1 // © 2018 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
4 // From the double-conversion library. Original license:
6 // Copyright 2012 the V8 project authors. All rights reserved.
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions are
11 // * Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 // * Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following
15 // disclaimer in the documentation and/or other materials provided
16 // with the distribution.
17 // * Neither the name of Google Inc. nor the names of its
18 // contributors may be used to endorse or promote products derived
19 // from this software without specific prior written permission.
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34 #include "unicode/utypes.h"
35 #if !UCONFIG_NO_FORMATTING
37 // ICU PATCH: Customize header file paths for ICU.
39 #include "double-conversion-fast-dtoa.h"
41 #include "double-conversion-cached-powers.h"
42 #include "double-conversion-diy-fp.h"
43 #include "double-conversion-ieee.h"
45 // ICU PATCH: Wrap in ICU namespace
48 namespace double_conversion
{
50 // The minimal and maximal target exponent define the range of w's binary
51 // exponent, where 'w' is the result of multiplying the input by a cached power
54 // A different range might be chosen on a different platform, to optimize digit
55 // generation, but a smaller range requires more powers of ten to be cached.
56 static const int kMinimalTargetExponent
= -60;
57 static const int kMaximalTargetExponent
= -32;
60 // Adjusts the last digit of the generated number, and screens out generated
61 // solutions that may be inaccurate. A solution may be inaccurate if it is
62 // outside the safe interval, or if we cannot prove that it is closer to the
63 // input than a neighboring representation of the same length.
65 // Input: * buffer containing the digits of too_high / 10^kappa
66 // * the buffer's length
67 // * distance_too_high_w == (too_high - w).f() * unit
68 // * unsafe_interval == (too_high - too_low).f() * unit
69 // * rest = (too_high - buffer * 10^kappa).f() * unit
70 // * ten_kappa = 10^kappa * unit
71 // * unit = the common multiplier
72 // Output: returns true if the buffer is guaranteed to contain the closest
73 // representable number to the input.
74 // Modifies the generated digits in the buffer to approach (round towards) w.
75 static bool RoundWeed(Vector
<char> buffer
,
77 uint64_t distance_too_high_w
,
78 uint64_t unsafe_interval
,
82 uint64_t small_distance
= distance_too_high_w
- unit
;
83 uint64_t big_distance
= distance_too_high_w
+ unit
;
84 // Let w_low = too_high - big_distance, and
85 // w_high = too_high - small_distance.
86 // Note: w_low < w < w_high
88 // The real w (* unit) must lie somewhere inside the interval
89 // ]w_low; w_high[ (often written as "(w_low; w_high)")
91 // Basically the buffer currently contains a number in the unsafe interval
92 // ]too_low; too_high[ with too_low < w < too_high
94 // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
96 // boundary_high --------------------- . . . .
98 // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
100 // . big_distance . . .
102 // small_distance . . . .
104 // w_high - - - - - - - - - - - - - - - - - - . . . .
106 // w ---------------------------------------- . . . .
108 // w_low - - - - - - - - - - - - - - - - - - - - - . . .
110 // buffer --------------------------------------------------+-------+--------
114 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
116 // boundary_low ------------------------- unsafe_interval
118 // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
121 // Note that the value of buffer could lie anywhere inside the range too_low
124 // boundary_low, boundary_high and w are approximations of the real boundaries
125 // and v (the input number). They are guaranteed to be precise up to one unit.
126 // In fact the error is guaranteed to be strictly less than one unit.
128 // Anything that lies outside the unsafe interval is guaranteed not to round
129 // to v when read again.
130 // Anything that lies inside the safe interval is guaranteed to round to v
132 // If the number inside the buffer lies inside the unsafe interval but not
133 // inside the safe interval then we simply do not know and bail out (returning
136 // Similarly we have to take into account the imprecision of 'w' when finding
137 // the closest representation of 'w'. If we have two potential
138 // representations, and one is closer to both w_low and w_high, then we know
139 // it is closer to the actual value v.
141 // By generating the digits of too_high we got the largest (closest to
142 // too_high) buffer that is still in the unsafe interval. In the case where
143 // w_high < buffer < too_high we try to decrement the buffer.
144 // This way the buffer approaches (rounds towards) w.
145 // There are 3 conditions that stop the decrementation process:
146 // 1) the buffer is already below w_high
147 // 2) decrementing the buffer would make it leave the unsafe interval
148 // 3) decrementing the buffer would yield a number below w_high and farther
149 // away than the current number. In other words:
150 // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
151 // Instead of using the buffer directly we use its distance to too_high.
152 // Conceptually rest ~= too_high - buffer
153 // We need to do the following tests in this order to avoid over- and
155 ASSERT(rest
<= unsafe_interval
);
156 while (rest
< small_distance
&& // Negated condition 1
157 unsafe_interval
- rest
>= ten_kappa
&& // Negated condition 2
158 (rest
+ ten_kappa
< small_distance
|| // buffer{-1} > w_high
159 small_distance
- rest
>= rest
+ ten_kappa
- small_distance
)) {
160 buffer
[length
- 1]--;
164 // We have approached w+ as much as possible. We now test if approaching w-
165 // would require changing the buffer. If yes, then we have two possible
166 // representations close to w, but we cannot decide which one is closer.
167 if (rest
< big_distance
&&
168 unsafe_interval
- rest
>= ten_kappa
&&
169 (rest
+ ten_kappa
< big_distance
||
170 big_distance
- rest
> rest
+ ten_kappa
- big_distance
)) {
175 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
176 // Since too_low = too_high - unsafe_interval this is equivalent to
177 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
178 // Conceptually we have: rest ~= too_high - buffer
179 return (2 * unit
<= rest
) && (rest
<= unsafe_interval
- 4 * unit
);
183 // Rounds the buffer upwards if the result is closer to v by possibly adding
184 // 1 to the buffer. If the precision of the calculation is not sufficient to
185 // round correctly, return false.
186 // The rounding might shift the whole buffer in which case the kappa is
187 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
189 // If 2*rest > ten_kappa then the buffer needs to be round up.
190 // rest can have an error of +/- 1 unit. This function accounts for the
191 // imprecision and returns false, if the rounding direction cannot be
192 // unambiguously determined.
194 // Precondition: rest < ten_kappa.
195 static bool RoundWeedCounted(Vector
<char> buffer
,
201 ASSERT(rest
< ten_kappa
);
202 // The following tests are done in a specific order to avoid overflows. They
203 // will work correctly with any uint64 values of rest < ten_kappa and unit.
205 // If the unit is too big, then we don't know which way to round. For example
206 // a unit of 50 means that the real number lies within rest +/- 50. If
207 // 10^kappa == 40 then there is no way to tell which way to round.
208 if (unit
>= ten_kappa
) return false;
209 // Even if unit is just half the size of 10^kappa we are already completely
210 // lost. (And after the previous test we know that the expression will not
212 if (ten_kappa
- unit
<= unit
) return false;
213 // If 2 * (rest + unit) <= 10^kappa we can safely round down.
214 if ((ten_kappa
- rest
> rest
) && (ten_kappa
- 2 * rest
>= 2 * unit
)) {
217 // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
218 if ((rest
> unit
) && (ten_kappa
- (rest
- unit
) <= (rest
- unit
))) {
219 // Increment the last digit recursively until we find a non '9' digit.
220 buffer
[length
- 1]++;
221 for (int i
= length
- 1; i
> 0; --i
) {
222 if (buffer
[i
] != '0' + 10) break;
226 // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
227 // exception of the first digit all digits are now '0'. Simply switch the
228 // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
229 // the power (the kappa) is increased.
230 if (buffer
[0] == '0' + 10) {
239 // Returns the biggest power of ten that is less than or equal to the given
240 // number. We furthermore receive the maximum number of bits 'number' has.
242 // Returns power == 10^(exponent_plus_one-1) such that
243 // power <= number < power * 10.
244 // If number_bits == 0 then 0^(0-1) is returned.
245 // The number of bits must be <= 32.
246 // Precondition: number < (1 << (number_bits + 1)).
248 // Inspired by the method for finding an integer log base 10 from here:
249 // http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
250 static unsigned int const kSmallPowersOfTen
[] =
251 {0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000,
254 static void BiggestPowerTen(uint32_t number
,
257 int* exponent_plus_one
) {
258 ASSERT(number
< (1u << (number_bits
+ 1)));
259 // 1233/4096 is approximately 1/lg(10).
260 int exponent_plus_one_guess
= ((number_bits
+ 1) * 1233 >> 12);
261 // We increment to skip over the first entry in the kPowersOf10 table.
262 // Note: kPowersOf10[i] == 10^(i-1).
263 exponent_plus_one_guess
++;
264 // We don't have any guarantees that 2^number_bits <= number.
265 if (number
< kSmallPowersOfTen
[exponent_plus_one_guess
]) {
266 exponent_plus_one_guess
--;
268 *power
= kSmallPowersOfTen
[exponent_plus_one_guess
];
269 *exponent_plus_one
= exponent_plus_one_guess
;
272 // Generates the digits of input number w.
273 // w is a floating-point number (DiyFp), consisting of a significand and an
274 // exponent. Its exponent is bounded by kMinimalTargetExponent and
275 // kMaximalTargetExponent.
276 // Hence -60 <= w.e() <= -32.
278 // Returns false if it fails, in which case the generated digits in the buffer
279 // should not be used.
281 // * low, w and high are correct up to 1 ulp (unit in the last place). That
282 // is, their error must be less than a unit of their last digits.
283 // * low.e() == w.e() == high.e()
284 // * low < w < high, and taking into account their error: low~ <= high~
285 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
286 // Postconditions: returns false if procedure fails.
288 // * buffer is not null-terminated, but len contains the number of digits.
289 // * buffer contains the shortest possible decimal digit-sequence
290 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
291 // correct values of low and high (without their error).
292 // * if more than one decimal representation gives the minimal number of
293 // decimal digits then the one closest to W (where W is the correct value
295 // Remark: this procedure takes into account the imprecision of its input
296 // numbers. If the precision is not enough to guarantee all the postconditions
297 // then false is returned. This usually happens rarely (~0.5%).
299 // Say, for the sake of example, that
300 // w.e() == -48, and w.f() == 0x1234567890abcdef
301 // w's value can be computed by w.f() * 2^w.e()
302 // We can obtain w's integral digits by simply shifting w.f() by -w.e().
303 // -> w's integral part is 0x1234
304 // w's fractional part is therefore 0x567890abcdef.
305 // Printing w's integral part is easy (simply print 0x1234 in decimal).
306 // In order to print its fraction we repeatedly multiply the fraction by 10 and
307 // get each digit. Example the first digit after the point would be computed by
308 // (0x567890abcdef * 10) >> 48. -> 3
309 // The whole thing becomes slightly more complicated because we want to stop
310 // once we have enough digits. That is, once the digits inside the buffer
311 // represent 'w' we can stop. Everything inside the interval low - high
312 // represents w. However we have to pay attention to low, high and w's
314 static bool DigitGen(DiyFp low
,
320 ASSERT(low
.e() == w
.e() && w
.e() == high
.e());
321 ASSERT(low
.f() + 1 <= high
.f() - 1);
322 ASSERT(kMinimalTargetExponent
<= w
.e() && w
.e() <= kMaximalTargetExponent
);
323 // low, w and high are imprecise, but by less than one ulp (unit in the last
325 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
326 // the new numbers are outside of the interval we want the final
327 // representation to lie in.
328 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
329 // numbers that are certain to lie in the interval. We will use this fact
331 // We will now start by generating the digits within the uncertain
332 // interval. Later we will weed out representations that lie outside the safe
333 // interval and thus _might_ lie outside the correct interval.
335 DiyFp too_low
= DiyFp(low
.f() - unit
, low
.e());
336 DiyFp too_high
= DiyFp(high
.f() + unit
, high
.e());
337 // too_low and too_high are guaranteed to lie outside the interval we want the
338 // generated number in.
339 DiyFp unsafe_interval
= DiyFp::Minus(too_high
, too_low
);
340 // We now cut the input number into two parts: the integral digits and the
341 // fractionals. We will not write any decimal separator though, but adapt
343 // Reminder: we are currently computing the digits (stored inside the buffer)
344 // such that: too_low < buffer * 10^kappa < too_high
345 // We use too_high for the digit_generation and stop as soon as possible.
346 // If we stop early we effectively round down.
347 DiyFp one
= DiyFp(static_cast<uint64_t>(1) << -w
.e(), w
.e());
348 // Division by one is a shift.
349 uint32_t integrals
= static_cast<uint32_t>(too_high
.f() >> -one
.e());
350 // Modulo by one is an and.
351 uint64_t fractionals
= too_high
.f() & (one
.f() - 1);
353 int divisor_exponent_plus_one
;
354 BiggestPowerTen(integrals
, DiyFp::kSignificandSize
- (-one
.e()),
355 &divisor
, &divisor_exponent_plus_one
);
356 *kappa
= divisor_exponent_plus_one
;
358 // Loop invariant: buffer = too_high / 10^kappa (integer division)
359 // The invariant holds for the first iteration: kappa has been initialized
360 // with the divisor exponent + 1. And the divisor is the biggest power of ten
361 // that is smaller than integrals.
363 int digit
= integrals
/ divisor
;
365 buffer
[*length
] = static_cast<char>('0' + digit
);
367 integrals
%= divisor
;
369 // Note that kappa now equals the exponent of the divisor and that the
370 // invariant thus holds again.
372 (static_cast<uint64_t>(integrals
) << -one
.e()) + fractionals
;
373 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
374 // Reminder: unsafe_interval.e() == one.e()
375 if (rest
< unsafe_interval
.f()) {
376 // Rounding down (by not emitting the remaining digits) yields a number
377 // that lies within the unsafe interval.
378 return RoundWeed(buffer
, *length
, DiyFp::Minus(too_high
, w
).f(),
379 unsafe_interval
.f(), rest
,
380 static_cast<uint64_t>(divisor
) << -one
.e(), unit
);
385 // The integrals have been generated. We are at the point of the decimal
386 // separator. In the following loop we simply multiply the remaining digits by
387 // 10 and divide by one. We just need to pay attention to multiply associated
388 // data (like the interval or 'unit'), too.
389 // Note that the multiplication by 10 does not overflow, because w.e >= -60
390 // and thus one.e >= -60.
391 ASSERT(one
.e() >= -60);
392 ASSERT(fractionals
< one
.f());
393 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF
) / 10 >= one
.f());
397 unsafe_interval
.set_f(unsafe_interval
.f() * 10);
398 // Integer division by one.
399 int digit
= static_cast<int>(fractionals
>> -one
.e());
401 buffer
[*length
] = static_cast<char>('0' + digit
);
403 fractionals
&= one
.f() - 1; // Modulo by one.
405 if (fractionals
< unsafe_interval
.f()) {
406 return RoundWeed(buffer
, *length
, DiyFp::Minus(too_high
, w
).f() * unit
,
407 unsafe_interval
.f(), fractionals
, one
.f(), unit
);
414 // Generates (at most) requested_digits digits of input number w.
415 // w is a floating-point number (DiyFp), consisting of a significand and an
416 // exponent. Its exponent is bounded by kMinimalTargetExponent and
417 // kMaximalTargetExponent.
418 // Hence -60 <= w.e() <= -32.
420 // Returns false if it fails, in which case the generated digits in the buffer
421 // should not be used.
423 // * w is correct up to 1 ulp (unit in the last place). That
424 // is, its error must be strictly less than a unit of its last digit.
425 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
427 // Postconditions: returns false if procedure fails.
429 // * buffer is not null-terminated, but length contains the number of
431 // * the representation in buffer is the most precise representation of
432 // requested_digits digits.
433 // * buffer contains at most requested_digits digits of w. If there are less
434 // than requested_digits digits then some trailing '0's have been removed.
435 // * kappa is such that
436 // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
438 // Remark: This procedure takes into account the imprecision of its input
439 // numbers. If the precision is not enough to guarantee all the postconditions
440 // then false is returned. This usually happens rarely, but the failure-rate
441 // increases with higher requested_digits.
442 static bool DigitGenCounted(DiyFp w
,
443 int requested_digits
,
447 ASSERT(kMinimalTargetExponent
<= w
.e() && w
.e() <= kMaximalTargetExponent
);
448 ASSERT(kMinimalTargetExponent
>= -60);
449 ASSERT(kMaximalTargetExponent
<= -32);
450 // w is assumed to have an error less than 1 unit. Whenever w is scaled we
451 // also scale its error.
452 uint64_t w_error
= 1;
453 // We cut the input number into two parts: the integral digits and the
454 // fractional digits. We don't emit any decimal separator, but adapt kappa
455 // instead. Example: instead of writing "1.2" we put "12" into the buffer and
456 // increase kappa by 1.
457 DiyFp one
= DiyFp(static_cast<uint64_t>(1) << -w
.e(), w
.e());
458 // Division by one is a shift.
459 uint32_t integrals
= static_cast<uint32_t>(w
.f() >> -one
.e());
460 // Modulo by one is an and.
461 uint64_t fractionals
= w
.f() & (one
.f() - 1);
463 int divisor_exponent_plus_one
;
464 BiggestPowerTen(integrals
, DiyFp::kSignificandSize
- (-one
.e()),
465 &divisor
, &divisor_exponent_plus_one
);
466 *kappa
= divisor_exponent_plus_one
;
469 // Loop invariant: buffer = w / 10^kappa (integer division)
470 // The invariant holds for the first iteration: kappa has been initialized
471 // with the divisor exponent + 1. And the divisor is the biggest power of ten
472 // that is smaller than 'integrals'.
474 int digit
= integrals
/ divisor
;
476 buffer
[*length
] = static_cast<char>('0' + digit
);
479 integrals
%= divisor
;
481 // Note that kappa now equals the exponent of the divisor and that the
482 // invariant thus holds again.
483 if (requested_digits
== 0) break;
487 if (requested_digits
== 0) {
489 (static_cast<uint64_t>(integrals
) << -one
.e()) + fractionals
;
490 return RoundWeedCounted(buffer
, *length
, rest
,
491 static_cast<uint64_t>(divisor
) << -one
.e(), w_error
,
495 // The integrals have been generated. We are at the point of the decimal
496 // separator. In the following loop we simply multiply the remaining digits by
497 // 10 and divide by one. We just need to pay attention to multiply associated
498 // data (the 'unit'), too.
499 // Note that the multiplication by 10 does not overflow, because w.e >= -60
500 // and thus one.e >= -60.
501 ASSERT(one
.e() >= -60);
502 ASSERT(fractionals
< one
.f());
503 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF
) / 10 >= one
.f());
504 while (requested_digits
> 0 && fractionals
> w_error
) {
507 // Integer division by one.
508 int digit
= static_cast<int>(fractionals
>> -one
.e());
510 buffer
[*length
] = static_cast<char>('0' + digit
);
513 fractionals
&= one
.f() - 1; // Modulo by one.
516 if (requested_digits
!= 0) return false;
517 return RoundWeedCounted(buffer
, *length
, fractionals
, one
.f(), w_error
,
522 // Provides a decimal representation of v.
523 // Returns true if it succeeds, otherwise the result cannot be trusted.
524 // There will be *length digits inside the buffer (not null-terminated).
525 // If the function returns true then
526 // v == (double) (buffer * 10^decimal_exponent).
527 // The digits in the buffer are the shortest representation possible: no
528 // 0.09999999999999999 instead of 0.1. The shorter representation will even be
529 // chosen even if the longer one would be closer to v.
530 // The last digit will be closest to the actual v. That is, even if several
531 // digits might correctly yield 'v' when read again, the closest will be
533 static bool Grisu3(double v
,
537 int* decimal_exponent
) {
538 DiyFp w
= Double(v
).AsNormalizedDiyFp();
539 // boundary_minus and boundary_plus are the boundaries between v and its
540 // closest floating-point neighbors. Any number strictly between
541 // boundary_minus and boundary_plus will round to v when convert to a double.
542 // Grisu3 will never output representations that lie exactly on a boundary.
543 DiyFp boundary_minus
, boundary_plus
;
544 if (mode
== FAST_DTOA_SHORTEST
) {
545 Double(v
).NormalizedBoundaries(&boundary_minus
, &boundary_plus
);
547 ASSERT(mode
== FAST_DTOA_SHORTEST_SINGLE
);
548 float single_v
= static_cast<float>(v
);
549 Single(single_v
).NormalizedBoundaries(&boundary_minus
, &boundary_plus
);
551 ASSERT(boundary_plus
.e() == w
.e());
552 DiyFp ten_mk
; // Cached power of ten: 10^-k
554 int ten_mk_minimal_binary_exponent
=
555 kMinimalTargetExponent
- (w
.e() + DiyFp::kSignificandSize
);
556 int ten_mk_maximal_binary_exponent
=
557 kMaximalTargetExponent
- (w
.e() + DiyFp::kSignificandSize
);
558 PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
559 ten_mk_minimal_binary_exponent
,
560 ten_mk_maximal_binary_exponent
,
562 ASSERT((kMinimalTargetExponent
<= w
.e() + ten_mk
.e() +
563 DiyFp::kSignificandSize
) &&
564 (kMaximalTargetExponent
>= w
.e() + ten_mk
.e() +
565 DiyFp::kSignificandSize
));
566 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
567 // 64 bit significand and ten_mk is thus only precise up to 64 bits.
569 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
570 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
571 // off by a small amount.
572 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
573 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
574 // (f-1) * 2^e < w*10^k < (f+1) * 2^e
575 DiyFp scaled_w
= DiyFp::Times(w
, ten_mk
);
576 ASSERT(scaled_w
.e() ==
577 boundary_plus
.e() + ten_mk
.e() + DiyFp::kSignificandSize
);
578 // In theory it would be possible to avoid some recomputations by computing
579 // the difference between w and boundary_minus/plus (a power of 2) and to
580 // compute scaled_boundary_minus/plus by subtracting/adding from
581 // scaled_w. However the code becomes much less readable and the speed
582 // enhancements are not terriffic.
583 DiyFp scaled_boundary_minus
= DiyFp::Times(boundary_minus
, ten_mk
);
584 DiyFp scaled_boundary_plus
= DiyFp::Times(boundary_plus
, ten_mk
);
586 // DigitGen will generate the digits of scaled_w. Therefore we have
587 // v == (double) (scaled_w * 10^-mk).
588 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
589 // integer than it will be updated. For instance if scaled_w == 1.23 then
590 // the buffer will be filled with "123" und the decimal_exponent will be
593 bool result
= DigitGen(scaled_boundary_minus
, scaled_w
, scaled_boundary_plus
,
594 buffer
, length
, &kappa
);
595 *decimal_exponent
= -mk
+ kappa
;
600 // The "counted" version of grisu3 (see above) only generates requested_digits
601 // number of digits. This version does not generate the shortest representation,
602 // and with enough requested digits 0.1 will at some point print as 0.9999999...
603 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
604 // therefore the rounding strategy for halfway cases is irrelevant.
605 static bool Grisu3Counted(double v
,
606 int requested_digits
,
609 int* decimal_exponent
) {
610 DiyFp w
= Double(v
).AsNormalizedDiyFp();
611 DiyFp ten_mk
; // Cached power of ten: 10^-k
613 int ten_mk_minimal_binary_exponent
=
614 kMinimalTargetExponent
- (w
.e() + DiyFp::kSignificandSize
);
615 int ten_mk_maximal_binary_exponent
=
616 kMaximalTargetExponent
- (w
.e() + DiyFp::kSignificandSize
);
617 PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
618 ten_mk_minimal_binary_exponent
,
619 ten_mk_maximal_binary_exponent
,
621 ASSERT((kMinimalTargetExponent
<= w
.e() + ten_mk
.e() +
622 DiyFp::kSignificandSize
) &&
623 (kMaximalTargetExponent
>= w
.e() + ten_mk
.e() +
624 DiyFp::kSignificandSize
));
625 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
626 // 64 bit significand and ten_mk is thus only precise up to 64 bits.
628 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
629 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
630 // off by a small amount.
631 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
632 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
633 // (f-1) * 2^e < w*10^k < (f+1) * 2^e
634 DiyFp scaled_w
= DiyFp::Times(w
, ten_mk
);
636 // We now have (double) (scaled_w * 10^-mk).
637 // DigitGen will generate the first requested_digits digits of scaled_w and
638 // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
639 // will not always be exactly the same since DigitGenCounted only produces a
640 // limited number of digits.)
642 bool result
= DigitGenCounted(scaled_w
, requested_digits
,
643 buffer
, length
, &kappa
);
644 *decimal_exponent
= -mk
+ kappa
;
649 bool FastDtoa(double v
,
651 int requested_digits
,
654 int* decimal_point
) {
656 ASSERT(!Double(v
).IsSpecial());
659 int decimal_exponent
= 0;
661 case FAST_DTOA_SHORTEST
:
662 case FAST_DTOA_SHORTEST_SINGLE
:
663 result
= Grisu3(v
, mode
, buffer
, length
, &decimal_exponent
);
665 case FAST_DTOA_PRECISION
:
666 result
= Grisu3Counted(v
, requested_digits
,
667 buffer
, length
, &decimal_exponent
);
673 *decimal_point
= *length
+ decimal_exponent
;
674 buffer
[*length
] = '\0';
679 } // namespace double_conversion
681 // ICU PATCH: Close ICU namespace
683 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING