1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
4 *******************************************************************************
6 * Copyright (C) 2005-2016, International Business Machines
7 * Corporation and others. All Rights Reserved.
9 *******************************************************************************
10 * file name: utext.cpp
12 * tab size: 8 (not used)
15 * created on: 2005apr12
16 * created by: Markus W. Scherer
19 #include "unicode/utypes.h"
20 #include "unicode/ustring.h"
21 #include "unicode/unistr.h"
22 #include "unicode/chariter.h"
23 #include "unicode/utext.h"
24 #include "unicode/utf.h"
25 #include "unicode/utf8.h"
26 #include "unicode/utf16.h"
35 #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex))
39 utext_access(UText
*ut
, int64_t index
, UBool forward
) {
40 return ut
->pFuncs
->access(ut
, index
, forward
);
45 U_CAPI UBool U_EXPORT2
46 utext_moveIndex32(UText
*ut
, int32_t delta
) {
50 if(ut
->chunkOffset
>=ut
->chunkLength
&& !utext_access(ut
, ut
->chunkNativeLimit
, TRUE
)) {
53 c
= ut
->chunkContents
[ut
->chunkOffset
];
54 if (U16_IS_SURROGATE(c
)) {
56 if (c
== U_SENTINEL
) {
66 if(ut
->chunkOffset
<=0 && !utext_access(ut
, ut
->chunkNativeStart
, FALSE
)) {
69 c
= ut
->chunkContents
[ut
->chunkOffset
-1];
70 if (U16_IS_SURROGATE(c
)) {
71 c
= utext_previous32(ut
);
72 if (c
== U_SENTINEL
) {
85 U_CAPI
int64_t U_EXPORT2
86 utext_nativeLength(UText
*ut
) {
87 return ut
->pFuncs
->nativeLength(ut
);
91 U_CAPI UBool U_EXPORT2
92 utext_isLengthExpensive(const UText
*ut
) {
93 UBool r
= (ut
->providerProperties
& I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE
)) != 0;
98 U_CAPI
int64_t U_EXPORT2
99 utext_getNativeIndex(const UText
*ut
) {
100 if(ut
->chunkOffset
<= ut
->nativeIndexingLimit
) {
101 return ut
->chunkNativeStart
+ut
->chunkOffset
;
103 return ut
->pFuncs
->mapOffsetToNative(ut
);
108 U_CAPI
void U_EXPORT2
109 utext_setNativeIndex(UText
*ut
, int64_t index
) {
110 if(index
<ut
->chunkNativeStart
|| index
>=ut
->chunkNativeLimit
) {
111 // The desired position is outside of the current chunk.
112 // Access the new position. Assume a forward iteration from here,
113 // which will also be optimimum for a single random access.
114 // Reverse iterations may suffer slightly.
115 ut
->pFuncs
->access(ut
, index
, TRUE
);
116 } else if((int32_t)(index
- ut
->chunkNativeStart
) <= ut
->nativeIndexingLimit
) {
118 ut
->chunkOffset
=(int32_t)(index
-ut
->chunkNativeStart
);
120 ut
->chunkOffset
=ut
->pFuncs
->mapNativeIndexToUTF16(ut
, index
);
122 // The convention is that the index must always be on a code point boundary.
123 // Adjust the index position if it is in the middle of a surrogate pair.
124 if (ut
->chunkOffset
<ut
->chunkLength
) {
125 UChar c
= ut
->chunkContents
[ut
->chunkOffset
];
126 if (U16_IS_TRAIL(c
)) {
127 if (ut
->chunkOffset
==0) {
128 ut
->pFuncs
->access(ut
, ut
->chunkNativeStart
, FALSE
);
130 if (ut
->chunkOffset
>0) {
131 UChar lead
= ut
->chunkContents
[ut
->chunkOffset
-1];
132 if (U16_IS_LEAD(lead
)) {
142 U_CAPI
int64_t U_EXPORT2
143 utext_getPreviousNativeIndex(UText
*ut
) {
145 // Fast-path the common case.
146 // Common means current position is not at the beginning of a chunk
147 // and the preceding character is not supplementary.
149 int32_t i
= ut
->chunkOffset
- 1;
152 UChar c
= ut
->chunkContents
[i
];
153 if (U16_IS_TRAIL(c
) == FALSE
) {
154 if (i
<= ut
->nativeIndexingLimit
) {
155 result
= ut
->chunkNativeStart
+ i
;
158 result
= ut
->pFuncs
->mapOffsetToNative(ut
);
165 // If at the start of text, simply return 0.
166 if (ut
->chunkOffset
==0 && ut
->chunkNativeStart
==0) {
170 // Harder, less common cases. We are at a chunk boundary, or on a surrogate.
171 // Keep it simple, use other functions to handle the edges.
173 utext_previous32(ut
);
174 result
= UTEXT_GETNATIVEINDEX(ut
);
181 // utext_current32. Get the UChar32 at the current position.
182 // UText iteration position is always on a code point boundary,
183 // never on the trail half of a surrogate pair.
185 U_CAPI UChar32 U_EXPORT2
186 utext_current32(UText
*ut
) {
188 if (ut
->chunkOffset
==ut
->chunkLength
) {
189 // Current position is just off the end of the chunk.
190 if (ut
->pFuncs
->access(ut
, ut
->chunkNativeLimit
, TRUE
) == FALSE
) {
191 // Off the end of the text.
196 c
= ut
->chunkContents
[ut
->chunkOffset
];
197 if (U16_IS_LEAD(c
) == FALSE
) {
198 // Normal, non-supplementary case.
203 // Possible supplementary char.
206 UChar32 supplementaryC
= c
;
207 if ((ut
->chunkOffset
+1) < ut
->chunkLength
) {
208 // The trail surrogate is in the same chunk.
209 trail
= ut
->chunkContents
[ut
->chunkOffset
+1];
211 // The trail surrogate is in a different chunk.
212 // Because we must maintain the iteration position, we need to switch forward
213 // into the new chunk, get the trail surrogate, then revert the chunk back to the
215 // An edge case to be careful of: the entire text may end with an unpaired
216 // leading surrogate. The attempt to access the trail will fail, but
217 // the original position before the unpaired lead still needs to be restored.
218 int64_t nativePosition
= ut
->chunkNativeLimit
;
219 int32_t originalOffset
= ut
->chunkOffset
;
220 if (ut
->pFuncs
->access(ut
, nativePosition
, TRUE
)) {
221 trail
= ut
->chunkContents
[ut
->chunkOffset
];
223 UBool r
= ut
->pFuncs
->access(ut
, nativePosition
, FALSE
); // reverse iteration flag loads preceding chunk
225 ut
->chunkOffset
= originalOffset
;
231 if (U16_IS_TRAIL(trail
)) {
232 supplementaryC
= U16_GET_SUPPLEMENTARY(c
, trail
);
234 return supplementaryC
;
239 U_CAPI UChar32 U_EXPORT2
240 utext_char32At(UText
*ut
, int64_t nativeIndex
) {
241 UChar32 c
= U_SENTINEL
;
243 // Fast path the common case.
244 if (nativeIndex
>=ut
->chunkNativeStart
&& nativeIndex
< ut
->chunkNativeStart
+ ut
->nativeIndexingLimit
) {
245 ut
->chunkOffset
= (int32_t)(nativeIndex
- ut
->chunkNativeStart
);
246 c
= ut
->chunkContents
[ut
->chunkOffset
];
247 if (U16_IS_SURROGATE(c
) == FALSE
) {
253 utext_setNativeIndex(ut
, nativeIndex
);
254 if (nativeIndex
>=ut
->chunkNativeStart
&& ut
->chunkOffset
<ut
->chunkLength
) {
255 c
= ut
->chunkContents
[ut
->chunkOffset
];
256 if (U16_IS_SURROGATE(c
)) {
257 // For surrogates, let current32() deal with the complications
258 // of supplementaries that may span chunk boundaries.
259 c
= utext_current32(ut
);
266 U_CAPI UChar32 U_EXPORT2
267 utext_next32(UText
*ut
) {
270 if (ut
->chunkOffset
>= ut
->chunkLength
) {
271 if (ut
->pFuncs
->access(ut
, ut
->chunkNativeLimit
, TRUE
) == FALSE
) {
276 c
= ut
->chunkContents
[ut
->chunkOffset
++];
277 if (U16_IS_LEAD(c
) == FALSE
) {
278 // Normal case, not supplementary.
279 // (A trail surrogate seen here is just returned as is, as a surrogate value.
280 // It cannot be part of a pair.)
284 if (ut
->chunkOffset
>= ut
->chunkLength
) {
285 if (ut
->pFuncs
->access(ut
, ut
->chunkNativeLimit
, TRUE
) == FALSE
) {
286 // c is an unpaired lead surrogate at the end of the text.
287 // return it as it is.
291 UChar32 trail
= ut
->chunkContents
[ut
->chunkOffset
];
292 if (U16_IS_TRAIL(trail
) == FALSE
) {
293 // c was an unpaired lead surrogate, not at the end of the text.
294 // return it as it is (unpaired). Iteration position is on the
295 // following character, possibly in the next chunk, where the
296 // trail surrogate would have been if it had existed.
300 UChar32 supplementary
= U16_GET_SUPPLEMENTARY(c
, trail
);
301 ut
->chunkOffset
++; // move iteration position over the trail surrogate.
302 return supplementary
;
306 U_CAPI UChar32 U_EXPORT2
307 utext_previous32(UText
*ut
) {
310 if (ut
->chunkOffset
<= 0) {
311 if (ut
->pFuncs
->access(ut
, ut
->chunkNativeStart
, FALSE
) == FALSE
) {
316 c
= ut
->chunkContents
[ut
->chunkOffset
];
317 if (U16_IS_TRAIL(c
) == FALSE
) {
318 // Normal case, not supplementary.
319 // (A lead surrogate seen here is just returned as is, as a surrogate value.
320 // It cannot be part of a pair.)
324 if (ut
->chunkOffset
<= 0) {
325 if (ut
->pFuncs
->access(ut
, ut
->chunkNativeStart
, FALSE
) == FALSE
) {
326 // c is an unpaired trail surrogate at the start of the text.
327 // return it as it is.
332 UChar32 lead
= ut
->chunkContents
[ut
->chunkOffset
-1];
333 if (U16_IS_LEAD(lead
) == FALSE
) {
334 // c was an unpaired trail surrogate, not at the end of the text.
335 // return it as it is (unpaired). Iteration position is at c
339 UChar32 supplementary
= U16_GET_SUPPLEMENTARY(lead
, c
);
340 ut
->chunkOffset
--; // move iteration position over the lead surrogate.
341 return supplementary
;
346 U_CAPI UChar32 U_EXPORT2
347 utext_next32From(UText
*ut
, int64_t index
) {
348 UChar32 c
= U_SENTINEL
;
350 if(index
<ut
->chunkNativeStart
|| index
>=ut
->chunkNativeLimit
) {
351 // Desired position is outside of the current chunk.
352 if(!ut
->pFuncs
->access(ut
, index
, TRUE
)) {
353 // no chunk available here
356 } else if (index
- ut
->chunkNativeStart
<= (int64_t)ut
->nativeIndexingLimit
) {
357 // Desired position is in chunk, with direct 1:1 native to UTF16 indexing
358 ut
->chunkOffset
= (int32_t)(index
- ut
->chunkNativeStart
);
360 // Desired position is in chunk, with non-UTF16 indexing.
361 ut
->chunkOffset
= ut
->pFuncs
->mapNativeIndexToUTF16(ut
, index
);
364 c
= ut
->chunkContents
[ut
->chunkOffset
++];
365 if (U16_IS_SURROGATE(c
)) {
366 // Surrogates. Many edge cases. Use other functions that already
367 // deal with the problems.
368 utext_setNativeIndex(ut
, index
);
369 c
= utext_next32(ut
);
375 U_CAPI UChar32 U_EXPORT2
376 utext_previous32From(UText
*ut
, int64_t index
) {
378 // Return the character preceding the specified index.
379 // Leave the iteration position at the start of the character that was returned.
381 UChar32 cPrev
; // The character preceding cCurr, which is what we will return.
383 // Address the chunk containg the position preceding the incoming index
384 // A tricky edge case:
385 // We try to test the requested native index against the chunkNativeStart to determine
386 // whether the character preceding the one at the index is in the current chunk.
387 // BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the
388 // requested index is on something other than the first position of the first char.
390 if(index
<=ut
->chunkNativeStart
|| index
>ut
->chunkNativeLimit
) {
391 // Requested native index is outside of the current chunk.
392 if(!ut
->pFuncs
->access(ut
, index
, FALSE
)) {
393 // no chunk available here
396 } else if(index
- ut
->chunkNativeStart
<= (int64_t)ut
->nativeIndexingLimit
) {
397 // Direct UTF-16 indexing.
398 ut
->chunkOffset
= (int32_t)(index
- ut
->chunkNativeStart
);
400 ut
->chunkOffset
=ut
->pFuncs
->mapNativeIndexToUTF16(ut
, index
);
401 if (ut
->chunkOffset
==0 && !ut
->pFuncs
->access(ut
, index
, FALSE
)) {
402 // no chunk available here
408 // Simple case with no surrogates.
411 cPrev
= ut
->chunkContents
[ut
->chunkOffset
];
413 if (U16_IS_SURROGATE(cPrev
)) {
414 // Possible supplementary. Many edge cases.
415 // Let other functions do the heavy lifting.
416 utext_setNativeIndex(ut
, index
);
417 cPrev
= utext_previous32(ut
);
423 U_CAPI
int32_t U_EXPORT2
424 utext_extract(UText
*ut
,
425 int64_t start
, int64_t limit
,
426 UChar
*dest
, int32_t destCapacity
,
427 UErrorCode
*status
) {
428 return ut
->pFuncs
->extract(ut
, start
, limit
, dest
, destCapacity
, status
);
433 U_CAPI UBool U_EXPORT2
434 utext_equals(const UText
*a
, const UText
*b
) {
435 if (a
==NULL
|| b
==NULL
||
436 a
->magic
!= UTEXT_MAGIC
||
437 b
->magic
!= UTEXT_MAGIC
) {
438 // Null or invalid arguments don't compare equal to anything.
442 if (a
->pFuncs
!= b
->pFuncs
) {
443 // Different types of text providers.
447 if (a
->context
!= b
->context
) {
448 // Different sources (different strings)
451 if (utext_getNativeIndex(a
) != utext_getNativeIndex(b
)) {
452 // Different current position in the string.
459 U_CAPI UBool U_EXPORT2
460 utext_isWritable(const UText
*ut
)
462 UBool b
= (ut
->providerProperties
& I32_FLAG(UTEXT_PROVIDER_WRITABLE
)) != 0;
467 U_CAPI
void U_EXPORT2
468 utext_freeze(UText
*ut
) {
469 // Zero out the WRITABLE flag.
470 ut
->providerProperties
&= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE
));
474 U_CAPI UBool U_EXPORT2
475 utext_hasMetaData(const UText
*ut
)
477 UBool b
= (ut
->providerProperties
& I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA
)) != 0;
483 U_CAPI
int32_t U_EXPORT2
484 utext_replace(UText
*ut
,
485 int64_t nativeStart
, int64_t nativeLimit
,
486 const UChar
*replacementText
, int32_t replacementLength
,
489 if (U_FAILURE(*status
)) {
492 if ((ut
->providerProperties
& I32_FLAG(UTEXT_PROVIDER_WRITABLE
)) == 0) {
493 *status
= U_NO_WRITE_PERMISSION
;
496 int32_t i
= ut
->pFuncs
->replace(ut
, nativeStart
, nativeLimit
, replacementText
, replacementLength
, status
);
500 U_CAPI
void U_EXPORT2
501 utext_copy(UText
*ut
,
502 int64_t nativeStart
, int64_t nativeLimit
,
507 if (U_FAILURE(*status
)) {
510 if ((ut
->providerProperties
& I32_FLAG(UTEXT_PROVIDER_WRITABLE
)) == 0) {
511 *status
= U_NO_WRITE_PERMISSION
;
514 ut
->pFuncs
->copy(ut
, nativeStart
, nativeLimit
, destIndex
, move
, status
);
519 U_CAPI UText
* U_EXPORT2
520 utext_clone(UText
*dest
, const UText
*src
, UBool deep
, UBool readOnly
, UErrorCode
*status
) {
521 if (U_FAILURE(*status
)) {
524 UText
*result
= src
->pFuncs
->clone(dest
, src
, deep
, status
);
525 if (U_FAILURE(*status
)) {
528 if (result
== NULL
) {
529 *status
= U_MEMORY_ALLOCATION_ERROR
;
533 utext_freeze(result
);
540 //------------------------------------------------------------------------------
542 // UText common functions implementation
544 //------------------------------------------------------------------------------
547 // UText.flags bit definitions
550 UTEXT_HEAP_ALLOCATED
= 1, // 1 if ICU has allocated this UText struct on the heap.
551 // 0 if caller provided storage for the UText.
553 UTEXT_EXTRA_HEAP_ALLOCATED
= 2, // 1 if ICU has allocated extra storage as a separate
555 // 0 if there is no separate allocation. Either no extra
556 // storage was requested, or it is appended to the end
557 // of the main UText storage.
559 UTEXT_OPEN
= 4 // 1 if this UText is currently open
560 // 0 if this UText is not open.
565 // Extended form of a UText. The purpose is to aid in computing the total size required
566 // when a provider asks for a UText to be allocated with extra storage.
568 struct ExtendedUText
{
570 UAlignedMemory extension
;
573 static const UText emptyText
= UTEXT_INITIALIZER
;
575 U_CAPI UText
* U_EXPORT2
576 utext_setup(UText
*ut
, int32_t extraSpace
, UErrorCode
*status
) {
577 if (U_FAILURE(*status
)) {
582 // We need to heap-allocate storage for the new UText
583 int32_t spaceRequired
= sizeof(UText
);
584 if (extraSpace
> 0) {
585 spaceRequired
= sizeof(ExtendedUText
) + extraSpace
- sizeof(UAlignedMemory
);
587 ut
= (UText
*)uprv_malloc(spaceRequired
);
589 *status
= U_MEMORY_ALLOCATION_ERROR
;
593 ut
->flags
|= UTEXT_HEAP_ALLOCATED
;
594 if (spaceRequired
>0) {
595 ut
->extraSize
= extraSpace
;
596 ut
->pExtra
= &((ExtendedUText
*)ut
)->extension
;
600 // We have been supplied with an already existing UText.
601 // Verify that it really appears to be a UText.
602 if (ut
->magic
!= UTEXT_MAGIC
) {
603 *status
= U_ILLEGAL_ARGUMENT_ERROR
;
606 // If the ut is already open and there's a provider supplied close
607 // function, call it.
608 if ((ut
->flags
& UTEXT_OPEN
) && ut
->pFuncs
->close
!= NULL
) {
609 ut
->pFuncs
->close(ut
);
611 ut
->flags
&= ~UTEXT_OPEN
;
613 // If extra space was requested by our caller, check whether
614 // sufficient already exists, and allocate new if needed.
615 if (extraSpace
> ut
->extraSize
) {
616 // Need more space. If there is existing separately allocated space,
617 // delete it first, then allocate new space.
618 if (ut
->flags
& UTEXT_EXTRA_HEAP_ALLOCATED
) {
619 uprv_free(ut
->pExtra
);
622 ut
->pExtra
= uprv_malloc(extraSpace
);
623 if (ut
->pExtra
== NULL
) {
624 *status
= U_MEMORY_ALLOCATION_ERROR
;
626 ut
->extraSize
= extraSpace
;
627 ut
->flags
|= UTEXT_EXTRA_HEAP_ALLOCATED
;
631 if (U_SUCCESS(*status
)) {
632 ut
->flags
|= UTEXT_OPEN
;
634 // Initialize all remaining fields of the UText.
637 ut
->chunkContents
= NULL
;
646 ut
->chunkNativeStart
= 0;
647 ut
->chunkNativeLimit
= 0;
648 ut
->nativeIndexingLimit
= 0;
649 ut
->providerProperties
= 0;
654 if (ut
->pExtra
!=NULL
&& ut
->extraSize
>0)
655 uprv_memset(ut
->pExtra
, 0, ut
->extraSize
);
662 U_CAPI UText
* U_EXPORT2
663 utext_close(UText
*ut
) {
665 ut
->magic
!= UTEXT_MAGIC
||
666 (ut
->flags
& UTEXT_OPEN
) == 0)
668 // The supplied ut is not an open UText.
673 // If the provider gave us a close function, call it now.
674 // This will clean up anything allocated specifically by the provider.
675 if (ut
->pFuncs
->close
!= NULL
) {
676 ut
->pFuncs
->close(ut
);
678 ut
->flags
&= ~UTEXT_OPEN
;
680 // If we (the framework) allocated the UText or subsidiary storage,
682 if (ut
->flags
& UTEXT_EXTRA_HEAP_ALLOCATED
) {
683 uprv_free(ut
->pExtra
);
685 ut
->flags
&= ~UTEXT_EXTRA_HEAP_ALLOCATED
;
689 // Zero out function table of the closed UText. This is a defensive move,
690 // inteded to cause applications that inadvertantly use a closed
691 // utext to crash with null pointer errors.
694 if (ut
->flags
& UTEXT_HEAP_ALLOCATED
) {
695 // This UText was allocated by UText setup. We need to free it.
696 // Clear magic, so we can detect if the user messes up and immediately
697 // tries to reopen another UText using the deleted storage.
709 // invalidateChunk Reset a chunk to have no contents, so that the next call
710 // to access will cause new data to load.
711 // This is needed when copy/move/replace operate directly on the
712 // backing text, potentially putting it out of sync with the
713 // contents in the chunk.
716 invalidateChunk(UText
*ut
) {
718 ut
->chunkNativeLimit
= 0;
719 ut
->chunkNativeStart
= 0;
721 ut
->nativeIndexingLimit
= 0;
725 // pinIndex Do range pinning on a native index parameter.
726 // 64 bit pinning is done in place.
727 // 32 bit truncated result is returned as a convenience for
728 // use in providers that don't need 64 bits.
730 pinIndex(int64_t &index
, int64_t limit
) {
733 } else if (index
> limit
) {
736 return (int32_t)index
;
743 // Pointer relocation function,
744 // a utility used by shallow clone.
745 // Adjust a pointer that refers to something within one UText (the source)
746 // to refer to the same relative offset within a another UText (the target)
748 static void adjustPointer(UText
*dest
, const void **destPtr
, const UText
*src
) {
749 // convert all pointers to (char *) so that byte address arithmetic will work.
750 char *dptr
= (char *)*destPtr
;
751 char *dUText
= (char *)dest
;
752 char *sUText
= (char *)src
;
754 if (dptr
>= (char *)src
->pExtra
&& dptr
< ((char*)src
->pExtra
)+src
->extraSize
) {
755 // target ptr was to something within the src UText's pExtra storage.
756 // relocate it into the target UText's pExtra region.
757 *destPtr
= ((char *)dest
->pExtra
) + (dptr
- (char *)src
->pExtra
);
758 } else if (dptr
>=sUText
&& dptr
< sUText
+src
->sizeOfStruct
) {
759 // target ptr was pointing to somewhere within the source UText itself.
760 // Move it to the same offset within the target UText.
761 *destPtr
= dUText
+ (dptr
-sUText
);
767 // Clone. This is a generic copy-the-utext-by-value clone function that can be
768 // used as-is with some utext types, and as a helper by other clones.
770 static UText
* U_CALLCONV
771 shallowTextClone(UText
* dest
, const UText
* src
, UErrorCode
* status
) {
772 if (U_FAILURE(*status
)) {
775 int32_t srcExtraSize
= src
->extraSize
;
778 // Use the generic text_setup to allocate storage if required.
780 dest
= utext_setup(dest
, srcExtraSize
, status
);
781 if (U_FAILURE(*status
)) {
786 // flags (how the UText was allocated) and the pointer to the
787 // extra storage must retain the values in the cloned utext that
788 // were set up by utext_setup. Save them separately before
789 // copying the whole struct.
791 void *destExtra
= dest
->pExtra
;
792 int32_t flags
= dest
->flags
;
796 // Copy the whole UText struct by value.
797 // Any "Extra" storage is copied also.
799 int sizeToCopy
= src
->sizeOfStruct
;
800 if (sizeToCopy
> dest
->sizeOfStruct
) {
801 sizeToCopy
= dest
->sizeOfStruct
;
803 uprv_memcpy(dest
, src
, sizeToCopy
);
804 dest
->pExtra
= destExtra
;
806 if (srcExtraSize
> 0) {
807 uprv_memcpy(dest
->pExtra
, src
->pExtra
, srcExtraSize
);
811 // Relocate any pointers in the target that refer to the UText itself
812 // to point to the cloned copy rather than the original source.
814 adjustPointer(dest
, &dest
->context
, src
);
815 adjustPointer(dest
, &dest
->p
, src
);
816 adjustPointer(dest
, &dest
->q
, src
);
817 adjustPointer(dest
, &dest
->r
, src
);
818 adjustPointer(dest
, (const void **)&dest
->chunkContents
, src
);
820 // The newly shallow-cloned UText does _not_ own the underlying storage for the text.
821 // (The source for the clone may or may not have owned the text.)
823 dest
->providerProperties
&= ~I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT
);
833 //------------------------------------------------------------------------------
835 // UText implementation for UTF-8 char * strings (read-only)
836 // Limitation: string length must be <= 0x7fffffff in length.
837 // (length must for in an int32_t variable)
839 // Use of UText data members:
840 // context pointer to UTF-8 string
841 // utext.b is the input string length (bytes).
842 // utext.c Length scanned so far in string
843 // (for optimizing finding length of zero terminated strings.)
844 // utext.p pointer to the current buffer
845 // utext.q pointer to the other buffer.
847 //------------------------------------------------------------------------------
850 // Must be less than 42 (256/6), because of byte mapping from UChar indexes to native indexes.
851 // Worst case there are six UTF-8 bytes per UChar.
852 // obsolete 6 byte form fd + 5 trails maps to fffd
853 // obsolete 5 byte form fc + 4 trails maps to fffd
854 // non-shortest 4 byte forms maps to fffd
855 // normal supplementaries map to a pair of utf-16, two utf8 bytes per utf-16 unit
856 // mapToUChars array size must allow for the worst case, 6.
857 // This could be brought down to 4, by treating fd and fc as pure illegal,
858 // rather than obsolete lead bytes. But that is not compatible with the utf-8 access macros.
860 enum { UTF8_TEXT_CHUNK_SIZE
=32 };
863 // UTF8Buf Two of these structs will be set up in the UText's extra allocated space.
864 // Each contains the UChar chunk buffer, the to and from native maps, and
867 // because backwards iteration fills the buffers starting at the end and
868 // working towards the front, the filled part of the buffers may not begin
869 // at the start of the available storage for the buffers.
871 // Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for
872 // the last character added being a supplementary, and thus requiring a surrogate
873 // pair. Doing this is simpler than checking for the edge case.
877 int32_t bufNativeStart
; // Native index of first char in UChar buf
878 int32_t bufNativeLimit
; // Native index following last char in buf.
879 int32_t bufStartIdx
; // First filled position in buf.
880 int32_t bufLimitIdx
; // Limit of filled range in buf.
881 int32_t bufNILimit
; // Limit of native indexing part of buf
882 int32_t toUCharsMapStart
; // Native index corresponding to
884 // Set to bufNativeStart when filling forwards.
885 // Set to computed value when filling backwards.
887 UChar buf
[UTF8_TEXT_CHUNK_SIZE
+4]; // The UChar buffer. Requires one extra position beyond the
888 // the chunk size, to allow for surrogate at the end.
889 // Length must be identical to mapToNative array, below,
890 // because of the way indexing works when the array is
891 // filled backwards during a reverse iteration. Thus,
892 // the additional extra size.
893 uint8_t mapToNative
[UTF8_TEXT_CHUNK_SIZE
+4]; // map UChar index in buf to
894 // native offset from bufNativeStart.
895 // Requires two extra slots,
896 // one for a supplementary starting in the last normal position,
897 // and one for an entry for the buffer limit position.
898 uint8_t mapToUChars
[UTF8_TEXT_CHUNK_SIZE
*6+6]; // Map native offset from bufNativeStart to
899 // correspoding offset in filled part of buf.
908 // Get the length of the string. If we don't already know it,
909 // we'll need to scan for the trailing nul.
911 static int64_t U_CALLCONV
912 utf8TextLength(UText
*ut
) {
914 // Zero terminated string, and we haven't scanned to the end yet.
916 const char *r
= (const char *)ut
->context
+ ut
->c
;
920 if ((r
- (const char *)ut
->context
) < 0x7fffffff) {
921 ut
->b
= (int32_t)(r
- (const char *)ut
->context
);
923 // Actual string was bigger (more than 2 gig) than we
924 // can handle. Clip it to 2 GB.
927 ut
->providerProperties
&= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE
);
937 static UBool U_CALLCONV
938 utf8TextAccess(UText
*ut
, int64_t index
, UBool forward
) {
940 // Apologies to those who are allergic to goto statements.
941 // Consider each goto to a labelled block to be the equivalent of
942 // call the named block as if it were a function();
945 const uint8_t *s8
=(const uint8_t *)ut
->context
;
947 int32_t length
= ut
->b
; // Length of original utf-8
948 int32_t ix
= (int32_t)index
; // Requested index, trimmed to 32 bits.
949 int32_t mapIndex
= 0;
952 } else if (index
> 0x7fffffff) {
953 // Strings with 64 bit lengths not supported by this UTF-8 provider.
957 // Pin requested index to the string length.
961 } else if (ix
>=ut
->c
) {
962 // Zero terminated string, and requested index is beyond
963 // the region that has already been scanned.
964 // Scan up to either the end of the string or to the
965 // requested position, whichever comes first.
966 while (ut
->c
<ix
&& s8
[ut
->c
]!=0) {
969 // TODO: support for null terminated string length > 32 bits.
970 if (s8
[ut
->c
] == 0) {
971 // We just found the actual length of the string.
972 // Trim the requested index back to that.
976 ut
->providerProperties
&= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE
);
982 // Dispatch to the appropriate action for a forward iteration request.
985 if (ix
==ut
->chunkNativeLimit
) {
986 // Check for normal sequential iteration cases first.
988 // Just reached end of string
989 // Don't swap buffers, but do set the
990 // current buffer position.
991 ut
->chunkOffset
= ut
->chunkLength
;
994 // End of current buffer.
995 // check whether other buffer already has what we need.
996 UTF8Buf
*altB
= (UTF8Buf
*)ut
->q
;
997 if (ix
>=altB
->bufNativeStart
&& ix
<altB
->bufNativeLimit
) {
1003 // A random access. Desired index could be in either or niether buf.
1004 // For optimizing the order of testing, first check for the index
1005 // being in the other buffer. This will be the case for uses that
1006 // move back and forth over a fairly limited range
1008 u8b
= (UTF8Buf
*)ut
->q
; // the alternate buffer
1009 if (ix
>=u8b
->bufNativeStart
&& ix
<u8b
->bufNativeLimit
) {
1010 // Requested index is in the other buffer.
1014 // Requested index is end-of-string.
1015 // (this is the case of randomly seeking to the end.
1016 // The case of iterating off the end is handled earlier.)
1017 if (ix
== ut
->chunkNativeLimit
) {
1018 // Current buffer extends up to the end of the string.
1019 // Leave it as the current buffer.
1020 ut
->chunkOffset
= ut
->chunkLength
;
1023 if (ix
== u8b
->bufNativeLimit
) {
1024 // Alternate buffer extends to the end of string.
1025 // Swap it in as the current buffer.
1026 goto swapBuffersAndFail
;
1029 // Neither existing buffer extends to the end of the string.
1030 goto makeStubBuffer
;
1033 if (ix
<ut
->chunkNativeStart
|| ix
>=ut
->chunkNativeLimit
) {
1034 // Requested index is in neither buffer.
1038 // Requested index is in this buffer.
1039 u8b
= (UTF8Buf
*)ut
->p
; // the current buffer
1040 mapIndex
= ix
- u8b
->toUCharsMapStart
;
1041 U_ASSERT(mapIndex
< (int32_t)sizeof(UTF8Buf::mapToUChars
));
1042 ut
->chunkOffset
= u8b
->mapToUChars
[mapIndex
] - u8b
->bufStartIdx
;
1050 // Dispatch to the appropriate action for a
1051 // Backwards Diretion iteration request.
1053 if (ix
==ut
->chunkNativeStart
) {
1054 // Check for normal sequential iteration cases first.
1056 // Just reached the start of string
1057 // Don't swap buffers, but do set the
1058 // current buffer position.
1059 ut
->chunkOffset
= 0;
1062 // Start of current buffer.
1063 // check whether other buffer already has what we need.
1064 UTF8Buf
*altB
= (UTF8Buf
*)ut
->q
;
1065 if (ix
>altB
->bufNativeStart
&& ix
<=altB
->bufNativeLimit
) {
1071 // A random access. Desired index could be in either or niether buf.
1072 // For optimizing the order of testing,
1073 // Most likely case: in the other buffer.
1074 // Second most likely: in neither buffer.
1075 // Unlikely, but must work: in the current buffer.
1076 u8b
= (UTF8Buf
*)ut
->q
; // the alternate buffer
1077 if (ix
>u8b
->bufNativeStart
&& ix
<=u8b
->bufNativeLimit
) {
1078 // Requested index is in the other buffer.
1081 // Requested index is start-of-string.
1082 // (this is the case of randomly seeking to the start.
1083 // The case of iterating off the start is handled earlier.)
1085 if (u8b
->bufNativeStart
==0) {
1086 // Alternate buffer contains the data for the start string.
1087 // Make it be the current buffer.
1088 goto swapBuffersAndFail
;
1090 // Request for data before the start of string,
1091 // neither buffer is usable.
1092 // set up a zero-length buffer.
1093 goto makeStubBuffer
;
1097 if (ix
<=ut
->chunkNativeStart
|| ix
>ut
->chunkNativeLimit
) {
1098 // Requested index is in neither buffer.
1102 // Requested index is in this buffer.
1103 // Set the utf16 buffer index.
1104 u8b
= (UTF8Buf
*)ut
->p
;
1105 mapIndex
= ix
- u8b
->toUCharsMapStart
;
1106 ut
->chunkOffset
= u8b
->mapToUChars
[mapIndex
] - u8b
->bufStartIdx
;
1107 if (ut
->chunkOffset
==0) {
1108 // This occurs when the first character in the text is
1109 // a multi-byte UTF-8 char, and the requested index is to
1110 // one of the trailing bytes. Because there is no preceding ,
1111 // character, this access fails. We can't pick up on the
1112 // situation sooner because the requested index is not zero.
1121 // The alternate buffer (ut->q) has the string data that was requested.
1122 // Swap the primary and alternate buffers, and set the
1123 // chunk index into the new primary buffer.
1125 u8b
= (UTF8Buf
*)ut
->q
;
1128 ut
->chunkContents
= &u8b
->buf
[u8b
->bufStartIdx
];
1129 ut
->chunkLength
= u8b
->bufLimitIdx
- u8b
->bufStartIdx
;
1130 ut
->chunkNativeStart
= u8b
->bufNativeStart
;
1131 ut
->chunkNativeLimit
= u8b
->bufNativeLimit
;
1132 ut
->nativeIndexingLimit
= u8b
->bufNILimit
;
1134 // Index into the (now current) chunk
1135 // Use the map to set the chunk index. It's more trouble than it's worth
1136 // to check whether native indexing can be used.
1137 U_ASSERT(ix
>=u8b
->bufNativeStart
);
1138 U_ASSERT(ix
<=u8b
->bufNativeLimit
);
1139 mapIndex
= ix
- u8b
->toUCharsMapStart
;
1140 U_ASSERT(mapIndex
>=0);
1141 U_ASSERT(mapIndex
<(int32_t)sizeof(u8b
->mapToUChars
));
1142 ut
->chunkOffset
= u8b
->mapToUChars
[mapIndex
] - u8b
->bufStartIdx
;
1149 // We got a request for either the start or end of the string,
1150 // with iteration continuing in the out-of-bounds direction.
1151 // The alternate buffer already contains the data up to the
1153 // Swap the buffers, then return failure, indicating that we couldn't
1154 // make things correct for continuing the iteration in the requested
1155 // direction. The position & buffer are correct should the
1156 // user decide to iterate in the opposite direction.
1157 u8b
= (UTF8Buf
*)ut
->q
;
1160 ut
->chunkContents
= &u8b
->buf
[u8b
->bufStartIdx
];
1161 ut
->chunkLength
= u8b
->bufLimitIdx
- u8b
->bufStartIdx
;
1162 ut
->chunkNativeStart
= u8b
->bufNativeStart
;
1163 ut
->chunkNativeLimit
= u8b
->bufNativeLimit
;
1164 ut
->nativeIndexingLimit
= u8b
->bufNILimit
;
1166 // Index into the (now current) chunk
1167 // For this function (swapBuffersAndFail), the requested index
1168 // will always be at either the start or end of the chunk.
1169 if (ix
==u8b
->bufNativeLimit
) {
1170 ut
->chunkOffset
= ut
->chunkLength
;
1172 ut
->chunkOffset
= 0;
1173 U_ASSERT(ix
== u8b
->bufNativeStart
);
1178 // The user has done a seek/access past the start or end
1179 // of the string. Rather than loading data that is likely
1180 // to never be used, just set up a zero-length buffer at
1182 u8b
= (UTF8Buf
*)ut
->q
;
1183 u8b
->bufNativeStart
= ix
;
1184 u8b
->bufNativeLimit
= ix
;
1185 u8b
->bufStartIdx
= 0;
1186 u8b
->bufLimitIdx
= 0;
1187 u8b
->bufNILimit
= 0;
1188 u8b
->toUCharsMapStart
= ix
;
1189 u8b
->mapToNative
[0] = 0;
1190 u8b
->mapToUChars
[0] = 0;
1191 goto swapBuffersAndFail
;
1197 // Move the incoming index to a code point boundary.
1198 U8_SET_CP_START(s8
, 0, ix
);
1200 // Swap the UText buffers.
1201 // We want to fill what was previously the alternate buffer,
1202 // and make what was the current buffer be the new alternate.
1203 UTF8Buf
*u8b
= (UTF8Buf
*)ut
->q
;
1207 int32_t strLen
= ut
->b
;
1208 UBool nulTerminated
= FALSE
;
1210 strLen
= 0x7fffffff;
1211 nulTerminated
= TRUE
;
1214 UChar
*buf
= u8b
->buf
;
1215 uint8_t *mapToNative
= u8b
->mapToNative
;
1216 uint8_t *mapToUChars
= u8b
->mapToUChars
;
1219 UBool seenNonAscii
= FALSE
;
1222 // Fill the chunk buffer and mapping arrays.
1223 while (destIx
<UTF8_TEXT_CHUNK_SIZE
) {
1225 if (c
>0 && c
<0x80) {
1226 // Special case ASCII range for speed.
1227 // zero is excluded to simplify bounds checking.
1228 buf
[destIx
] = (UChar
)c
;
1229 mapToNative
[destIx
] = (uint8_t)(srcIx
- ix
);
1230 mapToUChars
[srcIx
-ix
] = (uint8_t)destIx
;
1234 // General case, handle everything.
1235 if (seenNonAscii
== FALSE
) {
1236 seenNonAscii
= TRUE
;
1237 u8b
->bufNILimit
= destIx
;
1240 int32_t cIx
= srcIx
;
1241 int32_t dIx
= destIx
;
1242 int32_t dIxSaved
= destIx
;
1243 U8_NEXT_OR_FFFD(s8
, srcIx
, strLen
, c
);
1244 if (c
==0 && nulTerminated
) {
1249 U16_APPEND_UNSAFE(buf
, destIx
, c
);
1251 mapToNative
[dIx
++] = (uint8_t)(cIx
- ix
);
1252 } while (dIx
< destIx
);
1255 mapToUChars
[cIx
++ - ix
] = (uint8_t)dIxSaved
;
1256 } while (cIx
< srcIx
);
1258 if (srcIx
>=strLen
) {
1264 // store Native <--> Chunk Map entries for the end of the buffer.
1265 // There is no actual character here, but the index position is valid.
1266 mapToNative
[destIx
] = (uint8_t)(srcIx
- ix
);
1267 mapToUChars
[srcIx
- ix
] = (uint8_t)destIx
;
1269 // fill in Buffer descriptor
1270 u8b
->bufNativeStart
= ix
;
1271 u8b
->bufNativeLimit
= srcIx
;
1272 u8b
->bufStartIdx
= 0;
1273 u8b
->bufLimitIdx
= destIx
;
1274 if (seenNonAscii
== FALSE
) {
1275 u8b
->bufNILimit
= destIx
;
1277 u8b
->toUCharsMapStart
= u8b
->bufNativeStart
;
1279 // Set UText chunk to refer to this buffer.
1280 ut
->chunkContents
= buf
;
1281 ut
->chunkOffset
= 0;
1282 ut
->chunkLength
= u8b
->bufLimitIdx
;
1283 ut
->chunkNativeStart
= u8b
->bufNativeStart
;
1284 ut
->chunkNativeLimit
= u8b
->bufNativeLimit
;
1285 ut
->nativeIndexingLimit
= u8b
->bufNILimit
;
1287 // For zero terminated strings, keep track of the maximum point
1289 if (nulTerminated
&& srcIx
>ut
->c
) {
1292 // We scanned to the end.
1293 // Remember the actual length.
1295 ut
->providerProperties
&= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE
);
1304 // Move the incoming index to a code point boundary.
1305 // Can only do this if the incoming index is somewhere in the interior of the string.
1306 // If index is at the end, there is no character there to look at.
1308 // Note: this function will only move the index back if it is on a trail byte
1309 // and there is a preceding lead byte and the sequence from the lead
1310 // through this trail could be part of a valid UTF-8 sequence
1311 // Otherwise the index remains unchanged.
1312 U8_SET_CP_START(s8
, 0, ix
);
1315 // Swap the UText buffers.
1316 // We want to fill what was previously the alternate buffer,
1317 // and make what was the current buffer be the new alternate.
1318 UTF8Buf
*u8b
= (UTF8Buf
*)ut
->q
;
1322 UChar
*buf
= u8b
->buf
;
1323 uint8_t *mapToNative
= u8b
->mapToNative
;
1324 uint8_t *mapToUChars
= u8b
->mapToUChars
;
1325 int32_t toUCharsMapStart
= ix
- sizeof(UTF8Buf::mapToUChars
) + 1;
1326 // Note that toUCharsMapStart can be negative. Happens when the remaining
1327 // text from current position to the beginning is less than the buffer size.
1328 // + 1 because mapToUChars must have a slot at the end for the bufNativeLimit entry.
1329 int32_t destIx
= UTF8_TEXT_CHUNK_SIZE
+2; // Start in the overflow region
1330 // at end of buffer to leave room
1331 // for a surrogate pair at the
1334 int32_t bufNILimit
= destIx
;
1337 // Map to/from Native Indexes, fill in for the position at the end of
1340 mapToNative
[destIx
] = (uint8_t)(srcIx
- toUCharsMapStart
);
1341 mapToUChars
[srcIx
- toUCharsMapStart
] = (uint8_t)destIx
;
1343 // Fill the chunk buffer
1344 // Work backwards, filling from the end of the buffer towards the front.
1346 while (destIx
>2 && (srcIx
- toUCharsMapStart
> 5) && (srcIx
> 0)) {
1350 // Get last byte of the UTF-8 character
1353 // Special case ASCII range for speed.
1354 buf
[destIx
] = (UChar
)c
;
1355 U_ASSERT(toUCharsMapStart
<= srcIx
);
1356 mapToUChars
[srcIx
- toUCharsMapStart
] = (uint8_t)destIx
;
1357 mapToNative
[destIx
] = (uint8_t)(srcIx
- toUCharsMapStart
);
1359 // General case, handle everything non-ASCII.
1361 int32_t sIx
= srcIx
; // ix of last byte of multi-byte u8 char
1363 // Get the full character from the UTF8 string.
1364 // use code derived from tbe macros in utf8.h
1365 // Leaves srcIx pointing at the first byte of the UTF-8 char.
1367 c
=utf8_prevCharSafeBody(s8
, 0, &srcIx
, c
, -3);
1368 // leaves srcIx at first byte of the multi-byte char.
1370 // Store the character in UTF-16 buffer.
1372 buf
[destIx
] = (UChar
)c
;
1373 mapToNative
[destIx
] = (uint8_t)(srcIx
- toUCharsMapStart
);
1375 buf
[destIx
] = U16_TRAIL(c
);
1376 mapToNative
[destIx
] = (uint8_t)(srcIx
- toUCharsMapStart
);
1377 buf
[--destIx
] = U16_LEAD(c
);
1378 mapToNative
[destIx
] = (uint8_t)(srcIx
- toUCharsMapStart
);
1381 // Fill in the map from native indexes to UChars buf index.
1383 mapToUChars
[sIx
-- - toUCharsMapStart
] = (uint8_t)destIx
;
1384 } while (sIx
>= srcIx
);
1385 U_ASSERT(toUCharsMapStart
<= (srcIx
+1));
1387 // Set native indexing limit to be the current position.
1388 // We are processing a non-ascii, non-native-indexing char now;
1389 // the limit will be here if the rest of the chars to be
1390 // added to this buffer are ascii.
1391 bufNILimit
= destIx
;
1394 u8b
->bufNativeStart
= srcIx
;
1395 u8b
->bufNativeLimit
= ix
;
1396 u8b
->bufStartIdx
= destIx
;
1397 u8b
->bufLimitIdx
= UTF8_TEXT_CHUNK_SIZE
+2;
1398 u8b
->bufNILimit
= bufNILimit
- u8b
->bufStartIdx
;
1399 u8b
->toUCharsMapStart
= toUCharsMapStart
;
1401 ut
->chunkContents
= &buf
[u8b
->bufStartIdx
];
1402 ut
->chunkLength
= u8b
->bufLimitIdx
- u8b
->bufStartIdx
;
1403 ut
->chunkOffset
= ut
->chunkLength
;
1404 ut
->chunkNativeStart
= u8b
->bufNativeStart
;
1405 ut
->chunkNativeLimit
= u8b
->bufNativeLimit
;
1406 ut
->nativeIndexingLimit
= u8b
->bufNILimit
;
1415 // This is a slightly modified copy of u_strFromUTF8,
1416 // Inserts a Replacement Char rather than failing on invalid UTF-8
1417 // Removes unnecessary features.
1420 utext_strFromUTF8(UChar
*dest
,
1421 int32_t destCapacity
,
1422 int32_t *pDestLength
,
1424 int32_t srcLength
, // required. NUL terminated not supported.
1425 UErrorCode
*pErrorCode
1429 UChar
*pDest
= dest
;
1430 UChar
*pDestLimit
= (dest
!=NULL
)?(dest
+destCapacity
):NULL
;
1433 int32_t reqLength
= 0;
1434 uint8_t* pSrc
= (uint8_t*) src
;
1437 while((index
< srcLength
)&&(pDest
<pDestLimit
)){
1442 ch
=utf8_nextCharSafeBody(pSrc
, &index
, srcLength
, ch
, -3);
1444 *(pDest
++)=(UChar
)ch
;
1446 *(pDest
++)=U16_LEAD(ch
);
1447 if(pDest
<pDestLimit
){
1448 *(pDest
++)=U16_TRAIL(ch
);
1456 /* donot fill the dest buffer just count the UChars needed */
1457 while(index
< srcLength
){
1462 ch
=utf8_nextCharSafeBody(pSrc
, &index
, srcLength
, ch
, -3);
1463 reqLength
+=U16_LENGTH(ch
);
1467 reqLength
+=(int32_t)(pDest
- dest
);
1470 *pDestLength
= reqLength
;
1473 /* Terminate the buffer */
1474 u_terminateUChars(dest
,destCapacity
,reqLength
,pErrorCode
);
1481 static int32_t U_CALLCONV
1482 utf8TextExtract(UText
*ut
,
1483 int64_t start
, int64_t limit
,
1484 UChar
*dest
, int32_t destCapacity
,
1485 UErrorCode
*pErrorCode
) {
1486 if(U_FAILURE(*pErrorCode
)) {
1489 if(destCapacity
<0 || (dest
==NULL
&& destCapacity
>0)) {
1490 *pErrorCode
=U_ILLEGAL_ARGUMENT_ERROR
;
1493 int32_t length
= ut
->b
;
1494 int32_t start32
= pinIndex(start
, length
);
1495 int32_t limit32
= pinIndex(limit
, length
);
1497 if(start32
>limit32
) {
1498 *pErrorCode
=U_INDEX_OUTOFBOUNDS_ERROR
;
1503 // adjust the incoming indexes to land on code point boundaries if needed.
1504 // adjust by no more than three, because that is the largest number of trail bytes
1505 // in a well formed UTF8 character.
1506 const uint8_t *buf
= (const uint8_t *)ut
->context
;
1508 if (start32
< ut
->chunkNativeLimit
) {
1509 for (i
=0; i
<3; i
++) {
1510 if (U8_IS_SINGLE(buf
[start32
]) || U8_IS_LEAD(buf
[start32
]) || start32
==0) {
1517 if (limit32
< ut
->chunkNativeLimit
) {
1518 for (i
=0; i
<3; i
++) {
1519 if (U8_IS_SINGLE(buf
[limit32
]) || U8_IS_LEAD(buf
[limit32
]) || limit32
==0) {
1526 // Do the actual extract.
1527 int32_t destLength
=0;
1528 utext_strFromUTF8(dest
, destCapacity
, &destLength
,
1529 (const char *)ut
->context
+start32
, limit32
-start32
,
1531 utf8TextAccess(ut
, limit32
, TRUE
);
1536 // utf8TextMapOffsetToNative
1538 // Map a chunk (UTF-16) offset to a native index.
1539 static int64_t U_CALLCONV
1540 utf8TextMapOffsetToNative(const UText
*ut
) {
1542 UTF8Buf
*u8b
= (UTF8Buf
*)ut
->p
;
1543 U_ASSERT(ut
->chunkOffset
>ut
->nativeIndexingLimit
&& ut
->chunkOffset
<=ut
->chunkLength
);
1544 int32_t nativeOffset
= u8b
->mapToNative
[ut
->chunkOffset
+ u8b
->bufStartIdx
] + u8b
->toUCharsMapStart
;
1545 U_ASSERT(nativeOffset
>= ut
->chunkNativeStart
&& nativeOffset
<= ut
->chunkNativeLimit
);
1546 return nativeOffset
;
1550 // Map a native index to the corrsponding chunk offset
1552 static int32_t U_CALLCONV
1553 utf8TextMapIndexToUTF16(const UText
*ut
, int64_t index64
) {
1554 U_ASSERT(index64
<= 0x7fffffff);
1555 int32_t index
= (int32_t)index64
;
1556 UTF8Buf
*u8b
= (UTF8Buf
*)ut
->p
;
1557 U_ASSERT(index
>=ut
->chunkNativeStart
+ut
->nativeIndexingLimit
);
1558 U_ASSERT(index
<=ut
->chunkNativeLimit
);
1559 int32_t mapIndex
= index
- u8b
->toUCharsMapStart
;
1560 U_ASSERT(mapIndex
< (int32_t)sizeof(UTF8Buf::mapToUChars
));
1561 int32_t offset
= u8b
->mapToUChars
[mapIndex
] - u8b
->bufStartIdx
;
1562 U_ASSERT(offset
>=0 && offset
<=ut
->chunkLength
);
1566 static UText
* U_CALLCONV
1567 utf8TextClone(UText
*dest
, const UText
*src
, UBool deep
, UErrorCode
*status
)
1569 // First do a generic shallow clone. Does everything needed for the UText struct itself.
1570 dest
= shallowTextClone(dest
, src
, status
);
1572 // For deep clones, make a copy of the string.
1573 // The copied storage is owned by the newly created clone.
1575 // TODO: There is an isssue with using utext_nativeLength().
1576 // That function is non-const in cases where the input was NUL terminated
1577 // and the length has not yet been determined.
1578 // This function (clone()) is const.
1579 // There potentially a thread safety issue lurking here.
1581 if (deep
&& U_SUCCESS(*status
)) {
1582 int32_t len
= (int32_t)utext_nativeLength((UText
*)src
);
1583 char *copyStr
= (char *)uprv_malloc(len
+1);
1584 if (copyStr
== NULL
) {
1585 *status
= U_MEMORY_ALLOCATION_ERROR
;
1587 uprv_memcpy(copyStr
, src
->context
, len
+1);
1588 dest
->context
= copyStr
;
1589 dest
->providerProperties
|= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT
);
1596 static void U_CALLCONV
1597 utf8TextClose(UText
*ut
) {
1598 // Most of the work of close is done by the generic UText framework close.
1599 // All that needs to be done here is to delete the UTF8 string if the UText
1600 // owns it. This occurs if the UText was created by cloning.
1601 if (ut
->providerProperties
& I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT
)) {
1602 char *s
= (char *)ut
->context
;
1611 static const struct UTextFuncs utf8Funcs
=
1614 0, 0, 0, // Reserved alignment padding
1621 utf8TextMapOffsetToNative
,
1622 utf8TextMapIndexToUTF16
,
1630 static const char gEmptyString
[] = {0};
1632 U_CAPI UText
* U_EXPORT2
1633 utext_openUTF8(UText
*ut
, const char *s
, int64_t length
, UErrorCode
*status
) {
1634 if(U_FAILURE(*status
)) {
1637 if(s
==NULL
&& length
==0) {
1641 if(s
==NULL
|| length
<-1 || length
>INT32_MAX
) {
1642 *status
=U_ILLEGAL_ARGUMENT_ERROR
;
1646 ut
= utext_setup(ut
, sizeof(UTF8Buf
) * 2, status
);
1647 if (U_FAILURE(*status
)) {
1651 ut
->pFuncs
= &utf8Funcs
;
1653 ut
->b
= (int32_t)length
;
1654 ut
->c
= (int32_t)length
;
1657 ut
->providerProperties
|= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE
);
1660 ut
->q
= (char *)ut
->pExtra
+ sizeof(UTF8Buf
);
1672 //------------------------------------------------------------------------------
1674 // UText implementation wrapper for Replaceable (read/write)
1676 // Use of UText data members:
1677 // context pointer to Replaceable.
1678 // p pointer to Replaceable if it is owned by the UText.
1680 //------------------------------------------------------------------------------
1684 // minimum chunk size for this implementation: 3
1685 // to allow for possible trimming for code point boundaries
1686 enum { REP_TEXT_CHUNK_SIZE
=10 };
1691 * +1 to simplify filling with surrogate pair at the end.
1693 UChar s
[REP_TEXT_CHUNK_SIZE
+1];
1699 static UText
* U_CALLCONV
1700 repTextClone(UText
*dest
, const UText
*src
, UBool deep
, UErrorCode
*status
) {
1701 // First do a generic shallow clone. Does everything needed for the UText struct itself.
1702 dest
= shallowTextClone(dest
, src
, status
);
1704 // For deep clones, make a copy of the Replaceable.
1705 // The copied Replaceable storage is owned by the newly created UText clone.
1706 // A non-NULL pointer in UText.p is the signal to the close() function to delete
1709 if (deep
&& U_SUCCESS(*status
)) {
1710 const Replaceable
*replSrc
= (const Replaceable
*)src
->context
;
1711 dest
->context
= replSrc
->clone();
1712 dest
->providerProperties
|= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT
);
1714 // with deep clone, the copy is writable, even when the source is not.
1715 dest
->providerProperties
|= I32_FLAG(UTEXT_PROVIDER_WRITABLE
);
1721 static void U_CALLCONV
1722 repTextClose(UText
*ut
) {
1723 // Most of the work of close is done by the generic UText framework close.
1724 // All that needs to be done here is delete the Replaceable if the UText
1725 // owns it. This occurs if the UText was created by cloning.
1726 if (ut
->providerProperties
& I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT
)) {
1727 Replaceable
*rep
= (Replaceable
*)ut
->context
;
1734 static int64_t U_CALLCONV
1735 repTextLength(UText
*ut
) {
1736 const Replaceable
*replSrc
= (const Replaceable
*)ut
->context
;
1737 int32_t len
= replSrc
->length();
1742 static UBool U_CALLCONV
1743 repTextAccess(UText
*ut
, int64_t index
, UBool forward
) {
1744 const Replaceable
*rep
=(const Replaceable
*)ut
->context
;
1745 int32_t length
=rep
->length(); // Full length of the input text (bigger than a chunk)
1747 // clip the requested index to the limits of the text.
1748 int32_t index32
= pinIndex(index
, length
);
1749 U_ASSERT(index
<=INT32_MAX
);
1753 * Compute start/limit boundaries around index, for a segment of text
1755 * To allow for the possibility that our user gave an index to the trailing
1756 * half of a surrogate pair, we must request one extra preceding UChar when
1757 * going in the forward direction. This will ensure that the buffer has the
1758 * entire code point at the specified index.
1762 if (index32
>=ut
->chunkNativeStart
&& index32
<ut
->chunkNativeLimit
) {
1763 // Buffer already contains the requested position.
1764 ut
->chunkOffset
= (int32_t)(index
- ut
->chunkNativeStart
);
1767 if (index32
>=length
&& ut
->chunkNativeLimit
==length
) {
1768 // Request for end of string, and buffer already extends up to it.
1769 // Can't get the data, but don't change the buffer.
1770 ut
->chunkOffset
= length
- (int32_t)ut
->chunkNativeStart
;
1774 ut
->chunkNativeLimit
= index
+ REP_TEXT_CHUNK_SIZE
- 1;
1775 // Going forward, so we want to have the buffer with stuff at and beyond
1776 // the requested index. The -1 gets us one code point before the
1777 // requested index also, to handle the case of the index being on
1778 // a trail surrogate of a surrogate pair.
1779 if(ut
->chunkNativeLimit
> length
) {
1780 ut
->chunkNativeLimit
= length
;
1782 // unless buffer ran off end, start is index-1.
1783 ut
->chunkNativeStart
= ut
->chunkNativeLimit
- REP_TEXT_CHUNK_SIZE
;
1784 if(ut
->chunkNativeStart
< 0) {
1785 ut
->chunkNativeStart
= 0;
1788 // Reverse iteration. Fill buffer with data preceding the requested index.
1789 if (index32
>ut
->chunkNativeStart
&& index32
<=ut
->chunkNativeLimit
) {
1790 // Requested position already in buffer.
1791 ut
->chunkOffset
= index32
- (int32_t)ut
->chunkNativeStart
;
1794 if (index32
==0 && ut
->chunkNativeStart
==0) {
1795 // Request for start, buffer already begins at start.
1796 // No data, but keep the buffer as is.
1797 ut
->chunkOffset
= 0;
1801 // Figure out the bounds of the chunk to extract for reverse iteration.
1802 // Need to worry about chunk not splitting surrogate pairs, and while still
1803 // containing the data we need.
1804 // Fix by requesting a chunk that includes an extra UChar at the end.
1805 // If this turns out to be a lead surrogate, we can lop it off and still have
1806 // the data we wanted.
1807 ut
->chunkNativeStart
= index32
+ 1 - REP_TEXT_CHUNK_SIZE
;
1808 if (ut
->chunkNativeStart
< 0) {
1809 ut
->chunkNativeStart
= 0;
1812 ut
->chunkNativeLimit
= index32
+ 1;
1813 if (ut
->chunkNativeLimit
> length
) {
1814 ut
->chunkNativeLimit
= length
;
1818 // Extract the new chunk of text from the Replaceable source.
1819 ReplExtra
*ex
= (ReplExtra
*)ut
->pExtra
;
1820 // UnicodeString with its buffer a writable alias to the chunk buffer
1821 UnicodeString
buffer(ex
->s
, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE
/*buffer capacity*/);
1822 rep
->extractBetween((int32_t)ut
->chunkNativeStart
, (int32_t)ut
->chunkNativeLimit
, buffer
);
1824 ut
->chunkContents
= ex
->s
;
1825 ut
->chunkLength
= (int32_t)(ut
->chunkNativeLimit
- ut
->chunkNativeStart
);
1826 ut
->chunkOffset
= (int32_t)(index32
- ut
->chunkNativeStart
);
1828 // Surrogate pairs from the input text must not span chunk boundaries.
1829 // If end of chunk could be the start of a surrogate, trim it off.
1830 if (ut
->chunkNativeLimit
< length
&&
1831 U16_IS_LEAD(ex
->s
[ut
->chunkLength
-1])) {
1833 ut
->chunkNativeLimit
--;
1834 if (ut
->chunkOffset
> ut
->chunkLength
) {
1835 ut
->chunkOffset
= ut
->chunkLength
;
1839 // if the first UChar in the chunk could be the trailing half of a surrogate pair,
1841 if(ut
->chunkNativeStart
>0 && U16_IS_TRAIL(ex
->s
[0])) {
1842 ++(ut
->chunkContents
);
1843 ++(ut
->chunkNativeStart
);
1844 --(ut
->chunkLength
);
1845 --(ut
->chunkOffset
);
1848 // adjust the index/chunkOffset to a code point boundary
1849 U16_SET_CP_START(ut
->chunkContents
, 0, ut
->chunkOffset
);
1851 // Use fast indexing for get/setNativeIndex()
1852 ut
->nativeIndexingLimit
= ut
->chunkLength
;
1859 static int32_t U_CALLCONV
1860 repTextExtract(UText
*ut
,
1861 int64_t start
, int64_t limit
,
1862 UChar
*dest
, int32_t destCapacity
,
1863 UErrorCode
*status
) {
1864 const Replaceable
*rep
=(const Replaceable
*)ut
->context
;
1865 int32_t length
=rep
->length();
1867 if(U_FAILURE(*status
)) {
1870 if(destCapacity
<0 || (dest
==NULL
&& destCapacity
>0)) {
1871 *status
=U_ILLEGAL_ARGUMENT_ERROR
;
1874 *status
=U_INDEX_OUTOFBOUNDS_ERROR
;
1878 int32_t start32
= pinIndex(start
, length
);
1879 int32_t limit32
= pinIndex(limit
, length
);
1881 // adjust start, limit if they point to trail half of surrogates
1882 if (start32
<length
&& U16_IS_TRAIL(rep
->charAt(start32
)) &&
1883 U_IS_SUPPLEMENTARY(rep
->char32At(start32
))){
1886 if (limit32
<length
&& U16_IS_TRAIL(rep
->charAt(limit32
)) &&
1887 U_IS_SUPPLEMENTARY(rep
->char32At(limit32
))){
1891 length
=limit32
-start32
;
1892 if(length
>destCapacity
) {
1893 limit32
= start32
+ destCapacity
;
1895 UnicodeString
buffer(dest
, 0, destCapacity
); // writable alias
1896 rep
->extractBetween(start32
, limit32
, buffer
);
1897 repTextAccess(ut
, limit32
, TRUE
);
1899 return u_terminateUChars(dest
, destCapacity
, length
, status
);
1902 static int32_t U_CALLCONV
1903 repTextReplace(UText
*ut
,
1904 int64_t start
, int64_t limit
,
1905 const UChar
*src
, int32_t length
,
1906 UErrorCode
*status
) {
1907 Replaceable
*rep
=(Replaceable
*)ut
->context
;
1910 if(U_FAILURE(*status
)) {
1913 if(src
==NULL
&& length
!=0) {
1914 *status
=U_ILLEGAL_ARGUMENT_ERROR
;
1917 oldLength
=rep
->length(); // will subtract from new length
1919 *status
=U_INDEX_OUTOFBOUNDS_ERROR
;
1923 int32_t start32
= pinIndex(start
, oldLength
);
1924 int32_t limit32
= pinIndex(limit
, oldLength
);
1926 // Snap start & limit to code point boundaries.
1927 if (start32
<oldLength
&& U16_IS_TRAIL(rep
->charAt(start32
)) &&
1928 start32
>0 && U16_IS_LEAD(rep
->charAt(start32
-1)))
1932 if (limit32
<oldLength
&& U16_IS_LEAD(rep
->charAt(limit32
-1)) &&
1933 U16_IS_TRAIL(rep
->charAt(limit32
)))
1938 // Do the actual replace operation using methods of the Replaceable class
1939 UnicodeString
replStr((UBool
)(length
<0), src
, length
); // read-only alias
1940 rep
->handleReplaceBetween(start32
, limit32
, replStr
);
1941 int32_t newLength
= rep
->length();
1942 int32_t lengthDelta
= newLength
- oldLength
;
1944 // Is the UText chunk buffer OK?
1945 if (ut
->chunkNativeLimit
> start32
) {
1946 // this replace operation may have impacted the current chunk.
1947 // invalidate it, which will force a reload on the next access.
1948 invalidateChunk(ut
);
1951 // set the iteration position to the end of the newly inserted replacement text.
1952 int32_t newIndexPos
= limit32
+ lengthDelta
;
1953 repTextAccess(ut
, newIndexPos
, TRUE
);
1959 static void U_CALLCONV
1960 repTextCopy(UText
*ut
,
1961 int64_t start
, int64_t limit
,
1966 Replaceable
*rep
=(Replaceable
*)ut
->context
;
1967 int32_t length
=rep
->length();
1969 if(U_FAILURE(*status
)) {
1972 if (start
>limit
|| (start
<destIndex
&& destIndex
<limit
))
1974 *status
=U_INDEX_OUTOFBOUNDS_ERROR
;
1978 int32_t start32
= pinIndex(start
, length
);
1979 int32_t limit32
= pinIndex(limit
, length
);
1980 int32_t destIndex32
= pinIndex(destIndex
, length
);
1982 // TODO: snap input parameters to code point boundaries.
1985 // move: copy to destIndex, then replace original with nothing
1986 int32_t segLength
=limit32
-start32
;
1987 rep
->copy(start32
, limit32
, destIndex32
);
1988 if(destIndex32
<start32
) {
1992 rep
->handleReplaceBetween(start32
, limit32
, UnicodeString());
1995 rep
->copy(start32
, limit32
, destIndex32
);
1998 // If the change to the text touched the region in the chunk buffer,
1999 // invalidate the buffer.
2000 int32_t firstAffectedIndex
= destIndex32
;
2001 if (move
&& start32
<firstAffectedIndex
) {
2002 firstAffectedIndex
= start32
;
2004 if (firstAffectedIndex
< ut
->chunkNativeLimit
) {
2005 // changes may have affected range covered by the chunk
2006 invalidateChunk(ut
);
2009 // Put iteration position at the newly inserted (moved) block,
2010 int32_t nativeIterIndex
= destIndex32
+ limit32
- start32
;
2011 if (move
&& destIndex32
>start32
) {
2012 // moved a block of text towards the end of the string.
2013 nativeIterIndex
= destIndex32
;
2016 // Set position, reload chunk if needed.
2017 repTextAccess(ut
, nativeIterIndex
, TRUE
);
2020 static const struct UTextFuncs repFuncs
=
2023 0, 0, 0, // Reserved alignment padding
2030 NULL
, // MapOffsetToNative,
2031 NULL
, // MapIndexToUTF16,
2039 U_CAPI UText
* U_EXPORT2
2040 utext_openReplaceable(UText
*ut
, Replaceable
*rep
, UErrorCode
*status
)
2042 if(U_FAILURE(*status
)) {
2046 *status
=U_ILLEGAL_ARGUMENT_ERROR
;
2049 ut
= utext_setup(ut
, sizeof(ReplExtra
), status
);
2050 if(U_FAILURE(*status
)) {
2054 ut
->providerProperties
= I32_FLAG(UTEXT_PROVIDER_WRITABLE
);
2055 if(rep
->hasMetaData()) {
2056 ut
->providerProperties
|=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA
);
2059 ut
->pFuncs
= &repFuncs
;
2073 //------------------------------------------------------------------------------
2075 // UText implementation for UnicodeString (read/write) and
2076 // for const UnicodeString (read only)
2077 // (same implementation, only the flags are different)
2079 // Use of UText data members:
2080 // context pointer to UnicodeString
2081 // p pointer to UnicodeString IF this UText owns the string
2082 // and it must be deleted on close(). NULL otherwise.
2084 //------------------------------------------------------------------------------
2089 static UText
* U_CALLCONV
2090 unistrTextClone(UText
*dest
, const UText
*src
, UBool deep
, UErrorCode
*status
) {
2091 // First do a generic shallow clone. Does everything needed for the UText struct itself.
2092 dest
= shallowTextClone(dest
, src
, status
);
2094 // For deep clones, make a copy of the UnicodeSring.
2095 // The copied UnicodeString storage is owned by the newly created UText clone.
2096 // A non-NULL pointer in UText.p is the signal to the close() function to delete
2099 if (deep
&& U_SUCCESS(*status
)) {
2100 const UnicodeString
*srcString
= (const UnicodeString
*)src
->context
;
2101 dest
->context
= new UnicodeString(*srcString
);
2102 dest
->providerProperties
|= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT
);
2104 // with deep clone, the copy is writable, even when the source is not.
2105 dest
->providerProperties
|= I32_FLAG(UTEXT_PROVIDER_WRITABLE
);
2110 static void U_CALLCONV
2111 unistrTextClose(UText
*ut
) {
2112 // Most of the work of close is done by the generic UText framework close.
2113 // All that needs to be done here is delete the UnicodeString if the UText
2114 // owns it. This occurs if the UText was created by cloning.
2115 if (ut
->providerProperties
& I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT
)) {
2116 UnicodeString
*str
= (UnicodeString
*)ut
->context
;
2123 static int64_t U_CALLCONV
2124 unistrTextLength(UText
*t
) {
2125 return ((const UnicodeString
*)t
->context
)->length();
2129 static UBool U_CALLCONV
2130 unistrTextAccess(UText
*ut
, int64_t index
, UBool forward
) {
2131 int32_t length
= ut
->chunkLength
;
2132 ut
->chunkOffset
= pinIndex(index
, length
);
2134 // Check whether request is at the start or end
2135 UBool retVal
= (forward
&& index
<length
) || (!forward
&& index
>0);
2141 static int32_t U_CALLCONV
2142 unistrTextExtract(UText
*t
,
2143 int64_t start
, int64_t limit
,
2144 UChar
*dest
, int32_t destCapacity
,
2145 UErrorCode
*pErrorCode
) {
2146 const UnicodeString
*us
=(const UnicodeString
*)t
->context
;
2147 int32_t length
=us
->length();
2149 if(U_FAILURE(*pErrorCode
)) {
2152 if(destCapacity
<0 || (dest
==NULL
&& destCapacity
>0)) {
2153 *pErrorCode
=U_ILLEGAL_ARGUMENT_ERROR
;
2155 if(start
<0 || start
>limit
) {
2156 *pErrorCode
=U_INDEX_OUTOFBOUNDS_ERROR
;
2160 int32_t start32
= start
<length
? us
->getChar32Start((int32_t)start
) : length
;
2161 int32_t limit32
= limit
<length
? us
->getChar32Start((int32_t)limit
) : length
;
2163 length
=limit32
-start32
;
2164 if (destCapacity
>0 && dest
!=NULL
) {
2165 int32_t trimmedLength
= length
;
2166 if(trimmedLength
>destCapacity
) {
2167 trimmedLength
=destCapacity
;
2169 us
->extract(start32
, trimmedLength
, dest
);
2170 t
->chunkOffset
= start32
+trimmedLength
;
2172 t
->chunkOffset
= start32
;
2174 u_terminateUChars(dest
, destCapacity
, length
, pErrorCode
);
2178 static int32_t U_CALLCONV
2179 unistrTextReplace(UText
*ut
,
2180 int64_t start
, int64_t limit
,
2181 const UChar
*src
, int32_t length
,
2182 UErrorCode
*pErrorCode
) {
2183 UnicodeString
*us
=(UnicodeString
*)ut
->context
;
2186 if(U_FAILURE(*pErrorCode
)) {
2189 if(src
==NULL
&& length
!=0) {
2190 *pErrorCode
=U_ILLEGAL_ARGUMENT_ERROR
;
2193 *pErrorCode
=U_INDEX_OUTOFBOUNDS_ERROR
;
2196 oldLength
=us
->length();
2197 int32_t start32
= pinIndex(start
, oldLength
);
2198 int32_t limit32
= pinIndex(limit
, oldLength
);
2199 if (start32
< oldLength
) {
2200 start32
= us
->getChar32Start(start32
);
2202 if (limit32
< oldLength
) {
2203 limit32
= us
->getChar32Start(limit32
);
2207 us
->replace(start32
, limit32
-start32
, src
, length
);
2208 int32_t newLength
= us
->length();
2210 // Update the chunk description.
2211 ut
->chunkContents
= us
->getBuffer();
2212 ut
->chunkLength
= newLength
;
2213 ut
->chunkNativeLimit
= newLength
;
2214 ut
->nativeIndexingLimit
= newLength
;
2216 // Set iteration position to the point just following the newly inserted text.
2217 int32_t lengthDelta
= newLength
- oldLength
;
2218 ut
->chunkOffset
= limit32
+ lengthDelta
;
2223 static void U_CALLCONV
2224 unistrTextCopy(UText
*ut
,
2225 int64_t start
, int64_t limit
,
2228 UErrorCode
*pErrorCode
) {
2229 UnicodeString
*us
=(UnicodeString
*)ut
->context
;
2230 int32_t length
=us
->length();
2232 if(U_FAILURE(*pErrorCode
)) {
2235 int32_t start32
= pinIndex(start
, length
);
2236 int32_t limit32
= pinIndex(limit
, length
);
2237 int32_t destIndex32
= pinIndex(destIndex
, length
);
2239 if( start32
>limit32
|| (start32
<destIndex32
&& destIndex32
<limit32
)) {
2240 *pErrorCode
=U_INDEX_OUTOFBOUNDS_ERROR
;
2245 // move: copy to destIndex, then remove original
2246 int32_t segLength
=limit32
-start32
;
2247 us
->copy(start32
, limit32
, destIndex32
);
2248 if(destIndex32
<start32
) {
2251 us
->remove(start32
, segLength
);
2254 us
->copy(start32
, limit32
, destIndex32
);
2257 // update chunk description, set iteration position.
2258 ut
->chunkContents
= us
->getBuffer();
2260 // copy operation, string length grows
2261 ut
->chunkLength
+= limit32
-start32
;
2262 ut
->chunkNativeLimit
= ut
->chunkLength
;
2263 ut
->nativeIndexingLimit
= ut
->chunkLength
;
2266 // Iteration position to end of the newly inserted text.
2267 ut
->chunkOffset
= destIndex32
+limit32
-start32
;
2268 if (move
&& destIndex32
>start32
) {
2269 ut
->chunkOffset
= destIndex32
;
2274 static const struct UTextFuncs unistrFuncs
=
2277 0, 0, 0, // Reserved alignment padding
2284 NULL
, // MapOffsetToNative,
2285 NULL
, // MapIndexToUTF16,
2297 U_CAPI UText
* U_EXPORT2
2298 utext_openUnicodeString(UText
*ut
, UnicodeString
*s
, UErrorCode
*status
) {
2299 ut
= utext_openConstUnicodeString(ut
, s
, status
);
2300 if (U_SUCCESS(*status
)) {
2301 ut
->providerProperties
|= I32_FLAG(UTEXT_PROVIDER_WRITABLE
);
2308 U_CAPI UText
* U_EXPORT2
2309 utext_openConstUnicodeString(UText
*ut
, const UnicodeString
*s
, UErrorCode
*status
) {
2310 if (U_SUCCESS(*status
) && s
->isBogus()) {
2311 // The UnicodeString is bogus, but we still need to detach the UText
2312 // from whatever it was hooked to before, if anything.
2313 utext_openUChars(ut
, NULL
, 0, status
);
2314 *status
= U_ILLEGAL_ARGUMENT_ERROR
;
2317 ut
= utext_setup(ut
, 0, status
);
2318 // note: use the standard (writable) function table for UnicodeString.
2319 // The flag settings disable writing, so having the functions in
2320 // the table is harmless.
2321 if (U_SUCCESS(*status
)) {
2322 ut
->pFuncs
= &unistrFuncs
;
2324 ut
->providerProperties
= I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS
);
2325 ut
->chunkContents
= s
->getBuffer();
2326 ut
->chunkLength
= s
->length();
2327 ut
->chunkNativeStart
= 0;
2328 ut
->chunkNativeLimit
= ut
->chunkLength
;
2329 ut
->nativeIndexingLimit
= ut
->chunkLength
;
2334 //------------------------------------------------------------------------------
2336 // UText implementation for const UChar * strings
2338 // Use of UText data members:
2339 // context pointer to UnicodeString
2340 // a length. -1 if not yet known.
2342 // TODO: support 64 bit lengths.
2344 //------------------------------------------------------------------------------
2349 static UText
* U_CALLCONV
2350 ucstrTextClone(UText
*dest
, const UText
* src
, UBool deep
, UErrorCode
* status
) {
2351 // First do a generic shallow clone.
2352 dest
= shallowTextClone(dest
, src
, status
);
2354 // For deep clones, make a copy of the string.
2355 // The copied storage is owned by the newly created clone.
2356 // A non-NULL pointer in UText.p is the signal to the close() function to delete
2359 if (deep
&& U_SUCCESS(*status
)) {
2360 U_ASSERT(utext_nativeLength(dest
) < INT32_MAX
);
2361 int32_t len
= (int32_t)utext_nativeLength(dest
);
2363 // The cloned string IS going to be NUL terminated, whether or not the original was.
2364 const UChar
*srcStr
= (const UChar
*)src
->context
;
2365 UChar
*copyStr
= (UChar
*)uprv_malloc((len
+1) * sizeof(UChar
));
2366 if (copyStr
== NULL
) {
2367 *status
= U_MEMORY_ALLOCATION_ERROR
;
2370 for (i
=0; i
<len
; i
++) {
2371 copyStr
[i
] = srcStr
[i
];
2374 dest
->context
= copyStr
;
2375 dest
->providerProperties
|= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT
);
2382 static void U_CALLCONV
2383 ucstrTextClose(UText
*ut
) {
2384 // Most of the work of close is done by the generic UText framework close.
2385 // All that needs to be done here is delete the string if the UText
2386 // owns it. This occurs if the UText was created by cloning.
2387 if (ut
->providerProperties
& I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT
)) {
2388 UChar
*s
= (UChar
*)ut
->context
;
2396 static int64_t U_CALLCONV
2397 ucstrTextLength(UText
*ut
) {
2399 // null terminated, we don't yet know the length. Scan for it.
2400 // Access is not convenient for doing this
2401 // because the current interation postion can't be changed.
2402 const UChar
*str
= (const UChar
*)ut
->context
;
2404 if (str
[ut
->chunkNativeLimit
] == 0) {
2407 ut
->chunkNativeLimit
++;
2409 ut
->a
= ut
->chunkNativeLimit
;
2410 ut
->chunkLength
= (int32_t)ut
->chunkNativeLimit
;
2411 ut
->nativeIndexingLimit
= ut
->chunkLength
;
2412 ut
->providerProperties
&= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE
);
2418 static UBool U_CALLCONV
2419 ucstrTextAccess(UText
*ut
, int64_t index
, UBool forward
) {
2420 const UChar
*str
= (const UChar
*)ut
->context
;
2422 // pin the requested index to the bounds of the string,
2423 // and set current iteration position.
2426 } else if (index
< ut
->chunkNativeLimit
) {
2427 // The request data is within the chunk as it is known so far.
2428 // Put index on a code point boundary.
2429 U16_SET_CP_START(str
, 0, index
);
2430 } else if (ut
->a
>= 0) {
2431 // We know the length of this string, and the user is requesting something
2432 // at or beyond the length. Pin the requested index to the length.
2435 // Null terminated string, length not yet known, and the requested index
2436 // is beyond where we have scanned so far.
2437 // Scan to 32 UChars beyond the requested index. The strategy here is
2438 // to avoid fully scanning a long string when the caller only wants to
2439 // see a few characters at its beginning.
2440 int32_t scanLimit
= (int32_t)index
+ 32;
2441 if ((index
+ 32)>INT32_MAX
|| (index
+ 32)<0 ) { // note: int64 expression
2442 scanLimit
= INT32_MAX
;
2445 int32_t chunkLimit
= (int32_t)ut
->chunkNativeLimit
;
2446 for (; chunkLimit
<scanLimit
; chunkLimit
++) {
2447 if (str
[chunkLimit
] == 0) {
2448 // We found the end of the string. Remember it, pin the requested index to it,
2449 // and bail out of here.
2451 ut
->chunkLength
= chunkLimit
;
2452 ut
->nativeIndexingLimit
= chunkLimit
;
2453 if (index
>= chunkLimit
) {
2456 U16_SET_CP_START(str
, 0, index
);
2459 ut
->chunkNativeLimit
= chunkLimit
;
2460 ut
->providerProperties
&= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE
);
2464 // We scanned through the next batch of UChars without finding the end.
2465 U16_SET_CP_START(str
, 0, index
);
2466 if (chunkLimit
== INT32_MAX
) {
2467 // Scanned to the limit of a 32 bit length.
2468 // Forceably trim the overlength string back so length fits in int32
2469 // TODO: add support for 64 bit strings.
2471 ut
->chunkLength
= chunkLimit
;
2472 ut
->nativeIndexingLimit
= chunkLimit
;
2473 if (index
> chunkLimit
) {
2476 ut
->chunkNativeLimit
= chunkLimit
;
2477 ut
->providerProperties
&= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE
);
2479 // The endpoint of a chunk must not be left in the middle of a surrogate pair.
2480 // If the current end is on a lead surrogate, back the end up by one.
2481 // It doesn't matter if the end char happens to be an unpaired surrogate,
2482 // and it's simpler not to worry about it.
2483 if (U16_IS_LEAD(str
[chunkLimit
-1])) {
2486 // Null-terminated chunk with end still unknown.
2487 // Update the chunk length to reflect what has been scanned thus far.
2488 // That the full length is still unknown is (still) flagged by
2490 ut
->chunkNativeLimit
= chunkLimit
;
2491 ut
->nativeIndexingLimit
= chunkLimit
;
2492 ut
->chunkLength
= chunkLimit
;
2497 U_ASSERT(index
<=INT32_MAX
);
2498 ut
->chunkOffset
= (int32_t)index
;
2500 // Check whether request is at the start or end
2501 UBool retVal
= (forward
&& index
<ut
->chunkNativeLimit
) || (!forward
&& index
>0);
2507 static int32_t U_CALLCONV
2508 ucstrTextExtract(UText
*ut
,
2509 int64_t start
, int64_t limit
,
2510 UChar
*dest
, int32_t destCapacity
,
2511 UErrorCode
*pErrorCode
)
2513 if(U_FAILURE(*pErrorCode
)) {
2516 if(destCapacity
<0 || (dest
==NULL
&& destCapacity
>0) || start
>limit
) {
2517 *pErrorCode
=U_ILLEGAL_ARGUMENT_ERROR
;
2521 //const UChar *s=(const UChar *)ut->context;
2527 // Access the start. Does two things we need:
2528 // Pins 'start' to the length of the string, if it came in out-of-bounds.
2529 // Snaps 'start' to the beginning of a code point.
2530 ucstrTextAccess(ut
, start
, TRUE
);
2531 const UChar
*s
=ut
->chunkContents
;
2532 start32
= ut
->chunkOffset
;
2534 int32_t strLength
=(int32_t)ut
->a
;
2535 if (strLength
>= 0) {
2536 limit32
= pinIndex(limit
, strLength
);
2538 limit32
= pinIndex(limit
, INT32_MAX
);
2541 for (si
=start32
; si
<limit32
; si
++) {
2542 if (strLength
<0 && s
[si
]==0) {
2543 // Just hit the end of a null-terminated string.
2544 ut
->a
= si
; // set string length for this UText
2545 ut
->chunkNativeLimit
= si
;
2546 ut
->chunkLength
= si
;
2547 ut
->nativeIndexingLimit
= si
;
2552 U_ASSERT(di
>=0); /* to ensure di never exceeds INT32_MAX, which must not happen logically */
2553 if (di
<destCapacity
) {
2554 // only store if there is space.
2558 // We have filled the destination buffer, and the string length is known.
2559 // Cut the loop short. There is no need to scan string termination.
2560 di
= limit32
- start32
;
2568 // If the limit index points to a lead surrogate of a pair,
2569 // add the corresponding trail surrogate to the destination.
2570 if (si
>0 && U16_IS_LEAD(s
[si
-1]) &&
2571 ((si
<strLength
|| strLength
<0) && U16_IS_TRAIL(s
[si
])))
2573 if (di
<destCapacity
) {
2574 // store only if there is space in the output buffer.
2580 // Put iteration position at the point just following the extracted text
2581 if (si
<= ut
->chunkNativeLimit
) {
2582 ut
->chunkOffset
= si
;
2584 ucstrTextAccess(ut
, si
, TRUE
);
2587 // Add a terminating NUL if space in the buffer permits,
2588 // and set the error status as required.
2589 u_terminateUChars(dest
, destCapacity
, di
, pErrorCode
);
2593 static const struct UTextFuncs ucstrFuncs
=
2596 0, 0, 0, // Reserved alignment padding
2603 NULL
, // MapOffsetToNative,
2604 NULL
, // MapIndexToUTF16,
2613 static const UChar gEmptyUString
[] = {0};
2615 U_CAPI UText
* U_EXPORT2
2616 utext_openUChars(UText
*ut
, const UChar
*s
, int64_t length
, UErrorCode
*status
) {
2617 if (U_FAILURE(*status
)) {
2620 if(s
==NULL
&& length
==0) {
2623 if (s
==NULL
|| length
< -1 || length
>INT32_MAX
) {
2624 *status
= U_ILLEGAL_ARGUMENT_ERROR
;
2627 ut
= utext_setup(ut
, 0, status
);
2628 if (U_SUCCESS(*status
)) {
2629 ut
->pFuncs
= &ucstrFuncs
;
2631 ut
->providerProperties
= I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS
);
2633 ut
->providerProperties
|= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE
);
2636 ut
->chunkContents
= s
;
2637 ut
->chunkNativeStart
= 0;
2638 ut
->chunkNativeLimit
= length
>=0? length
: 0;
2639 ut
->chunkLength
= (int32_t)ut
->chunkNativeLimit
;
2640 ut
->chunkOffset
= 0;
2641 ut
->nativeIndexingLimit
= ut
->chunkLength
;
2647 //------------------------------------------------------------------------------
2649 // UText implementation for text from ICU CharacterIterators
2651 // Use of UText data members:
2652 // context pointer to the CharacterIterator
2653 // a length of the full text.
2654 // p pointer to buffer 1
2655 // b start index of local buffer 1 contents
2656 // q pointer to buffer 2
2657 // c start index of local buffer 2 contents
2658 // r pointer to the character iterator if the UText owns it.
2661 //------------------------------------------------------------------------------
2662 #define CIBufSize 16
2665 static void U_CALLCONV
2666 charIterTextClose(UText
*ut
) {
2667 // Most of the work of close is done by the generic UText framework close.
2668 // All that needs to be done here is delete the CharacterIterator if the UText
2669 // owns it. This occurs if the UText was created by cloning.
2670 CharacterIterator
*ci
= (CharacterIterator
*)ut
->r
;
2675 static int64_t U_CALLCONV
2676 charIterTextLength(UText
*ut
) {
2677 return (int32_t)ut
->a
;
2680 static UBool U_CALLCONV
2681 charIterTextAccess(UText
*ut
, int64_t index
, UBool forward
) {
2682 CharacterIterator
*ci
= (CharacterIterator
*)ut
->context
;
2684 int32_t clippedIndex
= (int32_t)index
;
2685 if (clippedIndex
<0) {
2687 } else if (clippedIndex
>=ut
->a
) {
2688 clippedIndex
=(int32_t)ut
->a
;
2690 int32_t neededIndex
= clippedIndex
;
2691 if (!forward
&& neededIndex
>0) {
2692 // reverse iteration, want the position just before what was asked for.
2694 } else if (forward
&& neededIndex
==ut
->a
&& neededIndex
>0) {
2695 // Forward iteration, don't ask for something past the end of the text.
2699 // Find the native index of the start of the buffer containing what we want.
2700 neededIndex
-= neededIndex
% CIBufSize
;
2703 UBool needChunkSetup
= TRUE
;
2705 if (ut
->chunkNativeStart
== neededIndex
) {
2706 // The buffer we want is already the current chunk.
2707 needChunkSetup
= FALSE
;
2708 } else if (ut
->b
== neededIndex
) {
2709 // The first buffer (buffer p) has what we need.
2710 buf
= (UChar
*)ut
->p
;
2711 } else if (ut
->c
== neededIndex
) {
2712 // The second buffer (buffer q) has what we need.
2713 buf
= (UChar
*)ut
->q
;
2715 // Neither buffer already has what we need.
2716 // Load new data from the character iterator.
2717 // Use the buf that is not the current buffer.
2718 buf
= (UChar
*)ut
->p
;
2719 if (ut
->p
== ut
->chunkContents
) {
2720 buf
= (UChar
*)ut
->q
;
2722 ci
->setIndex(neededIndex
);
2723 for (i
=0; i
<CIBufSize
; i
++) {
2724 buf
[i
] = ci
->nextPostInc();
2725 if (i
+neededIndex
> ut
->a
) {
2731 // We have a buffer with the data we need.
2732 // Set it up as the current chunk, if it wasn't already.
2733 if (needChunkSetup
) {
2734 ut
->chunkContents
= buf
;
2735 ut
->chunkLength
= CIBufSize
;
2736 ut
->chunkNativeStart
= neededIndex
;
2737 ut
->chunkNativeLimit
= neededIndex
+ CIBufSize
;
2738 if (ut
->chunkNativeLimit
> ut
->a
) {
2739 ut
->chunkNativeLimit
= ut
->a
;
2740 ut
->chunkLength
= (int32_t)(ut
->chunkNativeLimit
)-(int32_t)(ut
->chunkNativeStart
);
2742 ut
->nativeIndexingLimit
= ut
->chunkLength
;
2743 U_ASSERT(ut
->chunkOffset
>=0 && ut
->chunkOffset
<=CIBufSize
);
2745 ut
->chunkOffset
= clippedIndex
- (int32_t)ut
->chunkNativeStart
;
2746 UBool success
= (forward
? ut
->chunkOffset
<ut
->chunkLength
: ut
->chunkOffset
>0);
2750 static UText
* U_CALLCONV
2751 charIterTextClone(UText
*dest
, const UText
*src
, UBool deep
, UErrorCode
* status
) {
2752 if (U_FAILURE(*status
)) {
2757 // There is no CharacterIterator API for cloning the underlying text storage.
2758 *status
= U_UNSUPPORTED_ERROR
;
2761 CharacterIterator
*srcCI
=(CharacterIterator
*)src
->context
;
2762 srcCI
= srcCI
->clone();
2763 dest
= utext_openCharacterIterator(dest
, srcCI
, status
);
2764 if (U_FAILURE(*status
)) {
2767 // cast off const on getNativeIndex.
2768 // For CharacterIterator based UTexts, this is safe, the operation is const.
2769 int64_t ix
= utext_getNativeIndex((UText
*)src
);
2770 utext_setNativeIndex(dest
, ix
);
2771 dest
->r
= srcCI
; // flags that this UText owns the CharacterIterator
2776 static int32_t U_CALLCONV
2777 charIterTextExtract(UText
*ut
,
2778 int64_t start
, int64_t limit
,
2779 UChar
*dest
, int32_t destCapacity
,
2782 if(U_FAILURE(*status
)) {
2785 if(destCapacity
<0 || (dest
==NULL
&& destCapacity
>0) || start
>limit
) {
2786 *status
=U_ILLEGAL_ARGUMENT_ERROR
;
2789 int32_t length
= (int32_t)ut
->a
;
2790 int32_t start32
= pinIndex(start
, length
);
2791 int32_t limit32
= pinIndex(limit
, length
);
2796 CharacterIterator
*ci
= (CharacterIterator
*)ut
->context
;
2797 ci
->setIndex32(start32
); // Moves ix to lead of surrogate pair, if needed.
2798 srci
= ci
->getIndex();
2800 while (srci
<limit32
) {
2801 UChar32 c
= ci
->next32PostInc();
2802 int32_t len
= U16_LENGTH(c
);
2803 U_ASSERT(desti
+len
>0); /* to ensure desti+len never exceeds MAX_INT32, which must not happen logically */
2804 if (desti
+len
<= destCapacity
) {
2805 U16_APPEND_UNSAFE(dest
, desti
, c
);
2806 copyLimit
= srci
+len
;
2809 *status
= U_BUFFER_OVERFLOW_ERROR
;
2814 charIterTextAccess(ut
, copyLimit
, TRUE
);
2816 u_terminateUChars(dest
, destCapacity
, desti
, status
);
2820 static const struct UTextFuncs charIterFuncs
=
2823 0, 0, 0, // Reserved alignment padding
2827 charIterTextExtract
,
2830 NULL
, // MapOffsetToNative,
2831 NULL
, // MapIndexToUTF16,
2840 U_CAPI UText
* U_EXPORT2
2841 utext_openCharacterIterator(UText
*ut
, CharacterIterator
*ci
, UErrorCode
*status
) {
2842 if (U_FAILURE(*status
)) {
2846 if (ci
->startIndex() > 0) {
2847 // No support for CharacterIterators that do not start indexing from zero.
2848 *status
= U_UNSUPPORTED_ERROR
;
2852 // Extra space in UText for 2 buffers of CIBufSize UChars each.
2853 int32_t extraSpace
= 2 * CIBufSize
* sizeof(UChar
);
2854 ut
= utext_setup(ut
, extraSpace
, status
);
2855 if (U_SUCCESS(*status
)) {
2856 ut
->pFuncs
= &charIterFuncs
;
2858 ut
->providerProperties
= 0;
2859 ut
->a
= ci
->endIndex(); // Length of text
2860 ut
->p
= ut
->pExtra
; // First buffer
2861 ut
->b
= -1; // Native index of first buffer contents
2862 ut
->q
= (UChar
*)ut
->pExtra
+CIBufSize
; // Second buffer
2863 ut
->c
= -1; // Native index of second buffer contents
2865 // Initialize current chunk contents to be empty.
2866 // First access will fault something in.
2867 // Note: The initial nativeStart and chunkOffset must sum to zero
2868 // so that getNativeIndex() will correctly compute to zero
2869 // if no call to Access() has ever been made. They can't be both
2870 // zero without Access() thinking that the chunk is valid.
2871 ut
->chunkContents
= (UChar
*)ut
->p
;
2872 ut
->chunkNativeStart
= -1;
2873 ut
->chunkOffset
= 1;
2874 ut
->chunkNativeLimit
= 0;
2875 ut
->chunkLength
= 0;
2876 ut
->nativeIndexingLimit
= ut
->chunkOffset
; // enables native indexing