x00FF);
822 uint8_t HighCh
= (uint8_t)(uniChar
>> 8);
824 *pLMBCS
++ = ULMBCS_GRP_UNICODE
;
828 *pLMBCS
++ = ULMBCS_UNICOMPATZERO
;
836 return ULMBCS_UNICODE_SIZE
;
841 /* The main Unicode to LMBCS conversion function */
843 _LMBCSFromUnicode(UConverterFromUnicodeArgs
* args
,
846 ulmbcs_byte_t lastConverterIndex
= 0;
848 ulmbcs_byte_t LMBCS
[ULMBCS_CHARSIZE_MAX
];
849 ulmbcs_byte_t
* pLMBCS
;
850 int32_t bytes_written
;
851 UBool groups_tried
[ULMBCS_GRP_LAST
+1];
852 UConverterDataLMBCS
* extraInfo
= (UConverterDataLMBCS
*) args
->converter
->extraInfo
;
855 /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS)
856 If that succeeds, see if it will all fit into the target & copy it over
859 We try conversions in the following order:
861 1. Single-byte ascii & special fixed control chars (&null)
862 2. Look up group in table & try that (could be
865 C) national encoding,
866 or ambiguous SBCS or MBCS group (on to step 4...)
868 3. If its ambiguous, try this order:
869 A) The optimization group
871 C) The last group that succeeded with this string.
872 D) every other group that's relevent (single or double)
873 E) If its single-byte ambiguous, try the exceptions group
875 4. And as a grand fallback: Unicode
878 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
879 ulmbcs_byte_t OldConverterIndex
= 0;
881 while (args
->source
< args
->sourceLimit
&& !U_FAILURE(*err
))
883 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
884 OldConverterIndex
= extraInfo
->localeConverterIndex
;
886 if (args
->target
>= args
->targetLimit
)
888 *err
= U_BUFFER_OVERFLOW_ERROR
;
891 uniChar
= *(args
->source
);
895 /* check cases in rough order of how common they are, for speed */
897 /* single byte matches: strategy 1 */
898 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
899 if((uniChar
>=0x80) && (uniChar
<=0xff)
900 /*Fix for SPR#JUYA6XAERU and TSAO7GL5NK (Lotus)*/ &&(uniChar
!=0xB1) &&(uniChar
!=0xD7) &&(uniChar
!=0xF7)
901 &&(uniChar
!=0xB0) &&(uniChar
!=0xB4) &&(uniChar
!=0xB6) &&(uniChar
!=0xA7) &&(uniChar
!=0xA8))
903 extraInfo
->localeConverterIndex
= ULMBCS_GRP_L1
;
905 if (((uniChar
> ULMBCS_C0END
) && (uniChar
< ULMBCS_C1START
)) ||
906 uniChar
== 0 || uniChar
== ULMBCS_HT
|| uniChar
== ULMBCS_CR
||
907 uniChar
== ULMBCS_LF
|| uniChar
== ULMBCS_123SYSTEMRANGE
910 *pLMBCS
++ = (ulmbcs_byte_t
) uniChar
;
917 /* Check by UNICODE range (Strategy 2) */
918 ulmbcs_byte_t group
= FindLMBCSUniRange(uniChar
);
920 if (group
== ULMBCS_GRP_UNICODE
) /* (Strategy 2A) */
922 pLMBCS
+= LMBCSConvertUni(pLMBCS
,uniChar
);
924 bytes_written
= (int32_t)(pLMBCS
- LMBCS
);
926 else if (group
== ULMBCS_GRP_CTRL
) /* (Strategy 2B) */
928 /* Handle control characters here */
929 if (uniChar
<= ULMBCS_C0END
)
931 *pLMBCS
++ = ULMBCS_GRP_CTRL
;
932 *pLMBCS
++ = (ulmbcs_byte_t
)(ULMBCS_CTRLOFFSET
+ uniChar
);
934 else if (uniChar
>= ULMBCS_C1START
&& uniChar
<= ULMBCS_C1START
+ ULMBCS_CTRLOFFSET
)
936 *pLMBCS
++ = ULMBCS_GRP_CTRL
;
937 *pLMBCS
++ = (ulmbcs_byte_t
) (uniChar
& 0x00FF);
939 bytes_written
= (int32_t)(pLMBCS
- LMBCS
);
941 else if (group
< ULMBCS_GRP_UNICODE
) /* (Strategy 2C) */
943 /* a specific converter has been identified - use it */
944 bytes_written
= (int32_t)LMBCSConversionWorker (
945 extraInfo
, group
, pLMBCS
, &uniChar
,
946 &lastConverterIndex
, groups_tried
);
948 if (!bytes_written
) /* the ambiguous group cases (Strategy 3) */
950 uprv_memset(groups_tried
, 0, sizeof(groups_tried
));
952 /* check for non-default optimization group (Strategy 3A )*/
953 if ((extraInfo
->OptGroup
!= 1) && (ULMBCS_AMBIGUOUS_MATCH(group
, extraInfo
->OptGroup
)))
955 /*zhujin: upgrade, merge #39299 here (Lotus) */
956 /*To make R5 compatible translation, look for exceptional group first for non-DBCS*/
958 if(extraInfo
->localeConverterIndex
< ULMBCS_DOUBLEOPTGROUP_START
)
960 bytes_written
= LMBCSConversionWorker (extraInfo
,
961 ULMBCS_GRP_L1
, pLMBCS
, &uniChar
,
962 &lastConverterIndex
, groups_tried
);
966 bytes_written
= LMBCSConversionWorker (extraInfo
,
967 ULMBCS_GRP_EXCEPT
, pLMBCS
, &uniChar
,
968 &lastConverterIndex
, groups_tried
);
972 bytes_written
= LMBCSConversionWorker (extraInfo
,
973 extraInfo
->localeConverterIndex
, pLMBCS
, &uniChar
,
974 &lastConverterIndex
, groups_tried
);
979 bytes_written
= LMBCSConversionWorker (extraInfo
,
980 extraInfo
->localeConverterIndex
, pLMBCS
, &uniChar
,
981 &lastConverterIndex
, groups_tried
);
984 /* check for locale optimization group (Strategy 3B) */
985 if (!bytes_written
&& (extraInfo
->localeConverterIndex
) && (ULMBCS_AMBIGUOUS_MATCH(group
, extraInfo
->localeConverterIndex
)))
987 bytes_written
= (int32_t)LMBCSConversionWorker (extraInfo
,
988 extraInfo
->localeConverterIndex
, pLMBCS
, &uniChar
, &lastConverterIndex
, groups_tried
);
990 /* check for last optimization group used for this string (Strategy 3C) */
991 if (!bytes_written
&& (lastConverterIndex
) && (ULMBCS_AMBIGUOUS_MATCH(group
, lastConverterIndex
)))
993 bytes_written
= (int32_t)LMBCSConversionWorker (extraInfo
,
994 lastConverterIndex
, pLMBCS
, &uniChar
, &lastConverterIndex
, groups_tried
);
998 /* just check every possible matching converter (Strategy 3D) */
999 ulmbcs_byte_t grp_start
;
1000 ulmbcs_byte_t grp_end
;
1001 ulmbcs_byte_t grp_ix
;
1002 grp_start
= (ulmbcs_byte_t
)((group
== ULMBCS_AMBIGUOUS_MBCS
)
1003 ? ULMBCS_DOUBLEOPTGROUP_START
1005 grp_end
= (ulmbcs_byte_t
)((group
== ULMBCS_AMBIGUOUS_MBCS
)
1008 if(group
== ULMBCS_AMBIGUOUS_ALL
)
1010 grp_start
= ULMBCS_GRP_L1
;
1011 grp_end
= ULMBCS_GRP_LAST
;
1013 for (grp_ix
= grp_start
;
1014 grp_ix
<= grp_end
&& !bytes_written
;
1017 if (extraInfo
->OptGrpConverter
[grp_ix
] && !groups_tried
[grp_ix
])
1019 bytes_written
= (int32_t)LMBCSConversionWorker (extraInfo
,
1020 grp_ix
, pLMBCS
, &uniChar
,
1021 &lastConverterIndex
, groups_tried
);
1024 /* a final conversion fallback to the exceptions group if its likely
1025 to be single byte (Strategy 3E) */
1026 if (!bytes_written
&& grp_start
== ULMBCS_GRP_L1
)
1028 bytes_written
= (int32_t)LMBCSConversionWorker (extraInfo
,
1029 ULMBCS_GRP_EXCEPT
, pLMBCS
, &uniChar
,
1030 &lastConverterIndex
, groups_tried
);
1033 /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/
1037 pLMBCS
+= LMBCSConvertUni(pLMBCS
, uniChar
);
1038 bytes_written
= (int32_t)(pLMBCS
- LMBCS
);
1043 /* we have a translation. increment source and write as much as posible to target */
1046 while (args
->target
< args
->targetLimit
&& bytes_written
--)
1048 *(args
->target
)++ = *pLMBCS
++;
1051 *(args
->offsets
)++ = sourceIndex
;
1055 if (bytes_written
> 0)
1057 /* write any bytes that didn't fit in target to the error buffer,
1058 common code will move this to target if we get called back with
1061 uint8_t * pErrorBuffer
= args
->converter
->charErrorBuffer
;
1062 *err
= U_BUFFER_OVERFLOW_ERROR
;
1063 args
->converter
->charErrorBufferLength
= (int8_t)bytes_written
;
1064 while (bytes_written
--)
1066 *pErrorBuffer
++ = *pLMBCS
++;
1069 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
1070 extraInfo
->localeConverterIndex
= OldConverterIndex
;
1075 /* Now, the Unicode from LMBCS section */
1078 /* A function to call when we are looking at the Unicode group byte in LMBCS */
1080 GetUniFromLMBCSUni(char const ** ppLMBCSin
) /* Called with LMBCS-style Unicode byte stream */
1082 uint8_t HighCh
= *(*ppLMBCSin
)++; /* Big-endian Unicode in LMBCS compatibility group*/
1083 uint8_t LowCh
= *(*ppLMBCSin
)++;
1085 if (HighCh
== ULMBCS_UNICOMPATZERO
)
1088 LowCh
= 0; /* zero-byte in LSB special character */
1090 return (UChar
)((HighCh
<< 8) | LowCh
);
1095 /* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index'
1096 bytes left in source up to sourceLimit.Errors appropriately if not.
1097 If we reach the limit, then update the source pointer to there to consume
1098 all input as required by ICU converter semantics.
1101 #define CHECK_SOURCE_LIMIT(index) \
1102 if (args->source+index > args->sourceLimit){\
1103 *err = U_TRUNCATED_CHAR_FOUND;\
1104 args->source = args->sourceLimit;\
1107 /* Return the Unicode representation for the current LMBCS character */
1110 _LMBCSGetNextUCharWorker(UConverterToUnicodeArgs
* args
,
1113 UChar32 uniChar
= 0; /* an output UNICODE char */
1114 ulmbcs_byte_t CurByte
; /* A byte from the input stream */
1117 if (args
->source
>= args
->sourceLimit
)
1119 *err
= U_ILLEGAL_ARGUMENT_ERROR
;
1122 /* Grab first byte & save address for error recovery */
1123 CurByte
= *((ulmbcs_byte_t
*) (args
->source
++));
1126 * at entry of each if clause:
1127 * 1. 'CurByte' points at the first byte of a LMBCS character
1128 * 2. '*source'points to the next byte of the source stream after 'CurByte'
1130 * the job of each if clause is:
1131 * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte)
1132 * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately
1135 /* First lets check the simple fixed values. */
1137 if(((CurByte
> ULMBCS_C0END
) && (CurByte
< ULMBCS_C1START
)) /* ascii range */
1139 || CurByte
== ULMBCS_HT
|| CurByte
== ULMBCS_CR
1140 || CurByte
== ULMBCS_LF
|| CurByte
== ULMBCS_123SYSTEMRANGE
)
1146 UConverterDataLMBCS
* extraInfo
;
1147 ulmbcs_byte_t group
;
1148 UConverterSharedData
*cnv
;
1150 if (CurByte
== ULMBCS_GRP_CTRL
) /* Control character group - no opt group update */
1152 ulmbcs_byte_t C0C1byte
;
1153 CHECK_SOURCE_LIMIT(1);
1154 C0C1byte
= *(args
->source
)++;
1155 uniChar
= (C0C1byte
< ULMBCS_C1START
) ? C0C1byte
- ULMBCS_CTRLOFFSET
: C0C1byte
;
1158 if (CurByte
== ULMBCS_GRP_UNICODE
) /* Unicode compatibility group: BigEndian UTF16 */
1160 CHECK_SOURCE_LIMIT(2);
1162 /* don't check for error indicators fffe/ffff below */
1163 return GetUniFromLMBCSUni(&(args
->source
));
1165 else if (CurByte
<= ULMBCS_CTRLOFFSET
)
1167 group
= CurByte
; /* group byte is in the source */
1168 extraInfo
= (UConverterDataLMBCS
*) args
->converter
->extraInfo
;
1169 if (group
> ULMBCS_GRP_LAST
|| (cnv
= extraInfo
->OptGrpConverter
[group
]) == NULL
)
1171 /* this is not a valid group byte - no converter*/
1172 *err
= U_INVALID_CHAR_FOUND
;
1174 else if (group
>= ULMBCS_DOUBLEOPTGROUP_START
) /* double byte conversion */
1177 CHECK_SOURCE_LIMIT(2);
1179 /* check for LMBCS doubled-group-byte case */
1180 if (*args
->source
== group
) {
1183 uniChar
= ucnv_MBCSSimpleGetNextUChar(cnv
, args
->source
, 1, FALSE
);
1187 uniChar
= ucnv_MBCSSimpleGetNextUChar(cnv
, args
->source
, 2, FALSE
);
1191 else { /* single byte conversion */
1192 CHECK_SOURCE_LIMIT(1);
1193 CurByte
= *(args
->source
)++;
1195 if (CurByte
>= ULMBCS_C1START
)
1197 uniChar
= _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv
, CurByte
);
1201 /* The non-optimizable oddballs where there is an explicit byte
1202 * AND the second byte is not in the upper ascii range
1206 extraInfo
= (UConverterDataLMBCS
*) args
->converter
->extraInfo
;
1207 cnv
= extraInfo
->OptGrpConverter
[ULMBCS_GRP_EXCEPT
];
1209 /* Lookup value must include opt group */
1212 uniChar
= ucnv_MBCSSimpleGetNextUChar(cnv
, bytes
, 2, FALSE
);
1216 else if (CurByte
>= ULMBCS_C1START
) /* group byte is implicit */
1218 extraInfo
= (UConverterDataLMBCS
*) args
->converter
->extraInfo
;
1219 group
= extraInfo
->OptGroup
;
1220 cnv
= extraInfo
->OptGrpConverter
[group
];
1221 if (group
>= ULMBCS_DOUBLEOPTGROUP_START
) /* double byte conversion */
1223 if (!ucnv_MBCSIsLeadByte(cnv
, CurByte
))
1225 CHECK_SOURCE_LIMIT(0);
1227 /* let the MBCS conversion consume CurByte again */
1228 uniChar
= ucnv_MBCSSimpleGetNextUChar(cnv
, args
->source
- 1, 1, FALSE
);
1232 CHECK_SOURCE_LIMIT(1);
1233 /* let the MBCS conversion consume CurByte again */
1234 uniChar
= ucnv_MBCSSimpleGetNextUChar(cnv
, args
->source
- 1, 2, FALSE
);
1238 else /* single byte conversion */
1240 uniChar
= _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv
, CurByte
);
1248 /* The exported function that converts lmbcs to one or more
1249 UChars - currently UTF-16
1252 _LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs
* args
,
1255 char LMBCS
[ULMBCS_CHARSIZE_MAX
];
1256 UChar uniChar
; /* one output UNICODE char */
1257 const char * saveSource
; /* beginning of current code point */
1258 const char * pStartLMBCS
= args
->source
; /* beginning of whole string */
1259 const char * errSource
= NULL
; /* pointer to actual input in case an error occurs */
1260 int8_t savebytes
= 0;
1262 /* Process from source to limit, or until error */
1263 while (U_SUCCESS(*err
) && args
->sourceLimit
> args
->source
&& args
->targetLimit
> args
->target
)
1265 saveSource
= args
->source
; /* beginning of current code point */
1267 if (args
->converter
->toULength
) /* reassemble char from previous call */
1269 const char *saveSourceLimit
;
1270 size_t size_old
= args
->converter
->toULength
;
1272 /* limit from source is either remainder of temp buffer, or user limit on source */
1273 size_t size_new_maybe_1
= sizeof(LMBCS
) - size_old
;
1274 size_t size_new_maybe_2
= args
->sourceLimit
- args
->source
;
1275 size_t size_new
= (size_new_maybe_1
< size_new_maybe_2
) ? size_new_maybe_1
: size_new_maybe_2
;
1278 uprv_memcpy(LMBCS
, args
->converter
->toUBytes
, size_old
);
1279 uprv_memcpy(LMBCS
+ size_old
, args
->source
, size_new
);
1280 saveSourceLimit
= args
->sourceLimit
;
1281 args
->source
= errSource
= LMBCS
;
1282 args
->sourceLimit
= LMBCS
+size_old
+size_new
;
1283 savebytes
= (int8_t)(size_old
+size_new
);
1284 uniChar
= (UChar
) _LMBCSGetNextUCharWorker(args
, err
);
1285 args
->source
= saveSource
+ ((args
->source
- LMBCS
) - size_old
);
1286 args
->sourceLimit
= saveSourceLimit
;
1288 if (*err
== U_TRUNCATED_CHAR_FOUND
)
1290 /* evil special case: source buffers so small a char spans more than 2 buffers */
1291 args
->converter
->toULength
= savebytes
;
1292 uprv_memcpy(args
->converter
->toUBytes
, LMBCS
, savebytes
);
1293 args
->source
= args
->sourceLimit
;
1294 *err
= U_ZERO_ERROR
;
1299 /* clear the partial-char marker */
1300 args
->converter
->toULength
= 0;
1305 errSource
= saveSource
;
1306 uniChar
= (UChar
) _LMBCSGetNextUCharWorker(args
, err
);
1307 savebytes
= (int8_t)(args
->source
- saveSource
);
1309 if (U_SUCCESS(*err
))
1311 if (uniChar
< 0xfffe)
1313 *(args
->target
)++ = uniChar
;
1316 *(args
->offsets
)++ = (int32_t)(saveSource
- pStartLMBCS
);
1319 else if (uniChar
== 0xfffe)
1321 *err
= U_INVALID_CHAR_FOUND
;
1323 else /* if (uniChar == 0xffff) */
1325 *err
= U_ILLEGAL_CHAR_FOUND
;
1329 /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */
1330 if (U_SUCCESS(*err
) && args
->sourceLimit
> args
->source
&& args
->targetLimit
<= args
->target
)
1332 *err
= U_BUFFER_OVERFLOW_ERROR
;
1334 else if (U_FAILURE(*err
))
1336 /* If character incomplete or unmappable/illegal, store it in toUBytes[] */
1337 args
->converter
->toULength
= savebytes
;
1338 if (savebytes
> 0) {
1339 uprv_memcpy(args
->converter
->toUBytes
, errSource
, savebytes
);
1341 if (*err
== U_TRUNCATED_CHAR_FOUND
) {
1342 *err
= U_ZERO_ERROR
;
1347 /* And now, the macroized declarations of data & functions: */
1348 DEFINE_LMBCS_OPEN(1)
1349 DEFINE_LMBCS_OPEN(2)
1350 DEFINE_LMBCS_OPEN(3)
1351 DEFINE_LMBCS_OPEN(4)
1352 DEFINE_LMBCS_OPEN(5)
1353 DEFINE_LMBCS_OPEN(6)
1354 DEFINE_LMBCS_OPEN(8)
1355 DEFINE_LMBCS_OPEN(11)
1356 DEFINE_LMBCS_OPEN(16)
1357 DEFINE_LMBCS_OPEN(17)
1358 DEFINE_LMBCS_OPEN(18)
1359 DEFINE_LMBCS_OPEN(19)
1362 DECLARE_LMBCS_DATA(1)
1363 DECLARE_LMBCS_DATA(2)
1364 DECLARE_LMBCS_DATA(3)
1365 DECLARE_LMBCS_DATA(4)
1366 DECLARE_LMBCS_DATA(5)
1367 DECLARE_LMBCS_DATA(6)
1368 DECLARE_LMBCS_DATA(8)
1369 DECLARE_LMBCS_DATA(11)
1370 DECLARE_LMBCS_DATA(16)
1371 DECLARE_LMBCS_DATA(17)
1372 DECLARE_LMBCS_DATA(18)
1373 DECLARE_LMBCS_DATA(19)
1375 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */