]> git.saurik.com Git - apple/icu.git/blob - icuSources/common/rbbitblb.cpp
ICU-59173.0.1.tar.gz
[apple/icu.git] / icuSources / common / rbbitblb.cpp
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 **********************************************************************
5 * Copyright (c) 2002-2016, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 **********************************************************************
8 */
9 //
10 // rbbitblb.cpp
11 //
12
13
14 #include "unicode/utypes.h"
15
16 #if !UCONFIG_NO_BREAK_ITERATION
17
18 #include "unicode/unistr.h"
19 #include "rbbitblb.h"
20 #include "rbbirb.h"
21 #include "rbbisetb.h"
22 #include "rbbidata.h"
23 #include "cstring.h"
24 #include "uassert.h"
25 #include "cmemory.h"
26
27 U_NAMESPACE_BEGIN
28
29 RBBITableBuilder::RBBITableBuilder(RBBIRuleBuilder *rb, RBBINode **rootNode) :
30 fTree(*rootNode) {
31 fRB = rb;
32 fStatus = fRB->fStatus;
33 UErrorCode status = U_ZERO_ERROR;
34 fDStates = new UVector(status);
35 if (U_FAILURE(*fStatus)) {
36 return;
37 }
38 if (U_FAILURE(status)) {
39 *fStatus = status;
40 return;
41 }
42 if (fDStates == NULL) {
43 *fStatus = U_MEMORY_ALLOCATION_ERROR;;
44 }
45 }
46
47
48
49 RBBITableBuilder::~RBBITableBuilder() {
50 int i;
51 for (i=0; i<fDStates->size(); i++) {
52 delete (RBBIStateDescriptor *)fDStates->elementAt(i);
53 }
54 delete fDStates;
55 }
56
57
58 //-----------------------------------------------------------------------------
59 //
60 // RBBITableBuilder::build - This is the main function for building the DFA state transtion
61 // table from the RBBI rules parse tree.
62 //
63 //-----------------------------------------------------------------------------
64 void RBBITableBuilder::build() {
65
66 if (U_FAILURE(*fStatus)) {
67 return;
68 }
69
70 // If there were no rules, just return. This situation can easily arise
71 // for the reverse rules.
72 if (fTree==NULL) {
73 return;
74 }
75
76 //
77 // Walk through the tree, replacing any references to $variables with a copy of the
78 // parse tree for the substition expression.
79 //
80 fTree = fTree->flattenVariables();
81 #ifdef RBBI_DEBUG
82 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ftree")) {
83 RBBIDebugPuts("\nParse tree after flattening variable references.");
84 RBBINode::printTree(fTree, TRUE);
85 }
86 #endif
87
88 //
89 // If the rules contained any references to {bof}
90 // add a {bof} <cat> <former root of tree> to the
91 // tree. Means that all matches must start out with the
92 // {bof} fake character.
93 //
94 if (fRB->fSetBuilder->sawBOF()) {
95 RBBINode *bofTop = new RBBINode(RBBINode::opCat);
96 RBBINode *bofLeaf = new RBBINode(RBBINode::leafChar);
97 // Delete and exit if memory allocation failed.
98 if (bofTop == NULL || bofLeaf == NULL) {
99 *fStatus = U_MEMORY_ALLOCATION_ERROR;
100 delete bofTop;
101 delete bofLeaf;
102 return;
103 }
104 bofTop->fLeftChild = bofLeaf;
105 bofTop->fRightChild = fTree;
106 bofLeaf->fParent = bofTop;
107 bofLeaf->fVal = 2; // Reserved value for {bof}.
108 fTree = bofTop;
109 }
110
111 //
112 // Add a unique right-end marker to the expression.
113 // Appears as a cat-node, left child being the original tree,
114 // right child being the end marker.
115 //
116 RBBINode *cn = new RBBINode(RBBINode::opCat);
117 // Exit if memory allocation failed.
118 if (cn == NULL) {
119 *fStatus = U_MEMORY_ALLOCATION_ERROR;
120 return;
121 }
122 cn->fLeftChild = fTree;
123 fTree->fParent = cn;
124 cn->fRightChild = new RBBINode(RBBINode::endMark);
125 // Delete and exit if memory allocation failed.
126 if (cn->fRightChild == NULL) {
127 *fStatus = U_MEMORY_ALLOCATION_ERROR;
128 delete cn;
129 return;
130 }
131 cn->fRightChild->fParent = cn;
132 fTree = cn;
133
134 //
135 // Replace all references to UnicodeSets with the tree for the equivalent
136 // expression.
137 //
138 fTree->flattenSets();
139 #ifdef RBBI_DEBUG
140 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "stree")) {
141 RBBIDebugPuts("\nParse tree after flattening Unicode Set references.");
142 RBBINode::printTree(fTree, TRUE);
143 }
144 #endif
145
146
147 //
148 // calculate the functions nullable, firstpos, lastpos and followpos on
149 // nodes in the parse tree.
150 // See the alogrithm description in Aho.
151 // Understanding how this works by looking at the code alone will be
152 // nearly impossible.
153 //
154 calcNullable(fTree);
155 calcFirstPos(fTree);
156 calcLastPos(fTree);
157 calcFollowPos(fTree);
158 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "pos")) {
159 RBBIDebugPuts("\n");
160 printPosSets(fTree);
161 }
162
163 //
164 // For "chained" rules, modify the followPos sets
165 //
166 if (fRB->fChainRules) {
167 calcChainedFollowPos(fTree);
168 }
169
170 //
171 // BOF (start of input) test fixup.
172 //
173 if (fRB->fSetBuilder->sawBOF()) {
174 bofFixup();
175 }
176
177 //
178 // Build the DFA state transition tables.
179 //
180 buildStateTable();
181 flagAcceptingStates();
182 flagLookAheadStates();
183 flagTaggedStates();
184
185 //
186 // Update the global table of rule status {tag} values
187 // The rule builder has a global vector of status values that are common
188 // for all tables. Merge the ones from this table into the global set.
189 //
190 mergeRuleStatusVals();
191
192 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "states")) {printStates();};
193 }
194
195
196
197 //-----------------------------------------------------------------------------
198 //
199 // calcNullable. Impossible to explain succinctly. See Aho, section 3.9
200 //
201 //-----------------------------------------------------------------------------
202 void RBBITableBuilder::calcNullable(RBBINode *n) {
203 if (n == NULL) {
204 return;
205 }
206 if (n->fType == RBBINode::setRef ||
207 n->fType == RBBINode::endMark ) {
208 // These are non-empty leaf node types.
209 n->fNullable = FALSE;
210 return;
211 }
212
213 if (n->fType == RBBINode::lookAhead || n->fType == RBBINode::tag) {
214 // Lookahead marker node. It's a leaf, so no recursion on children.
215 // It's nullable because it does not match any literal text from the input stream.
216 n->fNullable = TRUE;
217 return;
218 }
219
220
221 // The node is not a leaf.
222 // Calculate nullable on its children.
223 calcNullable(n->fLeftChild);
224 calcNullable(n->fRightChild);
225
226 // Apply functions from table 3.40 in Aho
227 if (n->fType == RBBINode::opOr) {
228 n->fNullable = n->fLeftChild->fNullable || n->fRightChild->fNullable;
229 }
230 else if (n->fType == RBBINode::opCat) {
231 n->fNullable = n->fLeftChild->fNullable && n->fRightChild->fNullable;
232 }
233 else if (n->fType == RBBINode::opStar || n->fType == RBBINode::opQuestion) {
234 n->fNullable = TRUE;
235 }
236 else {
237 n->fNullable = FALSE;
238 }
239 }
240
241
242
243
244 //-----------------------------------------------------------------------------
245 //
246 // calcFirstPos. Impossible to explain succinctly. See Aho, section 3.9
247 //
248 //-----------------------------------------------------------------------------
249 void RBBITableBuilder::calcFirstPos(RBBINode *n) {
250 if (n == NULL) {
251 return;
252 }
253 if (n->fType == RBBINode::leafChar ||
254 n->fType == RBBINode::endMark ||
255 n->fType == RBBINode::lookAhead ||
256 n->fType == RBBINode::tag) {
257 // These are non-empty leaf node types.
258 // Note: In order to maintain the sort invariant on the set,
259 // this function should only be called on a node whose set is
260 // empty to start with.
261 n->fFirstPosSet->addElement(n, *fStatus);
262 return;
263 }
264
265 // The node is not a leaf.
266 // Calculate firstPos on its children.
267 calcFirstPos(n->fLeftChild);
268 calcFirstPos(n->fRightChild);
269
270 // Apply functions from table 3.40 in Aho
271 if (n->fType == RBBINode::opOr) {
272 setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
273 setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet);
274 }
275 else if (n->fType == RBBINode::opCat) {
276 setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
277 if (n->fLeftChild->fNullable) {
278 setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet);
279 }
280 }
281 else if (n->fType == RBBINode::opStar ||
282 n->fType == RBBINode::opQuestion ||
283 n->fType == RBBINode::opPlus) {
284 setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
285 }
286 }
287
288
289
290 //-----------------------------------------------------------------------------
291 //
292 // calcLastPos. Impossible to explain succinctly. See Aho, section 3.9
293 //
294 //-----------------------------------------------------------------------------
295 void RBBITableBuilder::calcLastPos(RBBINode *n) {
296 if (n == NULL) {
297 return;
298 }
299 if (n->fType == RBBINode::leafChar ||
300 n->fType == RBBINode::endMark ||
301 n->fType == RBBINode::lookAhead ||
302 n->fType == RBBINode::tag) {
303 // These are non-empty leaf node types.
304 // Note: In order to maintain the sort invariant on the set,
305 // this function should only be called on a node whose set is
306 // empty to start with.
307 n->fLastPosSet->addElement(n, *fStatus);
308 return;
309 }
310
311 // The node is not a leaf.
312 // Calculate lastPos on its children.
313 calcLastPos(n->fLeftChild);
314 calcLastPos(n->fRightChild);
315
316 // Apply functions from table 3.40 in Aho
317 if (n->fType == RBBINode::opOr) {
318 setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
319 setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet);
320 }
321 else if (n->fType == RBBINode::opCat) {
322 setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet);
323 if (n->fRightChild->fNullable) {
324 setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
325 }
326 }
327 else if (n->fType == RBBINode::opStar ||
328 n->fType == RBBINode::opQuestion ||
329 n->fType == RBBINode::opPlus) {
330 setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
331 }
332 }
333
334
335
336 //-----------------------------------------------------------------------------
337 //
338 // calcFollowPos. Impossible to explain succinctly. See Aho, section 3.9
339 //
340 //-----------------------------------------------------------------------------
341 void RBBITableBuilder::calcFollowPos(RBBINode *n) {
342 if (n == NULL ||
343 n->fType == RBBINode::leafChar ||
344 n->fType == RBBINode::endMark) {
345 return;
346 }
347
348 calcFollowPos(n->fLeftChild);
349 calcFollowPos(n->fRightChild);
350
351 // Aho rule #1
352 if (n->fType == RBBINode::opCat) {
353 RBBINode *i; // is 'i' in Aho's description
354 uint32_t ix;
355
356 UVector *LastPosOfLeftChild = n->fLeftChild->fLastPosSet;
357
358 for (ix=0; ix<(uint32_t)LastPosOfLeftChild->size(); ix++) {
359 i = (RBBINode *)LastPosOfLeftChild->elementAt(ix);
360 setAdd(i->fFollowPos, n->fRightChild->fFirstPosSet);
361 }
362 }
363
364 // Aho rule #2
365 if (n->fType == RBBINode::opStar ||
366 n->fType == RBBINode::opPlus) {
367 RBBINode *i; // again, n and i are the names from Aho's description.
368 uint32_t ix;
369
370 for (ix=0; ix<(uint32_t)n->fLastPosSet->size(); ix++) {
371 i = (RBBINode *)n->fLastPosSet->elementAt(ix);
372 setAdd(i->fFollowPos, n->fFirstPosSet);
373 }
374 }
375
376
377
378 }
379
380 //-----------------------------------------------------------------------------
381 //
382 // addRuleRootNodes Recursively walk a parse tree, adding all nodes flagged
383 // as roots of a rule to a destination vector.
384 //
385 //-----------------------------------------------------------------------------
386 void RBBITableBuilder::addRuleRootNodes(UVector *dest, RBBINode *node) {
387 if (node == NULL || U_FAILURE(*fStatus)) {
388 return;
389 }
390 if (node->fRuleRoot) {
391 dest->addElement(node, *fStatus);
392 // Note: rules cannot nest. If we found a rule start node,
393 // no child node can also be a start node.
394 return;
395 }
396 addRuleRootNodes(dest, node->fLeftChild);
397 addRuleRootNodes(dest, node->fRightChild);
398 }
399
400 //-----------------------------------------------------------------------------
401 //
402 // calcChainedFollowPos. Modify the previously calculated followPos sets
403 // to implement rule chaining. NOT described by Aho
404 //
405 //-----------------------------------------------------------------------------
406 void RBBITableBuilder::calcChainedFollowPos(RBBINode *tree) {
407
408 UVector endMarkerNodes(*fStatus);
409 UVector leafNodes(*fStatus);
410 int32_t i;
411
412 if (U_FAILURE(*fStatus)) {
413 return;
414 }
415
416 // get a list of all endmarker nodes.
417 tree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus);
418
419 // get a list all leaf nodes
420 tree->findNodes(&leafNodes, RBBINode::leafChar, *fStatus);
421 if (U_FAILURE(*fStatus)) {
422 return;
423 }
424
425 // Collect all leaf nodes that can start matches for rules
426 // with inbound chaining enabled, which is the union of the
427 // firstPosition sets from each of the rule root nodes.
428
429 UVector ruleRootNodes(*fStatus);
430 addRuleRootNodes(&ruleRootNodes, tree);
431
432 UVector matchStartNodes(*fStatus);
433 for (int i=0; i<ruleRootNodes.size(); ++i) {
434 RBBINode *node = static_cast<RBBINode *>(ruleRootNodes.elementAt(i));
435 if (node->fChainIn) {
436 setAdd(&matchStartNodes, node->fFirstPosSet);
437 }
438 }
439 if (U_FAILURE(*fStatus)) {
440 return;
441 }
442
443 int32_t endNodeIx;
444 int32_t startNodeIx;
445
446 for (endNodeIx=0; endNodeIx<leafNodes.size(); endNodeIx++) {
447 RBBINode *tNode = (RBBINode *)leafNodes.elementAt(endNodeIx);
448 RBBINode *endNode = NULL;
449
450 // Identify leaf nodes that correspond to overall rule match positions.
451 // These include an endMarkerNode in their followPos sets.
452 for (i=0; i<endMarkerNodes.size(); i++) {
453 if (tNode->fFollowPos->contains(endMarkerNodes.elementAt(i))) {
454 endNode = tNode;
455 break;
456 }
457 }
458 if (endNode == NULL) {
459 // node wasn't an end node. Try again with the next.
460 continue;
461 }
462
463 // We've got a node that can end a match.
464
465 // Line Break Specific hack: If this node's val correspond to the $CM char class,
466 // don't chain from it.
467 // TODO: Add rule syntax for this behavior, get specifics out of here and
468 // into the rule file.
469 if (fRB->fLBCMNoChain) {
470 UChar32 c = this->fRB->fSetBuilder->getFirstChar(endNode->fVal);
471 if (c != -1) {
472 // c == -1 occurs with sets containing only the {eof} marker string.
473 ULineBreak cLBProp = (ULineBreak)u_getIntPropertyValue(c, UCHAR_LINE_BREAK);
474 if (cLBProp == U_LB_COMBINING_MARK) {
475 continue;
476 }
477 }
478 }
479
480
481 // Now iterate over the nodes that can start a match, looking for ones
482 // with the same char class as our ending node.
483 RBBINode *startNode;
484 for (startNodeIx = 0; startNodeIx<matchStartNodes.size(); startNodeIx++) {
485 startNode = (RBBINode *)matchStartNodes.elementAt(startNodeIx);
486 if (startNode->fType != RBBINode::leafChar) {
487 continue;
488 }
489
490 if (endNode->fVal == startNode->fVal) {
491 // The end val (character class) of one possible match is the
492 // same as the start of another.
493
494 // Add all nodes from the followPos of the start node to the
495 // followPos set of the end node, which will have the effect of
496 // letting matches transition from a match state at endNode
497 // to the second char of a match starting with startNode.
498 setAdd(endNode->fFollowPos, startNode->fFollowPos);
499 }
500 }
501 }
502 }
503
504
505 //-----------------------------------------------------------------------------
506 //
507 // bofFixup. Fixup for state tables that include {bof} beginning of input testing.
508 // Do an swizzle similar to chaining, modifying the followPos set of
509 // the bofNode to include the followPos nodes from other {bot} nodes
510 // scattered through the tree.
511 //
512 // This function has much in common with calcChainedFollowPos().
513 //
514 //-----------------------------------------------------------------------------
515 void RBBITableBuilder::bofFixup() {
516
517 if (U_FAILURE(*fStatus)) {
518 return;
519 }
520
521 // The parse tree looks like this ...
522 // fTree root ---> <cat>
523 // / \ .
524 // <cat> <#end node>
525 // / \ .
526 // <bofNode> rest
527 // of tree
528 //
529 // We will be adding things to the followPos set of the <bofNode>
530 //
531 RBBINode *bofNode = fTree->fLeftChild->fLeftChild;
532 U_ASSERT(bofNode->fType == RBBINode::leafChar);
533 U_ASSERT(bofNode->fVal == 2);
534
535 // Get all nodes that can be the start a match of the user-written rules
536 // (excluding the fake bofNode)
537 // We want the nodes that can start a match in the
538 // part labeled "rest of tree"
539 //
540 UVector *matchStartNodes = fTree->fLeftChild->fRightChild->fFirstPosSet;
541
542 RBBINode *startNode;
543 int startNodeIx;
544 for (startNodeIx = 0; startNodeIx<matchStartNodes->size(); startNodeIx++) {
545 startNode = (RBBINode *)matchStartNodes->elementAt(startNodeIx);
546 if (startNode->fType != RBBINode::leafChar) {
547 continue;
548 }
549
550 if (startNode->fVal == bofNode->fVal) {
551 // We found a leaf node corresponding to a {bof} that was
552 // explicitly written into a rule.
553 // Add everything from the followPos set of this node to the
554 // followPos set of the fake bofNode at the start of the tree.
555 //
556 setAdd(bofNode->fFollowPos, startNode->fFollowPos);
557 }
558 }
559 }
560
561 //-----------------------------------------------------------------------------
562 //
563 // buildStateTable() Determine the set of runtime DFA states and the
564 // transition tables for these states, by the algorithm
565 // of fig. 3.44 in Aho.
566 //
567 // Most of the comments are quotes of Aho's psuedo-code.
568 //
569 //-----------------------------------------------------------------------------
570 void RBBITableBuilder::buildStateTable() {
571 if (U_FAILURE(*fStatus)) {
572 return;
573 }
574 RBBIStateDescriptor *failState;
575 // Set it to NULL to avoid uninitialized warning
576 RBBIStateDescriptor *initialState = NULL;
577 //
578 // Add a dummy state 0 - the stop state. Not from Aho.
579 int lastInputSymbol = fRB->fSetBuilder->getNumCharCategories() - 1;
580 failState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
581 if (failState == NULL) {
582 *fStatus = U_MEMORY_ALLOCATION_ERROR;
583 goto ExitBuildSTdeleteall;
584 }
585 failState->fPositions = new UVector(*fStatus);
586 if (failState->fPositions == NULL) {
587 *fStatus = U_MEMORY_ALLOCATION_ERROR;
588 }
589 if (failState->fPositions == NULL || U_FAILURE(*fStatus)) {
590 goto ExitBuildSTdeleteall;
591 }
592 fDStates->addElement(failState, *fStatus);
593 if (U_FAILURE(*fStatus)) {
594 goto ExitBuildSTdeleteall;
595 }
596
597 // initially, the only unmarked state in Dstates is firstpos(root),
598 // where toot is the root of the syntax tree for (r)#;
599 initialState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
600 if (initialState == NULL) {
601 *fStatus = U_MEMORY_ALLOCATION_ERROR;
602 }
603 if (U_FAILURE(*fStatus)) {
604 goto ExitBuildSTdeleteall;
605 }
606 initialState->fPositions = new UVector(*fStatus);
607 if (initialState->fPositions == NULL) {
608 *fStatus = U_MEMORY_ALLOCATION_ERROR;
609 }
610 if (U_FAILURE(*fStatus)) {
611 goto ExitBuildSTdeleteall;
612 }
613 setAdd(initialState->fPositions, fTree->fFirstPosSet);
614 fDStates->addElement(initialState, *fStatus);
615 if (U_FAILURE(*fStatus)) {
616 goto ExitBuildSTdeleteall;
617 }
618
619 // while there is an unmarked state T in Dstates do begin
620 for (;;) {
621 RBBIStateDescriptor *T = NULL;
622 int32_t tx;
623 for (tx=1; tx<fDStates->size(); tx++) {
624 RBBIStateDescriptor *temp;
625 temp = (RBBIStateDescriptor *)fDStates->elementAt(tx);
626 if (temp->fMarked == FALSE) {
627 T = temp;
628 break;
629 }
630 }
631 if (T == NULL) {
632 break;
633 }
634
635 // mark T;
636 T->fMarked = TRUE;
637
638 // for each input symbol a do begin
639 int32_t a;
640 for (a = 1; a<=lastInputSymbol; a++) {
641 // let U be the set of positions that are in followpos(p)
642 // for some position p in T
643 // such that the symbol at position p is a;
644 UVector *U = NULL;
645 RBBINode *p;
646 int32_t px;
647 for (px=0; px<T->fPositions->size(); px++) {
648 p = (RBBINode *)T->fPositions->elementAt(px);
649 if ((p->fType == RBBINode::leafChar) && (p->fVal == a)) {
650 if (U == NULL) {
651 U = new UVector(*fStatus);
652 if (U == NULL) {
653 *fStatus = U_MEMORY_ALLOCATION_ERROR;
654 goto ExitBuildSTdeleteall;
655 }
656 }
657 setAdd(U, p->fFollowPos);
658 }
659 }
660
661 // if U is not empty and not in DStates then
662 int32_t ux = 0;
663 UBool UinDstates = FALSE;
664 if (U != NULL) {
665 U_ASSERT(U->size() > 0);
666 int ix;
667 for (ix=0; ix<fDStates->size(); ix++) {
668 RBBIStateDescriptor *temp2;
669 temp2 = (RBBIStateDescriptor *)fDStates->elementAt(ix);
670 if (setEquals(U, temp2->fPositions)) {
671 delete U;
672 U = temp2->fPositions;
673 ux = ix;
674 UinDstates = TRUE;
675 break;
676 }
677 }
678
679 // Add U as an unmarked state to Dstates
680 if (!UinDstates)
681 {
682 RBBIStateDescriptor *newState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
683 if (newState == NULL) {
684 *fStatus = U_MEMORY_ALLOCATION_ERROR;
685 }
686 if (U_FAILURE(*fStatus)) {
687 goto ExitBuildSTdeleteall;
688 }
689 newState->fPositions = U;
690 fDStates->addElement(newState, *fStatus);
691 if (U_FAILURE(*fStatus)) {
692 return;
693 }
694 ux = fDStates->size()-1;
695 }
696
697 // Dtran[T, a] := U;
698 T->fDtran->setElementAt(ux, a);
699 }
700 }
701 }
702 return;
703 // delete local pointers only if error occured.
704 ExitBuildSTdeleteall:
705 delete initialState;
706 delete failState;
707 }
708
709
710
711 //-----------------------------------------------------------------------------
712 //
713 // flagAcceptingStates Identify accepting states.
714 // First get a list of all of the end marker nodes.
715 // Then, for each state s,
716 // if s contains one of the end marker nodes in its list of tree positions then
717 // s is an accepting state.
718 //
719 //-----------------------------------------------------------------------------
720 void RBBITableBuilder::flagAcceptingStates() {
721 if (U_FAILURE(*fStatus)) {
722 return;
723 }
724 UVector endMarkerNodes(*fStatus);
725 RBBINode *endMarker;
726 int32_t i;
727 int32_t n;
728
729 if (U_FAILURE(*fStatus)) {
730 return;
731 }
732
733 fTree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus);
734 if (U_FAILURE(*fStatus)) {
735 return;
736 }
737
738 for (i=0; i<endMarkerNodes.size(); i++) {
739 endMarker = (RBBINode *)endMarkerNodes.elementAt(i);
740 for (n=0; n<fDStates->size(); n++) {
741 RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
742 if (sd->fPositions->indexOf(endMarker) >= 0) {
743 // Any non-zero value for fAccepting means this is an accepting node.
744 // The value is what will be returned to the user as the break status.
745 // If no other value was specified, force it to -1.
746
747 if (sd->fAccepting==0) {
748 // State hasn't been marked as accepting yet. Do it now.
749 sd->fAccepting = endMarker->fVal;
750 if (sd->fAccepting == 0) {
751 sd->fAccepting = -1;
752 }
753 }
754 if (sd->fAccepting==-1 && endMarker->fVal != 0) {
755 // Both lookahead and non-lookahead accepting for this state.
756 // Favor the look-ahead. Expedient for line break.
757 // TODO: need a more elegant resolution for conflicting rules.
758 sd->fAccepting = endMarker->fVal;
759 }
760 // implicit else:
761 // if sd->fAccepting already had a value other than 0 or -1, leave it be.
762
763 // If the end marker node is from a look-ahead rule, set
764 // the fLookAhead field or this state also.
765 if (endMarker->fLookAheadEnd) {
766 // TODO: don't change value if already set?
767 // TODO: allow for more than one active look-ahead rule in engine.
768 // Make value here an index to a side array in engine?
769 sd->fLookAhead = sd->fAccepting;
770 }
771 }
772 }
773 }
774 }
775
776
777 //-----------------------------------------------------------------------------
778 //
779 // flagLookAheadStates Very similar to flagAcceptingStates, above.
780 //
781 //-----------------------------------------------------------------------------
782 void RBBITableBuilder::flagLookAheadStates() {
783 if (U_FAILURE(*fStatus)) {
784 return;
785 }
786 UVector lookAheadNodes(*fStatus);
787 RBBINode *lookAheadNode;
788 int32_t i;
789 int32_t n;
790
791 fTree->findNodes(&lookAheadNodes, RBBINode::lookAhead, *fStatus);
792 if (U_FAILURE(*fStatus)) {
793 return;
794 }
795 for (i=0; i<lookAheadNodes.size(); i++) {
796 lookAheadNode = (RBBINode *)lookAheadNodes.elementAt(i);
797
798 for (n=0; n<fDStates->size(); n++) {
799 RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
800 if (sd->fPositions->indexOf(lookAheadNode) >= 0) {
801 sd->fLookAhead = lookAheadNode->fVal;
802 }
803 }
804 }
805 }
806
807
808
809
810 //-----------------------------------------------------------------------------
811 //
812 // flagTaggedStates
813 //
814 //-----------------------------------------------------------------------------
815 void RBBITableBuilder::flagTaggedStates() {
816 if (U_FAILURE(*fStatus)) {
817 return;
818 }
819 UVector tagNodes(*fStatus);
820 RBBINode *tagNode;
821 int32_t i;
822 int32_t n;
823
824 if (U_FAILURE(*fStatus)) {
825 return;
826 }
827 fTree->findNodes(&tagNodes, RBBINode::tag, *fStatus);
828 if (U_FAILURE(*fStatus)) {
829 return;
830 }
831 for (i=0; i<tagNodes.size(); i++) { // For each tag node t (all of 'em)
832 tagNode = (RBBINode *)tagNodes.elementAt(i);
833
834 for (n=0; n<fDStates->size(); n++) { // For each state s (row in the state table)
835 RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
836 if (sd->fPositions->indexOf(tagNode) >= 0) { // if s include the tag node t
837 sortedAdd(&sd->fTagVals, tagNode->fVal);
838 }
839 }
840 }
841 }
842
843
844
845
846 //-----------------------------------------------------------------------------
847 //
848 // mergeRuleStatusVals
849 //
850 // Update the global table of rule status {tag} values
851 // The rule builder has a global vector of status values that are common
852 // for all tables. Merge the ones from this table into the global set.
853 //
854 //-----------------------------------------------------------------------------
855 void RBBITableBuilder::mergeRuleStatusVals() {
856 //
857 // The basic outline of what happens here is this...
858 //
859 // for each state in this state table
860 // if the status tag list for this state is in the global statuses list
861 // record where and
862 // continue with the next state
863 // else
864 // add the tag list for this state to the global list.
865 //
866 int i;
867 int n;
868
869 // Pre-set a single tag of {0} into the table.
870 // We will need this as a default, for rule sets with no explicit tagging.
871 if (fRB->fRuleStatusVals->size() == 0) {
872 fRB->fRuleStatusVals->addElement(1, *fStatus); // Num of statuses in group
873 fRB->fRuleStatusVals->addElement((int32_t)0, *fStatus); // and our single status of zero
874 }
875
876 // For each state
877 for (n=0; n<fDStates->size(); n++) {
878 RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
879 UVector *thisStatesTagValues = sd->fTagVals;
880 if (thisStatesTagValues == NULL) {
881 // No tag values are explicitly associated with this state.
882 // Set the default tag value.
883 sd->fTagsIdx = 0;
884 continue;
885 }
886
887 // There are tag(s) associated with this state.
888 // fTagsIdx will be the index into the global tag list for this state's tag values.
889 // Initial value of -1 flags that we haven't got it set yet.
890 sd->fTagsIdx = -1;
891 int32_t thisTagGroupStart = 0; // indexes into the global rule status vals list
892 int32_t nextTagGroupStart = 0;
893
894 // Loop runs once per group of tags in the global list
895 while (nextTagGroupStart < fRB->fRuleStatusVals->size()) {
896 thisTagGroupStart = nextTagGroupStart;
897 nextTagGroupStart += fRB->fRuleStatusVals->elementAti(thisTagGroupStart) + 1;
898 if (thisStatesTagValues->size() != fRB->fRuleStatusVals->elementAti(thisTagGroupStart)) {
899 // The number of tags for this state is different from
900 // the number of tags in this group from the global list.
901 // Continue with the next group from the global list.
902 continue;
903 }
904 // The lengths match, go ahead and compare the actual tag values
905 // between this state and the group from the global list.
906 for (i=0; i<thisStatesTagValues->size(); i++) {
907 if (thisStatesTagValues->elementAti(i) !=
908 fRB->fRuleStatusVals->elementAti(thisTagGroupStart + 1 + i) ) {
909 // Mismatch.
910 break;
911 }
912 }
913
914 if (i == thisStatesTagValues->size()) {
915 // We found a set of tag values in the global list that match
916 // those for this state. Use them.
917 sd->fTagsIdx = thisTagGroupStart;
918 break;
919 }
920 }
921
922 if (sd->fTagsIdx == -1) {
923 // No suitable entry in the global tag list already. Add one
924 sd->fTagsIdx = fRB->fRuleStatusVals->size();
925 fRB->fRuleStatusVals->addElement(thisStatesTagValues->size(), *fStatus);
926 for (i=0; i<thisStatesTagValues->size(); i++) {
927 fRB->fRuleStatusVals->addElement(thisStatesTagValues->elementAti(i), *fStatus);
928 }
929 }
930 }
931 }
932
933
934
935
936
937
938
939 //-----------------------------------------------------------------------------
940 //
941 // sortedAdd Add a value to a vector of sorted values (ints).
942 // Do not replicate entries; if the value is already there, do not
943 // add a second one.
944 // Lazily create the vector if it does not already exist.
945 //
946 //-----------------------------------------------------------------------------
947 void RBBITableBuilder::sortedAdd(UVector **vector, int32_t val) {
948 int32_t i;
949
950 if (*vector == NULL) {
951 *vector = new UVector(*fStatus);
952 }
953 if (*vector == NULL || U_FAILURE(*fStatus)) {
954 return;
955 }
956 UVector *vec = *vector;
957 int32_t vSize = vec->size();
958 for (i=0; i<vSize; i++) {
959 int32_t valAtI = vec->elementAti(i);
960 if (valAtI == val) {
961 // The value is already in the vector. Don't add it again.
962 return;
963 }
964 if (valAtI > val) {
965 break;
966 }
967 }
968 vec->insertElementAt(val, i, *fStatus);
969 }
970
971
972
973 //-----------------------------------------------------------------------------
974 //
975 // setAdd Set operation on UVector
976 // dest = dest union source
977 // Elements may only appear once and must be sorted.
978 //
979 //-----------------------------------------------------------------------------
980 void RBBITableBuilder::setAdd(UVector *dest, UVector *source) {
981 int32_t destOriginalSize = dest->size();
982 int32_t sourceSize = source->size();
983 int32_t di = 0;
984 MaybeStackArray<void *, 16> destArray, sourceArray; // Handle small cases without malloc
985 void **destPtr, **sourcePtr;
986 void **destLim, **sourceLim;
987
988 if (destOriginalSize > destArray.getCapacity()) {
989 if (destArray.resize(destOriginalSize) == NULL) {
990 return;
991 }
992 }
993 destPtr = destArray.getAlias();
994 destLim = destPtr + destOriginalSize; // destArray.getArrayLimit()?
995
996 if (sourceSize > sourceArray.getCapacity()) {
997 if (sourceArray.resize(sourceSize) == NULL) {
998 return;
999 }
1000 }
1001 sourcePtr = sourceArray.getAlias();
1002 sourceLim = sourcePtr + sourceSize; // sourceArray.getArrayLimit()?
1003
1004 // Avoid multiple "get element" calls by getting the contents into arrays
1005 (void) dest->toArray(destPtr);
1006 (void) source->toArray(sourcePtr);
1007
1008 dest->setSize(sourceSize+destOriginalSize, *fStatus);
1009
1010 while (sourcePtr < sourceLim && destPtr < destLim) {
1011 if (*destPtr == *sourcePtr) {
1012 dest->setElementAt(*sourcePtr++, di++);
1013 destPtr++;
1014 }
1015 // This check is required for machines with segmented memory, like i5/OS.
1016 // Direct pointer comparison is not recommended.
1017 else if (uprv_memcmp(destPtr, sourcePtr, sizeof(void *)) < 0) {
1018 dest->setElementAt(*destPtr++, di++);
1019 }
1020 else { /* *sourcePtr < *destPtr */
1021 dest->setElementAt(*sourcePtr++, di++);
1022 }
1023 }
1024
1025 // At most one of these two cleanup loops will execute
1026 while (destPtr < destLim) {
1027 dest->setElementAt(*destPtr++, di++);
1028 }
1029 while (sourcePtr < sourceLim) {
1030 dest->setElementAt(*sourcePtr++, di++);
1031 }
1032
1033 dest->setSize(di, *fStatus);
1034 }
1035
1036
1037
1038 //-----------------------------------------------------------------------------
1039 //
1040 // setEqual Set operation on UVector.
1041 // Compare for equality.
1042 // Elements must be sorted.
1043 //
1044 //-----------------------------------------------------------------------------
1045 UBool RBBITableBuilder::setEquals(UVector *a, UVector *b) {
1046 return a->equals(*b);
1047 }
1048
1049
1050 //-----------------------------------------------------------------------------
1051 //
1052 // printPosSets Debug function. Dump Nullable, firstpos, lastpos and followpos
1053 // for each node in the tree.
1054 //
1055 //-----------------------------------------------------------------------------
1056 #ifdef RBBI_DEBUG
1057 void RBBITableBuilder::printPosSets(RBBINode *n) {
1058 if (n==NULL) {
1059 return;
1060 }
1061 printf("\n");
1062 RBBINode::printNodeHeader();
1063 RBBINode::printNode(n);
1064 RBBIDebugPrintf(" Nullable: %s\n", n->fNullable?"TRUE":"FALSE");
1065
1066 RBBIDebugPrintf(" firstpos: ");
1067 printSet(n->fFirstPosSet);
1068
1069 RBBIDebugPrintf(" lastpos: ");
1070 printSet(n->fLastPosSet);
1071
1072 RBBIDebugPrintf(" followpos: ");
1073 printSet(n->fFollowPos);
1074
1075 printPosSets(n->fLeftChild);
1076 printPosSets(n->fRightChild);
1077 }
1078 #endif
1079
1080
1081
1082 //-----------------------------------------------------------------------------
1083 //
1084 // getTableSize() Calculate the size of the runtime form of this
1085 // state transition table.
1086 //
1087 //-----------------------------------------------------------------------------
1088 int32_t RBBITableBuilder::getTableSize() const {
1089 int32_t size = 0;
1090 int32_t numRows;
1091 int32_t numCols;
1092 int32_t rowSize;
1093
1094 if (fTree == NULL) {
1095 return 0;
1096 }
1097
1098 size = sizeof(RBBIStateTable) - 4; // The header, with no rows to the table.
1099
1100 numRows = fDStates->size();
1101 numCols = fRB->fSetBuilder->getNumCharCategories();
1102
1103 // Note The declaration of RBBIStateTableRow is for a table of two columns.
1104 // Therefore we subtract two from numCols when determining
1105 // how much storage to add to a row for the total columns.
1106 rowSize = sizeof(RBBIStateTableRow) + sizeof(uint16_t)*(numCols-2);
1107 size += numRows * rowSize;
1108 return size;
1109 }
1110
1111
1112
1113 //-----------------------------------------------------------------------------
1114 //
1115 // exportTable() export the state transition table in the format required
1116 // by the runtime engine. getTableSize() bytes of memory
1117 // must be available at the output address "where".
1118 //
1119 //-----------------------------------------------------------------------------
1120 void RBBITableBuilder::exportTable(void *where) {
1121 RBBIStateTable *table = (RBBIStateTable *)where;
1122 uint32_t state;
1123 int col;
1124
1125 if (U_FAILURE(*fStatus) || fTree == NULL) {
1126 return;
1127 }
1128
1129 if (fRB->fSetBuilder->getNumCharCategories() > 0x7fff ||
1130 fDStates->size() > 0x7fff) {
1131 *fStatus = U_BRK_INTERNAL_ERROR;
1132 return;
1133 }
1134
1135 table->fRowLen = sizeof(RBBIStateTableRow) +
1136 sizeof(uint16_t) * (fRB->fSetBuilder->getNumCharCategories() - 2);
1137 table->fNumStates = fDStates->size();
1138 table->fFlags = 0;
1139 if (fRB->fLookAheadHardBreak) {
1140 table->fFlags |= RBBI_LOOKAHEAD_HARD_BREAK;
1141 }
1142 if (fRB->fSetBuilder->sawBOF()) {
1143 table->fFlags |= RBBI_BOF_REQUIRED;
1144 }
1145 table->fReserved = 0;
1146
1147 for (state=0; state<table->fNumStates; state++) {
1148 RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state);
1149 RBBIStateTableRow *row = (RBBIStateTableRow *)(table->fTableData + state*table->fRowLen);
1150 U_ASSERT (-32768 < sd->fAccepting && sd->fAccepting <= 32767);
1151 U_ASSERT (-32768 < sd->fLookAhead && sd->fLookAhead <= 32767);
1152 row->fAccepting = (int16_t)sd->fAccepting;
1153 row->fLookAhead = (int16_t)sd->fLookAhead;
1154 row->fTagIdx = (int16_t)sd->fTagsIdx;
1155 for (col=0; col<fRB->fSetBuilder->getNumCharCategories(); col++) {
1156 row->fNextState[col] = (uint16_t)sd->fDtran->elementAti(col);
1157 }
1158 }
1159 }
1160
1161
1162
1163 //-----------------------------------------------------------------------------
1164 //
1165 // printSet Debug function. Print the contents of a UVector
1166 //
1167 //-----------------------------------------------------------------------------
1168 #ifdef RBBI_DEBUG
1169 void RBBITableBuilder::printSet(UVector *s) {
1170 int32_t i;
1171 for (i=0; i<s->size(); i++) {
1172 const RBBINode *v = static_cast<const RBBINode *>(s->elementAt(i));
1173 RBBIDebugPrintf("%5d", v==NULL? -1 : v->fSerialNum);
1174 }
1175 RBBIDebugPrintf("\n");
1176 }
1177 #endif
1178
1179
1180 //-----------------------------------------------------------------------------
1181 //
1182 // printStates Debug Function. Dump the fully constructed state transition table.
1183 //
1184 //-----------------------------------------------------------------------------
1185 #ifdef RBBI_DEBUG
1186 void RBBITableBuilder::printStates() {
1187 int c; // input "character"
1188 int n; // state number
1189
1190 RBBIDebugPrintf("state | i n p u t s y m b o l s \n");
1191 RBBIDebugPrintf(" | Acc LA Tag");
1192 for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {
1193 RBBIDebugPrintf(" %2d", c);
1194 }
1195 RBBIDebugPrintf("\n");
1196 RBBIDebugPrintf(" |---------------");
1197 for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {
1198 RBBIDebugPrintf("---");
1199 }
1200 RBBIDebugPrintf("\n");
1201
1202 for (n=0; n<fDStates->size(); n++) {
1203 RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
1204 RBBIDebugPrintf(" %3d | " , n);
1205 RBBIDebugPrintf("%3d %3d %5d ", sd->fAccepting, sd->fLookAhead, sd->fTagsIdx);
1206 for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {
1207 RBBIDebugPrintf(" %2d", sd->fDtran->elementAti(c));
1208 }
1209 RBBIDebugPrintf("\n");
1210 }
1211 RBBIDebugPrintf("\n\n");
1212 }
1213 #endif
1214
1215
1216
1217 //-----------------------------------------------------------------------------
1218 //
1219 // printRuleStatusTable Debug Function. Dump the common rule status table
1220 //
1221 //-----------------------------------------------------------------------------
1222 #ifdef RBBI_DEBUG
1223 void RBBITableBuilder::printRuleStatusTable() {
1224 int32_t thisRecord = 0;
1225 int32_t nextRecord = 0;
1226 int i;
1227 UVector *tbl = fRB->fRuleStatusVals;
1228
1229 RBBIDebugPrintf("index | tags \n");
1230 RBBIDebugPrintf("-------------------\n");
1231
1232 while (nextRecord < tbl->size()) {
1233 thisRecord = nextRecord;
1234 nextRecord = thisRecord + tbl->elementAti(thisRecord) + 1;
1235 RBBIDebugPrintf("%4d ", thisRecord);
1236 for (i=thisRecord+1; i<nextRecord; i++) {
1237 RBBIDebugPrintf(" %5d", tbl->elementAti(i));
1238 }
1239 RBBIDebugPrintf("\n");
1240 }
1241 RBBIDebugPrintf("\n\n");
1242 }
1243 #endif
1244
1245
1246 //-----------------------------------------------------------------------------
1247 //
1248 // RBBIStateDescriptor Methods. This is a very struct-like class
1249 // Most access is directly to the fields.
1250 //
1251 //-----------------------------------------------------------------------------
1252
1253 RBBIStateDescriptor::RBBIStateDescriptor(int lastInputSymbol, UErrorCode *fStatus) {
1254 fMarked = FALSE;
1255 fAccepting = 0;
1256 fLookAhead = 0;
1257 fTagsIdx = 0;
1258 fTagVals = NULL;
1259 fPositions = NULL;
1260 fDtran = NULL;
1261
1262 fDtran = new UVector(lastInputSymbol+1, *fStatus);
1263 if (U_FAILURE(*fStatus)) {
1264 return;
1265 }
1266 if (fDtran == NULL) {
1267 *fStatus = U_MEMORY_ALLOCATION_ERROR;
1268 return;
1269 }
1270 fDtran->setSize(lastInputSymbol+1, *fStatus); // fDtran needs to be pre-sized.
1271 // It is indexed by input symbols, and will
1272 // hold the next state number for each
1273 // symbol.
1274 }
1275
1276
1277 RBBIStateDescriptor::~RBBIStateDescriptor() {
1278 delete fPositions;
1279 delete fDtran;
1280 delete fTagVals;
1281 fPositions = NULL;
1282 fDtran = NULL;
1283 fTagVals = NULL;
1284 }
1285
1286 U_NAMESPACE_END
1287
1288 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */