]> git.saurik.com Git - apple/icu.git/blob - icuSources/common/ucnvsel.cpp
ICU-64260.0.1.tar.gz
[apple/icu.git] / icuSources / common / ucnvsel.cpp
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 *
6 * Copyright (C) 2008-2011, International Business Machines
7 * Corporation, Google and others. All Rights Reserved.
8 *
9 *******************************************************************************
10 */
11 // Author : eldawy@google.com (Mohamed Eldawy)
12 // ucnvsel.cpp
13 //
14 // Purpose: To generate a list of encodings capable of handling
15 // a given Unicode text
16 //
17 // Started 09-April-2008
18
19 /**
20 * \file
21 *
22 * This is an implementation of an encoding selector.
23 * The goal is, given a unicode string, find the encodings
24 * this string can be mapped to. To make processing faster
25 * a trie is built when you call ucnvsel_open() that
26 * stores all encodings a codepoint can map to
27 */
28
29 #include "unicode/ucnvsel.h"
30
31 #if !UCONFIG_NO_CONVERSION
32
33 #include <string.h>
34
35 #include "unicode/uchar.h"
36 #include "unicode/uniset.h"
37 #include "unicode/ucnv.h"
38 #include "unicode/ustring.h"
39 #include "unicode/uchriter.h"
40 #include "utrie2.h"
41 #include "propsvec.h"
42 #include "uassert.h"
43 #include "ucmndata.h"
44 #include "udataswp.h"
45 #include "uenumimp.h"
46 #include "cmemory.h"
47 #include "cstring.h"
48
49 U_NAMESPACE_USE
50
51 struct UConverterSelector {
52 UTrie2 *trie; // 16 bit trie containing offsets into pv
53 uint32_t* pv; // table of bits!
54 int32_t pvCount;
55 char** encodings; // which encodings did user ask to use?
56 int32_t encodingsCount;
57 int32_t encodingStrLength;
58 uint8_t* swapped;
59 UBool ownPv, ownEncodingStrings;
60 };
61
62 static void generateSelectorData(UConverterSelector* result,
63 UPropsVectors *upvec,
64 const USet* excludedCodePoints,
65 const UConverterUnicodeSet whichSet,
66 UErrorCode* status) {
67 if (U_FAILURE(*status)) {
68 return;
69 }
70
71 int32_t columns = (result->encodingsCount+31)/32;
72
73 // set errorValue to all-ones
74 for (int32_t col = 0; col < columns; col++) {
75 upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP,
76 col, static_cast<uint32_t>(~0), static_cast<uint32_t>(~0), status);
77 }
78
79 for (int32_t i = 0; i < result->encodingsCount; ++i) {
80 uint32_t mask;
81 uint32_t column;
82 int32_t item_count;
83 int32_t j;
84 UConverter* test_converter = ucnv_open(result->encodings[i], status);
85 if (U_FAILURE(*status)) {
86 return;
87 }
88 USet* unicode_point_set;
89 unicode_point_set = uset_open(1, 0); // empty set
90
91 ucnv_getUnicodeSet(test_converter, unicode_point_set,
92 whichSet, status);
93 if (U_FAILURE(*status)) {
94 ucnv_close(test_converter);
95 return;
96 }
97
98 column = i / 32;
99 mask = 1 << (i%32);
100 // now iterate over intervals on set i!
101 item_count = uset_getItemCount(unicode_point_set);
102
103 for (j = 0; j < item_count; ++j) {
104 UChar32 start_char;
105 UChar32 end_char;
106 UErrorCode smallStatus = U_ZERO_ERROR;
107 uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0,
108 &smallStatus);
109 if (U_FAILURE(smallStatus)) {
110 // this will be reached for the converters that fill the set with
111 // strings. Those should be ignored by our system
112 } else {
113 upvec_setValue(upvec, start_char, end_char, column, static_cast<uint32_t>(~0), mask,
114 status);
115 }
116 }
117 ucnv_close(test_converter);
118 uset_close(unicode_point_set);
119 if (U_FAILURE(*status)) {
120 return;
121 }
122 }
123
124 // handle excluded encodings! Simply set their values to all 1's in the upvec
125 if (excludedCodePoints) {
126 int32_t item_count = uset_getItemCount(excludedCodePoints);
127 for (int32_t j = 0; j < item_count; ++j) {
128 UChar32 start_char;
129 UChar32 end_char;
130
131 uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0,
132 status);
133 for (int32_t col = 0; col < columns; col++) {
134 upvec_setValue(upvec, start_char, end_char, col, static_cast<uint32_t>(~0), static_cast<uint32_t>(~0),
135 status);
136 }
137 }
138 }
139
140 // alright. Now, let's put things in the same exact form you'd get when you
141 // unserialize things.
142 result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status);
143 result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status);
144 result->pvCount *= columns; // number of uint32_t = rows * columns
145 result->ownPv = TRUE;
146 }
147
148 /* open a selector. If converterListSize is 0, build for all converters.
149 If excludedCodePoints is NULL, don't exclude any codepoints */
150 U_CAPI UConverterSelector* U_EXPORT2
151 ucnvsel_open(const char* const* converterList, int32_t converterListSize,
152 const USet* excludedCodePoints,
153 const UConverterUnicodeSet whichSet, UErrorCode* status) {
154 // check if already failed
155 if (U_FAILURE(*status)) {
156 return NULL;
157 }
158 // ensure args make sense!
159 if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) {
160 *status = U_ILLEGAL_ARGUMENT_ERROR;
161 return NULL;
162 }
163
164 // allocate a new converter
165 LocalUConverterSelectorPointer newSelector(
166 (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)));
167 if (newSelector.isNull()) {
168 *status = U_MEMORY_ALLOCATION_ERROR;
169 return NULL;
170 }
171 uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector));
172
173 if (converterListSize == 0) {
174 converterList = NULL;
175 converterListSize = ucnv_countAvailable();
176 }
177 newSelector->encodings =
178 (char**)uprv_malloc(converterListSize * sizeof(char*));
179 if (!newSelector->encodings) {
180 *status = U_MEMORY_ALLOCATION_ERROR;
181 return NULL;
182 }
183 newSelector->encodings[0] = NULL; // now we can call ucnvsel_close()
184
185 // make a backup copy of the list of converters
186 int32_t totalSize = 0;
187 int32_t i;
188 for (i = 0; i < converterListSize; i++) {
189 totalSize +=
190 (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1;
191 }
192 // 4-align the totalSize to 4-align the size of the serialized form
193 int32_t encodingStrPadding = totalSize & 3;
194 if (encodingStrPadding != 0) {
195 encodingStrPadding = 4 - encodingStrPadding;
196 }
197 newSelector->encodingStrLength = totalSize += encodingStrPadding;
198 char* allStrings = (char*) uprv_malloc(totalSize);
199 if (!allStrings) {
200 *status = U_MEMORY_ALLOCATION_ERROR;
201 return NULL;
202 }
203
204 for (i = 0; i < converterListSize; i++) {
205 newSelector->encodings[i] = allStrings;
206 uprv_strcpy(newSelector->encodings[i],
207 converterList != NULL ? converterList[i] : ucnv_getAvailableName(i));
208 allStrings += uprv_strlen(newSelector->encodings[i]) + 1;
209 }
210 while (encodingStrPadding > 0) {
211 *allStrings++ = 0;
212 --encodingStrPadding;
213 }
214
215 newSelector->ownEncodingStrings = TRUE;
216 newSelector->encodingsCount = converterListSize;
217 UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status);
218 generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status);
219 upvec_close(upvec);
220
221 if (U_FAILURE(*status)) {
222 return NULL;
223 }
224
225 return newSelector.orphan();
226 }
227
228 /* close opened selector */
229 U_CAPI void U_EXPORT2
230 ucnvsel_close(UConverterSelector *sel) {
231 if (!sel) {
232 return;
233 }
234 if (sel->ownEncodingStrings) {
235 uprv_free(sel->encodings[0]);
236 }
237 uprv_free(sel->encodings);
238 if (sel->ownPv) {
239 uprv_free(sel->pv);
240 }
241 utrie2_close(sel->trie);
242 uprv_free(sel->swapped);
243 uprv_free(sel);
244 }
245
246 static const UDataInfo dataInfo = {
247 sizeof(UDataInfo),
248 0,
249
250 U_IS_BIG_ENDIAN,
251 U_CHARSET_FAMILY,
252 U_SIZEOF_UCHAR,
253 0,
254
255 { 0x43, 0x53, 0x65, 0x6c }, /* dataFormat="CSel" */
256 { 1, 0, 0, 0 }, /* formatVersion */
257 { 0, 0, 0, 0 } /* dataVersion */
258 };
259
260 enum {
261 UCNVSEL_INDEX_TRIE_SIZE, // trie size in bytes
262 UCNVSEL_INDEX_PV_COUNT, // number of uint32_t in the bit vectors
263 UCNVSEL_INDEX_NAMES_COUNT, // number of encoding names
264 UCNVSEL_INDEX_NAMES_LENGTH, // number of encoding name bytes including padding
265 UCNVSEL_INDEX_SIZE = 15, // bytes following the DataHeader
266 UCNVSEL_INDEX_COUNT = 16
267 };
268
269 /*
270 * Serialized form of a UConverterSelector, formatVersion 1:
271 *
272 * The serialized form begins with a standard ICU DataHeader with a UDataInfo
273 * as the template above.
274 * This is followed by:
275 * int32_t indexes[UCNVSEL_INDEX_COUNT]; // see index entry constants above
276 * serialized UTrie2; // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes
277 * uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]]; // bit vectors
278 * char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]]; // NUL-terminated strings + padding
279 */
280
281 /* serialize a selector */
282 U_CAPI int32_t U_EXPORT2
283 ucnvsel_serialize(const UConverterSelector* sel,
284 void* buffer, int32_t bufferCapacity, UErrorCode* status) {
285 // check if already failed
286 if (U_FAILURE(*status)) {
287 return 0;
288 }
289 // ensure args make sense!
290 uint8_t *p = (uint8_t *)buffer;
291 if (bufferCapacity < 0 ||
292 (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
293 ) {
294 *status = U_ILLEGAL_ARGUMENT_ERROR;
295 return 0;
296 }
297 // add up the size of the serialized form
298 int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status);
299 if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
300 return 0;
301 }
302 *status = U_ZERO_ERROR;
303
304 DataHeader header;
305 uprv_memset(&header, 0, sizeof(header));
306 header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15);
307 header.dataHeader.magic1 = 0xda;
308 header.dataHeader.magic2 = 0x27;
309 uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo));
310
311 int32_t indexes[UCNVSEL_INDEX_COUNT] = {
312 serializedTrieSize,
313 sel->pvCount,
314 sel->encodingsCount,
315 sel->encodingStrLength
316 };
317
318 int32_t totalSize =
319 header.dataHeader.headerSize +
320 (int32_t)sizeof(indexes) +
321 serializedTrieSize +
322 sel->pvCount * 4 +
323 sel->encodingStrLength;
324 indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize;
325 if (totalSize > bufferCapacity) {
326 *status = U_BUFFER_OVERFLOW_ERROR;
327 return totalSize;
328 }
329 // ok, save!
330 int32_t length = header.dataHeader.headerSize;
331 uprv_memcpy(p, &header, sizeof(header));
332 uprv_memset(p + sizeof(header), 0, length - sizeof(header));
333 p += length;
334
335 length = (int32_t)sizeof(indexes);
336 uprv_memcpy(p, indexes, length);
337 p += length;
338
339 utrie2_serialize(sel->trie, p, serializedTrieSize, status);
340 p += serializedTrieSize;
341
342 length = sel->pvCount * 4;
343 uprv_memcpy(p, sel->pv, length);
344 p += length;
345
346 uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength);
347 p += sel->encodingStrLength;
348
349 return totalSize;
350 }
351
352 /**
353 * swap a selector into the desired Endianness and Asciiness of
354 * the system. Just as FYI, selectors are always saved in the format
355 * of the system that created them. They are only converted if used
356 * on another system. In other words, selectors created on different
357 * system can be different even if the params are identical (endianness
358 * and Asciiness differences only)
359 *
360 * @param ds pointer to data swapper containing swapping info
361 * @param inData pointer to incoming data
362 * @param length length of inData in bytes
363 * @param outData pointer to output data. Capacity should
364 * be at least equal to capacity of inData
365 * @param status an in/out ICU UErrorCode
366 * @return 0 on failure, number of bytes swapped on success
367 * number of bytes swapped can be smaller than length
368 */
369 static int32_t
370 ucnvsel_swap(const UDataSwapper *ds,
371 const void *inData, int32_t length,
372 void *outData, UErrorCode *status) {
373 /* udata_swapDataHeader checks the arguments */
374 int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status);
375 if(U_FAILURE(*status)) {
376 return 0;
377 }
378
379 /* check data format and format version */
380 const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4);
381 if(!(
382 pInfo->dataFormat[0] == 0x43 && /* dataFormat="CSel" */
383 pInfo->dataFormat[1] == 0x53 &&
384 pInfo->dataFormat[2] == 0x65 &&
385 pInfo->dataFormat[3] == 0x6c
386 )) {
387 udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n",
388 pInfo->dataFormat[0], pInfo->dataFormat[1],
389 pInfo->dataFormat[2], pInfo->dataFormat[3]);
390 *status = U_INVALID_FORMAT_ERROR;
391 return 0;
392 }
393 if(pInfo->formatVersion[0] != 1) {
394 udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n",
395 pInfo->formatVersion[0]);
396 *status = U_UNSUPPORTED_ERROR;
397 return 0;
398 }
399
400 if(length >= 0) {
401 length -= headerSize;
402 if(length < 16*4) {
403 udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n",
404 length);
405 *status = U_INDEX_OUTOFBOUNDS_ERROR;
406 return 0;
407 }
408 }
409
410 const uint8_t *inBytes = (const uint8_t *)inData + headerSize;
411 uint8_t *outBytes = (uint8_t *)outData + headerSize;
412
413 /* read the indexes */
414 const int32_t *inIndexes = (const int32_t *)inBytes;
415 int32_t indexes[16];
416 int32_t i;
417 for(i = 0; i < 16; ++i) {
418 indexes[i] = udata_readInt32(ds, inIndexes[i]);
419 }
420
421 /* get the total length of the data */
422 int32_t size = indexes[UCNVSEL_INDEX_SIZE];
423 if(length >= 0) {
424 if(length < size) {
425 udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n",
426 length);
427 *status = U_INDEX_OUTOFBOUNDS_ERROR;
428 return 0;
429 }
430
431 /* copy the data for inaccessible bytes */
432 if(inBytes != outBytes) {
433 uprv_memcpy(outBytes, inBytes, size);
434 }
435
436 int32_t offset = 0, count;
437
438 /* swap the int32_t indexes[] */
439 count = UCNVSEL_INDEX_COUNT*4;
440 ds->swapArray32(ds, inBytes, count, outBytes, status);
441 offset += count;
442
443 /* swap the UTrie2 */
444 count = indexes[UCNVSEL_INDEX_TRIE_SIZE];
445 utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status);
446 offset += count;
447
448 /* swap the uint32_t pv[] */
449 count = indexes[UCNVSEL_INDEX_PV_COUNT]*4;
450 ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status);
451 offset += count;
452
453 /* swap the encoding names */
454 count = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
455 ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status);
456 offset += count;
457
458 U_ASSERT(offset == size);
459 }
460
461 return headerSize + size;
462 }
463
464 /* unserialize a selector */
465 U_CAPI UConverterSelector* U_EXPORT2
466 ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) {
467 // check if already failed
468 if (U_FAILURE(*status)) {
469 return NULL;
470 }
471 // ensure args make sense!
472 const uint8_t *p = (const uint8_t *)buffer;
473 if (length <= 0 ||
474 (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
475 ) {
476 *status = U_ILLEGAL_ARGUMENT_ERROR;
477 return NULL;
478 }
479 // header
480 if (length < 32) {
481 // not even enough space for a minimal header
482 *status = U_INDEX_OUTOFBOUNDS_ERROR;
483 return NULL;
484 }
485 const DataHeader *pHeader = (const DataHeader *)p;
486 if (!(
487 pHeader->dataHeader.magic1==0xda &&
488 pHeader->dataHeader.magic2==0x27 &&
489 pHeader->info.dataFormat[0] == 0x43 &&
490 pHeader->info.dataFormat[1] == 0x53 &&
491 pHeader->info.dataFormat[2] == 0x65 &&
492 pHeader->info.dataFormat[3] == 0x6c
493 )) {
494 /* header not valid or dataFormat not recognized */
495 *status = U_INVALID_FORMAT_ERROR;
496 return NULL;
497 }
498 if (pHeader->info.formatVersion[0] != 1) {
499 *status = U_UNSUPPORTED_ERROR;
500 return NULL;
501 }
502 uint8_t* swapped = NULL;
503 if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN ||
504 pHeader->info.charsetFamily != U_CHARSET_FAMILY
505 ) {
506 // swap the data
507 UDataSwapper *ds =
508 udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status);
509 int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status);
510 if (U_FAILURE(*status)) {
511 udata_closeSwapper(ds);
512 return NULL;
513 }
514 if (length < totalSize) {
515 udata_closeSwapper(ds);
516 *status = U_INDEX_OUTOFBOUNDS_ERROR;
517 return NULL;
518 }
519 swapped = (uint8_t*)uprv_malloc(totalSize);
520 if (swapped == NULL) {
521 udata_closeSwapper(ds);
522 *status = U_MEMORY_ALLOCATION_ERROR;
523 return NULL;
524 }
525 ucnvsel_swap(ds, p, length, swapped, status);
526 udata_closeSwapper(ds);
527 if (U_FAILURE(*status)) {
528 uprv_free(swapped);
529 return NULL;
530 }
531 p = swapped;
532 pHeader = (const DataHeader *)p;
533 }
534 if (length < (pHeader->dataHeader.headerSize + 16 * 4)) {
535 // not even enough space for the header and the indexes
536 uprv_free(swapped);
537 *status = U_INDEX_OUTOFBOUNDS_ERROR;
538 return NULL;
539 }
540 p += pHeader->dataHeader.headerSize;
541 length -= pHeader->dataHeader.headerSize;
542 // indexes
543 const int32_t *indexes = (const int32_t *)p;
544 if (length < indexes[UCNVSEL_INDEX_SIZE]) {
545 uprv_free(swapped);
546 *status = U_INDEX_OUTOFBOUNDS_ERROR;
547 return NULL;
548 }
549 p += UCNVSEL_INDEX_COUNT * 4;
550 // create and populate the selector object
551 UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector));
552 char **encodings =
553 (char **)uprv_malloc(
554 indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *));
555 if (sel == NULL || encodings == NULL) {
556 uprv_free(swapped);
557 uprv_free(sel);
558 uprv_free(encodings);
559 *status = U_MEMORY_ALLOCATION_ERROR;
560 return NULL;
561 }
562 uprv_memset(sel, 0, sizeof(UConverterSelector));
563 sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT];
564 sel->encodings = encodings;
565 sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT];
566 sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
567 sel->swapped = swapped;
568 // trie
569 sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS,
570 p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL,
571 status);
572 p += indexes[UCNVSEL_INDEX_TRIE_SIZE];
573 if (U_FAILURE(*status)) {
574 ucnvsel_close(sel);
575 return NULL;
576 }
577 // bit vectors
578 sel->pv = (uint32_t *)p;
579 p += sel->pvCount * 4;
580 // encoding names
581 char* s = (char*)p;
582 for (int32_t i = 0; i < sel->encodingsCount; ++i) {
583 sel->encodings[i] = s;
584 s += uprv_strlen(s) + 1;
585 }
586 p += sel->encodingStrLength;
587
588 return sel;
589 }
590
591 // a bunch of functions for the enumeration thingie! Nothing fancy here. Just
592 // iterate over the selected encodings
593 struct Enumerator {
594 int16_t* index;
595 int16_t length;
596 int16_t cur;
597 const UConverterSelector* sel;
598 };
599
600 U_CDECL_BEGIN
601
602 static void U_CALLCONV
603 ucnvsel_close_selector_iterator(UEnumeration *enumerator) {
604 uprv_free(((Enumerator*)(enumerator->context))->index);
605 uprv_free(enumerator->context);
606 uprv_free(enumerator);
607 }
608
609
610 static int32_t U_CALLCONV
611 ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) {
612 // check if already failed
613 if (U_FAILURE(*status)) {
614 return 0;
615 }
616 return ((Enumerator*)(enumerator->context))->length;
617 }
618
619
620 static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator,
621 int32_t* resultLength,
622 UErrorCode* status) {
623 // check if already failed
624 if (U_FAILURE(*status)) {
625 return NULL;
626 }
627
628 int16_t cur = ((Enumerator*)(enumerator->context))->cur;
629 const UConverterSelector* sel;
630 const char* result;
631 if (cur >= ((Enumerator*)(enumerator->context))->length) {
632 return NULL;
633 }
634 sel = ((Enumerator*)(enumerator->context))->sel;
635 result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ];
636 ((Enumerator*)(enumerator->context))->cur++;
637 if (resultLength) {
638 *resultLength = (int32_t)uprv_strlen(result);
639 }
640 return result;
641 }
642
643 static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator,
644 UErrorCode* status) {
645 // check if already failed
646 if (U_FAILURE(*status)) {
647 return ;
648 }
649 ((Enumerator*)(enumerator->context))->cur = 0;
650 }
651
652 U_CDECL_END
653
654
655 static const UEnumeration defaultEncodings = {
656 NULL,
657 NULL,
658 ucnvsel_close_selector_iterator,
659 ucnvsel_count_encodings,
660 uenum_unextDefault,
661 ucnvsel_next_encoding,
662 ucnvsel_reset_iterator
663 };
664
665
666 // internal fn to intersect two sets of masks
667 // returns whether the mask has reduced to all zeros
668 static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) {
669 int32_t i;
670 uint32_t oredDest = 0;
671 for (i = 0 ; i < len ; ++i) {
672 oredDest |= (dest[i] &= source1[i]);
673 }
674 return oredDest == 0;
675 }
676
677 // internal fn to count how many 1's are there in a mask
678 // algorithm taken from http://graphics.stanford.edu/~seander/bithacks.html
679 static int16_t countOnes(uint32_t* mask, int32_t len) {
680 int32_t i, totalOnes = 0;
681 for (i = 0 ; i < len ; ++i) {
682 uint32_t ent = mask[i];
683 for (; ent; totalOnes++)
684 {
685 ent &= ent - 1; // clear the least significant bit set
686 }
687 }
688 return static_cast<int16_t>(totalOnes);
689 }
690
691
692 /* internal function! */
693 static UEnumeration *selectForMask(const UConverterSelector* sel,
694 uint32_t *mask, UErrorCode *status) {
695 // this is the context we will use. Store a table of indices to which
696 // encodings are legit.
697 struct Enumerator* result = (Enumerator*)uprv_malloc(sizeof(Enumerator));
698 if (result == NULL) {
699 uprv_free(mask);
700 *status = U_MEMORY_ALLOCATION_ERROR;
701 return NULL;
702 }
703 result->index = NULL; // this will be allocated later!
704 result->length = result->cur = 0;
705 result->sel = sel;
706
707 UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration));
708 if (en == NULL) {
709 // TODO(markus): Combine Enumerator and UEnumeration into one struct.
710 uprv_free(mask);
711 uprv_free(result);
712 *status = U_MEMORY_ALLOCATION_ERROR;
713 return NULL;
714 }
715 memcpy(en, &defaultEncodings, sizeof(UEnumeration));
716 en->context = result;
717
718 int32_t columns = (sel->encodingsCount+31)/32;
719 int16_t numOnes = countOnes(mask, columns);
720 // now, we know the exact space we need for index
721 if (numOnes > 0) {
722 result->index = (int16_t*) uprv_malloc(numOnes * sizeof(int16_t));
723
724 int32_t i, j;
725 int16_t k = 0;
726 for (j = 0 ; j < columns; j++) {
727 uint32_t v = mask[j];
728 for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) {
729 if ((v & 1) != 0) {
730 result->index[result->length++] = k;
731 }
732 v >>= 1;
733 }
734 }
735 } //otherwise, index will remain NULL (and will never be touched by
736 //the enumerator code anyway)
737 uprv_free(mask);
738 return en;
739 }
740
741 /* check a string against the selector - UTF16 version */
742 U_CAPI UEnumeration * U_EXPORT2
743 ucnvsel_selectForString(const UConverterSelector* sel,
744 const UChar *s, int32_t length, UErrorCode *status) {
745 // check if already failed
746 if (U_FAILURE(*status)) {
747 return NULL;
748 }
749 // ensure args make sense!
750 if (sel == NULL || (s == NULL && length != 0)) {
751 *status = U_ILLEGAL_ARGUMENT_ERROR;
752 return NULL;
753 }
754
755 int32_t columns = (sel->encodingsCount+31)/32;
756 uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
757 if (mask == NULL) {
758 *status = U_MEMORY_ALLOCATION_ERROR;
759 return NULL;
760 }
761 uprv_memset(mask, ~0, columns *4);
762
763 if(s!=NULL) {
764 const UChar *limit;
765 if (length >= 0) {
766 limit = s + length;
767 } else {
768 limit = NULL;
769 }
770
771 while (limit == NULL ? *s != 0 : s != limit) {
772 UChar32 c;
773 uint16_t pvIndex;
774 UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex);
775 if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
776 break;
777 }
778 }
779 }
780 return selectForMask(sel, mask, status);
781 }
782
783 /* check a string against the selector - UTF8 version */
784 U_CAPI UEnumeration * U_EXPORT2
785 ucnvsel_selectForUTF8(const UConverterSelector* sel,
786 const char *s, int32_t length, UErrorCode *status) {
787 // check if already failed
788 if (U_FAILURE(*status)) {
789 return NULL;
790 }
791 // ensure args make sense!
792 if (sel == NULL || (s == NULL && length != 0)) {
793 *status = U_ILLEGAL_ARGUMENT_ERROR;
794 return NULL;
795 }
796
797 int32_t columns = (sel->encodingsCount+31)/32;
798 uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
799 if (mask == NULL) {
800 *status = U_MEMORY_ALLOCATION_ERROR;
801 return NULL;
802 }
803 uprv_memset(mask, ~0, columns *4);
804
805 if (length < 0) {
806 length = (int32_t)uprv_strlen(s);
807 }
808
809 if(s!=NULL) {
810 const char *limit = s + length;
811
812 while (s != limit) {
813 uint16_t pvIndex;
814 UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex);
815 if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
816 break;
817 }
818 }
819 }
820 return selectForMask(sel, mask, status);
821 }
822
823 #endif // !UCONFIG_NO_CONVERSION