]> git.saurik.com Git - apple/icu.git/blob - icuSources/common/utext.cpp
ICU-59173.0.1.tar.gz
[apple/icu.git] / icuSources / common / utext.cpp
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 *
6 * Copyright (C) 2005-2016, International Business Machines
7 * Corporation and others. All Rights Reserved.
8 *
9 *******************************************************************************
10 * file name: utext.cpp
11 * encoding: UTF-8
12 * tab size: 8 (not used)
13 * indentation:4
14 *
15 * created on: 2005apr12
16 * created by: Markus W. Scherer
17 */
18
19 #include "unicode/utypes.h"
20 #include "unicode/ustring.h"
21 #include "unicode/unistr.h"
22 #include "unicode/chariter.h"
23 #include "unicode/utext.h"
24 #include "unicode/utf.h"
25 #include "unicode/utf8.h"
26 #include "unicode/utf16.h"
27 #include "ustr_imp.h"
28 #include "cmemory.h"
29 #include "cstring.h"
30 #include "uassert.h"
31 #include "putilimp.h"
32
33 U_NAMESPACE_USE
34
35 #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex))
36
37
38 static UBool
39 utext_access(UText *ut, int64_t index, UBool forward) {
40 return ut->pFuncs->access(ut, index, forward);
41 }
42
43
44
45 U_CAPI UBool U_EXPORT2
46 utext_moveIndex32(UText *ut, int32_t delta) {
47 UChar32 c;
48 if (delta > 0) {
49 do {
50 if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, TRUE)) {
51 return FALSE;
52 }
53 c = ut->chunkContents[ut->chunkOffset];
54 if (U16_IS_SURROGATE(c)) {
55 c = utext_next32(ut);
56 if (c == U_SENTINEL) {
57 return FALSE;
58 }
59 } else {
60 ut->chunkOffset++;
61 }
62 } while(--delta>0);
63
64 } else if (delta<0) {
65 do {
66 if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, FALSE)) {
67 return FALSE;
68 }
69 c = ut->chunkContents[ut->chunkOffset-1];
70 if (U16_IS_SURROGATE(c)) {
71 c = utext_previous32(ut);
72 if (c == U_SENTINEL) {
73 return FALSE;
74 }
75 } else {
76 ut->chunkOffset--;
77 }
78 } while(++delta<0);
79 }
80
81 return TRUE;
82 }
83
84
85 U_CAPI int64_t U_EXPORT2
86 utext_nativeLength(UText *ut) {
87 return ut->pFuncs->nativeLength(ut);
88 }
89
90
91 U_CAPI UBool U_EXPORT2
92 utext_isLengthExpensive(const UText *ut) {
93 UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0;
94 return r;
95 }
96
97
98 U_CAPI int64_t U_EXPORT2
99 utext_getNativeIndex(const UText *ut) {
100 if(ut->chunkOffset <= ut->nativeIndexingLimit) {
101 return ut->chunkNativeStart+ut->chunkOffset;
102 } else {
103 return ut->pFuncs->mapOffsetToNative(ut);
104 }
105 }
106
107
108 U_CAPI void U_EXPORT2
109 utext_setNativeIndex(UText *ut, int64_t index) {
110 if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
111 // The desired position is outside of the current chunk.
112 // Access the new position. Assume a forward iteration from here,
113 // which will also be optimimum for a single random access.
114 // Reverse iterations may suffer slightly.
115 ut->pFuncs->access(ut, index, TRUE);
116 } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) {
117 // utf-16 indexing.
118 ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart);
119 } else {
120 ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
121 }
122 // The convention is that the index must always be on a code point boundary.
123 // Adjust the index position if it is in the middle of a surrogate pair.
124 if (ut->chunkOffset<ut->chunkLength) {
125 UChar c= ut->chunkContents[ut->chunkOffset];
126 if (U16_IS_TRAIL(c)) {
127 if (ut->chunkOffset==0) {
128 ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE);
129 }
130 if (ut->chunkOffset>0) {
131 UChar lead = ut->chunkContents[ut->chunkOffset-1];
132 if (U16_IS_LEAD(lead)) {
133 ut->chunkOffset--;
134 }
135 }
136 }
137 }
138 }
139
140
141
142 U_CAPI int64_t U_EXPORT2
143 utext_getPreviousNativeIndex(UText *ut) {
144 //
145 // Fast-path the common case.
146 // Common means current position is not at the beginning of a chunk
147 // and the preceding character is not supplementary.
148 //
149 int32_t i = ut->chunkOffset - 1;
150 int64_t result;
151 if (i >= 0) {
152 UChar c = ut->chunkContents[i];
153 if (U16_IS_TRAIL(c) == FALSE) {
154 if (i <= ut->nativeIndexingLimit) {
155 result = ut->chunkNativeStart + i;
156 } else {
157 ut->chunkOffset = i;
158 result = ut->pFuncs->mapOffsetToNative(ut);
159 ut->chunkOffset++;
160 }
161 return result;
162 }
163 }
164
165 // If at the start of text, simply return 0.
166 if (ut->chunkOffset==0 && ut->chunkNativeStart==0) {
167 return 0;
168 }
169
170 // Harder, less common cases. We are at a chunk boundary, or on a surrogate.
171 // Keep it simple, use other functions to handle the edges.
172 //
173 utext_previous32(ut);
174 result = UTEXT_GETNATIVEINDEX(ut);
175 utext_next32(ut);
176 return result;
177 }
178
179
180 //
181 // utext_current32. Get the UChar32 at the current position.
182 // UText iteration position is always on a code point boundary,
183 // never on the trail half of a surrogate pair.
184 //
185 U_CAPI UChar32 U_EXPORT2
186 utext_current32(UText *ut) {
187 UChar32 c;
188 if (ut->chunkOffset==ut->chunkLength) {
189 // Current position is just off the end of the chunk.
190 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
191 // Off the end of the text.
192 return U_SENTINEL;
193 }
194 }
195
196 c = ut->chunkContents[ut->chunkOffset];
197 if (U16_IS_LEAD(c) == FALSE) {
198 // Normal, non-supplementary case.
199 return c;
200 }
201
202 //
203 // Possible supplementary char.
204 //
205 UChar32 trail = 0;
206 UChar32 supplementaryC = c;
207 if ((ut->chunkOffset+1) < ut->chunkLength) {
208 // The trail surrogate is in the same chunk.
209 trail = ut->chunkContents[ut->chunkOffset+1];
210 } else {
211 // The trail surrogate is in a different chunk.
212 // Because we must maintain the iteration position, we need to switch forward
213 // into the new chunk, get the trail surrogate, then revert the chunk back to the
214 // original one.
215 // An edge case to be careful of: the entire text may end with an unpaired
216 // leading surrogate. The attempt to access the trail will fail, but
217 // the original position before the unpaired lead still needs to be restored.
218 int64_t nativePosition = ut->chunkNativeLimit;
219 int32_t originalOffset = ut->chunkOffset;
220 if (ut->pFuncs->access(ut, nativePosition, TRUE)) {
221 trail = ut->chunkContents[ut->chunkOffset];
222 }
223 UBool r = ut->pFuncs->access(ut, nativePosition, FALSE); // reverse iteration flag loads preceding chunk
224 U_ASSERT(r==TRUE);
225 ut->chunkOffset = originalOffset;
226 if(!r) {
227 return U_SENTINEL;
228 }
229 }
230
231 if (U16_IS_TRAIL(trail)) {
232 supplementaryC = U16_GET_SUPPLEMENTARY(c, trail);
233 }
234 return supplementaryC;
235
236 }
237
238
239 U_CAPI UChar32 U_EXPORT2
240 utext_char32At(UText *ut, int64_t nativeIndex) {
241 UChar32 c = U_SENTINEL;
242
243 // Fast path the common case.
244 if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) {
245 ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart);
246 c = ut->chunkContents[ut->chunkOffset];
247 if (U16_IS_SURROGATE(c) == FALSE) {
248 return c;
249 }
250 }
251
252
253 utext_setNativeIndex(ut, nativeIndex);
254 if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) {
255 c = ut->chunkContents[ut->chunkOffset];
256 if (U16_IS_SURROGATE(c)) {
257 // For surrogates, let current32() deal with the complications
258 // of supplementaries that may span chunk boundaries.
259 c = utext_current32(ut);
260 }
261 }
262 return c;
263 }
264
265
266 U_CAPI UChar32 U_EXPORT2
267 utext_next32(UText *ut) {
268 UChar32 c;
269
270 if (ut->chunkOffset >= ut->chunkLength) {
271 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
272 return U_SENTINEL;
273 }
274 }
275
276 c = ut->chunkContents[ut->chunkOffset++];
277 if (U16_IS_LEAD(c) == FALSE) {
278 // Normal case, not supplementary.
279 // (A trail surrogate seen here is just returned as is, as a surrogate value.
280 // It cannot be part of a pair.)
281 return c;
282 }
283
284 if (ut->chunkOffset >= ut->chunkLength) {
285 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
286 // c is an unpaired lead surrogate at the end of the text.
287 // return it as it is.
288 return c;
289 }
290 }
291 UChar32 trail = ut->chunkContents[ut->chunkOffset];
292 if (U16_IS_TRAIL(trail) == FALSE) {
293 // c was an unpaired lead surrogate, not at the end of the text.
294 // return it as it is (unpaired). Iteration position is on the
295 // following character, possibly in the next chunk, where the
296 // trail surrogate would have been if it had existed.
297 return c;
298 }
299
300 UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail);
301 ut->chunkOffset++; // move iteration position over the trail surrogate.
302 return supplementary;
303 }
304
305
306 U_CAPI UChar32 U_EXPORT2
307 utext_previous32(UText *ut) {
308 UChar32 c;
309
310 if (ut->chunkOffset <= 0) {
311 if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
312 return U_SENTINEL;
313 }
314 }
315 ut->chunkOffset--;
316 c = ut->chunkContents[ut->chunkOffset];
317 if (U16_IS_TRAIL(c) == FALSE) {
318 // Normal case, not supplementary.
319 // (A lead surrogate seen here is just returned as is, as a surrogate value.
320 // It cannot be part of a pair.)
321 return c;
322 }
323
324 if (ut->chunkOffset <= 0) {
325 if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
326 // c is an unpaired trail surrogate at the start of the text.
327 // return it as it is.
328 return c;
329 }
330 }
331
332 UChar32 lead = ut->chunkContents[ut->chunkOffset-1];
333 if (U16_IS_LEAD(lead) == FALSE) {
334 // c was an unpaired trail surrogate, not at the end of the text.
335 // return it as it is (unpaired). Iteration position is at c
336 return c;
337 }
338
339 UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c);
340 ut->chunkOffset--; // move iteration position over the lead surrogate.
341 return supplementary;
342 }
343
344
345
346 U_CAPI UChar32 U_EXPORT2
347 utext_next32From(UText *ut, int64_t index) {
348 UChar32 c = U_SENTINEL;
349
350 if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
351 // Desired position is outside of the current chunk.
352 if(!ut->pFuncs->access(ut, index, TRUE)) {
353 // no chunk available here
354 return U_SENTINEL;
355 }
356 } else if (index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) {
357 // Desired position is in chunk, with direct 1:1 native to UTF16 indexing
358 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
359 } else {
360 // Desired position is in chunk, with non-UTF16 indexing.
361 ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index);
362 }
363
364 c = ut->chunkContents[ut->chunkOffset++];
365 if (U16_IS_SURROGATE(c)) {
366 // Surrogates. Many edge cases. Use other functions that already
367 // deal with the problems.
368 utext_setNativeIndex(ut, index);
369 c = utext_next32(ut);
370 }
371 return c;
372 }
373
374
375 U_CAPI UChar32 U_EXPORT2
376 utext_previous32From(UText *ut, int64_t index) {
377 //
378 // Return the character preceding the specified index.
379 // Leave the iteration position at the start of the character that was returned.
380 //
381 UChar32 cPrev; // The character preceding cCurr, which is what we will return.
382
383 // Address the chunk containg the position preceding the incoming index
384 // A tricky edge case:
385 // We try to test the requested native index against the chunkNativeStart to determine
386 // whether the character preceding the one at the index is in the current chunk.
387 // BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the
388 // requested index is on something other than the first position of the first char.
389 //
390 if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) {
391 // Requested native index is outside of the current chunk.
392 if(!ut->pFuncs->access(ut, index, FALSE)) {
393 // no chunk available here
394 return U_SENTINEL;
395 }
396 } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) {
397 // Direct UTF-16 indexing.
398 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
399 } else {
400 ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
401 if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, FALSE)) {
402 // no chunk available here
403 return U_SENTINEL;
404 }
405 }
406
407 //
408 // Simple case with no surrogates.
409 //
410 ut->chunkOffset--;
411 cPrev = ut->chunkContents[ut->chunkOffset];
412
413 if (U16_IS_SURROGATE(cPrev)) {
414 // Possible supplementary. Many edge cases.
415 // Let other functions do the heavy lifting.
416 utext_setNativeIndex(ut, index);
417 cPrev = utext_previous32(ut);
418 }
419 return cPrev;
420 }
421
422
423 U_CAPI int32_t U_EXPORT2
424 utext_extract(UText *ut,
425 int64_t start, int64_t limit,
426 UChar *dest, int32_t destCapacity,
427 UErrorCode *status) {
428 return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status);
429 }
430
431
432
433 U_CAPI UBool U_EXPORT2
434 utext_equals(const UText *a, const UText *b) {
435 if (a==NULL || b==NULL ||
436 a->magic != UTEXT_MAGIC ||
437 b->magic != UTEXT_MAGIC) {
438 // Null or invalid arguments don't compare equal to anything.
439 return FALSE;
440 }
441
442 if (a->pFuncs != b->pFuncs) {
443 // Different types of text providers.
444 return FALSE;
445 }
446
447 if (a->context != b->context) {
448 // Different sources (different strings)
449 return FALSE;
450 }
451 if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) {
452 // Different current position in the string.
453 return FALSE;
454 }
455
456 return TRUE;
457 }
458
459 U_CAPI UBool U_EXPORT2
460 utext_isWritable(const UText *ut)
461 {
462 UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0;
463 return b;
464 }
465
466
467 U_CAPI void U_EXPORT2
468 utext_freeze(UText *ut) {
469 // Zero out the WRITABLE flag.
470 ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE));
471 }
472
473
474 U_CAPI UBool U_EXPORT2
475 utext_hasMetaData(const UText *ut)
476 {
477 UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0;
478 return b;
479 }
480
481
482
483 U_CAPI int32_t U_EXPORT2
484 utext_replace(UText *ut,
485 int64_t nativeStart, int64_t nativeLimit,
486 const UChar *replacementText, int32_t replacementLength,
487 UErrorCode *status)
488 {
489 if (U_FAILURE(*status)) {
490 return 0;
491 }
492 if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
493 *status = U_NO_WRITE_PERMISSION;
494 return 0;
495 }
496 int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status);
497 return i;
498 }
499
500 U_CAPI void U_EXPORT2
501 utext_copy(UText *ut,
502 int64_t nativeStart, int64_t nativeLimit,
503 int64_t destIndex,
504 UBool move,
505 UErrorCode *status)
506 {
507 if (U_FAILURE(*status)) {
508 return;
509 }
510 if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
511 *status = U_NO_WRITE_PERMISSION;
512 return;
513 }
514 ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status);
515 }
516
517
518
519 U_CAPI UText * U_EXPORT2
520 utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) {
521 if (U_FAILURE(*status)) {
522 return dest;
523 }
524 UText *result = src->pFuncs->clone(dest, src, deep, status);
525 if (U_FAILURE(*status)) {
526 return result;
527 }
528 if (result == NULL) {
529 *status = U_MEMORY_ALLOCATION_ERROR;
530 return result;
531 }
532 if (readOnly) {
533 utext_freeze(result);
534 }
535 return result;
536 }
537
538
539
540 //------------------------------------------------------------------------------
541 //
542 // UText common functions implementation
543 //
544 //------------------------------------------------------------------------------
545
546 //
547 // UText.flags bit definitions
548 //
549 enum {
550 UTEXT_HEAP_ALLOCATED = 1, // 1 if ICU has allocated this UText struct on the heap.
551 // 0 if caller provided storage for the UText.
552
553 UTEXT_EXTRA_HEAP_ALLOCATED = 2, // 1 if ICU has allocated extra storage as a separate
554 // heap block.
555 // 0 if there is no separate allocation. Either no extra
556 // storage was requested, or it is appended to the end
557 // of the main UText storage.
558
559 UTEXT_OPEN = 4 // 1 if this UText is currently open
560 // 0 if this UText is not open.
561 };
562
563
564 //
565 // Extended form of a UText. The purpose is to aid in computing the total size required
566 // when a provider asks for a UText to be allocated with extra storage.
567
568 struct ExtendedUText {
569 UText ut;
570 UAlignedMemory extension;
571 };
572
573 static const UText emptyText = UTEXT_INITIALIZER;
574
575 U_CAPI UText * U_EXPORT2
576 utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) {
577 if (U_FAILURE(*status)) {
578 return ut;
579 }
580
581 if (ut == NULL) {
582 // We need to heap-allocate storage for the new UText
583 int32_t spaceRequired = sizeof(UText);
584 if (extraSpace > 0) {
585 spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(UAlignedMemory);
586 }
587 ut = (UText *)uprv_malloc(spaceRequired);
588 if (ut == NULL) {
589 *status = U_MEMORY_ALLOCATION_ERROR;
590 return NULL;
591 } else {
592 *ut = emptyText;
593 ut->flags |= UTEXT_HEAP_ALLOCATED;
594 if (spaceRequired>0) {
595 ut->extraSize = extraSpace;
596 ut->pExtra = &((ExtendedUText *)ut)->extension;
597 }
598 }
599 } else {
600 // We have been supplied with an already existing UText.
601 // Verify that it really appears to be a UText.
602 if (ut->magic != UTEXT_MAGIC) {
603 *status = U_ILLEGAL_ARGUMENT_ERROR;
604 return ut;
605 }
606 // If the ut is already open and there's a provider supplied close
607 // function, call it.
608 if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != NULL) {
609 ut->pFuncs->close(ut);
610 }
611 ut->flags &= ~UTEXT_OPEN;
612
613 // If extra space was requested by our caller, check whether
614 // sufficient already exists, and allocate new if needed.
615 if (extraSpace > ut->extraSize) {
616 // Need more space. If there is existing separately allocated space,
617 // delete it first, then allocate new space.
618 if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
619 uprv_free(ut->pExtra);
620 ut->extraSize = 0;
621 }
622 ut->pExtra = uprv_malloc(extraSpace);
623 if (ut->pExtra == NULL) {
624 *status = U_MEMORY_ALLOCATION_ERROR;
625 } else {
626 ut->extraSize = extraSpace;
627 ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED;
628 }
629 }
630 }
631 if (U_SUCCESS(*status)) {
632 ut->flags |= UTEXT_OPEN;
633
634 // Initialize all remaining fields of the UText.
635 //
636 ut->context = NULL;
637 ut->chunkContents = NULL;
638 ut->p = NULL;
639 ut->q = NULL;
640 ut->r = NULL;
641 ut->a = 0;
642 ut->b = 0;
643 ut->c = 0;
644 ut->chunkOffset = 0;
645 ut->chunkLength = 0;
646 ut->chunkNativeStart = 0;
647 ut->chunkNativeLimit = 0;
648 ut->nativeIndexingLimit = 0;
649 ut->providerProperties = 0;
650 ut->privA = 0;
651 ut->privB = 0;
652 ut->privC = 0;
653 ut->privP = NULL;
654 if (ut->pExtra!=NULL && ut->extraSize>0)
655 uprv_memset(ut->pExtra, 0, ut->extraSize);
656
657 }
658 return ut;
659 }
660
661
662 U_CAPI UText * U_EXPORT2
663 utext_close(UText *ut) {
664 if (ut==NULL ||
665 ut->magic != UTEXT_MAGIC ||
666 (ut->flags & UTEXT_OPEN) == 0)
667 {
668 // The supplied ut is not an open UText.
669 // Do nothing.
670 return ut;
671 }
672
673 // If the provider gave us a close function, call it now.
674 // This will clean up anything allocated specifically by the provider.
675 if (ut->pFuncs->close != NULL) {
676 ut->pFuncs->close(ut);
677 }
678 ut->flags &= ~UTEXT_OPEN;
679
680 // If we (the framework) allocated the UText or subsidiary storage,
681 // delete it.
682 if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
683 uprv_free(ut->pExtra);
684 ut->pExtra = NULL;
685 ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED;
686 ut->extraSize = 0;
687 }
688
689 // Zero out function table of the closed UText. This is a defensive move,
690 // inteded to cause applications that inadvertantly use a closed
691 // utext to crash with null pointer errors.
692 ut->pFuncs = NULL;
693
694 if (ut->flags & UTEXT_HEAP_ALLOCATED) {
695 // This UText was allocated by UText setup. We need to free it.
696 // Clear magic, so we can detect if the user messes up and immediately
697 // tries to reopen another UText using the deleted storage.
698 ut->magic = 0;
699 uprv_free(ut);
700 ut = NULL;
701 }
702 return ut;
703 }
704
705
706
707
708 //
709 // invalidateChunk Reset a chunk to have no contents, so that the next call
710 // to access will cause new data to load.
711 // This is needed when copy/move/replace operate directly on the
712 // backing text, potentially putting it out of sync with the
713 // contents in the chunk.
714 //
715 static void
716 invalidateChunk(UText *ut) {
717 ut->chunkLength = 0;
718 ut->chunkNativeLimit = 0;
719 ut->chunkNativeStart = 0;
720 ut->chunkOffset = 0;
721 ut->nativeIndexingLimit = 0;
722 }
723
724 //
725 // pinIndex Do range pinning on a native index parameter.
726 // 64 bit pinning is done in place.
727 // 32 bit truncated result is returned as a convenience for
728 // use in providers that don't need 64 bits.
729 static int32_t
730 pinIndex(int64_t &index, int64_t limit) {
731 if (index<0) {
732 index = 0;
733 } else if (index > limit) {
734 index = limit;
735 }
736 return (int32_t)index;
737 }
738
739
740 U_CDECL_BEGIN
741
742 //
743 // Pointer relocation function,
744 // a utility used by shallow clone.
745 // Adjust a pointer that refers to something within one UText (the source)
746 // to refer to the same relative offset within a another UText (the target)
747 //
748 static void adjustPointer(UText *dest, const void **destPtr, const UText *src) {
749 // convert all pointers to (char *) so that byte address arithmetic will work.
750 char *dptr = (char *)*destPtr;
751 char *dUText = (char *)dest;
752 char *sUText = (char *)src;
753
754 if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) {
755 // target ptr was to something within the src UText's pExtra storage.
756 // relocate it into the target UText's pExtra region.
757 *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra);
758 } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) {
759 // target ptr was pointing to somewhere within the source UText itself.
760 // Move it to the same offset within the target UText.
761 *destPtr = dUText + (dptr-sUText);
762 }
763 }
764
765
766 //
767 // Clone. This is a generic copy-the-utext-by-value clone function that can be
768 // used as-is with some utext types, and as a helper by other clones.
769 //
770 static UText * U_CALLCONV
771 shallowTextClone(UText * dest, const UText * src, UErrorCode * status) {
772 if (U_FAILURE(*status)) {
773 return NULL;
774 }
775 int32_t srcExtraSize = src->extraSize;
776
777 //
778 // Use the generic text_setup to allocate storage if required.
779 //
780 dest = utext_setup(dest, srcExtraSize, status);
781 if (U_FAILURE(*status)) {
782 return dest;
783 }
784
785 //
786 // flags (how the UText was allocated) and the pointer to the
787 // extra storage must retain the values in the cloned utext that
788 // were set up by utext_setup. Save them separately before
789 // copying the whole struct.
790 //
791 void *destExtra = dest->pExtra;
792 int32_t flags = dest->flags;
793
794
795 //
796 // Copy the whole UText struct by value.
797 // Any "Extra" storage is copied also.
798 //
799 int sizeToCopy = src->sizeOfStruct;
800 if (sizeToCopy > dest->sizeOfStruct) {
801 sizeToCopy = dest->sizeOfStruct;
802 }
803 uprv_memcpy(dest, src, sizeToCopy);
804 dest->pExtra = destExtra;
805 dest->flags = flags;
806 if (srcExtraSize > 0) {
807 uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize);
808 }
809
810 //
811 // Relocate any pointers in the target that refer to the UText itself
812 // to point to the cloned copy rather than the original source.
813 //
814 adjustPointer(dest, &dest->context, src);
815 adjustPointer(dest, &dest->p, src);
816 adjustPointer(dest, &dest->q, src);
817 adjustPointer(dest, &dest->r, src);
818 adjustPointer(dest, (const void **)&dest->chunkContents, src);
819
820 // The newly shallow-cloned UText does _not_ own the underlying storage for the text.
821 // (The source for the clone may or may not have owned the text.)
822
823 dest->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
824
825 return dest;
826 }
827
828
829 U_CDECL_END
830
831
832
833 //------------------------------------------------------------------------------
834 //
835 // UText implementation for UTF-8 char * strings (read-only)
836 // Limitation: string length must be <= 0x7fffffff in length.
837 // (length must for in an int32_t variable)
838 //
839 // Use of UText data members:
840 // context pointer to UTF-8 string
841 // utext.b is the input string length (bytes).
842 // utext.c Length scanned so far in string
843 // (for optimizing finding length of zero terminated strings.)
844 // utext.p pointer to the current buffer
845 // utext.q pointer to the other buffer.
846 //
847 //------------------------------------------------------------------------------
848
849 // Chunk size.
850 // Must be less than 42 (256/6), because of byte mapping from UChar indexes to native indexes.
851 // Worst case there are six UTF-8 bytes per UChar.
852 // obsolete 6 byte form fd + 5 trails maps to fffd
853 // obsolete 5 byte form fc + 4 trails maps to fffd
854 // non-shortest 4 byte forms maps to fffd
855 // normal supplementaries map to a pair of utf-16, two utf8 bytes per utf-16 unit
856 // mapToUChars array size must allow for the worst case, 6.
857 // This could be brought down to 4, by treating fd and fc as pure illegal,
858 // rather than obsolete lead bytes. But that is not compatible with the utf-8 access macros.
859 //
860 enum { UTF8_TEXT_CHUNK_SIZE=32 };
861
862 //
863 // UTF8Buf Two of these structs will be set up in the UText's extra allocated space.
864 // Each contains the UChar chunk buffer, the to and from native maps, and
865 // header info.
866 //
867 // because backwards iteration fills the buffers starting at the end and
868 // working towards the front, the filled part of the buffers may not begin
869 // at the start of the available storage for the buffers.
870 //
871 // Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for
872 // the last character added being a supplementary, and thus requiring a surrogate
873 // pair. Doing this is simpler than checking for the edge case.
874 //
875
876 struct UTF8Buf {
877 int32_t bufNativeStart; // Native index of first char in UChar buf
878 int32_t bufNativeLimit; // Native index following last char in buf.
879 int32_t bufStartIdx; // First filled position in buf.
880 int32_t bufLimitIdx; // Limit of filled range in buf.
881 int32_t bufNILimit; // Limit of native indexing part of buf
882 int32_t toUCharsMapStart; // Native index corresponding to
883 // mapToUChars[0].
884 // Set to bufNativeStart when filling forwards.
885 // Set to computed value when filling backwards.
886
887 UChar buf[UTF8_TEXT_CHUNK_SIZE+4]; // The UChar buffer. Requires one extra position beyond the
888 // the chunk size, to allow for surrogate at the end.
889 // Length must be identical to mapToNative array, below,
890 // because of the way indexing works when the array is
891 // filled backwards during a reverse iteration. Thus,
892 // the additional extra size.
893 uint8_t mapToNative[UTF8_TEXT_CHUNK_SIZE+4]; // map UChar index in buf to
894 // native offset from bufNativeStart.
895 // Requires two extra slots,
896 // one for a supplementary starting in the last normal position,
897 // and one for an entry for the buffer limit position.
898 uint8_t mapToUChars[UTF8_TEXT_CHUNK_SIZE*6+6]; // Map native offset from bufNativeStart to
899 // correspoding offset in filled part of buf.
900 int32_t align;
901 };
902
903 U_CDECL_BEGIN
904
905 //
906 // utf8TextLength
907 //
908 // Get the length of the string. If we don't already know it,
909 // we'll need to scan for the trailing nul.
910 //
911 static int64_t U_CALLCONV
912 utf8TextLength(UText *ut) {
913 if (ut->b < 0) {
914 // Zero terminated string, and we haven't scanned to the end yet.
915 // Scan it now.
916 const char *r = (const char *)ut->context + ut->c;
917 while (*r != 0) {
918 r++;
919 }
920 if ((r - (const char *)ut->context) < 0x7fffffff) {
921 ut->b = (int32_t)(r - (const char *)ut->context);
922 } else {
923 // Actual string was bigger (more than 2 gig) than we
924 // can handle. Clip it to 2 GB.
925 ut->b = 0x7fffffff;
926 }
927 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
928 }
929 return ut->b;
930 }
931
932
933
934
935
936
937 static UBool U_CALLCONV
938 utf8TextAccess(UText *ut, int64_t index, UBool forward) {
939 //
940 // Apologies to those who are allergic to goto statements.
941 // Consider each goto to a labelled block to be the equivalent of
942 // call the named block as if it were a function();
943 // return;
944 //
945 const uint8_t *s8=(const uint8_t *)ut->context;
946 UTF8Buf *u8b = NULL;
947 int32_t length = ut->b; // Length of original utf-8
948 int32_t ix= (int32_t)index; // Requested index, trimmed to 32 bits.
949 int32_t mapIndex = 0;
950 if (index<0) {
951 ix=0;
952 } else if (index > 0x7fffffff) {
953 // Strings with 64 bit lengths not supported by this UTF-8 provider.
954 ix = 0x7fffffff;
955 }
956
957 // Pin requested index to the string length.
958 if (ix>length) {
959 if (length>=0) {
960 ix=length;
961 } else if (ix>=ut->c) {
962 // Zero terminated string, and requested index is beyond
963 // the region that has already been scanned.
964 // Scan up to either the end of the string or to the
965 // requested position, whichever comes first.
966 while (ut->c<ix && s8[ut->c]!=0) {
967 ut->c++;
968 }
969 // TODO: support for null terminated string length > 32 bits.
970 if (s8[ut->c] == 0) {
971 // We just found the actual length of the string.
972 // Trim the requested index back to that.
973 ix = ut->c;
974 ut->b = ut->c;
975 length = ut->c;
976 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
977 }
978 }
979 }
980
981 //
982 // Dispatch to the appropriate action for a forward iteration request.
983 //
984 if (forward) {
985 if (ix==ut->chunkNativeLimit) {
986 // Check for normal sequential iteration cases first.
987 if (ix==length) {
988 // Just reached end of string
989 // Don't swap buffers, but do set the
990 // current buffer position.
991 ut->chunkOffset = ut->chunkLength;
992 return FALSE;
993 } else {
994 // End of current buffer.
995 // check whether other buffer already has what we need.
996 UTF8Buf *altB = (UTF8Buf *)ut->q;
997 if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) {
998 goto swapBuffers;
999 }
1000 }
1001 }
1002
1003 // A random access. Desired index could be in either or niether buf.
1004 // For optimizing the order of testing, first check for the index
1005 // being in the other buffer. This will be the case for uses that
1006 // move back and forth over a fairly limited range
1007 {
1008 u8b = (UTF8Buf *)ut->q; // the alternate buffer
1009 if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) {
1010 // Requested index is in the other buffer.
1011 goto swapBuffers;
1012 }
1013 if (ix == length) {
1014 // Requested index is end-of-string.
1015 // (this is the case of randomly seeking to the end.
1016 // The case of iterating off the end is handled earlier.)
1017 if (ix == ut->chunkNativeLimit) {
1018 // Current buffer extends up to the end of the string.
1019 // Leave it as the current buffer.
1020 ut->chunkOffset = ut->chunkLength;
1021 return FALSE;
1022 }
1023 if (ix == u8b->bufNativeLimit) {
1024 // Alternate buffer extends to the end of string.
1025 // Swap it in as the current buffer.
1026 goto swapBuffersAndFail;
1027 }
1028
1029 // Neither existing buffer extends to the end of the string.
1030 goto makeStubBuffer;
1031 }
1032
1033 if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) {
1034 // Requested index is in neither buffer.
1035 goto fillForward;
1036 }
1037
1038 // Requested index is in this buffer.
1039 u8b = (UTF8Buf *)ut->p; // the current buffer
1040 mapIndex = ix - u8b->toUCharsMapStart;
1041 U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars));
1042 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1043 return TRUE;
1044
1045 }
1046 }
1047
1048
1049 //
1050 // Dispatch to the appropriate action for a
1051 // Backwards Diretion iteration request.
1052 //
1053 if (ix==ut->chunkNativeStart) {
1054 // Check for normal sequential iteration cases first.
1055 if (ix==0) {
1056 // Just reached the start of string
1057 // Don't swap buffers, but do set the
1058 // current buffer position.
1059 ut->chunkOffset = 0;
1060 return FALSE;
1061 } else {
1062 // Start of current buffer.
1063 // check whether other buffer already has what we need.
1064 UTF8Buf *altB = (UTF8Buf *)ut->q;
1065 if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) {
1066 goto swapBuffers;
1067 }
1068 }
1069 }
1070
1071 // A random access. Desired index could be in either or niether buf.
1072 // For optimizing the order of testing,
1073 // Most likely case: in the other buffer.
1074 // Second most likely: in neither buffer.
1075 // Unlikely, but must work: in the current buffer.
1076 u8b = (UTF8Buf *)ut->q; // the alternate buffer
1077 if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) {
1078 // Requested index is in the other buffer.
1079 goto swapBuffers;
1080 }
1081 // Requested index is start-of-string.
1082 // (this is the case of randomly seeking to the start.
1083 // The case of iterating off the start is handled earlier.)
1084 if (ix==0) {
1085 if (u8b->bufNativeStart==0) {
1086 // Alternate buffer contains the data for the start string.
1087 // Make it be the current buffer.
1088 goto swapBuffersAndFail;
1089 } else {
1090 // Request for data before the start of string,
1091 // neither buffer is usable.
1092 // set up a zero-length buffer.
1093 goto makeStubBuffer;
1094 }
1095 }
1096
1097 if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) {
1098 // Requested index is in neither buffer.
1099 goto fillReverse;
1100 }
1101
1102 // Requested index is in this buffer.
1103 // Set the utf16 buffer index.
1104 u8b = (UTF8Buf *)ut->p;
1105 mapIndex = ix - u8b->toUCharsMapStart;
1106 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1107 if (ut->chunkOffset==0) {
1108 // This occurs when the first character in the text is
1109 // a multi-byte UTF-8 char, and the requested index is to
1110 // one of the trailing bytes. Because there is no preceding ,
1111 // character, this access fails. We can't pick up on the
1112 // situation sooner because the requested index is not zero.
1113 return FALSE;
1114 } else {
1115 return TRUE;
1116 }
1117
1118
1119
1120 swapBuffers:
1121 // The alternate buffer (ut->q) has the string data that was requested.
1122 // Swap the primary and alternate buffers, and set the
1123 // chunk index into the new primary buffer.
1124 {
1125 u8b = (UTF8Buf *)ut->q;
1126 ut->q = ut->p;
1127 ut->p = u8b;
1128 ut->chunkContents = &u8b->buf[u8b->bufStartIdx];
1129 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx;
1130 ut->chunkNativeStart = u8b->bufNativeStart;
1131 ut->chunkNativeLimit = u8b->bufNativeLimit;
1132 ut->nativeIndexingLimit = u8b->bufNILimit;
1133
1134 // Index into the (now current) chunk
1135 // Use the map to set the chunk index. It's more trouble than it's worth
1136 // to check whether native indexing can be used.
1137 U_ASSERT(ix>=u8b->bufNativeStart);
1138 U_ASSERT(ix<=u8b->bufNativeLimit);
1139 mapIndex = ix - u8b->toUCharsMapStart;
1140 U_ASSERT(mapIndex>=0);
1141 U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars));
1142 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1143
1144 return TRUE;
1145 }
1146
1147
1148 swapBuffersAndFail:
1149 // We got a request for either the start or end of the string,
1150 // with iteration continuing in the out-of-bounds direction.
1151 // The alternate buffer already contains the data up to the
1152 // start/end.
1153 // Swap the buffers, then return failure, indicating that we couldn't
1154 // make things correct for continuing the iteration in the requested
1155 // direction. The position & buffer are correct should the
1156 // user decide to iterate in the opposite direction.
1157 u8b = (UTF8Buf *)ut->q;
1158 ut->q = ut->p;
1159 ut->p = u8b;
1160 ut->chunkContents = &u8b->buf[u8b->bufStartIdx];
1161 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx;
1162 ut->chunkNativeStart = u8b->bufNativeStart;
1163 ut->chunkNativeLimit = u8b->bufNativeLimit;
1164 ut->nativeIndexingLimit = u8b->bufNILimit;
1165
1166 // Index into the (now current) chunk
1167 // For this function (swapBuffersAndFail), the requested index
1168 // will always be at either the start or end of the chunk.
1169 if (ix==u8b->bufNativeLimit) {
1170 ut->chunkOffset = ut->chunkLength;
1171 } else {
1172 ut->chunkOffset = 0;
1173 U_ASSERT(ix == u8b->bufNativeStart);
1174 }
1175 return FALSE;
1176
1177 makeStubBuffer:
1178 // The user has done a seek/access past the start or end
1179 // of the string. Rather than loading data that is likely
1180 // to never be used, just set up a zero-length buffer at
1181 // the position.
1182 u8b = (UTF8Buf *)ut->q;
1183 u8b->bufNativeStart = ix;
1184 u8b->bufNativeLimit = ix;
1185 u8b->bufStartIdx = 0;
1186 u8b->bufLimitIdx = 0;
1187 u8b->bufNILimit = 0;
1188 u8b->toUCharsMapStart = ix;
1189 u8b->mapToNative[0] = 0;
1190 u8b->mapToUChars[0] = 0;
1191 goto swapBuffersAndFail;
1192
1193
1194
1195 fillForward:
1196 {
1197 // Move the incoming index to a code point boundary.
1198 U8_SET_CP_START(s8, 0, ix);
1199
1200 // Swap the UText buffers.
1201 // We want to fill what was previously the alternate buffer,
1202 // and make what was the current buffer be the new alternate.
1203 UTF8Buf *u8b = (UTF8Buf *)ut->q;
1204 ut->q = ut->p;
1205 ut->p = u8b;
1206
1207 int32_t strLen = ut->b;
1208 UBool nulTerminated = FALSE;
1209 if (strLen < 0) {
1210 strLen = 0x7fffffff;
1211 nulTerminated = TRUE;
1212 }
1213
1214 UChar *buf = u8b->buf;
1215 uint8_t *mapToNative = u8b->mapToNative;
1216 uint8_t *mapToUChars = u8b->mapToUChars;
1217 int32_t destIx = 0;
1218 int32_t srcIx = ix;
1219 UBool seenNonAscii = FALSE;
1220 UChar32 c = 0;
1221
1222 // Fill the chunk buffer and mapping arrays.
1223 while (destIx<UTF8_TEXT_CHUNK_SIZE) {
1224 c = s8[srcIx];
1225 if (c>0 && c<0x80) {
1226 // Special case ASCII range for speed.
1227 // zero is excluded to simplify bounds checking.
1228 buf[destIx] = (UChar)c;
1229 mapToNative[destIx] = (uint8_t)(srcIx - ix);
1230 mapToUChars[srcIx-ix] = (uint8_t)destIx;
1231 srcIx++;
1232 destIx++;
1233 } else {
1234 // General case, handle everything.
1235 if (seenNonAscii == FALSE) {
1236 seenNonAscii = TRUE;
1237 u8b->bufNILimit = destIx;
1238 }
1239
1240 int32_t cIx = srcIx;
1241 int32_t dIx = destIx;
1242 int32_t dIxSaved = destIx;
1243 U8_NEXT_OR_FFFD(s8, srcIx, strLen, c);
1244 if (c==0 && nulTerminated) {
1245 srcIx--;
1246 break;
1247 }
1248
1249 U16_APPEND_UNSAFE(buf, destIx, c);
1250 do {
1251 mapToNative[dIx++] = (uint8_t)(cIx - ix);
1252 } while (dIx < destIx);
1253
1254 do {
1255 mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved;
1256 } while (cIx < srcIx);
1257 }
1258 if (srcIx>=strLen) {
1259 break;
1260 }
1261
1262 }
1263
1264 // store Native <--> Chunk Map entries for the end of the buffer.
1265 // There is no actual character here, but the index position is valid.
1266 mapToNative[destIx] = (uint8_t)(srcIx - ix);
1267 mapToUChars[srcIx - ix] = (uint8_t)destIx;
1268
1269 // fill in Buffer descriptor
1270 u8b->bufNativeStart = ix;
1271 u8b->bufNativeLimit = srcIx;
1272 u8b->bufStartIdx = 0;
1273 u8b->bufLimitIdx = destIx;
1274 if (seenNonAscii == FALSE) {
1275 u8b->bufNILimit = destIx;
1276 }
1277 u8b->toUCharsMapStart = u8b->bufNativeStart;
1278
1279 // Set UText chunk to refer to this buffer.
1280 ut->chunkContents = buf;
1281 ut->chunkOffset = 0;
1282 ut->chunkLength = u8b->bufLimitIdx;
1283 ut->chunkNativeStart = u8b->bufNativeStart;
1284 ut->chunkNativeLimit = u8b->bufNativeLimit;
1285 ut->nativeIndexingLimit = u8b->bufNILimit;
1286
1287 // For zero terminated strings, keep track of the maximum point
1288 // scanned so far.
1289 if (nulTerminated && srcIx>ut->c) {
1290 ut->c = srcIx;
1291 if (c==0) {
1292 // We scanned to the end.
1293 // Remember the actual length.
1294 ut->b = srcIx;
1295 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1296 }
1297 }
1298 return TRUE;
1299 }
1300
1301
1302 fillReverse:
1303 {
1304 // Move the incoming index to a code point boundary.
1305 // Can only do this if the incoming index is somewhere in the interior of the string.
1306 // If index is at the end, there is no character there to look at.
1307 if (ix != ut->b) {
1308 // Note: this function will only move the index back if it is on a trail byte
1309 // and there is a preceding lead byte and the sequence from the lead
1310 // through this trail could be part of a valid UTF-8 sequence
1311 // Otherwise the index remains unchanged.
1312 U8_SET_CP_START(s8, 0, ix);
1313 }
1314
1315 // Swap the UText buffers.
1316 // We want to fill what was previously the alternate buffer,
1317 // and make what was the current buffer be the new alternate.
1318 UTF8Buf *u8b = (UTF8Buf *)ut->q;
1319 ut->q = ut->p;
1320 ut->p = u8b;
1321
1322 UChar *buf = u8b->buf;
1323 uint8_t *mapToNative = u8b->mapToNative;
1324 uint8_t *mapToUChars = u8b->mapToUChars;
1325 int32_t toUCharsMapStart = ix - sizeof(UTF8Buf::mapToUChars) + 1;
1326 // Note that toUCharsMapStart can be negative. Happens when the remaining
1327 // text from current position to the beginning is less than the buffer size.
1328 // + 1 because mapToUChars must have a slot at the end for the bufNativeLimit entry.
1329 int32_t destIx = UTF8_TEXT_CHUNK_SIZE+2; // Start in the overflow region
1330 // at end of buffer to leave room
1331 // for a surrogate pair at the
1332 // buffer start.
1333 int32_t srcIx = ix;
1334 int32_t bufNILimit = destIx;
1335 UChar32 c;
1336
1337 // Map to/from Native Indexes, fill in for the position at the end of
1338 // the buffer.
1339 //
1340 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1341 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1342
1343 // Fill the chunk buffer
1344 // Work backwards, filling from the end of the buffer towards the front.
1345 //
1346 while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) {
1347 srcIx--;
1348 destIx--;
1349
1350 // Get last byte of the UTF-8 character
1351 c = s8[srcIx];
1352 if (c<0x80) {
1353 // Special case ASCII range for speed.
1354 buf[destIx] = (UChar)c;
1355 U_ASSERT(toUCharsMapStart <= srcIx);
1356 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1357 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1358 } else {
1359 // General case, handle everything non-ASCII.
1360
1361 int32_t sIx = srcIx; // ix of last byte of multi-byte u8 char
1362
1363 // Get the full character from the UTF8 string.
1364 // use code derived from tbe macros in utf8.h
1365 // Leaves srcIx pointing at the first byte of the UTF-8 char.
1366 //
1367 c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -3);
1368 // leaves srcIx at first byte of the multi-byte char.
1369
1370 // Store the character in UTF-16 buffer.
1371 if (c<0x10000) {
1372 buf[destIx] = (UChar)c;
1373 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1374 } else {
1375 buf[destIx] = U16_TRAIL(c);
1376 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1377 buf[--destIx] = U16_LEAD(c);
1378 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1379 }
1380
1381 // Fill in the map from native indexes to UChars buf index.
1382 do {
1383 mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx;
1384 } while (sIx >= srcIx);
1385 U_ASSERT(toUCharsMapStart <= (srcIx+1));
1386
1387 // Set native indexing limit to be the current position.
1388 // We are processing a non-ascii, non-native-indexing char now;
1389 // the limit will be here if the rest of the chars to be
1390 // added to this buffer are ascii.
1391 bufNILimit = destIx;
1392 }
1393 }
1394 u8b->bufNativeStart = srcIx;
1395 u8b->bufNativeLimit = ix;
1396 u8b->bufStartIdx = destIx;
1397 u8b->bufLimitIdx = UTF8_TEXT_CHUNK_SIZE+2;
1398 u8b->bufNILimit = bufNILimit - u8b->bufStartIdx;
1399 u8b->toUCharsMapStart = toUCharsMapStart;
1400
1401 ut->chunkContents = &buf[u8b->bufStartIdx];
1402 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx;
1403 ut->chunkOffset = ut->chunkLength;
1404 ut->chunkNativeStart = u8b->bufNativeStart;
1405 ut->chunkNativeLimit = u8b->bufNativeLimit;
1406 ut->nativeIndexingLimit = u8b->bufNILimit;
1407 return TRUE;
1408 }
1409
1410 }
1411
1412
1413
1414 //
1415 // This is a slightly modified copy of u_strFromUTF8,
1416 // Inserts a Replacement Char rather than failing on invalid UTF-8
1417 // Removes unnecessary features.
1418 //
1419 static UChar*
1420 utext_strFromUTF8(UChar *dest,
1421 int32_t destCapacity,
1422 int32_t *pDestLength,
1423 const char* src,
1424 int32_t srcLength, // required. NUL terminated not supported.
1425 UErrorCode *pErrorCode
1426 )
1427 {
1428
1429 UChar *pDest = dest;
1430 UChar *pDestLimit = (dest!=NULL)?(dest+destCapacity):NULL;
1431 UChar32 ch=0;
1432 int32_t index = 0;
1433 int32_t reqLength = 0;
1434 uint8_t* pSrc = (uint8_t*) src;
1435
1436
1437 while((index < srcLength)&&(pDest<pDestLimit)){
1438 ch = pSrc[index++];
1439 if(ch <=0x7f){
1440 *pDest++=(UChar)ch;
1441 }else{
1442 ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1443 if(U_IS_BMP(ch)){
1444 *(pDest++)=(UChar)ch;
1445 }else{
1446 *(pDest++)=U16_LEAD(ch);
1447 if(pDest<pDestLimit){
1448 *(pDest++)=U16_TRAIL(ch);
1449 }else{
1450 reqLength++;
1451 break;
1452 }
1453 }
1454 }
1455 }
1456 /* donot fill the dest buffer just count the UChars needed */
1457 while(index < srcLength){
1458 ch = pSrc[index++];
1459 if(ch <= 0x7f){
1460 reqLength++;
1461 }else{
1462 ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1463 reqLength+=U16_LENGTH(ch);
1464 }
1465 }
1466
1467 reqLength+=(int32_t)(pDest - dest);
1468
1469 if(pDestLength){
1470 *pDestLength = reqLength;
1471 }
1472
1473 /* Terminate the buffer */
1474 u_terminateUChars(dest,destCapacity,reqLength,pErrorCode);
1475
1476 return dest;
1477 }
1478
1479
1480
1481 static int32_t U_CALLCONV
1482 utf8TextExtract(UText *ut,
1483 int64_t start, int64_t limit,
1484 UChar *dest, int32_t destCapacity,
1485 UErrorCode *pErrorCode) {
1486 if(U_FAILURE(*pErrorCode)) {
1487 return 0;
1488 }
1489 if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1490 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
1491 return 0;
1492 }
1493 int32_t length = ut->b;
1494 int32_t start32 = pinIndex(start, length);
1495 int32_t limit32 = pinIndex(limit, length);
1496
1497 if(start32>limit32) {
1498 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
1499 return 0;
1500 }
1501
1502
1503 // adjust the incoming indexes to land on code point boundaries if needed.
1504 // adjust by no more than three, because that is the largest number of trail bytes
1505 // in a well formed UTF8 character.
1506 const uint8_t *buf = (const uint8_t *)ut->context;
1507 int i;
1508 if (start32 < ut->chunkNativeLimit) {
1509 for (i=0; i<3; i++) {
1510 if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) {
1511 break;
1512 }
1513 start32--;
1514 }
1515 }
1516
1517 if (limit32 < ut->chunkNativeLimit) {
1518 for (i=0; i<3; i++) {
1519 if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) {
1520 break;
1521 }
1522 limit32--;
1523 }
1524 }
1525
1526 // Do the actual extract.
1527 int32_t destLength=0;
1528 utext_strFromUTF8(dest, destCapacity, &destLength,
1529 (const char *)ut->context+start32, limit32-start32,
1530 pErrorCode);
1531 utf8TextAccess(ut, limit32, TRUE);
1532 return destLength;
1533 }
1534
1535 //
1536 // utf8TextMapOffsetToNative
1537 //
1538 // Map a chunk (UTF-16) offset to a native index.
1539 static int64_t U_CALLCONV
1540 utf8TextMapOffsetToNative(const UText *ut) {
1541 //
1542 UTF8Buf *u8b = (UTF8Buf *)ut->p;
1543 U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength);
1544 int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart;
1545 U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit);
1546 return nativeOffset;
1547 }
1548
1549 //
1550 // Map a native index to the corrsponding chunk offset
1551 //
1552 static int32_t U_CALLCONV
1553 utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) {
1554 U_ASSERT(index64 <= 0x7fffffff);
1555 int32_t index = (int32_t)index64;
1556 UTF8Buf *u8b = (UTF8Buf *)ut->p;
1557 U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit);
1558 U_ASSERT(index<=ut->chunkNativeLimit);
1559 int32_t mapIndex = index - u8b->toUCharsMapStart;
1560 U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars));
1561 int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1562 U_ASSERT(offset>=0 && offset<=ut->chunkLength);
1563 return offset;
1564 }
1565
1566 static UText * U_CALLCONV
1567 utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status)
1568 {
1569 // First do a generic shallow clone. Does everything needed for the UText struct itself.
1570 dest = shallowTextClone(dest, src, status);
1571
1572 // For deep clones, make a copy of the string.
1573 // The copied storage is owned by the newly created clone.
1574 //
1575 // TODO: There is an isssue with using utext_nativeLength().
1576 // That function is non-const in cases where the input was NUL terminated
1577 // and the length has not yet been determined.
1578 // This function (clone()) is const.
1579 // There potentially a thread safety issue lurking here.
1580 //
1581 if (deep && U_SUCCESS(*status)) {
1582 int32_t len = (int32_t)utext_nativeLength((UText *)src);
1583 char *copyStr = (char *)uprv_malloc(len+1);
1584 if (copyStr == NULL) {
1585 *status = U_MEMORY_ALLOCATION_ERROR;
1586 } else {
1587 uprv_memcpy(copyStr, src->context, len+1);
1588 dest->context = copyStr;
1589 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1590 }
1591 }
1592 return dest;
1593 }
1594
1595
1596 static void U_CALLCONV
1597 utf8TextClose(UText *ut) {
1598 // Most of the work of close is done by the generic UText framework close.
1599 // All that needs to be done here is to delete the UTF8 string if the UText
1600 // owns it. This occurs if the UText was created by cloning.
1601 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1602 char *s = (char *)ut->context;
1603 uprv_free(s);
1604 ut->context = NULL;
1605 }
1606 }
1607
1608 U_CDECL_END
1609
1610
1611 static const struct UTextFuncs utf8Funcs =
1612 {
1613 sizeof(UTextFuncs),
1614 0, 0, 0, // Reserved alignment padding
1615 utf8TextClone,
1616 utf8TextLength,
1617 utf8TextAccess,
1618 utf8TextExtract,
1619 NULL, /* replace*/
1620 NULL, /* copy */
1621 utf8TextMapOffsetToNative,
1622 utf8TextMapIndexToUTF16,
1623 utf8TextClose,
1624 NULL, // spare 1
1625 NULL, // spare 2
1626 NULL // spare 3
1627 };
1628
1629
1630 static const char gEmptyString[] = {0};
1631
1632 U_CAPI UText * U_EXPORT2
1633 utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) {
1634 if(U_FAILURE(*status)) {
1635 return NULL;
1636 }
1637 if(s==NULL && length==0) {
1638 s = gEmptyString;
1639 }
1640
1641 if(s==NULL || length<-1 || length>INT32_MAX) {
1642 *status=U_ILLEGAL_ARGUMENT_ERROR;
1643 return NULL;
1644 }
1645
1646 ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status);
1647 if (U_FAILURE(*status)) {
1648 return ut;
1649 }
1650
1651 ut->pFuncs = &utf8Funcs;
1652 ut->context = s;
1653 ut->b = (int32_t)length;
1654 ut->c = (int32_t)length;
1655 if (ut->c < 0) {
1656 ut->c = 0;
1657 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1658 }
1659 ut->p = ut->pExtra;
1660 ut->q = (char *)ut->pExtra + sizeof(UTF8Buf);
1661 return ut;
1662
1663 }
1664
1665
1666
1667
1668
1669
1670
1671
1672 //------------------------------------------------------------------------------
1673 //
1674 // UText implementation wrapper for Replaceable (read/write)
1675 //
1676 // Use of UText data members:
1677 // context pointer to Replaceable.
1678 // p pointer to Replaceable if it is owned by the UText.
1679 //
1680 //------------------------------------------------------------------------------
1681
1682
1683
1684 // minimum chunk size for this implementation: 3
1685 // to allow for possible trimming for code point boundaries
1686 enum { REP_TEXT_CHUNK_SIZE=10 };
1687
1688 struct ReplExtra {
1689 /*
1690 * Chunk UChars.
1691 * +1 to simplify filling with surrogate pair at the end.
1692 */
1693 UChar s[REP_TEXT_CHUNK_SIZE+1];
1694 };
1695
1696
1697 U_CDECL_BEGIN
1698
1699 static UText * U_CALLCONV
1700 repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
1701 // First do a generic shallow clone. Does everything needed for the UText struct itself.
1702 dest = shallowTextClone(dest, src, status);
1703
1704 // For deep clones, make a copy of the Replaceable.
1705 // The copied Replaceable storage is owned by the newly created UText clone.
1706 // A non-NULL pointer in UText.p is the signal to the close() function to delete
1707 // it.
1708 //
1709 if (deep && U_SUCCESS(*status)) {
1710 const Replaceable *replSrc = (const Replaceable *)src->context;
1711 dest->context = replSrc->clone();
1712 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1713
1714 // with deep clone, the copy is writable, even when the source is not.
1715 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
1716 }
1717 return dest;
1718 }
1719
1720
1721 static void U_CALLCONV
1722 repTextClose(UText *ut) {
1723 // Most of the work of close is done by the generic UText framework close.
1724 // All that needs to be done here is delete the Replaceable if the UText
1725 // owns it. This occurs if the UText was created by cloning.
1726 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1727 Replaceable *rep = (Replaceable *)ut->context;
1728 delete rep;
1729 ut->context = NULL;
1730 }
1731 }
1732
1733
1734 static int64_t U_CALLCONV
1735 repTextLength(UText *ut) {
1736 const Replaceable *replSrc = (const Replaceable *)ut->context;
1737 int32_t len = replSrc->length();
1738 return len;
1739 }
1740
1741
1742 static UBool U_CALLCONV
1743 repTextAccess(UText *ut, int64_t index, UBool forward) {
1744 const Replaceable *rep=(const Replaceable *)ut->context;
1745 int32_t length=rep->length(); // Full length of the input text (bigger than a chunk)
1746
1747 // clip the requested index to the limits of the text.
1748 int32_t index32 = pinIndex(index, length);
1749 U_ASSERT(index<=INT32_MAX);
1750
1751
1752 /*
1753 * Compute start/limit boundaries around index, for a segment of text
1754 * to be extracted.
1755 * To allow for the possibility that our user gave an index to the trailing
1756 * half of a surrogate pair, we must request one extra preceding UChar when
1757 * going in the forward direction. This will ensure that the buffer has the
1758 * entire code point at the specified index.
1759 */
1760 if(forward) {
1761
1762 if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) {
1763 // Buffer already contains the requested position.
1764 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
1765 return TRUE;
1766 }
1767 if (index32>=length && ut->chunkNativeLimit==length) {
1768 // Request for end of string, and buffer already extends up to it.
1769 // Can't get the data, but don't change the buffer.
1770 ut->chunkOffset = length - (int32_t)ut->chunkNativeStart;
1771 return FALSE;
1772 }
1773
1774 ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1;
1775 // Going forward, so we want to have the buffer with stuff at and beyond
1776 // the requested index. The -1 gets us one code point before the
1777 // requested index also, to handle the case of the index being on
1778 // a trail surrogate of a surrogate pair.
1779 if(ut->chunkNativeLimit > length) {
1780 ut->chunkNativeLimit = length;
1781 }
1782 // unless buffer ran off end, start is index-1.
1783 ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE;
1784 if(ut->chunkNativeStart < 0) {
1785 ut->chunkNativeStart = 0;
1786 }
1787 } else {
1788 // Reverse iteration. Fill buffer with data preceding the requested index.
1789 if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) {
1790 // Requested position already in buffer.
1791 ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart;
1792 return TRUE;
1793 }
1794 if (index32==0 && ut->chunkNativeStart==0) {
1795 // Request for start, buffer already begins at start.
1796 // No data, but keep the buffer as is.
1797 ut->chunkOffset = 0;
1798 return FALSE;
1799 }
1800
1801 // Figure out the bounds of the chunk to extract for reverse iteration.
1802 // Need to worry about chunk not splitting surrogate pairs, and while still
1803 // containing the data we need.
1804 // Fix by requesting a chunk that includes an extra UChar at the end.
1805 // If this turns out to be a lead surrogate, we can lop it off and still have
1806 // the data we wanted.
1807 ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE;
1808 if (ut->chunkNativeStart < 0) {
1809 ut->chunkNativeStart = 0;
1810 }
1811
1812 ut->chunkNativeLimit = index32 + 1;
1813 if (ut->chunkNativeLimit > length) {
1814 ut->chunkNativeLimit = length;
1815 }
1816 }
1817
1818 // Extract the new chunk of text from the Replaceable source.
1819 ReplExtra *ex = (ReplExtra *)ut->pExtra;
1820 // UnicodeString with its buffer a writable alias to the chunk buffer
1821 UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/);
1822 rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer);
1823
1824 ut->chunkContents = ex->s;
1825 ut->chunkLength = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart);
1826 ut->chunkOffset = (int32_t)(index32 - ut->chunkNativeStart);
1827
1828 // Surrogate pairs from the input text must not span chunk boundaries.
1829 // If end of chunk could be the start of a surrogate, trim it off.
1830 if (ut->chunkNativeLimit < length &&
1831 U16_IS_LEAD(ex->s[ut->chunkLength-1])) {
1832 ut->chunkLength--;
1833 ut->chunkNativeLimit--;
1834 if (ut->chunkOffset > ut->chunkLength) {
1835 ut->chunkOffset = ut->chunkLength;
1836 }
1837 }
1838
1839 // if the first UChar in the chunk could be the trailing half of a surrogate pair,
1840 // trim it off.
1841 if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) {
1842 ++(ut->chunkContents);
1843 ++(ut->chunkNativeStart);
1844 --(ut->chunkLength);
1845 --(ut->chunkOffset);
1846 }
1847
1848 // adjust the index/chunkOffset to a code point boundary
1849 U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset);
1850
1851 // Use fast indexing for get/setNativeIndex()
1852 ut->nativeIndexingLimit = ut->chunkLength;
1853
1854 return TRUE;
1855 }
1856
1857
1858
1859 static int32_t U_CALLCONV
1860 repTextExtract(UText *ut,
1861 int64_t start, int64_t limit,
1862 UChar *dest, int32_t destCapacity,
1863 UErrorCode *status) {
1864 const Replaceable *rep=(const Replaceable *)ut->context;
1865 int32_t length=rep->length();
1866
1867 if(U_FAILURE(*status)) {
1868 return 0;
1869 }
1870 if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1871 *status=U_ILLEGAL_ARGUMENT_ERROR;
1872 }
1873 if(start>limit) {
1874 *status=U_INDEX_OUTOFBOUNDS_ERROR;
1875 return 0;
1876 }
1877
1878 int32_t start32 = pinIndex(start, length);
1879 int32_t limit32 = pinIndex(limit, length);
1880
1881 // adjust start, limit if they point to trail half of surrogates
1882 if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) &&
1883 U_IS_SUPPLEMENTARY(rep->char32At(start32))){
1884 start32--;
1885 }
1886 if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) &&
1887 U_IS_SUPPLEMENTARY(rep->char32At(limit32))){
1888 limit32--;
1889 }
1890
1891 length=limit32-start32;
1892 if(length>destCapacity) {
1893 limit32 = start32 + destCapacity;
1894 }
1895 UnicodeString buffer(dest, 0, destCapacity); // writable alias
1896 rep->extractBetween(start32, limit32, buffer);
1897 repTextAccess(ut, limit32, TRUE);
1898
1899 return u_terminateUChars(dest, destCapacity, length, status);
1900 }
1901
1902 static int32_t U_CALLCONV
1903 repTextReplace(UText *ut,
1904 int64_t start, int64_t limit,
1905 const UChar *src, int32_t length,
1906 UErrorCode *status) {
1907 Replaceable *rep=(Replaceable *)ut->context;
1908 int32_t oldLength;
1909
1910 if(U_FAILURE(*status)) {
1911 return 0;
1912 }
1913 if(src==NULL && length!=0) {
1914 *status=U_ILLEGAL_ARGUMENT_ERROR;
1915 return 0;
1916 }
1917 oldLength=rep->length(); // will subtract from new length
1918 if(start>limit ) {
1919 *status=U_INDEX_OUTOFBOUNDS_ERROR;
1920 return 0;
1921 }
1922
1923 int32_t start32 = pinIndex(start, oldLength);
1924 int32_t limit32 = pinIndex(limit, oldLength);
1925
1926 // Snap start & limit to code point boundaries.
1927 if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) &&
1928 start32>0 && U16_IS_LEAD(rep->charAt(start32-1)))
1929 {
1930 start32--;
1931 }
1932 if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) &&
1933 U16_IS_TRAIL(rep->charAt(limit32)))
1934 {
1935 limit32++;
1936 }
1937
1938 // Do the actual replace operation using methods of the Replaceable class
1939 UnicodeString replStr((UBool)(length<0), src, length); // read-only alias
1940 rep->handleReplaceBetween(start32, limit32, replStr);
1941 int32_t newLength = rep->length();
1942 int32_t lengthDelta = newLength - oldLength;
1943
1944 // Is the UText chunk buffer OK?
1945 if (ut->chunkNativeLimit > start32) {
1946 // this replace operation may have impacted the current chunk.
1947 // invalidate it, which will force a reload on the next access.
1948 invalidateChunk(ut);
1949 }
1950
1951 // set the iteration position to the end of the newly inserted replacement text.
1952 int32_t newIndexPos = limit32 + lengthDelta;
1953 repTextAccess(ut, newIndexPos, TRUE);
1954
1955 return lengthDelta;
1956 }
1957
1958
1959 static void U_CALLCONV
1960 repTextCopy(UText *ut,
1961 int64_t start, int64_t limit,
1962 int64_t destIndex,
1963 UBool move,
1964 UErrorCode *status)
1965 {
1966 Replaceable *rep=(Replaceable *)ut->context;
1967 int32_t length=rep->length();
1968
1969 if(U_FAILURE(*status)) {
1970 return;
1971 }
1972 if (start>limit || (start<destIndex && destIndex<limit))
1973 {
1974 *status=U_INDEX_OUTOFBOUNDS_ERROR;
1975 return;
1976 }
1977
1978 int32_t start32 = pinIndex(start, length);
1979 int32_t limit32 = pinIndex(limit, length);
1980 int32_t destIndex32 = pinIndex(destIndex, length);
1981
1982 // TODO: snap input parameters to code point boundaries.
1983
1984 if(move) {
1985 // move: copy to destIndex, then replace original with nothing
1986 int32_t segLength=limit32-start32;
1987 rep->copy(start32, limit32, destIndex32);
1988 if(destIndex32<start32) {
1989 start32+=segLength;
1990 limit32+=segLength;
1991 }
1992 rep->handleReplaceBetween(start32, limit32, UnicodeString());
1993 } else {
1994 // copy
1995 rep->copy(start32, limit32, destIndex32);
1996 }
1997
1998 // If the change to the text touched the region in the chunk buffer,
1999 // invalidate the buffer.
2000 int32_t firstAffectedIndex = destIndex32;
2001 if (move && start32<firstAffectedIndex) {
2002 firstAffectedIndex = start32;
2003 }
2004 if (firstAffectedIndex < ut->chunkNativeLimit) {
2005 // changes may have affected range covered by the chunk
2006 invalidateChunk(ut);
2007 }
2008
2009 // Put iteration position at the newly inserted (moved) block,
2010 int32_t nativeIterIndex = destIndex32 + limit32 - start32;
2011 if (move && destIndex32>start32) {
2012 // moved a block of text towards the end of the string.
2013 nativeIterIndex = destIndex32;
2014 }
2015
2016 // Set position, reload chunk if needed.
2017 repTextAccess(ut, nativeIterIndex, TRUE);
2018 }
2019
2020 static const struct UTextFuncs repFuncs =
2021 {
2022 sizeof(UTextFuncs),
2023 0, 0, 0, // Reserved alignment padding
2024 repTextClone,
2025 repTextLength,
2026 repTextAccess,
2027 repTextExtract,
2028 repTextReplace,
2029 repTextCopy,
2030 NULL, // MapOffsetToNative,
2031 NULL, // MapIndexToUTF16,
2032 repTextClose,
2033 NULL, // spare 1
2034 NULL, // spare 2
2035 NULL // spare 3
2036 };
2037
2038
2039 U_CAPI UText * U_EXPORT2
2040 utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status)
2041 {
2042 if(U_FAILURE(*status)) {
2043 return NULL;
2044 }
2045 if(rep==NULL) {
2046 *status=U_ILLEGAL_ARGUMENT_ERROR;
2047 return NULL;
2048 }
2049 ut = utext_setup(ut, sizeof(ReplExtra), status);
2050 if(U_FAILURE(*status)) {
2051 return ut;
2052 }
2053
2054 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2055 if(rep->hasMetaData()) {
2056 ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA);
2057 }
2058
2059 ut->pFuncs = &repFuncs;
2060 ut->context = rep;
2061 return ut;
2062 }
2063
2064 U_CDECL_END
2065
2066
2067
2068
2069
2070
2071
2072
2073 //------------------------------------------------------------------------------
2074 //
2075 // UText implementation for UnicodeString (read/write) and
2076 // for const UnicodeString (read only)
2077 // (same implementation, only the flags are different)
2078 //
2079 // Use of UText data members:
2080 // context pointer to UnicodeString
2081 // p pointer to UnicodeString IF this UText owns the string
2082 // and it must be deleted on close(). NULL otherwise.
2083 //
2084 //------------------------------------------------------------------------------
2085
2086 U_CDECL_BEGIN
2087
2088
2089 static UText * U_CALLCONV
2090 unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
2091 // First do a generic shallow clone. Does everything needed for the UText struct itself.
2092 dest = shallowTextClone(dest, src, status);
2093
2094 // For deep clones, make a copy of the UnicodeSring.
2095 // The copied UnicodeString storage is owned by the newly created UText clone.
2096 // A non-NULL pointer in UText.p is the signal to the close() function to delete
2097 // the UText.
2098 //
2099 if (deep && U_SUCCESS(*status)) {
2100 const UnicodeString *srcString = (const UnicodeString *)src->context;
2101 dest->context = new UnicodeString(*srcString);
2102 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2103
2104 // with deep clone, the copy is writable, even when the source is not.
2105 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2106 }
2107 return dest;
2108 }
2109
2110 static void U_CALLCONV
2111 unistrTextClose(UText *ut) {
2112 // Most of the work of close is done by the generic UText framework close.
2113 // All that needs to be done here is delete the UnicodeString if the UText
2114 // owns it. This occurs if the UText was created by cloning.
2115 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2116 UnicodeString *str = (UnicodeString *)ut->context;
2117 delete str;
2118 ut->context = NULL;
2119 }
2120 }
2121
2122
2123 static int64_t U_CALLCONV
2124 unistrTextLength(UText *t) {
2125 return ((const UnicodeString *)t->context)->length();
2126 }
2127
2128
2129 static UBool U_CALLCONV
2130 unistrTextAccess(UText *ut, int64_t index, UBool forward) {
2131 int32_t length = ut->chunkLength;
2132 ut->chunkOffset = pinIndex(index, length);
2133
2134 // Check whether request is at the start or end
2135 UBool retVal = (forward && index<length) || (!forward && index>0);
2136 return retVal;
2137 }
2138
2139
2140
2141 static int32_t U_CALLCONV
2142 unistrTextExtract(UText *t,
2143 int64_t start, int64_t limit,
2144 UChar *dest, int32_t destCapacity,
2145 UErrorCode *pErrorCode) {
2146 const UnicodeString *us=(const UnicodeString *)t->context;
2147 int32_t length=us->length();
2148
2149 if(U_FAILURE(*pErrorCode)) {
2150 return 0;
2151 }
2152 if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
2153 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2154 }
2155 if(start<0 || start>limit) {
2156 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2157 return 0;
2158 }
2159
2160 int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length;
2161 int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length;
2162
2163 length=limit32-start32;
2164 if (destCapacity>0 && dest!=NULL) {
2165 int32_t trimmedLength = length;
2166 if(trimmedLength>destCapacity) {
2167 trimmedLength=destCapacity;
2168 }
2169 us->extract(start32, trimmedLength, dest);
2170 t->chunkOffset = start32+trimmedLength;
2171 } else {
2172 t->chunkOffset = start32;
2173 }
2174 u_terminateUChars(dest, destCapacity, length, pErrorCode);
2175 return length;
2176 }
2177
2178 static int32_t U_CALLCONV
2179 unistrTextReplace(UText *ut,
2180 int64_t start, int64_t limit,
2181 const UChar *src, int32_t length,
2182 UErrorCode *pErrorCode) {
2183 UnicodeString *us=(UnicodeString *)ut->context;
2184 int32_t oldLength;
2185
2186 if(U_FAILURE(*pErrorCode)) {
2187 return 0;
2188 }
2189 if(src==NULL && length!=0) {
2190 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2191 }
2192 if(start>limit) {
2193 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2194 return 0;
2195 }
2196 oldLength=us->length();
2197 int32_t start32 = pinIndex(start, oldLength);
2198 int32_t limit32 = pinIndex(limit, oldLength);
2199 if (start32 < oldLength) {
2200 start32 = us->getChar32Start(start32);
2201 }
2202 if (limit32 < oldLength) {
2203 limit32 = us->getChar32Start(limit32);
2204 }
2205
2206 // replace
2207 us->replace(start32, limit32-start32, src, length);
2208 int32_t newLength = us->length();
2209
2210 // Update the chunk description.
2211 ut->chunkContents = us->getBuffer();
2212 ut->chunkLength = newLength;
2213 ut->chunkNativeLimit = newLength;
2214 ut->nativeIndexingLimit = newLength;
2215
2216 // Set iteration position to the point just following the newly inserted text.
2217 int32_t lengthDelta = newLength - oldLength;
2218 ut->chunkOffset = limit32 + lengthDelta;
2219
2220 return lengthDelta;
2221 }
2222
2223 static void U_CALLCONV
2224 unistrTextCopy(UText *ut,
2225 int64_t start, int64_t limit,
2226 int64_t destIndex,
2227 UBool move,
2228 UErrorCode *pErrorCode) {
2229 UnicodeString *us=(UnicodeString *)ut->context;
2230 int32_t length=us->length();
2231
2232 if(U_FAILURE(*pErrorCode)) {
2233 return;
2234 }
2235 int32_t start32 = pinIndex(start, length);
2236 int32_t limit32 = pinIndex(limit, length);
2237 int32_t destIndex32 = pinIndex(destIndex, length);
2238
2239 if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) {
2240 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2241 return;
2242 }
2243
2244 if(move) {
2245 // move: copy to destIndex, then remove original
2246 int32_t segLength=limit32-start32;
2247 us->copy(start32, limit32, destIndex32);
2248 if(destIndex32<start32) {
2249 start32+=segLength;
2250 }
2251 us->remove(start32, segLength);
2252 } else {
2253 // copy
2254 us->copy(start32, limit32, destIndex32);
2255 }
2256
2257 // update chunk description, set iteration position.
2258 ut->chunkContents = us->getBuffer();
2259 if (move==FALSE) {
2260 // copy operation, string length grows
2261 ut->chunkLength += limit32-start32;
2262 ut->chunkNativeLimit = ut->chunkLength;
2263 ut->nativeIndexingLimit = ut->chunkLength;
2264 }
2265
2266 // Iteration position to end of the newly inserted text.
2267 ut->chunkOffset = destIndex32+limit32-start32;
2268 if (move && destIndex32>start32) {
2269 ut->chunkOffset = destIndex32;
2270 }
2271
2272 }
2273
2274 static const struct UTextFuncs unistrFuncs =
2275 {
2276 sizeof(UTextFuncs),
2277 0, 0, 0, // Reserved alignment padding
2278 unistrTextClone,
2279 unistrTextLength,
2280 unistrTextAccess,
2281 unistrTextExtract,
2282 unistrTextReplace,
2283 unistrTextCopy,
2284 NULL, // MapOffsetToNative,
2285 NULL, // MapIndexToUTF16,
2286 unistrTextClose,
2287 NULL, // spare 1
2288 NULL, // spare 2
2289 NULL // spare 3
2290 };
2291
2292
2293
2294 U_CDECL_END
2295
2296
2297 U_CAPI UText * U_EXPORT2
2298 utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
2299 ut = utext_openConstUnicodeString(ut, s, status);
2300 if (U_SUCCESS(*status)) {
2301 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2302 }
2303 return ut;
2304 }
2305
2306
2307
2308 U_CAPI UText * U_EXPORT2
2309 utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) {
2310 if (U_SUCCESS(*status) && s->isBogus()) {
2311 // The UnicodeString is bogus, but we still need to detach the UText
2312 // from whatever it was hooked to before, if anything.
2313 utext_openUChars(ut, NULL, 0, status);
2314 *status = U_ILLEGAL_ARGUMENT_ERROR;
2315 return ut;
2316 }
2317 ut = utext_setup(ut, 0, status);
2318 // note: use the standard (writable) function table for UnicodeString.
2319 // The flag settings disable writing, so having the functions in
2320 // the table is harmless.
2321 if (U_SUCCESS(*status)) {
2322 ut->pFuncs = &unistrFuncs;
2323 ut->context = s;
2324 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2325 ut->chunkContents = s->getBuffer();
2326 ut->chunkLength = s->length();
2327 ut->chunkNativeStart = 0;
2328 ut->chunkNativeLimit = ut->chunkLength;
2329 ut->nativeIndexingLimit = ut->chunkLength;
2330 }
2331 return ut;
2332 }
2333
2334 //------------------------------------------------------------------------------
2335 //
2336 // UText implementation for const UChar * strings
2337 //
2338 // Use of UText data members:
2339 // context pointer to UnicodeString
2340 // a length. -1 if not yet known.
2341 //
2342 // TODO: support 64 bit lengths.
2343 //
2344 //------------------------------------------------------------------------------
2345
2346 U_CDECL_BEGIN
2347
2348
2349 static UText * U_CALLCONV
2350 ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) {
2351 // First do a generic shallow clone.
2352 dest = shallowTextClone(dest, src, status);
2353
2354 // For deep clones, make a copy of the string.
2355 // The copied storage is owned by the newly created clone.
2356 // A non-NULL pointer in UText.p is the signal to the close() function to delete
2357 // it.
2358 //
2359 if (deep && U_SUCCESS(*status)) {
2360 U_ASSERT(utext_nativeLength(dest) < INT32_MAX);
2361 int32_t len = (int32_t)utext_nativeLength(dest);
2362
2363 // The cloned string IS going to be NUL terminated, whether or not the original was.
2364 const UChar *srcStr = (const UChar *)src->context;
2365 UChar *copyStr = (UChar *)uprv_malloc((len+1) * sizeof(UChar));
2366 if (copyStr == NULL) {
2367 *status = U_MEMORY_ALLOCATION_ERROR;
2368 } else {
2369 int64_t i;
2370 for (i=0; i<len; i++) {
2371 copyStr[i] = srcStr[i];
2372 }
2373 copyStr[len] = 0;
2374 dest->context = copyStr;
2375 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2376 }
2377 }
2378 return dest;
2379 }
2380
2381
2382 static void U_CALLCONV
2383 ucstrTextClose(UText *ut) {
2384 // Most of the work of close is done by the generic UText framework close.
2385 // All that needs to be done here is delete the string if the UText
2386 // owns it. This occurs if the UText was created by cloning.
2387 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2388 UChar *s = (UChar *)ut->context;
2389 uprv_free(s);
2390 ut->context = NULL;
2391 }
2392 }
2393
2394
2395
2396 static int64_t U_CALLCONV
2397 ucstrTextLength(UText *ut) {
2398 if (ut->a < 0) {
2399 // null terminated, we don't yet know the length. Scan for it.
2400 // Access is not convenient for doing this
2401 // because the current interation postion can't be changed.
2402 const UChar *str = (const UChar *)ut->context;
2403 for (;;) {
2404 if (str[ut->chunkNativeLimit] == 0) {
2405 break;
2406 }
2407 ut->chunkNativeLimit++;
2408 }
2409 ut->a = ut->chunkNativeLimit;
2410 ut->chunkLength = (int32_t)ut->chunkNativeLimit;
2411 ut->nativeIndexingLimit = ut->chunkLength;
2412 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2413 }
2414 return ut->a;
2415 }
2416
2417
2418 static UBool U_CALLCONV
2419 ucstrTextAccess(UText *ut, int64_t index, UBool forward) {
2420 const UChar *str = (const UChar *)ut->context;
2421
2422 // pin the requested index to the bounds of the string,
2423 // and set current iteration position.
2424 if (index<0) {
2425 index = 0;
2426 } else if (index < ut->chunkNativeLimit) {
2427 // The request data is within the chunk as it is known so far.
2428 // Put index on a code point boundary.
2429 U16_SET_CP_START(str, 0, index);
2430 } else if (ut->a >= 0) {
2431 // We know the length of this string, and the user is requesting something
2432 // at or beyond the length. Pin the requested index to the length.
2433 index = ut->a;
2434 } else {
2435 // Null terminated string, length not yet known, and the requested index
2436 // is beyond where we have scanned so far.
2437 // Scan to 32 UChars beyond the requested index. The strategy here is
2438 // to avoid fully scanning a long string when the caller only wants to
2439 // see a few characters at its beginning.
2440 int32_t scanLimit = (int32_t)index + 32;
2441 if ((index + 32)>INT32_MAX || (index + 32)<0 ) { // note: int64 expression
2442 scanLimit = INT32_MAX;
2443 }
2444
2445 int32_t chunkLimit = (int32_t)ut->chunkNativeLimit;
2446 for (; chunkLimit<scanLimit; chunkLimit++) {
2447 if (str[chunkLimit] == 0) {
2448 // We found the end of the string. Remember it, pin the requested index to it,
2449 // and bail out of here.
2450 ut->a = chunkLimit;
2451 ut->chunkLength = chunkLimit;
2452 ut->nativeIndexingLimit = chunkLimit;
2453 if (index >= chunkLimit) {
2454 index = chunkLimit;
2455 } else {
2456 U16_SET_CP_START(str, 0, index);
2457 }
2458
2459 ut->chunkNativeLimit = chunkLimit;
2460 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2461 goto breakout;
2462 }
2463 }
2464 // We scanned through the next batch of UChars without finding the end.
2465 U16_SET_CP_START(str, 0, index);
2466 if (chunkLimit == INT32_MAX) {
2467 // Scanned to the limit of a 32 bit length.
2468 // Forceably trim the overlength string back so length fits in int32
2469 // TODO: add support for 64 bit strings.
2470 ut->a = chunkLimit;
2471 ut->chunkLength = chunkLimit;
2472 ut->nativeIndexingLimit = chunkLimit;
2473 if (index > chunkLimit) {
2474 index = chunkLimit;
2475 }
2476 ut->chunkNativeLimit = chunkLimit;
2477 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2478 } else {
2479 // The endpoint of a chunk must not be left in the middle of a surrogate pair.
2480 // If the current end is on a lead surrogate, back the end up by one.
2481 // It doesn't matter if the end char happens to be an unpaired surrogate,
2482 // and it's simpler not to worry about it.
2483 if (U16_IS_LEAD(str[chunkLimit-1])) {
2484 --chunkLimit;
2485 }
2486 // Null-terminated chunk with end still unknown.
2487 // Update the chunk length to reflect what has been scanned thus far.
2488 // That the full length is still unknown is (still) flagged by
2489 // ut->a being < 0.
2490 ut->chunkNativeLimit = chunkLimit;
2491 ut->nativeIndexingLimit = chunkLimit;
2492 ut->chunkLength = chunkLimit;
2493 }
2494
2495 }
2496 breakout:
2497 U_ASSERT(index<=INT32_MAX);
2498 ut->chunkOffset = (int32_t)index;
2499
2500 // Check whether request is at the start or end
2501 UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0);
2502 return retVal;
2503 }
2504
2505
2506
2507 static int32_t U_CALLCONV
2508 ucstrTextExtract(UText *ut,
2509 int64_t start, int64_t limit,
2510 UChar *dest, int32_t destCapacity,
2511 UErrorCode *pErrorCode)
2512 {
2513 if(U_FAILURE(*pErrorCode)) {
2514 return 0;
2515 }
2516 if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2517 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2518 return 0;
2519 }
2520
2521 //const UChar *s=(const UChar *)ut->context;
2522 int32_t si, di;
2523
2524 int32_t start32;
2525 int32_t limit32;
2526
2527 // Access the start. Does two things we need:
2528 // Pins 'start' to the length of the string, if it came in out-of-bounds.
2529 // Snaps 'start' to the beginning of a code point.
2530 ucstrTextAccess(ut, start, TRUE);
2531 const UChar *s=ut->chunkContents;
2532 start32 = ut->chunkOffset;
2533
2534 int32_t strLength=(int32_t)ut->a;
2535 if (strLength >= 0) {
2536 limit32 = pinIndex(limit, strLength);
2537 } else {
2538 limit32 = pinIndex(limit, INT32_MAX);
2539 }
2540 di = 0;
2541 for (si=start32; si<limit32; si++) {
2542 if (strLength<0 && s[si]==0) {
2543 // Just hit the end of a null-terminated string.
2544 ut->a = si; // set string length for this UText
2545 ut->chunkNativeLimit = si;
2546 ut->chunkLength = si;
2547 ut->nativeIndexingLimit = si;
2548 strLength = si;
2549 limit32 = si;
2550 break;
2551 }
2552 U_ASSERT(di>=0); /* to ensure di never exceeds INT32_MAX, which must not happen logically */
2553 if (di<destCapacity) {
2554 // only store if there is space.
2555 dest[di] = s[si];
2556 } else {
2557 if (strLength>=0) {
2558 // We have filled the destination buffer, and the string length is known.
2559 // Cut the loop short. There is no need to scan string termination.
2560 di = limit32 - start32;
2561 si = limit32;
2562 break;
2563 }
2564 }
2565 di++;
2566 }
2567
2568 // If the limit index points to a lead surrogate of a pair,
2569 // add the corresponding trail surrogate to the destination.
2570 if (si>0 && U16_IS_LEAD(s[si-1]) &&
2571 ((si<strLength || strLength<0) && U16_IS_TRAIL(s[si])))
2572 {
2573 if (di<destCapacity) {
2574 // store only if there is space in the output buffer.
2575 dest[di++] = s[si];
2576 }
2577 si++;
2578 }
2579
2580 // Put iteration position at the point just following the extracted text
2581 if (si <= ut->chunkNativeLimit) {
2582 ut->chunkOffset = si;
2583 } else {
2584 ucstrTextAccess(ut, si, TRUE);
2585 }
2586
2587 // Add a terminating NUL if space in the buffer permits,
2588 // and set the error status as required.
2589 u_terminateUChars(dest, destCapacity, di, pErrorCode);
2590 return di;
2591 }
2592
2593 static const struct UTextFuncs ucstrFuncs =
2594 {
2595 sizeof(UTextFuncs),
2596 0, 0, 0, // Reserved alignment padding
2597 ucstrTextClone,
2598 ucstrTextLength,
2599 ucstrTextAccess,
2600 ucstrTextExtract,
2601 NULL, // Replace
2602 NULL, // Copy
2603 NULL, // MapOffsetToNative,
2604 NULL, // MapIndexToUTF16,
2605 ucstrTextClose,
2606 NULL, // spare 1
2607 NULL, // spare 2
2608 NULL, // spare 3
2609 };
2610
2611 U_CDECL_END
2612
2613 static const UChar gEmptyUString[] = {0};
2614
2615 U_CAPI UText * U_EXPORT2
2616 utext_openUChars(UText *ut, const UChar *s, int64_t length, UErrorCode *status) {
2617 if (U_FAILURE(*status)) {
2618 return NULL;
2619 }
2620 if(s==NULL && length==0) {
2621 s = gEmptyUString;
2622 }
2623 if (s==NULL || length < -1 || length>INT32_MAX) {
2624 *status = U_ILLEGAL_ARGUMENT_ERROR;
2625 return NULL;
2626 }
2627 ut = utext_setup(ut, 0, status);
2628 if (U_SUCCESS(*status)) {
2629 ut->pFuncs = &ucstrFuncs;
2630 ut->context = s;
2631 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2632 if (length==-1) {
2633 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2634 }
2635 ut->a = length;
2636 ut->chunkContents = s;
2637 ut->chunkNativeStart = 0;
2638 ut->chunkNativeLimit = length>=0? length : 0;
2639 ut->chunkLength = (int32_t)ut->chunkNativeLimit;
2640 ut->chunkOffset = 0;
2641 ut->nativeIndexingLimit = ut->chunkLength;
2642 }
2643 return ut;
2644 }
2645
2646
2647 //------------------------------------------------------------------------------
2648 //
2649 // UText implementation for text from ICU CharacterIterators
2650 //
2651 // Use of UText data members:
2652 // context pointer to the CharacterIterator
2653 // a length of the full text.
2654 // p pointer to buffer 1
2655 // b start index of local buffer 1 contents
2656 // q pointer to buffer 2
2657 // c start index of local buffer 2 contents
2658 // r pointer to the character iterator if the UText owns it.
2659 // Null otherwise.
2660 //
2661 //------------------------------------------------------------------------------
2662 #define CIBufSize 16
2663
2664 U_CDECL_BEGIN
2665 static void U_CALLCONV
2666 charIterTextClose(UText *ut) {
2667 // Most of the work of close is done by the generic UText framework close.
2668 // All that needs to be done here is delete the CharacterIterator if the UText
2669 // owns it. This occurs if the UText was created by cloning.
2670 CharacterIterator *ci = (CharacterIterator *)ut->r;
2671 delete ci;
2672 ut->r = NULL;
2673 }
2674
2675 static int64_t U_CALLCONV
2676 charIterTextLength(UText *ut) {
2677 return (int32_t)ut->a;
2678 }
2679
2680 static UBool U_CALLCONV
2681 charIterTextAccess(UText *ut, int64_t index, UBool forward) {
2682 CharacterIterator *ci = (CharacterIterator *)ut->context;
2683
2684 int32_t clippedIndex = (int32_t)index;
2685 if (clippedIndex<0) {
2686 clippedIndex=0;
2687 } else if (clippedIndex>=ut->a) {
2688 clippedIndex=(int32_t)ut->a;
2689 }
2690 int32_t neededIndex = clippedIndex;
2691 if (!forward && neededIndex>0) {
2692 // reverse iteration, want the position just before what was asked for.
2693 neededIndex--;
2694 } else if (forward && neededIndex==ut->a && neededIndex>0) {
2695 // Forward iteration, don't ask for something past the end of the text.
2696 neededIndex--;
2697 }
2698
2699 // Find the native index of the start of the buffer containing what we want.
2700 neededIndex -= neededIndex % CIBufSize;
2701
2702 UChar *buf = NULL;
2703 UBool needChunkSetup = TRUE;
2704 int i;
2705 if (ut->chunkNativeStart == neededIndex) {
2706 // The buffer we want is already the current chunk.
2707 needChunkSetup = FALSE;
2708 } else if (ut->b == neededIndex) {
2709 // The first buffer (buffer p) has what we need.
2710 buf = (UChar *)ut->p;
2711 } else if (ut->c == neededIndex) {
2712 // The second buffer (buffer q) has what we need.
2713 buf = (UChar *)ut->q;
2714 } else {
2715 // Neither buffer already has what we need.
2716 // Load new data from the character iterator.
2717 // Use the buf that is not the current buffer.
2718 buf = (UChar *)ut->p;
2719 if (ut->p == ut->chunkContents) {
2720 buf = (UChar *)ut->q;
2721 }
2722 ci->setIndex(neededIndex);
2723 for (i=0; i<CIBufSize; i++) {
2724 buf[i] = ci->nextPostInc();
2725 if (i+neededIndex > ut->a) {
2726 break;
2727 }
2728 }
2729 }
2730
2731 // We have a buffer with the data we need.
2732 // Set it up as the current chunk, if it wasn't already.
2733 if (needChunkSetup) {
2734 ut->chunkContents = buf;
2735 ut->chunkLength = CIBufSize;
2736 ut->chunkNativeStart = neededIndex;
2737 ut->chunkNativeLimit = neededIndex + CIBufSize;
2738 if (ut->chunkNativeLimit > ut->a) {
2739 ut->chunkNativeLimit = ut->a;
2740 ut->chunkLength = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart);
2741 }
2742 ut->nativeIndexingLimit = ut->chunkLength;
2743 U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize);
2744 }
2745 ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart;
2746 UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>0);
2747 return success;
2748 }
2749
2750 static UText * U_CALLCONV
2751 charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) {
2752 if (U_FAILURE(*status)) {
2753 return NULL;
2754 }
2755
2756 if (deep) {
2757 // There is no CharacterIterator API for cloning the underlying text storage.
2758 *status = U_UNSUPPORTED_ERROR;
2759 return NULL;
2760 } else {
2761 CharacterIterator *srcCI =(CharacterIterator *)src->context;
2762 srcCI = srcCI->clone();
2763 dest = utext_openCharacterIterator(dest, srcCI, status);
2764 if (U_FAILURE(*status)) {
2765 return dest;
2766 }
2767 // cast off const on getNativeIndex.
2768 // For CharacterIterator based UTexts, this is safe, the operation is const.
2769 int64_t ix = utext_getNativeIndex((UText *)src);
2770 utext_setNativeIndex(dest, ix);
2771 dest->r = srcCI; // flags that this UText owns the CharacterIterator
2772 }
2773 return dest;
2774 }
2775
2776 static int32_t U_CALLCONV
2777 charIterTextExtract(UText *ut,
2778 int64_t start, int64_t limit,
2779 UChar *dest, int32_t destCapacity,
2780 UErrorCode *status)
2781 {
2782 if(U_FAILURE(*status)) {
2783 return 0;
2784 }
2785 if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2786 *status=U_ILLEGAL_ARGUMENT_ERROR;
2787 return 0;
2788 }
2789 int32_t length = (int32_t)ut->a;
2790 int32_t start32 = pinIndex(start, length);
2791 int32_t limit32 = pinIndex(limit, length);
2792 int32_t desti = 0;
2793 int32_t srci;
2794 int32_t copyLimit;
2795
2796 CharacterIterator *ci = (CharacterIterator *)ut->context;
2797 ci->setIndex32(start32); // Moves ix to lead of surrogate pair, if needed.
2798 srci = ci->getIndex();
2799 copyLimit = srci;
2800 while (srci<limit32) {
2801 UChar32 c = ci->next32PostInc();
2802 int32_t len = U16_LENGTH(c);
2803 U_ASSERT(desti+len>0); /* to ensure desti+len never exceeds MAX_INT32, which must not happen logically */
2804 if (desti+len <= destCapacity) {
2805 U16_APPEND_UNSAFE(dest, desti, c);
2806 copyLimit = srci+len;
2807 } else {
2808 desti += len;
2809 *status = U_BUFFER_OVERFLOW_ERROR;
2810 }
2811 srci += len;
2812 }
2813
2814 charIterTextAccess(ut, copyLimit, TRUE);
2815
2816 u_terminateUChars(dest, destCapacity, desti, status);
2817 return desti;
2818 }
2819
2820 static const struct UTextFuncs charIterFuncs =
2821 {
2822 sizeof(UTextFuncs),
2823 0, 0, 0, // Reserved alignment padding
2824 charIterTextClone,
2825 charIterTextLength,
2826 charIterTextAccess,
2827 charIterTextExtract,
2828 NULL, // Replace
2829 NULL, // Copy
2830 NULL, // MapOffsetToNative,
2831 NULL, // MapIndexToUTF16,
2832 charIterTextClose,
2833 NULL, // spare 1
2834 NULL, // spare 2
2835 NULL // spare 3
2836 };
2837 U_CDECL_END
2838
2839
2840 U_CAPI UText * U_EXPORT2
2841 utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) {
2842 if (U_FAILURE(*status)) {
2843 return NULL;
2844 }
2845
2846 if (ci->startIndex() > 0) {
2847 // No support for CharacterIterators that do not start indexing from zero.
2848 *status = U_UNSUPPORTED_ERROR;
2849 return NULL;
2850 }
2851
2852 // Extra space in UText for 2 buffers of CIBufSize UChars each.
2853 int32_t extraSpace = 2 * CIBufSize * sizeof(UChar);
2854 ut = utext_setup(ut, extraSpace, status);
2855 if (U_SUCCESS(*status)) {
2856 ut->pFuncs = &charIterFuncs;
2857 ut->context = ci;
2858 ut->providerProperties = 0;
2859 ut->a = ci->endIndex(); // Length of text
2860 ut->p = ut->pExtra; // First buffer
2861 ut->b = -1; // Native index of first buffer contents
2862 ut->q = (UChar*)ut->pExtra+CIBufSize; // Second buffer
2863 ut->c = -1; // Native index of second buffer contents
2864
2865 // Initialize current chunk contents to be empty.
2866 // First access will fault something in.
2867 // Note: The initial nativeStart and chunkOffset must sum to zero
2868 // so that getNativeIndex() will correctly compute to zero
2869 // if no call to Access() has ever been made. They can't be both
2870 // zero without Access() thinking that the chunk is valid.
2871 ut->chunkContents = (UChar *)ut->p;
2872 ut->chunkNativeStart = -1;
2873 ut->chunkOffset = 1;
2874 ut->chunkNativeLimit = 0;
2875 ut->chunkLength = 0;
2876 ut->nativeIndexingLimit = ut->chunkOffset; // enables native indexing
2877 }
2878 return ut;
2879 }