1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
4 *******************************************************************************
5 * Copyright (C) 2013-2014, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 *******************************************************************************
10 * (replaced the former ucol_bld.cpp)
12 * created on: 2013may06
13 * created by: Markus W. Scherer
16 #ifdef DEBUG_COLLATION_BUILDER
20 #include "unicode/utypes.h"
22 #if !UCONFIG_NO_COLLATION
24 #include "unicode/caniter.h"
25 #include "unicode/normalizer2.h"
26 #include "unicode/tblcoll.h"
27 #include "unicode/parseerr.h"
28 #include "unicode/uchar.h"
29 #include "unicode/ucol.h"
30 #include "unicode/unistr.h"
31 #include "unicode/usetiter.h"
32 #include "unicode/utf16.h"
33 #include "unicode/uversion.h"
35 #include "collation.h"
36 #include "collationbuilder.h"
37 #include "collationdata.h"
38 #include "collationdatabuilder.h"
39 #include "collationfastlatin.h"
40 #include "collationroot.h"
41 #include "collationrootelements.h"
42 #include "collationruleparser.h"
43 #include "collationsettings.h"
44 #include "collationtailoring.h"
45 #include "collationweights.h"
46 #include "normalizer2impl.h"
49 #include "utf16collationiterator.h"
55 class BundleImporter
: public CollationRuleParser::Importer
{
58 virtual ~BundleImporter();
59 virtual void getRules(
60 const char *localeID
, const char *collationType
,
62 const char *&errorReason
, UErrorCode
&errorCode
);
65 BundleImporter::~BundleImporter() {}
68 BundleImporter::getRules(
69 const char *localeID
, const char *collationType
,
71 const char *& /*errorReason*/, UErrorCode
&errorCode
) {
72 CollationLoader::loadRules(localeID
, collationType
, rules
, errorCode
);
77 // RuleBasedCollator implementation ---------------------------------------- ***
79 // These methods are here, rather than in rulebasedcollator.cpp,
80 // for modularization:
81 // Most code using Collator does not need to build a Collator from rules.
82 // By moving these constructors and helper methods to a separate file,
83 // most code will not have a static dependency on the builder code.
85 RuleBasedCollator::RuleBasedCollator()
91 explicitlySetAttributes(0),
92 actualLocaleIsSameAsValid(FALSE
) {
95 RuleBasedCollator::RuleBasedCollator(const UnicodeString
&rules
, UErrorCode
&errorCode
)
101 explicitlySetAttributes(0),
102 actualLocaleIsSameAsValid(FALSE
) {
103 internalBuildTailoring(rules
, UCOL_DEFAULT
, UCOL_DEFAULT
, NULL
, NULL
, errorCode
);
106 RuleBasedCollator::RuleBasedCollator(const UnicodeString
&rules
, ECollationStrength strength
,
107 UErrorCode
&errorCode
)
113 explicitlySetAttributes(0),
114 actualLocaleIsSameAsValid(FALSE
) {
115 internalBuildTailoring(rules
, strength
, UCOL_DEFAULT
, NULL
, NULL
, errorCode
);
118 RuleBasedCollator::RuleBasedCollator(const UnicodeString
&rules
,
119 UColAttributeValue decompositionMode
,
120 UErrorCode
&errorCode
)
126 explicitlySetAttributes(0),
127 actualLocaleIsSameAsValid(FALSE
) {
128 internalBuildTailoring(rules
, UCOL_DEFAULT
, decompositionMode
, NULL
, NULL
, errorCode
);
131 RuleBasedCollator::RuleBasedCollator(const UnicodeString
&rules
,
132 ECollationStrength strength
,
133 UColAttributeValue decompositionMode
,
134 UErrorCode
&errorCode
)
140 explicitlySetAttributes(0),
141 actualLocaleIsSameAsValid(FALSE
) {
142 internalBuildTailoring(rules
, strength
, decompositionMode
, NULL
, NULL
, errorCode
);
145 RuleBasedCollator::RuleBasedCollator(const UnicodeString
&rules
,
146 UParseError
&parseError
, UnicodeString
&reason
,
147 UErrorCode
&errorCode
)
153 explicitlySetAttributes(0),
154 actualLocaleIsSameAsValid(FALSE
) {
155 internalBuildTailoring(rules
, UCOL_DEFAULT
, UCOL_DEFAULT
, &parseError
, &reason
, errorCode
);
159 RuleBasedCollator::internalBuildTailoring(const UnicodeString
&rules
,
161 UColAttributeValue decompositionMode
,
162 UParseError
*outParseError
, UnicodeString
*outReason
,
163 UErrorCode
&errorCode
) {
164 const CollationTailoring
*base
= CollationRoot::getRoot(errorCode
);
165 if(U_FAILURE(errorCode
)) { return; }
166 if(outReason
!= NULL
) { outReason
->remove(); }
167 CollationBuilder
builder(base
, errorCode
);
168 UVersionInfo noVersion
= { 0, 0, 0, 0 };
169 BundleImporter importer
;
170 LocalPointer
<CollationTailoring
> t(builder
.parseAndBuild(rules
, noVersion
,
172 outParseError
, errorCode
));
173 if(U_FAILURE(errorCode
)) {
174 const char *reason
= builder
.getErrorReason();
175 if(reason
!= NULL
&& outReason
!= NULL
) {
176 *outReason
= UnicodeString(reason
, -1, US_INV
);
180 t
->actualLocale
.setToBogus();
181 adoptTailoring(t
.orphan(), errorCode
);
182 // Set attributes after building the collator,
183 // to keep the default settings consistent with the rule string.
184 if(strength
!= UCOL_DEFAULT
) {
185 setAttribute(UCOL_STRENGTH
, (UColAttributeValue
)strength
, errorCode
);
187 if(decompositionMode
!= UCOL_DEFAULT
) {
188 setAttribute(UCOL_NORMALIZATION_MODE
, decompositionMode
, errorCode
);
192 // CollationBuilder implementation ----------------------------------------- ***
194 // Some compilers don't care if constants are defined in the .cpp file.
195 // MS Visual C++ does not like it, but gcc requires it. clang does not care.
197 const int32_t CollationBuilder::HAS_BEFORE2
;
198 const int32_t CollationBuilder::HAS_BEFORE3
;
201 CollationBuilder::CollationBuilder(const CollationTailoring
*b
, UErrorCode
&errorCode
)
202 : nfd(*Normalizer2::getNFDInstance(errorCode
)),
203 fcd(*Normalizer2Factory::getFCDInstance(errorCode
)),
204 nfcImpl(*Normalizer2Factory::getNFCImpl(errorCode
)),
207 rootElements(b
->data
->rootElements
, b
->data
->rootElementsLength
),
209 dataBuilder(new CollationDataBuilder(errorCode
)), fastLatinEnabled(TRUE
),
212 rootPrimaryIndexes(errorCode
), nodes(errorCode
) {
213 nfcImpl
.ensureCanonIterData(errorCode
);
214 if(U_FAILURE(errorCode
)) {
215 errorReason
= "CollationBuilder fields initialization failed";
218 if(dataBuilder
== NULL
) {
219 errorCode
= U_MEMORY_ALLOCATION_ERROR
;
222 dataBuilder
->initForTailoring(baseData
, errorCode
);
223 if(U_FAILURE(errorCode
)) {
224 errorReason
= "CollationBuilder initialization failed";
228 CollationBuilder::~CollationBuilder() {
233 CollationBuilder::parseAndBuild(const UnicodeString
&ruleString
,
234 const UVersionInfo rulesVersion
,
235 CollationRuleParser::Importer
*importer
,
236 UParseError
*outParseError
,
237 UErrorCode
&errorCode
) {
238 if(U_FAILURE(errorCode
)) { return NULL
; }
239 if(baseData
->rootElements
== NULL
) {
240 errorCode
= U_MISSING_RESOURCE_ERROR
;
241 errorReason
= "missing root elements data, tailoring not supported";
244 LocalPointer
<CollationTailoring
> tailoring(new CollationTailoring(base
->settings
));
245 if(tailoring
.isNull() || tailoring
->isBogus()) {
246 errorCode
= U_MEMORY_ALLOCATION_ERROR
;
249 CollationRuleParser
parser(baseData
, errorCode
);
250 if(U_FAILURE(errorCode
)) { return NULL
; }
251 // Note: This always bases &[last variable] and &[first regular]
252 // on the root collator's maxVariable/variableTop.
253 // If we wanted this to change after [maxVariable x], then we would keep
254 // the tailoring.settings pointer here and read its variableTop when we need it.
255 // See http://unicode.org/cldr/trac/ticket/6070
256 variableTop
= base
->settings
->variableTop
;
257 parser
.setSink(this);
258 parser
.setImporter(importer
);
259 CollationSettings
&ownedSettings
= *SharedObject::copyOnWrite(tailoring
->settings
);
260 parser
.parse(ruleString
, ownedSettings
, outParseError
, errorCode
);
261 errorReason
= parser
.getErrorReason();
262 if(U_FAILURE(errorCode
)) { return NULL
; }
263 if(dataBuilder
->hasMappings()) {
264 makeTailoredCEs(errorCode
);
265 closeOverComposites(errorCode
);
266 finalizeCEs(errorCode
);
267 // Copy all of ASCII, and Latin-1 letters, into each tailoring.
268 optimizeSet
.add(0, 0x7f);
269 optimizeSet
.add(0xc0, 0xff);
270 // Hangul is decomposed on the fly during collation,
271 // and the tailoring data is always built with HANGUL_TAG specials.
272 optimizeSet
.remove(Hangul::HANGUL_BASE
, Hangul::HANGUL_END
);
273 dataBuilder
->optimize(optimizeSet
, errorCode
);
274 tailoring
->ensureOwnedData(errorCode
);
275 if(U_FAILURE(errorCode
)) { return NULL
; }
276 if(fastLatinEnabled
) { dataBuilder
->enableFastLatin(); }
277 dataBuilder
->build(*tailoring
->ownedData
, errorCode
);
278 tailoring
->builder
= dataBuilder
;
281 tailoring
->data
= baseData
;
283 if(U_FAILURE(errorCode
)) { return NULL
; }
284 ownedSettings
.fastLatinOptions
= CollationFastLatin::getOptions(
285 tailoring
->data
, ownedSettings
,
286 ownedSettings
.fastLatinPrimaries
, UPRV_LENGTHOF(ownedSettings
.fastLatinPrimaries
));
287 tailoring
->rules
= ruleString
;
288 tailoring
->rules
.getTerminatedBuffer(); // ensure NUL-termination
289 tailoring
->setVersion(base
->version
, rulesVersion
);
290 return tailoring
.orphan();
294 CollationBuilder::addReset(int32_t strength
, const UnicodeString
&str
,
295 const char *&parserErrorReason
, UErrorCode
&errorCode
) {
296 if(U_FAILURE(errorCode
)) { return; }
297 U_ASSERT(!str
.isEmpty());
298 if(str
.charAt(0) == CollationRuleParser::POS_LEAD
) {
299 ces
[0] = getSpecialResetPosition(str
, parserErrorReason
, errorCode
);
301 if(U_FAILURE(errorCode
)) { return; }
302 U_ASSERT((ces
[0] & Collation::CASE_AND_QUATERNARY_MASK
) == 0);
304 // normal reset to a character or string
305 UnicodeString nfdString
= nfd
.normalize(str
, errorCode
);
306 if(U_FAILURE(errorCode
)) {
307 parserErrorReason
= "normalizing the reset position";
310 cesLength
= dataBuilder
->getCEs(nfdString
, ces
, 0);
311 if(cesLength
> Collation::MAX_EXPANSION_LENGTH
) {
312 errorCode
= U_ILLEGAL_ARGUMENT_ERROR
;
313 parserErrorReason
= "reset position maps to too many collation elements (more than 31)";
317 if(strength
== UCOL_IDENTICAL
) { return; } // simple reset-at-position
319 // &[before strength]position
320 U_ASSERT(UCOL_PRIMARY
<= strength
&& strength
<= UCOL_TERTIARY
);
321 int32_t index
= findOrInsertNodeForCEs(strength
, parserErrorReason
, errorCode
);
322 if(U_FAILURE(errorCode
)) { return; }
324 int64_t node
= nodes
.elementAti(index
);
325 // If the index is for a "weaker" node,
326 // then skip backwards over this and further "weaker" nodes.
327 while(strengthFromNode(node
) > strength
) {
328 index
= previousIndexFromNode(node
);
329 node
= nodes
.elementAti(index
);
332 // Find or insert a node whose index we will put into a temporary CE.
333 if(strengthFromNode(node
) == strength
&& isTailoredNode(node
)) {
334 // Reset to just before this same-strength tailored node.
335 index
= previousIndexFromNode(node
);
336 } else if(strength
== UCOL_PRIMARY
) {
337 // root primary node (has no previous index)
338 uint32_t p
= weight32FromNode(node
);
340 errorCode
= U_UNSUPPORTED_ERROR
;
341 parserErrorReason
= "reset primary-before ignorable not possible";
344 if(p
<= rootElements
.getFirstPrimary()) {
345 // There is no primary gap between ignorables and the space-first-primary.
346 errorCode
= U_UNSUPPORTED_ERROR
;
347 parserErrorReason
= "reset primary-before first non-ignorable not supported";
350 if(p
== Collation::FIRST_TRAILING_PRIMARY
) {
351 // We do not support tailoring to an unassigned-implicit CE.
352 errorCode
= U_UNSUPPORTED_ERROR
;
353 parserErrorReason
= "reset primary-before [first trailing] not supported";
356 p
= rootElements
.getPrimaryBefore(p
, baseData
->isCompressiblePrimary(p
));
357 index
= findOrInsertNodeForPrimary(p
, errorCode
);
358 // Go to the last node in this list:
359 // Tailor after the last node between adjacent root nodes.
361 node
= nodes
.elementAti(index
);
362 int32_t nextIndex
= nextIndexFromNode(node
);
363 if(nextIndex
== 0) { break; }
367 // &[before 2] or &[before 3]
368 index
= findCommonNode(index
, UCOL_SECONDARY
);
369 if(strength
>= UCOL_TERTIARY
) {
370 index
= findCommonNode(index
, UCOL_TERTIARY
);
372 // findCommonNode() stayed on the stronger node or moved to
373 // an explicit common-weight node of the reset-before strength.
374 node
= nodes
.elementAti(index
);
375 if(strengthFromNode(node
) == strength
) {
376 // Found a same-strength node with an explicit weight.
377 uint32_t weight16
= weight16FromNode(node
);
379 errorCode
= U_UNSUPPORTED_ERROR
;
380 if(strength
== UCOL_SECONDARY
) {
381 parserErrorReason
= "reset secondary-before secondary ignorable not possible";
383 parserErrorReason
= "reset tertiary-before completely ignorable not possible";
387 U_ASSERT(weight16
> Collation::BEFORE_WEIGHT16
);
388 // Reset to just before this node.
389 // Insert the preceding same-level explicit weight if it is not there already.
390 // Which explicit weight immediately precedes this one?
391 weight16
= getWeight16Before(index
, node
, strength
);
392 // Does this preceding weight have a node?
393 uint32_t previousWeight16
;
394 int32_t previousIndex
= previousIndexFromNode(node
);
395 for(int32_t i
= previousIndex
;; i
= previousIndexFromNode(node
)) {
396 node
= nodes
.elementAti(i
);
397 int32_t previousStrength
= strengthFromNode(node
);
398 if(previousStrength
< strength
) {
399 U_ASSERT(weight16
>= Collation::COMMON_WEIGHT16
|| i
== previousIndex
);
400 // Either the reset element has an above-common weight and
401 // the parent node provides the implied common weight,
402 // or the reset element has a weight<=common in the node
403 // right after the parent, and we need to insert the preceding weight.
404 previousWeight16
= Collation::COMMON_WEIGHT16
;
406 } else if(previousStrength
== strength
&& !isTailoredNode(node
)) {
407 previousWeight16
= weight16FromNode(node
);
410 // Skip weaker nodes and same-level tailored nodes.
412 if(previousWeight16
== weight16
) {
413 // The preceding weight has a node,
414 // maybe with following weaker or tailored nodes.
415 // Reset to the last of them.
416 index
= previousIndex
;
418 // Insert a node with the preceding weight, reset to that.
419 node
= nodeFromWeight16(weight16
) | nodeFromStrength(strength
);
420 index
= insertNodeBetween(previousIndex
, index
, node
, errorCode
);
423 // Found a stronger node with implied strength-common weight.
424 uint32_t weight16
= getWeight16Before(index
, node
, strength
);
425 index
= findOrInsertWeakNode(index
, weight16
, strength
, errorCode
);
427 // Strength of the temporary CE = strength of its reset position.
428 // Code above raises an error if the before-strength is stronger.
429 strength
= ceStrength(ces
[cesLength
- 1]);
431 if(U_FAILURE(errorCode
)) {
432 parserErrorReason
= "inserting reset position for &[before n]";
435 ces
[cesLength
- 1] = tempCEFromIndexAndStrength(index
, strength
);
439 CollationBuilder::getWeight16Before(int32_t index
, int64_t node
, int32_t level
) {
440 U_ASSERT(strengthFromNode(node
) < level
|| !isTailoredNode(node
));
441 // Collect the root CE weights if this node is for a root CE.
442 // If it is not, then return the low non-primary boundary for a tailored CE.
444 if(strengthFromNode(node
) == UCOL_TERTIARY
) {
445 t
= weight16FromNode(node
);
447 t
= Collation::COMMON_WEIGHT16
; // Stronger node with implied common weight.
449 while(strengthFromNode(node
) > UCOL_SECONDARY
) {
450 index
= previousIndexFromNode(node
);
451 node
= nodes
.elementAti(index
);
453 if(isTailoredNode(node
)) {
454 return Collation::BEFORE_WEIGHT16
;
457 if(strengthFromNode(node
) == UCOL_SECONDARY
) {
458 s
= weight16FromNode(node
);
460 s
= Collation::COMMON_WEIGHT16
; // Stronger node with implied common weight.
462 while(strengthFromNode(node
) > UCOL_PRIMARY
) {
463 index
= previousIndexFromNode(node
);
464 node
= nodes
.elementAti(index
);
466 if(isTailoredNode(node
)) {
467 return Collation::BEFORE_WEIGHT16
;
469 // [p, s, t] is a root CE. Return the preceding weight for the requested level.
470 uint32_t p
= weight32FromNode(node
);
472 if(level
== UCOL_SECONDARY
) {
473 weight16
= rootElements
.getSecondaryBefore(p
, s
);
475 weight16
= rootElements
.getTertiaryBefore(p
, s
, t
);
476 U_ASSERT((weight16
& ~Collation::ONLY_TERTIARY_MASK
) == 0);
482 CollationBuilder::getSpecialResetPosition(const UnicodeString
&str
,
483 const char *&parserErrorReason
, UErrorCode
&errorCode
) {
484 U_ASSERT(str
.length() == 2);
486 int32_t strength
= UCOL_PRIMARY
;
487 UBool isBoundary
= FALSE
;
488 UChar32 pos
= str
.charAt(1) - CollationRuleParser::POS_BASE
;
489 U_ASSERT(0 <= pos
&& pos
<= CollationRuleParser::LAST_TRAILING
);
491 case CollationRuleParser::FIRST_TERTIARY_IGNORABLE
:
492 // Quaternary CEs are not supported.
493 // Non-zero quaternary weights are possible only on tertiary or stronger CEs.
495 case CollationRuleParser::LAST_TERTIARY_IGNORABLE
:
497 case CollationRuleParser::FIRST_SECONDARY_IGNORABLE
: {
498 // Look for a tailored tertiary node after [0, 0, 0].
499 int32_t index
= findOrInsertNodeForRootCE(0, UCOL_TERTIARY
, errorCode
);
500 if(U_FAILURE(errorCode
)) { return 0; }
501 int64_t node
= nodes
.elementAti(index
);
502 if((index
= nextIndexFromNode(node
)) != 0) {
503 node
= nodes
.elementAti(index
);
504 U_ASSERT(strengthFromNode(node
) <= UCOL_TERTIARY
);
505 if(isTailoredNode(node
) && strengthFromNode(node
) == UCOL_TERTIARY
) {
506 return tempCEFromIndexAndStrength(index
, UCOL_TERTIARY
);
509 return rootElements
.getFirstTertiaryCE();
510 // No need to look for nodeHasAnyBefore() on a tertiary node.
512 case CollationRuleParser::LAST_SECONDARY_IGNORABLE
:
513 ce
= rootElements
.getLastTertiaryCE();
514 strength
= UCOL_TERTIARY
;
516 case CollationRuleParser::FIRST_PRIMARY_IGNORABLE
: {
517 // Look for a tailored secondary node after [0, 0, *].
518 int32_t index
= findOrInsertNodeForRootCE(0, UCOL_SECONDARY
, errorCode
);
519 if(U_FAILURE(errorCode
)) { return 0; }
520 int64_t node
= nodes
.elementAti(index
);
521 while((index
= nextIndexFromNode(node
)) != 0) {
522 node
= nodes
.elementAti(index
);
523 strength
= strengthFromNode(node
);
524 if(strength
< UCOL_SECONDARY
) { break; }
525 if(strength
== UCOL_SECONDARY
) {
526 if(isTailoredNode(node
)) {
527 if(nodeHasBefore3(node
)) {
528 index
= nextIndexFromNode(nodes
.elementAti(nextIndexFromNode(node
)));
529 U_ASSERT(isTailoredNode(nodes
.elementAti(index
)));
531 return tempCEFromIndexAndStrength(index
, UCOL_SECONDARY
);
537 ce
= rootElements
.getFirstSecondaryCE();
538 strength
= UCOL_SECONDARY
;
541 case CollationRuleParser::LAST_PRIMARY_IGNORABLE
:
542 ce
= rootElements
.getLastSecondaryCE();
543 strength
= UCOL_SECONDARY
;
545 case CollationRuleParser::FIRST_VARIABLE
:
546 ce
= rootElements
.getFirstPrimaryCE();
547 isBoundary
= TRUE
; // FractionalUCA.txt: FDD1 00A0, SPACE first primary
549 case CollationRuleParser::LAST_VARIABLE
:
550 ce
= rootElements
.lastCEWithPrimaryBefore(variableTop
+ 1);
552 case CollationRuleParser::FIRST_REGULAR
:
553 ce
= rootElements
.firstCEWithPrimaryAtLeast(variableTop
+ 1);
554 isBoundary
= TRUE
; // FractionalUCA.txt: FDD1 263A, SYMBOL first primary
556 case CollationRuleParser::LAST_REGULAR
:
557 // Use the Hani-first-primary rather than the actual last "regular" CE before it,
558 // for backward compatibility with behavior before the introduction of
559 // script-first-primary CEs in the root collator.
560 ce
= rootElements
.firstCEWithPrimaryAtLeast(
561 baseData
->getFirstPrimaryForGroup(USCRIPT_HAN
));
563 case CollationRuleParser::FIRST_IMPLICIT
:
564 ce
= baseData
->getSingleCE(0x4e00, errorCode
);
566 case CollationRuleParser::LAST_IMPLICIT
:
567 // We do not support tailoring to an unassigned-implicit CE.
568 errorCode
= U_UNSUPPORTED_ERROR
;
569 parserErrorReason
= "reset to [last implicit] not supported";
571 case CollationRuleParser::FIRST_TRAILING
:
572 ce
= Collation::makeCE(Collation::FIRST_TRAILING_PRIMARY
);
573 isBoundary
= TRUE
; // trailing first primary (there is no mapping for it)
575 case CollationRuleParser::LAST_TRAILING
:
576 errorCode
= U_ILLEGAL_ARGUMENT_ERROR
;
577 parserErrorReason
= "LDML forbids tailoring to U+FFFF";
583 int32_t index
= findOrInsertNodeForRootCE(ce
, strength
, errorCode
);
584 if(U_FAILURE(errorCode
)) { return 0; }
585 int64_t node
= nodes
.elementAti(index
);
587 // even pos = [first xyz]
588 if(!nodeHasAnyBefore(node
) && isBoundary
) {
589 // A <group> first primary boundary is artificially added to FractionalUCA.txt.
590 // It is reachable via its special contraction, but is not normally used.
591 // Find the first character tailored after the boundary CE,
592 // or the first real root CE after it.
593 if((index
= nextIndexFromNode(node
)) != 0) {
594 // If there is a following node, then it must be tailored
595 // because there are no root CEs with a boundary primary
596 // and non-common secondary/tertiary weights.
597 node
= nodes
.elementAti(index
);
598 U_ASSERT(isTailoredNode(node
));
599 ce
= tempCEFromIndexAndStrength(index
, strength
);
601 U_ASSERT(strength
== UCOL_PRIMARY
);
602 uint32_t p
= (uint32_t)(ce
>> 32);
603 int32_t pIndex
= rootElements
.findPrimary(p
);
604 UBool isCompressible
= baseData
->isCompressiblePrimary(p
);
605 p
= rootElements
.getPrimaryAfter(p
, pIndex
, isCompressible
);
606 ce
= Collation::makeCE(p
);
607 index
= findOrInsertNodeForRootCE(ce
, UCOL_PRIMARY
, errorCode
);
608 if(U_FAILURE(errorCode
)) { return 0; }
609 node
= nodes
.elementAti(index
);
612 if(nodeHasAnyBefore(node
)) {
613 // Get the first node that was tailored before this one at a weaker strength.
614 if(nodeHasBefore2(node
)) {
615 index
= nextIndexFromNode(nodes
.elementAti(nextIndexFromNode(node
)));
616 node
= nodes
.elementAti(index
);
618 if(nodeHasBefore3(node
)) {
619 index
= nextIndexFromNode(nodes
.elementAti(nextIndexFromNode(node
)));
621 U_ASSERT(isTailoredNode(nodes
.elementAti(index
)));
622 ce
= tempCEFromIndexAndStrength(index
, strength
);
625 // odd pos = [last xyz]
626 // Find the last node that was tailored after the [last xyz]
627 // at a strength no greater than the position's strength.
629 int32_t nextIndex
= nextIndexFromNode(node
);
630 if(nextIndex
== 0) { break; }
631 int64_t nextNode
= nodes
.elementAti(nextIndex
);
632 if(strengthFromNode(nextNode
) < strength
) { break; }
636 // Do not make a temporary CE for a root node.
637 // This last node might be the node for the root CE itself,
638 // or a node with a common secondary or tertiary weight.
639 if(isTailoredNode(node
)) {
640 ce
= tempCEFromIndexAndStrength(index
, strength
);
647 CollationBuilder::addRelation(int32_t strength
, const UnicodeString
&prefix
,
648 const UnicodeString
&str
, const UnicodeString
&extension
,
649 const char *&parserErrorReason
, UErrorCode
&errorCode
) {
650 if(U_FAILURE(errorCode
)) { return; }
651 UnicodeString nfdPrefix
;
652 if(!prefix
.isEmpty()) {
653 nfd
.normalize(prefix
, nfdPrefix
, errorCode
);
654 if(U_FAILURE(errorCode
)) {
655 parserErrorReason
= "normalizing the relation prefix";
659 UnicodeString nfdString
= nfd
.normalize(str
, errorCode
);
660 if(U_FAILURE(errorCode
)) {
661 parserErrorReason
= "normalizing the relation string";
665 // The runtime code decomposes Hangul syllables on the fly,
666 // with recursive processing but without making the Jamo pieces visible for matching.
667 // It does not work with certain types of contextual mappings.
668 int32_t nfdLength
= nfdString
.length();
670 UChar c
= nfdString
.charAt(0);
671 if(Hangul::isJamoL(c
) || Hangul::isJamoV(c
)) {
672 // While handling a Hangul syllable, contractions starting with Jamo L or V
673 // would not see the following Jamo of that syllable.
674 errorCode
= U_UNSUPPORTED_ERROR
;
675 parserErrorReason
= "contractions starting with conjoining Jamo L or V not supported";
678 c
= nfdString
.charAt(nfdLength
- 1);
679 if(Hangul::isJamoL(c
) ||
680 (Hangul::isJamoV(c
) && Hangul::isJamoL(nfdString
.charAt(nfdLength
- 2)))) {
681 // A contraction ending with Jamo L or L+V would require
682 // generating Hangul syllables in addTailComposites() (588 for a Jamo L),
683 // or decomposing a following Hangul syllable on the fly, during contraction matching.
684 errorCode
= U_UNSUPPORTED_ERROR
;
685 parserErrorReason
= "contractions ending with conjoining Jamo L or L+V not supported";
688 // A Hangul syllable completely inside a contraction is ok.
690 // Note: If there is a prefix, then the parser checked that
691 // both the prefix and the string beging with NFC boundaries (not Jamo V or T).
692 // Therefore: prefix.isEmpty() || !isJamoVOrT(nfdString.charAt(0))
693 // (While handling a Hangul syllable, prefixes on Jamo V or T
694 // would not see the previous Jamo of that syllable.)
696 if(strength
!= UCOL_IDENTICAL
) {
697 // Find the node index after which we insert the new tailored node.
698 int32_t index
= findOrInsertNodeForCEs(strength
, parserErrorReason
, errorCode
);
699 U_ASSERT(cesLength
> 0);
700 int64_t ce
= ces
[cesLength
- 1];
701 if(strength
== UCOL_PRIMARY
&& !isTempCE(ce
) && (uint32_t)(ce
>> 32) == 0) {
702 // There is no primary gap between ignorables and the space-first-primary.
703 errorCode
= U_UNSUPPORTED_ERROR
;
704 parserErrorReason
= "tailoring primary after ignorables not supported";
707 if(strength
== UCOL_QUATERNARY
&& ce
== 0) {
708 // The CE data structure does not support non-zero quaternary weights
709 // on tertiary ignorables.
710 errorCode
= U_UNSUPPORTED_ERROR
;
711 parserErrorReason
= "tailoring quaternary after tertiary ignorables not supported";
714 // Insert the new tailored node.
715 index
= insertTailoredNodeAfter(index
, strength
, errorCode
);
716 if(U_FAILURE(errorCode
)) {
717 parserErrorReason
= "modifying collation elements";
720 // Strength of the temporary CE:
721 // The new relation may yield a stronger CE but not a weaker one.
722 int32_t tempStrength
= ceStrength(ce
);
723 if(strength
< tempStrength
) { tempStrength
= strength
; }
724 ces
[cesLength
- 1] = tempCEFromIndexAndStrength(index
, tempStrength
);
727 setCaseBits(nfdString
, parserErrorReason
, errorCode
);
728 if(U_FAILURE(errorCode
)) { return; }
730 int32_t cesLengthBeforeExtension
= cesLength
;
731 if(!extension
.isEmpty()) {
732 UnicodeString nfdExtension
= nfd
.normalize(extension
, errorCode
);
733 if(U_FAILURE(errorCode
)) {
734 parserErrorReason
= "normalizing the relation extension";
737 cesLength
= dataBuilder
->getCEs(nfdExtension
, ces
, cesLength
);
738 if(cesLength
> Collation::MAX_EXPANSION_LENGTH
) {
739 errorCode
= U_ILLEGAL_ARGUMENT_ERROR
;
741 "extension string adds too many collation elements (more than 31 total)";
745 uint32_t ce32
= Collation::UNASSIGNED_CE32
;
746 if((prefix
!= nfdPrefix
|| str
!= nfdString
) &&
747 !ignorePrefix(prefix
, errorCode
) && !ignoreString(str
, errorCode
)) {
748 // Map from the original input to the CEs.
749 // We do this in case the canonical closure is incomplete,
750 // so that it is possible to explicitly provide the missing mappings.
751 ce32
= addIfDifferent(prefix
, str
, ces
, cesLength
, ce32
, errorCode
);
753 addWithClosure(nfdPrefix
, nfdString
, ces
, cesLength
, ce32
, errorCode
);
754 if(U_FAILURE(errorCode
)) {
755 parserErrorReason
= "writing collation elements";
758 cesLength
= cesLengthBeforeExtension
;
762 CollationBuilder::findOrInsertNodeForCEs(int32_t strength
, const char *&parserErrorReason
,
763 UErrorCode
&errorCode
) {
764 if(U_FAILURE(errorCode
)) { return 0; }
765 U_ASSERT(UCOL_PRIMARY
<= strength
&& strength
<= UCOL_QUATERNARY
);
767 // Find the last CE that is at least as "strong" as the requested difference.
768 // Note: Stronger is smaller (UCOL_PRIMARY=0).
770 for(;; --cesLength
) {
776 ce
= ces
[cesLength
- 1];
778 if(ceStrength(ce
) <= strength
) { break; }
782 // No need to findCommonNode() here for lower levels
783 // because insertTailoredNodeAfter() will do that anyway.
784 return indexFromTempCE(ce
);
788 if((uint8_t)(ce
>> 56) == Collation::UNASSIGNED_IMPLICIT_BYTE
) {
789 errorCode
= U_UNSUPPORTED_ERROR
;
790 parserErrorReason
= "tailoring relative to an unassigned code point not supported";
793 return findOrInsertNodeForRootCE(ce
, strength
, errorCode
);
797 CollationBuilder::findOrInsertNodeForRootCE(int64_t ce
, int32_t strength
, UErrorCode
&errorCode
) {
798 if(U_FAILURE(errorCode
)) { return 0; }
799 U_ASSERT((uint8_t)(ce
>> 56) != Collation::UNASSIGNED_IMPLICIT_BYTE
);
801 // Find or insert the node for each of the root CE's weights,
802 // down to the requested level/strength.
803 // Root CEs must have common=zero quaternary weights (for which we never insert any nodes).
804 U_ASSERT((ce
& 0xc0) == 0);
805 int32_t index
= findOrInsertNodeForPrimary((uint32_t)(ce
>> 32), errorCode
);
806 if(strength
>= UCOL_SECONDARY
) {
807 uint32_t lower32
= (uint32_t)ce
;
808 index
= findOrInsertWeakNode(index
, lower32
>> 16, UCOL_SECONDARY
, errorCode
);
809 if(strength
>= UCOL_TERTIARY
) {
810 index
= findOrInsertWeakNode(index
, lower32
& Collation::ONLY_TERTIARY_MASK
,
811 UCOL_TERTIARY
, errorCode
);
820 * Like Java Collections.binarySearch(List, key, Comparator).
822 * @return the index>=0 where the item was found,
823 * or the index<0 for inserting the string at ~index in sorted order
824 * (index into rootPrimaryIndexes)
827 binarySearchForRootPrimaryNode(const int32_t *rootPrimaryIndexes
, int32_t length
,
828 const int64_t *nodes
, uint32_t p
) {
829 if(length
== 0) { return ~0; }
831 int32_t limit
= length
;
833 int32_t i
= (start
+ limit
) / 2;
834 int64_t node
= nodes
[rootPrimaryIndexes
[i
]];
835 uint32_t nodePrimary
= (uint32_t)(node
>> 32); // weight32FromNode(node)
836 if (p
== nodePrimary
) {
838 } else if (p
< nodePrimary
) {
840 return ~start
; // insert s before i
845 return ~(start
+ 1); // insert s after i
855 CollationBuilder::findOrInsertNodeForPrimary(uint32_t p
, UErrorCode
&errorCode
) {
856 if(U_FAILURE(errorCode
)) { return 0; }
858 int32_t rootIndex
= binarySearchForRootPrimaryNode(
859 rootPrimaryIndexes
.getBuffer(), rootPrimaryIndexes
.size(), nodes
.getBuffer(), p
);
861 return rootPrimaryIndexes
.elementAti(rootIndex
);
863 // Start a new list of nodes with this primary.
864 int32_t index
= nodes
.size();
865 nodes
.addElement(nodeFromWeight32(p
), errorCode
);
866 rootPrimaryIndexes
.insertElementAt(index
, ~rootIndex
, errorCode
);
872 CollationBuilder::findOrInsertWeakNode(int32_t index
, uint32_t weight16
, int32_t level
, UErrorCode
&errorCode
) {
873 if(U_FAILURE(errorCode
)) { return 0; }
874 U_ASSERT(0 <= index
&& index
< nodes
.size());
875 U_ASSERT(UCOL_SECONDARY
<= level
&& level
<= UCOL_TERTIARY
);
877 if(weight16
== Collation::COMMON_WEIGHT16
) {
878 return findCommonNode(index
, level
);
881 // If this will be the first below-common weight for the parent node,
882 // then we will also need to insert a common weight after it.
883 int64_t node
= nodes
.elementAti(index
);
884 U_ASSERT(strengthFromNode(node
) < level
); // parent node is stronger
885 if(weight16
!= 0 && weight16
< Collation::COMMON_WEIGHT16
) {
886 int32_t hasThisLevelBefore
= level
== UCOL_SECONDARY
? HAS_BEFORE2
: HAS_BEFORE3
;
887 if((node
& hasThisLevelBefore
) == 0) {
888 // The parent node has an implied level-common weight.
890 nodeFromWeight16(Collation::COMMON_WEIGHT16
) | nodeFromStrength(level
);
891 if(level
== UCOL_SECONDARY
) {
892 // Move the HAS_BEFORE3 flag from the parent node
893 // to the new secondary common node.
894 commonNode
|= node
& HAS_BEFORE3
;
895 node
&= ~(int64_t)HAS_BEFORE3
;
897 nodes
.setElementAt(node
| hasThisLevelBefore
, index
);
898 // Insert below-common-weight node.
899 int32_t nextIndex
= nextIndexFromNode(node
);
900 node
= nodeFromWeight16(weight16
) | nodeFromStrength(level
);
901 index
= insertNodeBetween(index
, nextIndex
, node
, errorCode
);
902 // Insert common-weight node.
903 insertNodeBetween(index
, nextIndex
, commonNode
, errorCode
);
904 // Return index of below-common-weight node.
909 // Find the root CE's weight for this level.
910 // Postpone insertion if not found:
911 // Insert the new root node before the next stronger node,
912 // or before the next root node with the same strength and a larger weight.
914 while((nextIndex
= nextIndexFromNode(node
)) != 0) {
915 node
= nodes
.elementAti(nextIndex
);
916 int32_t nextStrength
= strengthFromNode(node
);
917 if(nextStrength
<= level
) {
918 // Insert before a stronger node.
919 if(nextStrength
< level
) { break; }
920 // nextStrength == level
921 if(!isTailoredNode(node
)) {
922 uint32_t nextWeight16
= weight16FromNode(node
);
923 if(nextWeight16
== weight16
) {
924 // Found the node for the root CE up to this level.
927 // Insert before a node with a larger same-strength weight.
928 if(nextWeight16
> weight16
) { break; }
931 // Skip the next node.
934 node
= nodeFromWeight16(weight16
) | nodeFromStrength(level
);
935 return insertNodeBetween(index
, nextIndex
, node
, errorCode
);
939 CollationBuilder::insertTailoredNodeAfter(int32_t index
, int32_t strength
, UErrorCode
&errorCode
) {
940 if(U_FAILURE(errorCode
)) { return 0; }
941 U_ASSERT(0 <= index
&& index
< nodes
.size());
942 if(strength
>= UCOL_SECONDARY
) {
943 index
= findCommonNode(index
, UCOL_SECONDARY
);
944 if(strength
>= UCOL_TERTIARY
) {
945 index
= findCommonNode(index
, UCOL_TERTIARY
);
948 // Postpone insertion:
949 // Insert the new node before the next one with a strength at least as strong.
950 int64_t node
= nodes
.elementAti(index
);
952 while((nextIndex
= nextIndexFromNode(node
)) != 0) {
953 node
= nodes
.elementAti(nextIndex
);
954 if(strengthFromNode(node
) <= strength
) { break; }
955 // Skip the next node which has a weaker (larger) strength than the new one.
958 node
= IS_TAILORED
| nodeFromStrength(strength
);
959 return insertNodeBetween(index
, nextIndex
, node
, errorCode
);
963 CollationBuilder::insertNodeBetween(int32_t index
, int32_t nextIndex
, int64_t node
,
964 UErrorCode
&errorCode
) {
965 if(U_FAILURE(errorCode
)) { return 0; }
966 U_ASSERT(previousIndexFromNode(node
) == 0);
967 U_ASSERT(nextIndexFromNode(node
) == 0);
968 U_ASSERT(nextIndexFromNode(nodes
.elementAti(index
)) == nextIndex
);
969 // Append the new node and link it to the existing nodes.
970 int32_t newIndex
= nodes
.size();
971 node
|= nodeFromPreviousIndex(index
) | nodeFromNextIndex(nextIndex
);
972 nodes
.addElement(node
, errorCode
);
973 if(U_FAILURE(errorCode
)) { return 0; }
974 // nodes[index].nextIndex = newIndex
975 node
= nodes
.elementAti(index
);
976 nodes
.setElementAt(changeNodeNextIndex(node
, newIndex
), index
);
977 // nodes[nextIndex].previousIndex = newIndex
979 node
= nodes
.elementAti(nextIndex
);
980 nodes
.setElementAt(changeNodePreviousIndex(node
, newIndex
), nextIndex
);
986 CollationBuilder::findCommonNode(int32_t index
, int32_t strength
) const {
987 U_ASSERT(UCOL_SECONDARY
<= strength
&& strength
<= UCOL_TERTIARY
);
988 int64_t node
= nodes
.elementAti(index
);
989 if(strengthFromNode(node
) >= strength
) {
990 // The current node is no stronger.
993 if(strength
== UCOL_SECONDARY
? !nodeHasBefore2(node
) : !nodeHasBefore3(node
)) {
994 // The current node implies the strength-common weight.
997 index
= nextIndexFromNode(node
);
998 node
= nodes
.elementAti(index
);
999 U_ASSERT(!isTailoredNode(node
) && strengthFromNode(node
) == strength
&&
1000 weight16FromNode(node
) < Collation::COMMON_WEIGHT16
);
1001 // Skip to the explicit common node.
1003 index
= nextIndexFromNode(node
);
1004 node
= nodes
.elementAti(index
);
1005 U_ASSERT(strengthFromNode(node
) >= strength
);
1006 } while(isTailoredNode(node
) || strengthFromNode(node
) > strength
||
1007 weight16FromNode(node
) < Collation::COMMON_WEIGHT16
);
1008 U_ASSERT(weight16FromNode(node
) == Collation::COMMON_WEIGHT16
);
1013 CollationBuilder::setCaseBits(const UnicodeString
&nfdString
,
1014 const char *&parserErrorReason
, UErrorCode
&errorCode
) {
1015 if(U_FAILURE(errorCode
)) { return; }
1016 int32_t numTailoredPrimaries
= 0;
1017 for(int32_t i
= 0; i
< cesLength
; ++i
) {
1018 if(ceStrength(ces
[i
]) == UCOL_PRIMARY
) { ++numTailoredPrimaries
; }
1020 // We should not be able to get too many case bits because
1021 // cesLength<=31==MAX_EXPANSION_LENGTH.
1022 // 31 pairs of case bits fit into an int64_t without setting its sign bit.
1023 U_ASSERT(numTailoredPrimaries
<= 31);
1026 if(numTailoredPrimaries
> 0) {
1027 const UChar
*s
= nfdString
.getBuffer();
1028 UTF16CollationIterator
baseCEs(baseData
, FALSE
, s
, s
, s
+ nfdString
.length());
1029 int32_t baseCEsLength
= baseCEs
.fetchCEs(errorCode
) - 1;
1030 if(U_FAILURE(errorCode
)) {
1031 parserErrorReason
= "fetching root CEs for tailored string";
1034 U_ASSERT(baseCEsLength
>= 0 && baseCEs
.getCE(baseCEsLength
) == Collation::NO_CE
);
1036 uint32_t lastCase
= 0;
1037 int32_t numBasePrimaries
= 0;
1038 for(int32_t i
= 0; i
< baseCEsLength
; ++i
) {
1039 int64_t ce
= baseCEs
.getCE(i
);
1040 if((ce
>> 32) != 0) {
1042 uint32_t c
= ((uint32_t)ce
>> 14) & 3;
1043 U_ASSERT(c
== 0 || c
== 2); // lowercase or uppercase, no mixed case in any base CE
1044 if(numBasePrimaries
< numTailoredPrimaries
) {
1045 cases
|= (int64_t)c
<< ((numBasePrimaries
- 1) * 2);
1046 } else if(numBasePrimaries
== numTailoredPrimaries
) {
1048 } else if(c
!= lastCase
) {
1049 // There are more base primary CEs than tailored primaries.
1050 // Set mixed case if the case bits of the remainder differ.
1052 // Nothing more can change.
1057 if(numBasePrimaries
>= numTailoredPrimaries
) {
1058 cases
|= (int64_t)lastCase
<< ((numTailoredPrimaries
- 1) * 2);
1062 for(int32_t i
= 0; i
< cesLength
; ++i
) {
1063 int64_t ce
= ces
[i
] & INT64_C(0xffffffffffff3fff); // clear old case bits
1064 int32_t strength
= ceStrength(ce
);
1065 if(strength
== UCOL_PRIMARY
) {
1066 ce
|= (cases
& 3) << 14;
1068 } else if(strength
== UCOL_TERTIARY
) {
1069 // Tertiary CEs must have uppercase bits.
1070 // See the LDML spec, and comments in class CollationCompare.
1073 // Tertiary ignorable CEs must have 0 case bits.
1074 // We set 0 case bits for secondary CEs too
1075 // since currently only U+0345 is cased and maps to a secondary CE,
1076 // and it is lowercase. Other secondaries are uncased.
1077 // See [[:Cased:]&[:uca1=:]] where uca1 queries the root primary weight.
1083 CollationBuilder::suppressContractions(const UnicodeSet
&set
, const char *&parserErrorReason
,
1084 UErrorCode
&errorCode
) {
1085 if(U_FAILURE(errorCode
)) { return; }
1086 dataBuilder
->suppressContractions(set
, errorCode
);
1087 if(U_FAILURE(errorCode
)) {
1088 parserErrorReason
= "application of [suppressContractions [set]] failed";
1093 CollationBuilder::optimize(const UnicodeSet
&set
, const char *& /* parserErrorReason */,
1094 UErrorCode
&errorCode
) {
1095 if(U_FAILURE(errorCode
)) { return; }
1096 optimizeSet
.addAll(set
);
1100 CollationBuilder::addWithClosure(const UnicodeString
&nfdPrefix
, const UnicodeString
&nfdString
,
1101 const int64_t newCEs
[], int32_t newCEsLength
, uint32_t ce32
,
1102 UErrorCode
&errorCode
) {
1103 // Map from the NFD input to the CEs.
1104 ce32
= addIfDifferent(nfdPrefix
, nfdString
, newCEs
, newCEsLength
, ce32
, errorCode
);
1105 ce32
= addOnlyClosure(nfdPrefix
, nfdString
, newCEs
, newCEsLength
, ce32
, errorCode
);
1106 addTailComposites(nfdPrefix
, nfdString
, errorCode
);
1111 CollationBuilder::addOnlyClosure(const UnicodeString
&nfdPrefix
, const UnicodeString
&nfdString
,
1112 const int64_t newCEs
[], int32_t newCEsLength
, uint32_t ce32
,
1113 UErrorCode
&errorCode
) {
1114 if(U_FAILURE(errorCode
)) { return ce32
; }
1116 // Map from canonically equivalent input to the CEs. (But not from the all-NFD input.)
1117 if(nfdPrefix
.isEmpty()) {
1118 CanonicalIterator
stringIter(nfdString
, errorCode
);
1119 if(U_FAILURE(errorCode
)) { return ce32
; }
1120 UnicodeString prefix
;
1122 UnicodeString str
= stringIter
.next();
1123 if(str
.isBogus()) { break; }
1124 if(ignoreString(str
, errorCode
) || str
== nfdString
) { continue; }
1125 ce32
= addIfDifferent(prefix
, str
, newCEs
, newCEsLength
, ce32
, errorCode
);
1126 if(U_FAILURE(errorCode
)) { return ce32
; }
1129 CanonicalIterator
prefixIter(nfdPrefix
, errorCode
);
1130 CanonicalIterator
stringIter(nfdString
, errorCode
);
1131 if(U_FAILURE(errorCode
)) { return ce32
; }
1133 UnicodeString prefix
= prefixIter
.next();
1134 if(prefix
.isBogus()) { break; }
1135 if(ignorePrefix(prefix
, errorCode
)) { continue; }
1136 UBool samePrefix
= prefix
== nfdPrefix
;
1138 UnicodeString str
= stringIter
.next();
1139 if(str
.isBogus()) { break; }
1140 if(ignoreString(str
, errorCode
) || (samePrefix
&& str
== nfdString
)) { continue; }
1141 ce32
= addIfDifferent(prefix
, str
, newCEs
, newCEsLength
, ce32
, errorCode
);
1142 if(U_FAILURE(errorCode
)) { return ce32
; }
1151 CollationBuilder::addTailComposites(const UnicodeString
&nfdPrefix
, const UnicodeString
&nfdString
,
1152 UErrorCode
&errorCode
) {
1153 if(U_FAILURE(errorCode
)) { return; }
1155 // Look for the last starter in the NFD string.
1156 UChar32 lastStarter
;
1157 int32_t indexAfterLastStarter
= nfdString
.length();
1159 if(indexAfterLastStarter
== 0) { return; } // no starter at all
1160 lastStarter
= nfdString
.char32At(indexAfterLastStarter
- 1);
1161 if(nfd
.getCombiningClass(lastStarter
) == 0) { break; }
1162 indexAfterLastStarter
-= U16_LENGTH(lastStarter
);
1164 // No closure to Hangul syllables since we decompose them on the fly.
1165 if(Hangul::isJamoL(lastStarter
)) { return; }
1167 // Are there any composites whose decomposition starts with the lastStarter?
1168 // Note: Normalizer2Impl does not currently return start sets for NFC_QC=Maybe characters.
1169 // We might find some more equivalent mappings here if it did.
1170 UnicodeSet composites
;
1171 if(!nfcImpl
.getCanonStartSet(lastStarter
, composites
)) { return; }
1173 UnicodeString decomp
;
1174 UnicodeString newNFDString
, newString
;
1175 int64_t newCEs
[Collation::MAX_EXPANSION_LENGTH
];
1176 UnicodeSetIterator
iter(composites
);
1177 while(iter
.next()) {
1178 U_ASSERT(!iter
.isString());
1179 UChar32 composite
= iter
.getCodepoint();
1180 nfd
.getDecomposition(composite
, decomp
);
1181 if(!mergeCompositeIntoString(nfdString
, indexAfterLastStarter
, composite
, decomp
,
1182 newNFDString
, newString
, errorCode
)) {
1185 int32_t newCEsLength
= dataBuilder
->getCEs(nfdPrefix
, newNFDString
, newCEs
, 0);
1186 if(newCEsLength
> Collation::MAX_EXPANSION_LENGTH
) {
1187 // Ignore mappings that we cannot store.
1190 // Note: It is possible that the newCEs do not make use of the mapping
1191 // for which we are adding the tail composites, in which case we might be adding
1192 // unnecessary mappings.
1193 // For example, when we add tail composites for ae^ (^=combining circumflex),
1194 // UCA discontiguous-contraction matching does not find any matches
1195 // for ae_^ (_=any combining diacritic below) *unless* there is also
1196 // a contraction mapping for ae.
1197 // Thus, if there is no ae contraction, then the ae^ mapping is ignored
1198 // while fetching the newCEs for ae_^.
1199 // TODO: Try to detect this effectively.
1200 // (Alternatively, print a warning when prefix contractions are missing.)
1202 // We do not need an explicit mapping for the NFD strings.
1203 // It is fine if the NFD input collates like this via a sequence of mappings.
1204 // It also saves a little bit of space, and may reduce the set of characters with contractions.
1205 uint32_t ce32
= addIfDifferent(nfdPrefix
, newString
,
1206 newCEs
, newCEsLength
, Collation::UNASSIGNED_CE32
, errorCode
);
1207 if(ce32
!= Collation::UNASSIGNED_CE32
) {
1208 // was different, was added
1209 addOnlyClosure(nfdPrefix
, newNFDString
, newCEs
, newCEsLength
, ce32
, errorCode
);
1215 CollationBuilder::mergeCompositeIntoString(const UnicodeString
&nfdString
,
1216 int32_t indexAfterLastStarter
,
1217 UChar32 composite
, const UnicodeString
&decomp
,
1218 UnicodeString
&newNFDString
, UnicodeString
&newString
,
1219 UErrorCode
&errorCode
) const {
1220 if(U_FAILURE(errorCode
)) { return FALSE
; }
1221 U_ASSERT(nfdString
.char32At(indexAfterLastStarter
- 1) == decomp
.char32At(0));
1222 int32_t lastStarterLength
= decomp
.moveIndex32(0, 1);
1223 if(lastStarterLength
== decomp
.length()) {
1224 // Singleton decompositions should be found by addWithClosure()
1225 // and the CanonicalIterator, so we can ignore them here.
1228 if(nfdString
.compare(indexAfterLastStarter
, 0x7fffffff,
1229 decomp
, lastStarterLength
, 0x7fffffff) == 0) {
1230 // same strings, nothing new to be found here
1234 // Make new FCD strings that combine a composite, or its decomposition,
1235 // into the nfdString's last starter and the combining marks following it.
1236 // Make an NFD version, and a version with the composite.
1237 newNFDString
.setTo(nfdString
, 0, indexAfterLastStarter
);
1238 newString
.setTo(nfdString
, 0, indexAfterLastStarter
- lastStarterLength
).append(composite
);
1240 // The following is related to discontiguous contraction matching,
1241 // but builds only FCD strings (or else returns FALSE).
1242 int32_t sourceIndex
= indexAfterLastStarter
;
1243 int32_t decompIndex
= lastStarterLength
;
1244 // Small optimization: We keep the source character across loop iterations
1245 // because we do not always consume it,
1246 // and then need not fetch it again nor look up its combining class again.
1247 UChar32 sourceChar
= U_SENTINEL
;
1248 // The cc variables need to be declared before the loop so that at the end
1249 // they are set to the last combining classes seen.
1250 uint8_t sourceCC
= 0;
1251 uint8_t decompCC
= 0;
1253 if(sourceChar
< 0) {
1254 if(sourceIndex
>= nfdString
.length()) { break; }
1255 sourceChar
= nfdString
.char32At(sourceIndex
);
1256 sourceCC
= nfd
.getCombiningClass(sourceChar
);
1257 U_ASSERT(sourceCC
!= 0);
1259 // We consume a decomposition character in each iteration.
1260 if(decompIndex
>= decomp
.length()) { break; }
1261 UChar32 decompChar
= decomp
.char32At(decompIndex
);
1262 decompCC
= nfd
.getCombiningClass(decompChar
);
1263 // Compare the two characters and their combining classes.
1265 // Unable to merge because the source contains a non-zero combining mark
1266 // but the composite's decomposition contains another starter.
1267 // The strings would not be equivalent.
1269 } else if(sourceCC
< decompCC
) {
1270 // Composite + sourceChar would not be FCD.
1272 } else if(decompCC
< sourceCC
) {
1273 newNFDString
.append(decompChar
);
1274 decompIndex
+= U16_LENGTH(decompChar
);
1275 } else if(decompChar
!= sourceChar
) {
1276 // Blocked because same combining class.
1278 } else { // match: decompChar == sourceChar
1279 newNFDString
.append(decompChar
);
1280 decompIndex
+= U16_LENGTH(decompChar
);
1281 sourceIndex
+= U16_LENGTH(decompChar
);
1282 sourceChar
= U_SENTINEL
;
1285 // We are at the end of at least one of the two inputs.
1286 if(sourceChar
>= 0) { // more characters from nfdString but not from decomp
1287 if(sourceCC
< decompCC
) {
1288 // Appending the next source character to the composite would not be FCD.
1291 newNFDString
.append(nfdString
, sourceIndex
, 0x7fffffff);
1292 newString
.append(nfdString
, sourceIndex
, 0x7fffffff);
1293 } else if(decompIndex
< decomp
.length()) { // more characters from decomp, not from nfdString
1294 newNFDString
.append(decomp
, decompIndex
, 0x7fffffff);
1296 U_ASSERT(nfd
.isNormalized(newNFDString
, errorCode
));
1297 U_ASSERT(fcd
.isNormalized(newString
, errorCode
));
1298 U_ASSERT(nfd
.normalize(newString
, errorCode
) == newNFDString
); // canonically equivalent
1303 CollationBuilder::ignorePrefix(const UnicodeString
&s
, UErrorCode
&errorCode
) const {
1304 // Do not map non-FCD prefixes.
1305 return !isFCD(s
, errorCode
);
1309 CollationBuilder::ignoreString(const UnicodeString
&s
, UErrorCode
&errorCode
) const {
1310 // Do not map non-FCD strings.
1311 // Do not map strings that start with Hangul syllables: We decompose those on the fly.
1312 return !isFCD(s
, errorCode
) || Hangul::isHangul(s
.charAt(0));
1316 CollationBuilder::isFCD(const UnicodeString
&s
, UErrorCode
&errorCode
) const {
1317 return U_SUCCESS(errorCode
) && fcd
.isNormalized(s
, errorCode
);
1321 CollationBuilder::closeOverComposites(UErrorCode
&errorCode
) {
1322 UnicodeSet
composites(UNICODE_STRING_SIMPLE("[:NFD_QC=N:]"), errorCode
); // Java: static final
1323 if(U_FAILURE(errorCode
)) { return; }
1324 // Hangul is decomposed on the fly during collation.
1325 composites
.remove(Hangul::HANGUL_BASE
, Hangul::HANGUL_END
);
1326 UnicodeString prefix
; // empty
1327 UnicodeString nfdString
;
1328 UnicodeSetIterator
iter(composites
);
1329 while(iter
.next()) {
1330 U_ASSERT(!iter
.isString());
1331 nfd
.getDecomposition(iter
.getCodepoint(), nfdString
);
1332 cesLength
= dataBuilder
->getCEs(nfdString
, ces
, 0);
1333 if(cesLength
> Collation::MAX_EXPANSION_LENGTH
) {
1334 // Too many CEs from the decomposition (unusual), ignore this composite.
1335 // We could add a capacity parameter to getCEs() and reallocate if necessary.
1336 // However, this can only really happen in contrived cases.
1339 const UnicodeString
&composite(iter
.getString());
1340 addIfDifferent(prefix
, composite
, ces
, cesLength
, Collation::UNASSIGNED_CE32
, errorCode
);
1345 CollationBuilder::addIfDifferent(const UnicodeString
&prefix
, const UnicodeString
&str
,
1346 const int64_t newCEs
[], int32_t newCEsLength
, uint32_t ce32
,
1347 UErrorCode
&errorCode
) {
1348 if(U_FAILURE(errorCode
)) { return ce32
; }
1349 int64_t oldCEs
[Collation::MAX_EXPANSION_LENGTH
];
1350 int32_t oldCEsLength
= dataBuilder
->getCEs(prefix
, str
, oldCEs
, 0);
1351 if(!sameCEs(newCEs
, newCEsLength
, oldCEs
, oldCEsLength
)) {
1352 if(ce32
== Collation::UNASSIGNED_CE32
) {
1353 ce32
= dataBuilder
->encodeCEs(newCEs
, newCEsLength
, errorCode
);
1355 dataBuilder
->addCE32(prefix
, str
, ce32
, errorCode
);
1361 CollationBuilder::sameCEs(const int64_t ces1
[], int32_t ces1Length
,
1362 const int64_t ces2
[], int32_t ces2Length
) {
1363 if(ces1Length
!= ces2Length
) {
1366 U_ASSERT(ces1Length
<= Collation::MAX_EXPANSION_LENGTH
);
1367 for(int32_t i
= 0; i
< ces1Length
; ++i
) {
1368 if(ces1
[i
] != ces2
[i
]) { return FALSE
; }
1373 #ifdef DEBUG_COLLATION_BUILDER
1376 alignWeightRight(uint32_t w
) {
1378 while((w
& 0xff) == 0) { w
>>= 8; }
1386 CollationBuilder::makeTailoredCEs(UErrorCode
&errorCode
) {
1387 if(U_FAILURE(errorCode
)) { return; }
1389 CollationWeights primaries
, secondaries
, tertiaries
;
1390 int64_t *nodesArray
= nodes
.getBuffer();
1391 #ifdef DEBUG_COLLATION_BUILDER
1392 puts("\nCollationBuilder::makeTailoredCEs()");
1395 for(int32_t rpi
= 0; rpi
< rootPrimaryIndexes
.size(); ++rpi
) {
1396 int32_t i
= rootPrimaryIndexes
.elementAti(rpi
);
1397 int64_t node
= nodesArray
[i
];
1398 uint32_t p
= weight32FromNode(node
);
1399 uint32_t s
= p
== 0 ? 0 : Collation::COMMON_WEIGHT16
;
1402 UBool pIsTailored
= FALSE
;
1403 UBool sIsTailored
= FALSE
;
1404 UBool tIsTailored
= FALSE
;
1405 #ifdef DEBUG_COLLATION_BUILDER
1406 printf("\nprimary %lx\n", (long)alignWeightRight(p
));
1408 int32_t pIndex
= p
== 0 ? 0 : rootElements
.findPrimary(p
);
1409 int32_t nextIndex
= nextIndexFromNode(node
);
1410 while(nextIndex
!= 0) {
1412 node
= nodesArray
[i
];
1413 nextIndex
= nextIndexFromNode(node
);
1414 int32_t strength
= strengthFromNode(node
);
1415 if(strength
== UCOL_QUATERNARY
) {
1416 U_ASSERT(isTailoredNode(node
));
1417 #ifdef DEBUG_COLLATION_BUILDER
1421 errorCode
= U_BUFFER_OVERFLOW_ERROR
;
1422 errorReason
= "quaternary tailoring gap too small";
1427 if(strength
== UCOL_TERTIARY
) {
1428 if(isTailoredNode(node
)) {
1429 #ifdef DEBUG_COLLATION_BUILDER
1433 // First tailored tertiary node for [p, s].
1434 int32_t tCount
= countTailoredNodes(nodesArray
, nextIndex
,
1438 // Gap at the beginning of the tertiary CE range.
1439 t
= rootElements
.getTertiaryBoundary() - 0x100;
1440 tLimit
= rootElements
.getFirstTertiaryCE() & Collation::ONLY_TERTIARY_MASK
;
1441 } else if(!pIsTailored
&& !sIsTailored
) {
1442 // p and s are root weights.
1443 tLimit
= rootElements
.getTertiaryAfter(pIndex
, s
, t
);
1444 } else if(t
== Collation::BEFORE_WEIGHT16
) {
1445 tLimit
= Collation::COMMON_WEIGHT16
;
1447 // [p, s] is tailored.
1448 U_ASSERT(t
== Collation::COMMON_WEIGHT16
);
1449 tLimit
= rootElements
.getTertiaryBoundary();
1451 U_ASSERT(tLimit
== 0x4000 || (tLimit
& ~Collation::ONLY_TERTIARY_MASK
) == 0);
1452 tertiaries
.initForTertiary();
1453 if(!tertiaries
.allocWeights(t
, tLimit
, tCount
)) {
1454 errorCode
= U_BUFFER_OVERFLOW_ERROR
;
1455 errorReason
= "tertiary tailoring gap too small";
1460 t
= tertiaries
.nextWeight();
1461 U_ASSERT(t
!= 0xffffffff);
1463 t
= weight16FromNode(node
);
1464 tIsTailored
= FALSE
;
1465 #ifdef DEBUG_COLLATION_BUILDER
1466 printf(" ter %lx\n", (long)alignWeightRight(t
));
1470 if(strength
== UCOL_SECONDARY
) {
1471 if(isTailoredNode(node
)) {
1472 #ifdef DEBUG_COLLATION_BUILDER
1476 // First tailored secondary node for p.
1477 int32_t sCount
= countTailoredNodes(nodesArray
, nextIndex
,
1478 UCOL_SECONDARY
) + 1;
1481 // Gap at the beginning of the secondary CE range.
1482 s
= rootElements
.getSecondaryBoundary() - 0x100;
1483 sLimit
= rootElements
.getFirstSecondaryCE() >> 16;
1484 } else if(!pIsTailored
) {
1485 // p is a root primary.
1486 sLimit
= rootElements
.getSecondaryAfter(pIndex
, s
);
1487 } else if(s
== Collation::BEFORE_WEIGHT16
) {
1488 sLimit
= Collation::COMMON_WEIGHT16
;
1490 // p is a tailored primary.
1491 U_ASSERT(s
== Collation::COMMON_WEIGHT16
);
1492 sLimit
= rootElements
.getSecondaryBoundary();
1494 if(s
== Collation::COMMON_WEIGHT16
) {
1495 // Do not tailor into the getSortKey() range of
1496 // compressed common secondaries.
1497 s
= rootElements
.getLastCommonSecondary();
1499 secondaries
.initForSecondary();
1500 if(!secondaries
.allocWeights(s
, sLimit
, sCount
)) {
1501 errorCode
= U_BUFFER_OVERFLOW_ERROR
;
1502 errorReason
= "secondary tailoring gap too small";
1503 #ifdef DEBUG_COLLATION_BUILDER
1504 printf("!secondaries.allocWeights(%lx, %lx, sCount=%ld)\n",
1505 (long)alignWeightRight(s
), (long)alignWeightRight(sLimit
),
1506 (long)alignWeightRight(sCount
));
1512 s
= secondaries
.nextWeight();
1513 U_ASSERT(s
!= 0xffffffff);
1515 s
= weight16FromNode(node
);
1516 sIsTailored
= FALSE
;
1517 #ifdef DEBUG_COLLATION_BUILDER
1518 printf(" sec %lx\n", (long)alignWeightRight(s
));
1521 } else /* UCOL_PRIMARY */ {
1522 U_ASSERT(isTailoredNode(node
));
1523 #ifdef DEBUG_COLLATION_BUILDER
1527 // First tailored primary node in this list.
1528 int32_t pCount
= countTailoredNodes(nodesArray
, nextIndex
,
1530 UBool isCompressible
= baseData
->isCompressiblePrimary(p
);
1532 rootElements
.getPrimaryAfter(p
, pIndex
, isCompressible
);
1533 primaries
.initForPrimary(isCompressible
);
1534 if(!primaries
.allocWeights(p
, pLimit
, pCount
)) {
1535 errorCode
= U_BUFFER_OVERFLOW_ERROR
; // TODO: introduce a more specific UErrorCode?
1536 errorReason
= "primary tailoring gap too small";
1541 p
= primaries
.nextWeight();
1542 U_ASSERT(p
!= 0xffffffff);
1543 s
= Collation::COMMON_WEIGHT16
;
1544 sIsTailored
= FALSE
;
1546 t
= s
== 0 ? 0 : Collation::COMMON_WEIGHT16
;
1547 tIsTailored
= FALSE
;
1551 if(isTailoredNode(node
)) {
1552 nodesArray
[i
] = Collation::makeCE(p
, s
, t
, q
);
1553 #ifdef DEBUG_COLLATION_BUILDER
1554 printf("%016llx\n", (long long)nodesArray
[i
]);
1562 CollationBuilder::countTailoredNodes(const int64_t *nodesArray
, int32_t i
, int32_t strength
) {
1565 if(i
== 0) { break; }
1566 int64_t node
= nodesArray
[i
];
1567 if(strengthFromNode(node
) < strength
) { break; }
1568 if(strengthFromNode(node
) == strength
) {
1569 if(isTailoredNode(node
)) {
1575 i
= nextIndexFromNode(node
);
1580 class CEFinalizer
: public CollationDataBuilder::CEModifier
{
1582 CEFinalizer(const int64_t *ces
) : finalCEs(ces
) {}
1583 virtual ~CEFinalizer();
1584 virtual int64_t modifyCE32(uint32_t ce32
) const {
1585 U_ASSERT(!Collation::isSpecialCE32(ce32
));
1586 if(CollationBuilder::isTempCE32(ce32
)) {
1588 return finalCEs
[CollationBuilder::indexFromTempCE32(ce32
)] | ((ce32
& 0xc0) << 8);
1590 return Collation::NO_CE
;
1593 virtual int64_t modifyCE(int64_t ce
) const {
1594 if(CollationBuilder::isTempCE(ce
)) {
1596 return finalCEs
[CollationBuilder::indexFromTempCE(ce
)] | (ce
& 0xc000);
1598 return Collation::NO_CE
;
1603 const int64_t *finalCEs
;
1606 CEFinalizer::~CEFinalizer() {}
1609 CollationBuilder::finalizeCEs(UErrorCode
&errorCode
) {
1610 if(U_FAILURE(errorCode
)) { return; }
1611 LocalPointer
<CollationDataBuilder
> newBuilder(new CollationDataBuilder(errorCode
), errorCode
);
1612 if(U_FAILURE(errorCode
)) {
1615 newBuilder
->initForTailoring(baseData
, errorCode
);
1616 CEFinalizer
finalizer(nodes
.getBuffer());
1617 newBuilder
->copyFrom(*dataBuilder
, finalizer
, errorCode
);
1618 if(U_FAILURE(errorCode
)) { return; }
1620 dataBuilder
= newBuilder
.orphan();
1624 CollationBuilder::ceStrength(int64_t ce
) {
1626 isTempCE(ce
) ? strengthFromTempCE(ce
) :
1627 (ce
& INT64_C(0xff00000000000000)) != 0 ? UCOL_PRIMARY
:
1628 ((uint32_t)ce
& 0xff000000) != 0 ? UCOL_SECONDARY
:
1629 ce
!= 0 ? UCOL_TERTIARY
:
1637 U_CAPI UCollator
* U_EXPORT2
1638 ucol_openRules(const UChar
*rules
, int32_t rulesLength
,
1639 UColAttributeValue normalizationMode
, UCollationStrength strength
,
1640 UParseError
*parseError
, UErrorCode
*pErrorCode
) {
1641 if(U_FAILURE(*pErrorCode
)) { return NULL
; }
1642 if(rules
== NULL
&& rulesLength
!= 0) {
1643 *pErrorCode
= U_ILLEGAL_ARGUMENT_ERROR
;
1646 RuleBasedCollator
*coll
= new RuleBasedCollator();
1648 *pErrorCode
= U_MEMORY_ALLOCATION_ERROR
;
1651 UnicodeString
r((UBool
)(rulesLength
< 0), rules
, rulesLength
);
1652 coll
->internalBuildTailoring(r
, strength
, normalizationMode
, parseError
, NULL
, *pErrorCode
);
1653 if(U_FAILURE(*pErrorCode
)) {
1657 return coll
->toUCollator();
1660 static const int32_t internalBufferSize
= 512;
1662 // The @internal ucol_getUnsafeSet() was moved here from ucol_sit.cpp
1663 // because it calls UnicodeSet "builder" code that depends on all Unicode properties,
1664 // and the rest of the collation "runtime" code only depends on normalization.
1665 // This function is not related to the collation builder,
1666 // but it did not seem worth moving it into its own .cpp file,
1667 // nor rewriting it to use lower-level UnicodeSet and Normalizer2Impl methods.
1668 U_CAPI
int32_t U_EXPORT2
1669 ucol_getUnsafeSet( const UCollator
*coll
,
1673 UChar buffer
[internalBufferSize
];
1678 // cccpattern = "[[:^tccc=0:][:^lccc=0:]]", unfortunately variant
1679 static const UChar cccpattern
[25] = { 0x5b, 0x5b, 0x3a, 0x5e, 0x74, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d,
1680 0x5b, 0x3a, 0x5e, 0x6c, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d, 0x5d, 0x00 };
1682 // add chars that fail the fcd check
1683 uset_applyPattern(unsafe
, cccpattern
, 24, USET_IGNORE_SPACE
, status
);
1685 // add lead/trail surrogates
1686 // (trail surrogates should need to be unsafe only if the caller tests for UTF-16 code *units*,
1687 // not when testing code *points*)
1688 uset_addRange(unsafe
, 0xd800, 0xdfff);
1690 USet
*contractions
= uset_open(0,0);
1692 int32_t i
= 0, j
= 0;
1693 ucol_getContractionsAndExpansions(coll
, contractions
, NULL
, FALSE
, status
);
1694 int32_t contsSize
= uset_size(contractions
);
1696 // Contraction set consists only of strings
1697 // to get unsafe code points, we need to
1698 // break the strings apart and add them to the unsafe set
1699 for(i
= 0; i
< contsSize
; i
++) {
1700 len
= uset_getItem(contractions
, i
, NULL
, NULL
, buffer
, internalBufferSize
, status
);
1704 U16_NEXT(buffer
, j
, len
, c
);
1706 uset_add(unsafe
, c
);
1712 uset_close(contractions
);
1714 return uset_size(unsafe
);
1717 #endif // !UCONFIG_NO_COLLATION