]> git.saurik.com Git - apple/icu.git/blob - icuSources/tools/makeconv/gencnvex.c
ICU-6.2.22.tar.gz
[apple/icu.git] / icuSources / tools / makeconv / gencnvex.c
1 /*
2 *******************************************************************************
3 *
4 * Copyright (C) 2003-2004, International Business Machines
5 * Corporation and others. All Rights Reserved.
6 *
7 *******************************************************************************
8 * file name: gencnvex.c
9 * encoding: US-ASCII
10 * tab size: 8 (not used)
11 * indentation:4
12 *
13 * created on: 2003oct12
14 * created by: Markus W. Scherer
15 */
16
17 #include <stdio.h>
18 #include "unicode/utypes.h"
19 #include "unicode/ustring.h"
20 #include "cstring.h"
21 #include "cmemory.h"
22 #include "ucnv_cnv.h"
23 #include "ucnvmbcs.h"
24 #include "toolutil.h"
25 #include "unewdata.h"
26 #include "ucm.h"
27 #include "makeconv.h"
28 #include "genmbcs.h"
29
30 #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
31
32 static void
33 CnvExtClose(NewConverter *cnvData);
34
35 static UBool
36 CnvExtIsValid(NewConverter *cnvData,
37 const uint8_t *bytes, int32_t length);
38
39 static UBool
40 CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);
41
42 static uint32_t
43 CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
44 UNewDataMemory *pData, int32_t tableType);
45
46 typedef struct CnvExtData {
47 NewConverter newConverter;
48
49 UCMFile *ucm;
50
51 /* toUnicode (state table in ucm->states) */
52 UToolMemory *toUTable, *toUUChars;
53
54 /* fromUnicode */
55 UToolMemory *fromUTableUChars, *fromUTableValues, *fromUBytes;
56
57 uint16_t stage1[MBCS_STAGE_1_SIZE];
58 uint16_t stage2[MBCS_STAGE_2_SIZE];
59 uint16_t stage3[0x10000<<UCNV_EXT_STAGE_2_LEFT_SHIFT]; /* 0x10000 because of 16-bit stage 2/3 indexes */
60 uint32_t stage3b[0x10000];
61
62 int32_t stage1Top, stage2Top, stage3Top, stage3bTop;
63
64 /* for stage3 compaction of <subchar1> |2 mappings */
65 uint16_t stage3Sub1Block;
66
67 /* statistics */
68 int32_t
69 maxInBytes, maxOutBytes, maxBytesPerUChar,
70 maxInUChars, maxOutUChars, maxUCharsPerByte;
71 } CnvExtData;
72
73 NewConverter *
74 CnvExtOpen(UCMFile *ucm) {
75 CnvExtData *extData;
76
77 extData=(CnvExtData *)uprv_malloc(sizeof(CnvExtData));
78 if(extData!=NULL) {
79 uprv_memset(extData, 0, sizeof(CnvExtData));
80
81 extData->ucm=ucm; /* aliased, not owned */
82
83 extData->newConverter.close=CnvExtClose;
84 extData->newConverter.isValid=CnvExtIsValid;
85 extData->newConverter.addTable=CnvExtAddTable;
86 extData->newConverter.write=CnvExtWrite;
87 }
88 return &extData->newConverter;
89 }
90
91 static void
92 CnvExtClose(NewConverter *cnvData) {
93 CnvExtData *extData=(CnvExtData *)cnvData;
94 if(extData!=NULL) {
95 utm_close(extData->toUTable);
96 utm_close(extData->toUUChars);
97 utm_close(extData->fromUTableUChars);
98 utm_close(extData->fromUTableValues);
99 utm_close(extData->fromUBytes);
100 }
101 }
102
103 /* we do not expect this to be called */
104 static UBool
105 CnvExtIsValid(NewConverter *cnvData,
106 const uint8_t *bytes, int32_t length) {
107 return FALSE;
108 }
109
110 static uint32_t
111 CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
112 UNewDataMemory *pData, int32_t tableType) {
113 CnvExtData *extData=(CnvExtData *)cnvData;
114 int32_t length, top, headerSize;
115
116 int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 };
117
118 if(tableType&TABLE_BASE) {
119 headerSize=0;
120 } else {
121 _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 };
122
123 /* write the header and base table name for an extension-only table */
124 length=(int32_t)uprv_strlen(extData->ucm->baseName)+1;
125 while(length&3) {
126 /* add padding */
127 extData->ucm->baseName[length++]=0;
128 }
129
130 headerSize=sizeof(header)+length;
131
132 /* fill the header */
133 header.version[0]=4;
134 header.version[1]=2;
135 header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY);
136
137 /* write the header and the base table name */
138 udata_writeBlock(pData, &header, sizeof(header));
139 udata_writeBlock(pData, extData->ucm->baseName, length);
140 }
141
142 /* fill indexes[] - offsets/indexes are in units of the target array */
143 top=0;
144
145 indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH;
146 top+=length*4;
147
148 indexes[UCNV_EXT_TO_U_INDEX]=top;
149 indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable);
150 top+=length*4;
151
152 indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top;
153 indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars);
154 top+=length*2;
155
156 indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top;
157 length=utm_countItems(extData->fromUTableUChars);
158 top+=length*2;
159
160 if(top&3) {
161 /* add padding */
162 *((UChar *)utm_alloc(extData->fromUTableUChars))=0;
163 *((uint32_t *)utm_alloc(extData->fromUTableValues))=0;
164 ++length;
165 top+=2;
166 }
167 indexes[UCNV_EXT_FROM_U_LENGTH]=length;
168
169 indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top;
170 top+=length*4;
171
172 indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top;
173 length=utm_countItems(extData->fromUBytes);
174 top+=length;
175
176 if(top&1) {
177 /* add padding */
178 *((uint8_t *)utm_alloc(extData->fromUBytes))=0;
179 ++length;
180 ++top;
181 }
182 indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length;
183
184 indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top;
185 indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top;
186 indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top;
187 top+=length*2;
188
189 indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top;
190 length=extData->stage3Top;
191 top+=length*2;
192
193 if(top&3) {
194 /* add padding */
195 extData->stage3[extData->stage3Top++]=0;
196 ++length;
197 top+=2;
198 }
199 indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length;
200
201 indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top;
202 indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop;
203 top+=length*4;
204
205 indexes[UCNV_EXT_SIZE]=top;
206
207 /* statistics */
208 indexes[UCNV_EXT_COUNT_BYTES]=
209 (extData->maxInBytes<<16)|
210 (extData->maxOutBytes<<8)|
211 extData->maxBytesPerUChar;
212 indexes[UCNV_EXT_COUNT_UCHARS]=
213 (extData->maxInUChars<<16)|
214 (extData->maxOutUChars<<8)|
215 extData->maxUCharsPerByte;
216
217 indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask;
218
219 /* write the extension data */
220 udata_writeBlock(pData, indexes, sizeof(indexes));
221 udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4);
222 udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2);
223
224 udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2);
225 udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4);
226 udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]);
227
228 udata_writeBlock(pData, extData->stage1, extData->stage1Top*2);
229 udata_writeBlock(pData, extData->stage2, extData->stage2Top*2);
230 udata_writeBlock(pData, extData->stage3, extData->stage3Top*2);
231 udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4);
232
233 #if 0
234 {
235 int32_t i, j;
236
237 length=extData->stage1Top;
238 printf("\nstage1[%x]:\n", length);
239
240 for(i=0; i<length; ++i) {
241 if(extData->stage1[i]!=length) {
242 printf("stage1[%04x]=%04x\n", i, extData->stage1[i]);
243 }
244 }
245
246 j=length;
247 length=extData->stage2Top;
248 printf("\nstage2[%x]:\n", length);
249
250 for(i=0; i<length; ++j, ++i) {
251 if(extData->stage2[i]!=0) {
252 printf("stage12[%04x]=%04x\n", j, extData->stage2[i]);
253 }
254 }
255
256 length=extData->stage3Top;
257 printf("\nstage3[%x]:\n", length);
258
259 for(i=0; i<length; ++i) {
260 if(extData->stage3[i]!=0) {
261 printf("stage3[%04x]=%04x\n", i, extData->stage3[i]);
262 }
263 }
264
265 length=extData->stage3bTop;
266 printf("\nstage3b[%x]:\n", length);
267
268 for(i=0; i<length; ++i) {
269 if(extData->stage3b[i]!=0) {
270 printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]);
271 }
272 }
273 }
274 #endif
275
276 if(VERBOSE) {
277 printf("size of extension data: %ld\n", (long)top);
278 }
279
280 /* return the number of bytes that should have been written */
281 return (uint32_t)(headerSize+top);
282 }
283
284 /* to Unicode --------------------------------------------------------------- */
285
286 /*
287 * Remove fromUnicode fallbacks and SUB mappings which are irrelevant for
288 * the toUnicode table.
289 * The table must be sorted.
290 * Destroys previous data in the reverseMap.
291 */
292 static int32_t
293 reduceToUMappings(UCMTable *table) {
294 UCMapping *mappings;
295 int32_t *map;
296 int32_t i, j, count;
297 int8_t flag;
298
299 mappings=table->mappings;
300 map=table->reverseMap;
301 count=table->mappingsLength;
302
303 /* leave the map alone for the initial mappings with desired flags */
304 for(i=j=0; i<count; ++i) {
305 flag=mappings[map[i]].f;
306 if(flag!=0 && flag!=3) {
307 break;
308 }
309 }
310
311 /* reduce from here to the rest */
312 for(j=i; i<count; ++i) {
313 flag=mappings[map[i]].f;
314 if(flag==0 || flag==3) {
315 map[j++]=map[i];
316 }
317 }
318
319 return j;
320 }
321
322 static uint32_t
323 getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
324 UChar32 *u32;
325 UChar *u;
326 uint32_t value;
327 int32_t u16Length, ratio;
328 UErrorCode errorCode;
329
330 /* write the Unicode result code point or string index */
331 if(m->uLen==1) {
332 u16Length=U16_LENGTH(m->u);
333 value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u);
334 } else {
335 /* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */
336
337 /* get the result code point string and its 16-bit string length */
338 u32=UCM_GET_CODE_POINTS(table, m);
339 errorCode=U_ZERO_ERROR;
340 u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode);
341 if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
342 exit(errorCode);
343 }
344
345 /* allocate it and put its length and index into the value */
346 value=
347 (((uint32_t)m->uLen+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)|
348 ((uint32_t)utm_countItems(extData->toUUChars));
349 u=utm_allocN(extData->toUUChars, u16Length);
350
351 /* write the result 16-bit string */
352 errorCode=U_ZERO_ERROR;
353 u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode);
354 if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
355 exit(errorCode);
356 }
357 }
358 if(m->f==0) {
359 value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG;
360 }
361
362 /* update statistics */
363 if(m->bLen>extData->maxInBytes) {
364 extData->maxInBytes=m->bLen;
365 }
366 if(u16Length>extData->maxOutUChars) {
367 extData->maxOutUChars=u16Length;
368 }
369
370 ratio=(u16Length+(m->bLen-1))/m->bLen;
371 if(ratio>extData->maxUCharsPerByte) {
372 extData->maxUCharsPerByte=ratio;
373 }
374
375 return value;
376 }
377
378 /*
379 * Recursive toUTable generator core function.
380 * Preconditions:
381 * - start<limit (There is at least one mapping.)
382 * - The mappings are sorted lexically. (Access is through the reverseMap.)
383 * - All mappings between start and limit have input sequences that share
384 * the same prefix of unitIndex length, and therefore all of these sequences
385 * are at least unitIndex+1 long.
386 * - There are only relevant mappings available through the reverseMap,
387 * see reduceToUMappings().
388 *
389 * One function invocation generates one section table.
390 *
391 * Steps:
392 * 1. Count the number of unique unit values and get the low/high unit values
393 * that occur at unitIndex.
394 * 2. Allocate the section table with possible optimization for linear access.
395 * 3. Write temporary version of the section table with start indexes of
396 * subsections, each corresponding to one unit value at unitIndex.
397 * 4. Iterate through the table once more, and depending on the subsection length:
398 * 0: write 0 as a result value (unused byte in linear-access section table)
399 * >0: if there is one mapping with an input unit sequence of unitIndex+1
400 * then defaultValue=compute the mapping result for this whole sequence
401 * else defaultValue=0
402 *
403 * recurse into the subsection
404 */
405 static UBool
406 generateToUTable(CnvExtData *extData, UCMTable *table,
407 int32_t start, int32_t limit, int32_t unitIndex,
408 uint32_t defaultValue) {
409 UCMapping *mappings, *m;
410 int32_t *map;
411 int32_t i, j, uniqueCount, count, subStart, subLimit;
412
413 uint8_t *bytes;
414 int32_t low, high, prev;
415
416 uint32_t *section;
417
418 mappings=table->mappings;
419 map=table->reverseMap;
420
421 /* step 1: examine the input units; set low, high, uniqueCount */
422 m=mappings+map[start];
423 bytes=UCM_GET_BYTES(table, m);
424 low=bytes[unitIndex];
425 uniqueCount=1;
426
427 prev=high=low;
428 for(i=start+1; i<limit; ++i) {
429 m=mappings+map[i];
430 bytes=UCM_GET_BYTES(table, m);
431 high=bytes[unitIndex];
432
433 if(high!=prev) {
434 prev=high;
435 ++uniqueCount;
436 }
437 }
438
439 /* step 2: allocate the section; set count, section */
440 count=(high-low)+1;
441 if(unitIndex==0 || uniqueCount>=(3*count)/4) {
442 /*
443 * for the root table and for fairly full tables:
444 * allocate for direct, linear array access
445 * by keeping count, to write an entry for each unit value
446 * from low to high
447 */
448 } else {
449 count=uniqueCount;
450 }
451
452 /* allocate the section: 1 entry for the header + count for the items */
453 section=(uint32_t *)utm_allocN(extData->toUTable, 1+count);
454
455 /* write the section header */
456 *section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue;
457
458 /* step 3: write temporary section table with subsection starts */
459 prev=low-1; /* just before low to prevent empty subsections before low */
460 j=0; /* section table index */
461 for(i=start; i<limit; ++i) {
462 m=mappings+map[i];
463 bytes=UCM_GET_BYTES(table, m);
464 high=bytes[unitIndex];
465
466 if(high!=prev) {
467 /* start of a new subsection for unit high */
468 if(count>uniqueCount) {
469 /* write empty subsections for unused units in a linear table */
470 while(++prev<high) {
471 section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
472 }
473 } else {
474 prev=high;
475 }
476
477 /* write the entry with the subsection start */
478 section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
479 }
480 }
481 /* assert(j==count) */
482
483 /* step 4: recurse and write results */
484 subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]);
485 for(j=0; j<count; ++j) {
486 subStart=subLimit;
487 subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit;
488
489 /* remove the subStart temporary value */
490 section[j]&=~UCNV_EXT_TO_U_VALUE_MASK;
491
492 if(subStart==subLimit) {
493 /* leave the value zero: empty subsection for unused unit in a linear table */
494 continue;
495 }
496
497 /* see if there is exactly one input unit sequence of length unitIndex+1 */
498 defaultValue=0;
499 m=mappings+map[subStart];
500 if(m->bLen==unitIndex+1) {
501 /* do not include this in generateToUTable() */
502 ++subStart;
503
504 if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) {
505 /* print error for multiple same-input-sequence mappings */
506 fprintf(stderr, "error: multiple mappings from same bytes\n");
507 ucm_printMapping(table, m, stderr);
508 ucm_printMapping(table, mappings+map[subStart], stderr);
509 return FALSE;
510 }
511
512 defaultValue=getToUnicodeValue(extData, table, m);
513 }
514
515 if(subStart==subLimit) {
516 /* write the result for the input sequence ending here */
517 section[j]|=defaultValue;
518 } else {
519 /* write the index to the subsection table */
520 section[j]|=(uint32_t)utm_countItems(extData->toUTable);
521
522 /* recurse */
523 if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
524 return FALSE;
525 }
526 }
527 }
528 return TRUE;
529 }
530
531 /*
532 * Generate the toUTable and toUUChars from the input table.
533 * The input table must be sorted, and all precision flags must be 0..3.
534 * This function will modify the table's reverseMap.
535 */
536 static UBool
537 makeToUTable(CnvExtData *extData, UCMTable *table) {
538 int32_t toUCount;
539
540 toUCount=reduceToUMappings(table);
541
542 extData->toUTable=utm_open("cnv extension toUTable", 0x10000, UCNV_EXT_TO_U_MIN_CODE_POINT, 4);
543 extData->toUUChars=utm_open("cnv extension toUUChars", 0x10000, UCNV_EXT_TO_U_INDEX_MASK+1, 2);
544
545 return generateToUTable(extData, table, 0, toUCount, 0, 0);
546 }
547
548 /* from Unicode ------------------------------------------------------------- */
549
550 /*
551 * preprocessing:
552 * rebuild reverseMap with mapping indexes for mappings relevant for from Unicode
553 * change each Unicode string to encode all but the first code point in 16-bit form
554 *
555 * generation:
556 * for each unique code point
557 * write an entry in the 3-stage trie
558 * check that there is only one single-code point sequence
559 * start recursion for following 16-bit input units
560 */
561
562 /*
563 * Remove toUnicode fallbacks and non-<subchar1> SUB mappings
564 * which are irrelevant for the fromUnicode extension table.
565 * Overwrite the reverseMap with an index array to the relevant mappings.
566 * Modify the code point sequences to a generator-friendly format where
567 * the first code points remains unchanged but the following are recoded
568 * into 16-bit Unicode string form.
569 * The table must be sorted.
570 * Destroys previous data in the reverseMap.
571 */
572 static int32_t
573 prepareFromUMappings(UCMTable *table) {
574 UCMapping *mappings, *m;
575 int32_t *map;
576 int32_t i, j, count;
577 int8_t flag;
578
579 mappings=table->mappings;
580 map=table->reverseMap;
581 count=table->mappingsLength;
582
583 /*
584 * we do not go through the map on input because the mappings are
585 * sorted lexically
586 */
587 m=mappings;
588
589 for(i=j=0; i<count; ++m, ++i) {
590 flag=m->f;
591 if(flag==0 || flag==1 || (flag==2 && m->bLen==1)) {
592 map[j++]=i;
593
594 if(m->uLen>1) {
595 /* recode all but the first code point to 16-bit Unicode */
596 UChar32 *u32;
597 UChar *u;
598 UChar32 c;
599 int32_t q, r;
600
601 u32=UCM_GET_CODE_POINTS(table, m);
602 u=(UChar *)u32; /* destructive in-place recoding */
603 for(r=2, q=1; q<m->uLen; ++q) {
604 c=u32[q];
605 U16_APPEND_UNSAFE(u, r, c);
606 }
607
608 /* counts the first code point always at 2 - the first 16-bit unit is at 16-bit index 2 */
609 m->uLen=(int8_t)r;
610 }
611 }
612 }
613
614 return j;
615 }
616
617 static uint32_t
618 getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
619 uint8_t *bytes, *resultBytes;
620 uint32_t value;
621 int32_t u16Length, ratio;
622
623 if(m->f==2) {
624 /*
625 * no mapping, <subchar1> preferred
626 *
627 * no need to count in statistics because the subchars are already
628 * counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData,
629 * and this non-mapping does not count for maxInUChars which are always
630 * trivially at least two if counting unmappable supplementary code points
631 */
632 return UCNV_EXT_FROM_U_SUBCHAR1;
633 }
634
635 bytes=UCM_GET_BYTES(table, m);
636 value=0;
637 switch(m->bLen) {
638 /* 1..3: store the bytes in the value word */
639 case 3:
640 value=((uint32_t)*bytes++)<<16;
641 case 2:
642 value|=((uint32_t)*bytes++)<<8;
643 case 1:
644 value|=*bytes;
645 break;
646 default:
647 /* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */
648 /* store the bytes in fromUBytes[] and the index in the value word */
649 value=(uint32_t)utm_countItems(extData->fromUBytes);
650 resultBytes=utm_allocN(extData->fromUBytes, m->bLen);
651 uprv_memcpy(resultBytes, bytes, m->bLen);
652 break;
653 }
654 value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT;
655 if(m->f==0) {
656 value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG;
657 }
658
659 /* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */
660 if(m->uLen==1) {
661 u16Length=U16_LENGTH(m->u);
662 } else {
663 u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2);
664 }
665
666 /* update statistics */
667 if(u16Length>extData->maxInUChars) {
668 extData->maxInUChars=u16Length;
669 }
670 if(m->bLen>extData->maxOutBytes) {
671 extData->maxOutBytes=m->bLen;
672 }
673
674 ratio=(m->bLen+(u16Length-1))/u16Length;
675 if(ratio>extData->maxBytesPerUChar) {
676 extData->maxBytesPerUChar=ratio;
677 }
678
679 return value;
680 }
681
682 /*
683 * works like generateToUTable(), except that the
684 * output section consists of two arrays, one for input UChars and one
685 * for result values
686 *
687 * also, fromUTable sections are always stored in a compact form for
688 * access via binary search
689 */
690 static UBool
691 generateFromUTable(CnvExtData *extData, UCMTable *table,
692 int32_t start, int32_t limit, int32_t unitIndex,
693 uint32_t defaultValue) {
694 UCMapping *mappings, *m;
695 int32_t *map;
696 int32_t i, j, uniqueCount, count, subStart, subLimit;
697
698 UChar *uchars;
699 UChar32 low, high, prev;
700
701 UChar *sectionUChars;
702 uint32_t *sectionValues;
703
704 mappings=table->mappings;
705 map=table->reverseMap;
706
707 /* step 1: examine the input units; set low, high, uniqueCount */
708 m=mappings+map[start];
709 uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
710 low=uchars[unitIndex];
711 uniqueCount=1;
712
713 prev=high=low;
714 for(i=start+1; i<limit; ++i) {
715 m=mappings+map[i];
716 uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
717 high=uchars[unitIndex];
718
719 if(high!=prev) {
720 prev=high;
721 ++uniqueCount;
722 }
723 }
724
725 /* step 2: allocate the section; set count, section */
726 /* the fromUTable always stores for access via binary search */
727 count=uniqueCount;
728
729 /* allocate the section: 1 entry for the header + count for the items */
730 sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count);
731 sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count);
732
733 /* write the section header */
734 *sectionUChars++=(UChar)count;
735 *sectionValues++=defaultValue;
736
737 /* step 3: write temporary section table with subsection starts */
738 prev=low-1; /* just before low to prevent empty subsections before low */
739 j=0; /* section table index */
740 for(i=start; i<limit; ++i) {
741 m=mappings+map[i];
742 uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
743 high=uchars[unitIndex];
744
745 if(high!=prev) {
746 /* start of a new subsection for unit high */
747 prev=high;
748
749 /* write the entry with the subsection start */
750 sectionUChars[j]=(UChar)high;
751 sectionValues[j]=(uint32_t)i;
752 ++j;
753 }
754 }
755 /* assert(j==count) */
756
757 /* step 4: recurse and write results */
758 subLimit=(int32_t)(sectionValues[0]);
759 for(j=0; j<count; ++j) {
760 subStart=subLimit;
761 subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit;
762
763 /* see if there is exactly one input unit sequence of length unitIndex+1 */
764 defaultValue=0;
765 m=mappings+map[subStart];
766 if(m->uLen==unitIndex+1) {
767 /* do not include this in generateToUTable() */
768 ++subStart;
769
770 if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) {
771 /* print error for multiple same-input-sequence mappings */
772 fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
773 ucm_printMapping(table, m, stderr);
774 ucm_printMapping(table, mappings+map[subStart], stderr);
775 return FALSE;
776 }
777
778 defaultValue=getFromUBytesValue(extData, table, m);
779 }
780
781 if(subStart==subLimit) {
782 /* write the result for the input sequence ending here */
783 sectionValues[j]=defaultValue;
784 } else {
785 /* write the index to the subsection table */
786 sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues);
787
788 /* recurse */
789 if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
790 return FALSE;
791 }
792 }
793 }
794 return TRUE;
795 }
796
797 /*
798 * add entries to the fromUnicode trie,
799 * assume to be called with code points in ascending order
800 * and use that to build the trie in precompacted form
801 */
802 static void
803 addFromUTrieEntry(CnvExtData *extData, UChar32 c, uint32_t value) {
804 int32_t i1, i2, i3, i3b, nextOffset, min, newBlock;
805
806 if(value==0) {
807 return;
808 }
809
810 /*
811 * compute the index for each stage,
812 * allocate a stage block if necessary,
813 * and write the stage value
814 */
815 i1=c>>10;
816 if(i1>=extData->stage1Top) {
817 extData->stage1Top=i1+1;
818 }
819
820 nextOffset=(c>>4)&0x3f;
821
822 if(extData->stage1[i1]==0) {
823 /* allocate another block in stage 2; overlap with the previous block */
824 newBlock=extData->stage2Top;
825 min=newBlock-nextOffset; /* minimum block start with overlap */
826 while(min<newBlock && extData->stage2[newBlock-1]==0) {
827 --newBlock;
828 }
829
830 extData->stage1[i1]=(uint16_t)newBlock;
831 extData->stage2Top=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
832 if(extData->stage2Top>LENGTHOF(extData->stage2)) {
833 fprintf(stderr, "error: too many stage 2 entries at U+%04x\n", (int)c);
834 exit(U_MEMORY_ALLOCATION_ERROR);
835 }
836 }
837
838 i2=extData->stage1[i1]+nextOffset;
839 nextOffset=c&0xf;
840
841 if(extData->stage2[i2]==0) {
842 /* allocate another block in stage 3; overlap with the previous block */
843 newBlock=extData->stage3Top;
844 min=newBlock-nextOffset; /* minimum block start with overlap */
845 while(min<newBlock && extData->stage3[newBlock-1]==0) {
846 --newBlock;
847 }
848
849 /* round up to a multiple of stage 3 granularity >1 (similar to utrie.c) */
850 newBlock=(newBlock+(UCNV_EXT_STAGE_3_GRANULARITY-1))&~(UCNV_EXT_STAGE_3_GRANULARITY-1);
851 extData->stage2[i2]=(uint16_t)(newBlock>>UCNV_EXT_STAGE_2_LEFT_SHIFT);
852
853 extData->stage3Top=newBlock+MBCS_STAGE_3_BLOCK_SIZE;
854 if(extData->stage3Top>LENGTHOF(extData->stage3)) {
855 fprintf(stderr, "error: too many stage 3 entries at U+%04x\n", (int)c);
856 exit(U_MEMORY_ALLOCATION_ERROR);
857 }
858 }
859
860 i3=((int32_t)extData->stage2[i2]<<UCNV_EXT_STAGE_2_LEFT_SHIFT)+nextOffset;
861 /*
862 * assume extData->stage3[i3]==0 because we get
863 * code points in strictly ascending order
864 */
865
866 if(value==UCNV_EXT_FROM_U_SUBCHAR1) {
867 /* <subchar1> SUB mapping, see getFromUBytesValue() and prepareFromUMappings() */
868 extData->stage3[i3]=1;
869
870 /*
871 * precompaction is not optimal for <subchar1> |2 mappings because
872 * stage3 values for them are all the same, unlike for other mappings
873 * which all have unique values;
874 * use a simple compaction of reusing a whole block filled with these
875 * mappings
876 */
877
878 /* is the entire block filled with <subchar1> |2 mappings? */
879 if(nextOffset==MBCS_STAGE_3_BLOCK_SIZE-1) {
880 for(min=i3-nextOffset;
881 min<i3 && extData->stage3[min]==1;
882 ++min) {}
883
884 if(min==i3) {
885 /* the entire block is filled with these mappings */
886 if(extData->stage3Sub1Block!=0) {
887 /* point to the previous such block and remove this block from stage3 */
888 extData->stage2[i2]=extData->stage3Sub1Block;
889 extData->stage3Top-=MBCS_STAGE_3_BLOCK_SIZE;
890 uprv_memset(extData->stage3+extData->stage3Top, 0, MBCS_STAGE_3_BLOCK_SIZE*2);
891 } else {
892 /* remember this block's stage2 entry */
893 extData->stage3Sub1Block=extData->stage2[i2];
894 }
895 }
896 }
897 } else {
898 if((i3b=extData->stage3bTop++)>=LENGTHOF(extData->stage3b)) {
899 fprintf(stderr, "error: too many stage 3b entries at U+%04x\n", (int)c);
900 exit(U_MEMORY_ALLOCATION_ERROR);
901 }
902
903 /* roundtrip or fallback mapping */
904 extData->stage3[i3]=(uint16_t)i3b;
905 extData->stage3b[i3b]=value;
906 }
907 }
908
909 static UBool
910 generateFromUTrie(CnvExtData *extData, UCMTable *table, int32_t mapLength) {
911 UCMapping *mappings, *m;
912 int32_t *map;
913 uint32_t value;
914 int32_t subStart, subLimit;
915
916 UChar32 *codePoints;
917 UChar32 c, next;
918
919 if(mapLength==0) {
920 return TRUE;
921 }
922
923 mappings=table->mappings;
924 map=table->reverseMap;
925
926 /*
927 * iterate over same-initial-code point mappings,
928 * enter the initial code point into the trie,
929 * and start a recursion on the corresponding mappings section
930 * with generateFromUTable()
931 */
932 m=mappings+map[0];
933 codePoints=UCM_GET_CODE_POINTS(table, m);
934 next=codePoints[0];
935 subLimit=0;
936 while(subLimit<mapLength) {
937 /* get a new subsection of mappings starting with the same code point */
938 subStart=subLimit;
939 c=next;
940 while(next==c && ++subLimit<mapLength) {
941 m=mappings+map[subLimit];
942 codePoints=UCM_GET_CODE_POINTS(table, m);
943 next=codePoints[0];
944 }
945
946 /*
947 * compute the value for this code point;
948 * if there is a mapping for this code point alone, it is at subStart
949 * because the table is sorted lexically
950 */
951 value=0;
952 m=mappings+map[subStart];
953 codePoints=UCM_GET_CODE_POINTS(table, m);
954 if(m->uLen==1) {
955 /* do not include this in generateFromUTable() */
956 ++subStart;
957
958 if(subStart<subLimit && mappings[map[subStart]].uLen==1) {
959 /* print error for multiple same-input-sequence mappings */
960 fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
961 ucm_printMapping(table, m, stderr);
962 ucm_printMapping(table, mappings+map[subStart], stderr);
963 return FALSE;
964 }
965
966 value=getFromUBytesValue(extData, table, m);
967 }
968
969 if(subStart==subLimit) {
970 /* write the result for this one code point */
971 addFromUTrieEntry(extData, c, value);
972 } else {
973 /* write the index to the subsection table */
974 addFromUTrieEntry(extData, c, (uint32_t)utm_countItems(extData->fromUTableValues));
975
976 /* recurse, starting from 16-bit-unit index 2, the first 16-bit unit after c */
977 if(!generateFromUTable(extData, table, subStart, subLimit, 2, value)) {
978 return FALSE;
979 }
980 }
981 }
982 return TRUE;
983 }
984
985 /*
986 * Generate the fromU data structures from the input table.
987 * The input table must be sorted, and all precision flags must be 0..3.
988 * This function will modify the table's reverseMap.
989 */
990 static UBool
991 makeFromUTable(CnvExtData *extData, UCMTable *table) {
992 uint16_t *stage1;
993 int32_t i, stage1Top, fromUCount;
994
995 fromUCount=prepareFromUMappings(table);
996
997 extData->fromUTableUChars=utm_open("cnv extension fromUTableUChars", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 2);
998 extData->fromUTableValues=utm_open("cnv extension fromUTableValues", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 4);
999 extData->fromUBytes=utm_open("cnv extension fromUBytes", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 1);
1000
1001 /* allocate all-unassigned stage blocks */
1002 extData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED;
1003 extData->stage3Top=MBCS_STAGE_3_FIRST_ASSIGNED;
1004
1005 /*
1006 * stage 3b stores only unique values, and in
1007 * index 0: 0 for "no mapping"
1008 * index 1: "no mapping" with preference for <subchar1> rather than <subchar>
1009 */
1010 extData->stage3b[1]=UCNV_EXT_FROM_U_SUBCHAR1;
1011 extData->stage3bTop=2;
1012
1013 /* allocate the first entry in the fromUTable because index 0 means "no result" */
1014 utm_alloc(extData->fromUTableUChars);
1015 utm_alloc(extData->fromUTableValues);
1016
1017 if(!generateFromUTrie(extData, table, fromUCount)) {
1018 return FALSE;
1019 }
1020
1021 /*
1022 * offset the stage 1 trie entries by stage1Top because they will
1023 * be stored in a single array
1024 */
1025 stage1=extData->stage1;
1026 stage1Top=extData->stage1Top;
1027 for(i=0; i<stage1Top; ++i) {
1028 stage1[i]=(uint16_t)(stage1[i]+stage1Top);
1029 }
1030
1031 return TRUE;
1032 }
1033
1034 /* -------------------------------------------------------------------------- */
1035
1036 static UBool
1037 CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
1038 CnvExtData *extData;
1039
1040 if(table->unicodeMask&UCNV_HAS_SURROGATES) {
1041 fprintf(stderr, "error: contains mappings for surrogate code points\n");
1042 return FALSE;
1043 }
1044
1045 staticData->conversionType=UCNV_MBCS;
1046
1047 extData=(CnvExtData *)cnvData;
1048
1049 /*
1050 * assume that the table is sorted
1051 *
1052 * call the functions in this order because
1053 * makeToUTable() modifies the original reverseMap,
1054 * makeFromUTable() writes a whole new mapping into reverseMap
1055 */
1056 return
1057 makeToUTable(extData, table) &&
1058 makeFromUTable(extData, table);
1059 }