]> git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/nfrule.cpp
ICU-6.2.22.tar.gz
[apple/icu.git] / icuSources / i18n / nfrule.cpp
1 /*
2 ******************************************************************************
3 * Copyright (C) 1997-2004, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 ******************************************************************************
6 * file name: nfrule.cpp
7 * encoding: US-ASCII
8 * tab size: 8 (not used)
9 * indentation:4
10 *
11 * Modification history
12 * Date Name Comments
13 * 10/11/2001 Doug Ported from ICU4J
14 */
15
16 #include "nfrule.h"
17
18 #if U_HAVE_RBNF
19
20 #include "unicode/rbnf.h"
21 #include "unicode/tblcoll.h"
22 #include "unicode/coleitr.h"
23 #include "unicode/uchar.h"
24 #include "nfrs.h"
25 #include "nfrlist.h"
26 #include "nfsubs.h"
27
28 #include "util.h"
29
30 U_NAMESPACE_BEGIN
31
32 extern const UChar* CSleftBracket;
33 extern const UChar* CSrightBracket;
34
35 NFRule::NFRule(const RuleBasedNumberFormat* _rbnf)
36 : baseValue((int32_t)0)
37 , radix(0)
38 , exponent(0)
39 , ruleText()
40 , sub1(NULL)
41 , sub2(NULL)
42 , formatter(_rbnf)
43 {
44 }
45
46 NFRule::~NFRule()
47 {
48 delete sub1;
49 delete sub2;
50 }
51
52 static const UChar gLeftBracket = 0x005b;
53 static const UChar gRightBracket = 0x005d;
54 static const UChar gColon = 0x003a;
55 static const UChar gZero = 0x0030;
56 static const UChar gNine = 0x0039;
57 static const UChar gSpace = 0x0020;
58 static const UChar gSlash = 0x002f;
59 static const UChar gGreaterThan = 0x003e;
60 static const UChar gComma = 0x002c;
61 static const UChar gDot = 0x002e;
62 static const UChar gTick = 0x0027;
63 static const UChar gMinus = 0x002d;
64 static const UChar gSemicolon = 0x003b;
65
66 static const UChar gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */
67 static const UChar gXDotX[] = {0x78, 0x2E, 0x78, 0}; /* "x.x" */
68 static const UChar gXDotZero[] = {0x78, 0x2E, 0x30, 0}; /* "x.0" */
69 static const UChar gZeroDotX[] = {0x30, 0x2E, 0x78, 0}; /* "0.x" */
70
71 static const UChar gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */
72 static const UChar gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */
73 static const UChar gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */
74 static const UChar gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */
75 static const UChar gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */
76 static const UChar gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */
77 static const UChar gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */
78 static const UChar gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */
79 static const UChar gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */
80 static const UChar gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */
81 static const UChar gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */
82 static const UChar gEmptyString[] = {0}; /* "" */
83 static const UChar gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
84
85 static const UChar * const tokenStrings[] = {
86 gLessLess, gLessPercent, gLessHash, gLessZero,
87 gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
88 gEqualPercent, gEqualHash, gEqualZero, NULL
89 };
90
91 void
92 NFRule::makeRules(UnicodeString& description,
93 const NFRuleSet *ruleSet,
94 const NFRule *predecessor,
95 const RuleBasedNumberFormat *rbnf,
96 NFRuleList& rules,
97 UErrorCode& status)
98 {
99 // we know we're making at least one rule, so go ahead and
100 // new it up and initialize its basevalue and divisor
101 // (this also strips the rule descriptor, if any, off the
102 // descripton string)
103 NFRule* rule1 = new NFRule(rbnf);
104 /* test for NULL */
105 if (rule1 == 0) {
106 status = U_MEMORY_ALLOCATION_ERROR;
107 return;
108 }
109 rule1->parseRuleDescriptor(description, status);
110
111 // check the description to see whether there's text enclosed
112 // in brackets
113 int32_t brack1 = description.indexOf(gLeftBracket);
114 int32_t brack2 = description.indexOf(gRightBracket);
115
116 // if the description doesn't contain a matched pair of brackets,
117 // or if it's of a type that doesn't recognize bracketed text,
118 // then leave the description alone, initialize the rule's
119 // rule text and substitutions, and return that rule
120 if (brack1 == -1 || brack2 == -1 || brack1 > brack2
121 || rule1->getType() == kProperFractionRule
122 || rule1->getType() == kNegativeNumberRule) {
123 rule1->ruleText = description;
124 rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
125 rules.add(rule1);
126 } else {
127 // if the description does contain a matched pair of brackets,
128 // then it's really shorthand for two rules (with one exception)
129 NFRule* rule2 = NULL;
130 UnicodeString sbuf;
131
132 // we'll actually only split the rule into two rules if its
133 // base value is an even multiple of its divisor (or it's one
134 // of the special rules)
135 if ((rule1->baseValue > 0
136 && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
137 || rule1->getType() == kImproperFractionRule
138 || rule1->getType() == kMasterRule) {
139
140 // if it passes that test, new up the second rule. If the
141 // rule set both rules will belong to is a fraction rule
142 // set, they both have the same base value; otherwise,
143 // increment the original rule's base value ("rule1" actually
144 // goes SECOND in the rule set's rule list)
145 rule2 = new NFRule(rbnf);
146 /* test for NULL */
147 if (rule2 == 0) {
148 status = U_MEMORY_ALLOCATION_ERROR;
149 return;
150 }
151 if (rule1->baseValue >= 0) {
152 rule2->baseValue = rule1->baseValue;
153 if (!ruleSet->isFractionRuleSet()) {
154 ++rule1->baseValue;
155 }
156 }
157
158 // if the description began with "x.x" and contains bracketed
159 // text, it describes both the improper fraction rule and
160 // the proper fraction rule
161 else if (rule1->getType() == kImproperFractionRule) {
162 rule2->setType(kProperFractionRule);
163 }
164
165 // if the description began with "x.0" and contains bracketed
166 // text, it describes both the master rule and the
167 // improper fraction rule
168 else if (rule1->getType() == kMasterRule) {
169 rule2->baseValue = rule1->baseValue;
170 rule1->setType(kImproperFractionRule);
171 }
172
173 // both rules have the same radix and exponent (i.e., the
174 // same divisor)
175 rule2->radix = rule1->radix;
176 rule2->exponent = rule1->exponent;
177
178 // rule2's rule text omits the stuff in brackets: initalize
179 // its rule text and substitutions accordingly
180 sbuf.append(description, 0, brack1);
181 if (brack2 + 1 < description.length()) {
182 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
183 }
184 rule2->ruleText.setTo(sbuf);
185 rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status);
186 }
187
188 // rule1's text includes the text in the brackets but omits
189 // the brackets themselves: initialize _its_ rule text and
190 // substitutions accordingly
191 sbuf.setTo(description, 0, brack1);
192 sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
193 if (brack2 + 1 < description.length()) {
194 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
195 }
196 rule1->ruleText.setTo(sbuf);
197 rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
198
199 // if we only have one rule, return it; if we have two, return
200 // a two-element array containing them (notice that rule2 goes
201 // BEFORE rule1 in the list: in all cases, rule2 OMITS the
202 // material in the brackets and rule1 INCLUDES the material
203 // in the brackets)
204 if (rule2 != NULL) {
205 rules.add(rule2);
206 }
207 rules.add(rule1);
208 }
209 }
210
211 /**
212 * This function parses the rule's rule descriptor (i.e., the base
213 * value and/or other tokens that precede the rule's rule text
214 * in the description) and sets the rule's base value, radix, and
215 * exponent according to the descriptor. (If the description doesn't
216 * include a rule descriptor, then this function sets everything to
217 * default values and the rule set sets the rule's real base value).
218 * @param description The rule's description
219 * @return If "description" included a rule descriptor, this is
220 * "description" with the descriptor and any trailing whitespace
221 * stripped off. Otherwise; it's "descriptor" unchangd.
222 */
223 void
224 NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
225 {
226 // the description consists of a rule descriptor and a rule body,
227 // separated by a colon. The rule descriptor is optional. If
228 // it's omitted, just set the base value to 0.
229 int32_t p = description.indexOf(gColon);
230 if (p == -1) {
231 setBaseValue((int32_t)0, status);
232 } else {
233 // copy the descriptor out into its own string and strip it,
234 // along with any trailing whitespace, out of the original
235 // description
236 UnicodeString descriptor;
237 descriptor.setTo(description, 0, p);
238
239 ++p;
240 while (p < description.length() && uprv_isRuleWhiteSpace(description.charAt(p))) {
241 ++p;
242 }
243 description.removeBetween(0, p);
244
245 // check first to see if the rule descriptor matches the token
246 // for one of the special rules. If it does, set the base
247 // value to the correct identfier value
248 if (descriptor == gMinusX) {
249 setType(kNegativeNumberRule);
250 }
251 else if (descriptor == gXDotX) {
252 setType(kImproperFractionRule);
253 }
254 else if (descriptor == gZeroDotX) {
255 setType(kProperFractionRule);
256 }
257 else if (descriptor == gXDotZero) {
258 setType(kMasterRule);
259 }
260
261 // if the rule descriptor begins with a digit, it's a descriptor
262 // for a normal rule
263 // since we don't have Long.parseLong, and this isn't much work anyway,
264 // just build up the value as we encounter the digits.
265 else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) {
266 int64_t val = 0;
267 p = 0;
268 UChar c = gSpace;
269
270 // begin parsing the descriptor: copy digits
271 // into "tempValue", skip periods, commas, and spaces,
272 // stop on a slash or > sign (or at the end of the string),
273 // and throw an exception on any other character
274 int64_t ll_10 = 10;
275 while (p < descriptor.length()) {
276 c = descriptor.charAt(p);
277 if (c >= gZero && c <= gNine) {
278 val = val * ll_10 + (int32_t)(c - gZero);
279 }
280 else if (c == gSlash || c == gGreaterThan) {
281 break;
282 }
283 else if (uprv_isRuleWhiteSpace(c) || c == gComma || c == gDot) {
284 }
285 else {
286 // throw new IllegalArgumentException("Illegal character in rule descriptor");
287 status = U_PARSE_ERROR;
288 return;
289 }
290 ++p;
291 }
292
293 // we have the base value, so set it
294 setBaseValue(val, status);
295
296 // if we stopped the previous loop on a slash, we're
297 // now parsing the rule's radix. Again, accumulate digits
298 // in tempValue, skip punctuation, stop on a > mark, and
299 // throw an exception on anything else
300 if (c == gSlash) {
301 val = 0;
302 ++p;
303 int64_t ll_10 = 10;
304 while (p < descriptor.length()) {
305 c = descriptor.charAt(p);
306 if (c >= gZero && c <= gNine) {
307 val = val * ll_10 + (int32_t)(c - gZero);
308 }
309 else if (c == gGreaterThan) {
310 break;
311 }
312 else if (uprv_isRuleWhiteSpace(c) || c == gComma || c == gDot) {
313 }
314 else {
315 // throw new IllegalArgumentException("Illegal character is rule descriptor");
316 status = U_PARSE_ERROR;
317 return;
318 }
319 ++p;
320 }
321
322 // tempValue now contain's the rule's radix. Set it
323 // accordingly, and recalculate the rule's exponent
324 radix = (int32_t)val;
325 if (radix == 0) {
326 // throw new IllegalArgumentException("Rule can't have radix of 0");
327 status = U_PARSE_ERROR;
328 }
329
330 exponent = expectedExponent();
331 }
332
333 // if we stopped the previous loop on a > sign, then continue
334 // for as long as we still see > signs. For each one,
335 // decrement the exponent (unless the exponent is already 0).
336 // If we see another character before reaching the end of
337 // the descriptor, that's also a syntax error.
338 if (c == gGreaterThan) {
339 while (p < descriptor.length()) {
340 c = descriptor.charAt(p);
341 if (c == gGreaterThan && exponent > 0) {
342 --exponent;
343 } else {
344 // throw new IllegalArgumentException("Illegal character in rule descriptor");
345 status = U_PARSE_ERROR;
346 return;
347 }
348 ++p;
349 }
350 }
351 }
352 }
353
354 // finally, if the rule body begins with an apostrophe, strip it off
355 // (this is generally used to put whitespace at the beginning of
356 // a rule's rule text)
357 if (description.length() > 0 && description.charAt(0) == gTick) {
358 description.removeBetween(0, 1);
359 }
360
361 // return the description with all the stuff we've just waded through
362 // stripped off the front. It now contains just the rule body.
363 // return description;
364 }
365
366 /**
367 * Searches the rule's rule text for the substitution tokens,
368 * creates the substitutions, and removes the substitution tokens
369 * from the rule's rule text.
370 * @param owner The rule set containing this rule
371 * @param predecessor The rule preseding this one in "owners" rule list
372 * @param ownersOwner The RuleBasedFormat that owns this rule
373 */
374 void
375 NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
376 const NFRule* predecessor,
377 const RuleBasedNumberFormat* rbnf,
378 UErrorCode& status)
379 {
380 if (U_SUCCESS(status)) {
381 sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status);
382 sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status);
383 }
384 }
385
386 /**
387 * Searches the rule's rule text for the first substitution token,
388 * creates a substitution based on it, and removes the token from
389 * the rule's rule text.
390 * @param owner The rule set containing this rule
391 * @param predecessor The rule preceding this one in the rule set's
392 * rule list
393 * @param ownersOwner The RuleBasedNumberFormat that owns this rule
394 * @return The newly-created substitution. This is never null; if
395 * the rule text doesn't contain any substitution tokens, this will
396 * be a NullSubstitution.
397 */
398 NFSubstitution *
399 NFRule::extractSubstitution(const NFRuleSet* ruleSet,
400 const NFRule* predecessor,
401 const RuleBasedNumberFormat* rbnf,
402 UErrorCode& status)
403 {
404 NFSubstitution* result = NULL;
405
406 // search the rule's rule text for the first two characters of
407 // a substitution token
408 int32_t subStart = indexOfAny(tokenStrings);
409 int32_t subEnd = subStart;
410
411 // if we didn't find one, create a null substitution positioned
412 // at the end of the rule text
413 if (subStart == -1) {
414 return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
415 ruleSet, rbnf, gEmptyString, status);
416 }
417
418 // special-case the ">>>" token, since searching for the > at the
419 // end will actually find the > in the middle
420 if (ruleText.indexOf(gGreaterGreaterGreater) == subStart) {
421 subEnd = subStart + 2;
422
423 // otherwise the substitution token ends with the same character
424 // it began with
425 } else {
426 subEnd = ruleText.indexOf(ruleText.charAt(subStart), subStart + 1);
427 }
428
429 // if we don't find the end of the token (i.e., if we're on a single,
430 // unmatched token character), create a null substitution positioned
431 // at the end of the rule
432 if (subEnd == -1) {
433 return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
434 ruleSet, rbnf, gEmptyString, status);
435 }
436
437 // if we get here, we have a real substitution token (or at least
438 // some text bounded by substitution token characters). Use
439 // makeSubstitution() to create the right kind of substitution
440 UnicodeString subToken;
441 subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
442 result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
443 rbnf, subToken, status);
444
445 // remove the substitution from the rule text
446 ruleText.removeBetween(subStart, subEnd+1);
447
448 return result;
449 }
450
451 /**
452 * Sets the rule's base value, and causes the radix and exponent
453 * to be recalculated. This is used during construction when we
454 * don't know the rule's base value until after it's been
455 * constructed. It should be used at any other time.
456 * @param The new base value for the rule.
457 */
458 void
459 NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
460 {
461 // set the base value
462 baseValue = newBaseValue;
463
464 // if this isn't a special rule, recalculate the radix and exponent
465 // (the radix always defaults to 10; if it's supposed to be something
466 // else, it's cleaned up by the caller and the exponent is
467 // recalculated again-- the only function that does this is
468 // NFRule.parseRuleDescriptor() )
469 if (baseValue >= 1) {
470 radix = 10;
471 exponent = expectedExponent();
472
473 // this function gets called on a fully-constructed rule whose
474 // description didn't specify a base value. This means it
475 // has substitutions, and some substitutions hold on to copies
476 // of the rule's divisor. Fix their copies of the divisor.
477 if (sub1 != NULL) {
478 sub1->setDivisor(radix, exponent, status);
479 }
480 if (sub2 != NULL) {
481 sub2->setDivisor(radix, exponent, status);
482 }
483
484 // if this is a special rule, its radix and exponent are basically
485 // ignored. Set them to "safe" default values
486 } else {
487 radix = 10;
488 exponent = 0;
489 }
490 }
491
492 /**
493 * This calculates the rule's exponent based on its radix and base
494 * value. This will be the highest power the radix can be raised to
495 * and still produce a result less than or equal to the base value.
496 */
497 int16_t
498 NFRule::expectedExponent() const
499 {
500 // since the log of 0, or the log base 0 of something, causes an
501 // error, declare the exponent in these cases to be 0 (we also
502 // deal with the special-rule identifiers here)
503 if (radix == 0 || baseValue < 1) {
504 return 0;
505 }
506
507 // we get rounding error in some cases-- for example, log 1000 / log 10
508 // gives us 1.9999999996 instead of 2. The extra logic here is to take
509 // that into account
510 int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
511 int64_t temp = util64_pow(radix, tempResult + 1);
512 if (temp <= baseValue) {
513 tempResult += 1;
514 }
515 return tempResult;
516 }
517
518 /**
519 * Searches the rule's rule text for any of the specified strings.
520 * @param strings An array of strings to search the rule's rule
521 * text for
522 * @return The index of the first match in the rule's rule text
523 * (i.e., the first substring in the rule's rule text that matches
524 * _any_ of the strings in "strings"). If none of the strings in
525 * "strings" is found in the rule's rule text, returns -1.
526 */
527 int32_t
528 NFRule::indexOfAny(const UChar* const strings[]) const
529 {
530 int result = -1;
531 for (int i = 0; strings[i]; i++) {
532 int32_t pos = ruleText.indexOf(*strings[i]);
533 if (pos != -1 && (result == -1 || pos < result)) {
534 result = pos;
535 }
536 }
537 return result;
538 }
539
540 //-----------------------------------------------------------------------
541 // boilerplate
542 //-----------------------------------------------------------------------
543
544 /**
545 * Tests two rules for equality.
546 * @param that The rule to compare this one against
547 * @return True is the two rules are functionally equivalent
548 */
549 UBool
550 NFRule::operator==(const NFRule& rhs) const
551 {
552 return baseValue == rhs.baseValue
553 && radix == rhs.radix
554 && exponent == rhs.exponent
555 && ruleText == rhs.ruleText
556 && *sub1 == *rhs.sub1
557 && *sub2 == *rhs.sub2;
558 }
559
560 /**
561 * Returns a textual representation of the rule. This won't
562 * necessarily be the same as the description that this rule
563 * was created with, but it will produce the same result.
564 * @return A textual description of the rule
565 */
566 static void util_append64(UnicodeString& result, int64_t n)
567 {
568 UChar buffer[256];
569 int32_t len = util64_tou(n, buffer, sizeof(buffer));
570 UnicodeString temp(buffer, len);
571 result.append(temp);
572 }
573
574 void
575 NFRule::appendRuleText(UnicodeString& result) const
576 {
577 switch (getType()) {
578 case kNegativeNumberRule: result.append(gMinusX); break;
579 case kImproperFractionRule: result.append(gXDotX); break;
580 case kProperFractionRule: result.append(gZeroDotX); break;
581 case kMasterRule: result.append(gXDotZero); break;
582 default:
583 // for a normal rule, write out its base value, and if the radix is
584 // something other than 10, write out the radix (with the preceding
585 // slash, of course). Then calculate the expected exponent and if
586 // if isn't the same as the actual exponent, write an appropriate
587 // number of > signs. Finally, terminate the whole thing with
588 // a colon.
589 util_append64(result, baseValue);
590 if (radix != 10) {
591 result.append(gSlash);
592 util_append64(result, radix);
593 }
594 int numCarets = expectedExponent() - exponent;
595 for (int i = 0; i < numCarets; i++) {
596 result.append(gGreaterThan);
597 }
598 break;
599 }
600 result.append(gColon);
601 result.append(gSpace);
602
603 // if the rule text begins with a space, write an apostrophe
604 // (whitespace after the rule descriptor is ignored; the
605 // apostrophe is used to make the whitespace significant)
606 if (ruleText.startsWith(gSpace) && sub1->getPos() != 0) {
607 result.append(gTick);
608 }
609
610 // now, write the rule's rule text, inserting appropriate
611 // substitution tokens in the appropriate places
612 UnicodeString ruleTextCopy;
613 ruleTextCopy.setTo(ruleText);
614
615 UnicodeString temp;
616 sub2->toString(temp);
617 ruleTextCopy.insert(sub2->getPos(), temp);
618 sub1->toString(temp);
619 ruleTextCopy.insert(sub1->getPos(), temp);
620
621 result.append(ruleTextCopy);
622
623 // and finally, top the whole thing off with a semicolon and
624 // return the result
625 result.append(gSemicolon);
626 }
627
628 //-----------------------------------------------------------------------
629 // formatting
630 //-----------------------------------------------------------------------
631
632 /**
633 * Formats the number, and inserts the resulting text into
634 * toInsertInto.
635 * @param number The number being formatted
636 * @param toInsertInto The string where the resultant text should
637 * be inserted
638 * @param pos The position in toInsertInto where the resultant text
639 * should be inserted
640 */
641 void
642 NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const
643 {
644 // first, insert the rule's rule text into toInsertInto at the
645 // specified position, then insert the results of the substitutions
646 // into the right places in toInsertInto (notice we do the
647 // substitutions in reverse order so that the offsets don't get
648 // messed up)
649 toInsertInto.insert(pos, ruleText);
650 sub2->doSubstitution(number, toInsertInto, pos);
651 sub1->doSubstitution(number, toInsertInto, pos);
652 }
653
654 /**
655 * Formats the number, and inserts the resulting text into
656 * toInsertInto.
657 * @param number The number being formatted
658 * @param toInsertInto The string where the resultant text should
659 * be inserted
660 * @param pos The position in toInsertInto where the resultant text
661 * should be inserted
662 */
663 void
664 NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const
665 {
666 // first, insert the rule's rule text into toInsertInto at the
667 // specified position, then insert the results of the substitutions
668 // into the right places in toInsertInto
669 // [again, we have two copies of this routine that do the same thing
670 // so that we don't sacrifice precision in a long by casting it
671 // to a double]
672 toInsertInto.insert(pos, ruleText);
673 sub2->doSubstitution(number, toInsertInto, pos);
674 sub1->doSubstitution(number, toInsertInto, pos);
675 }
676
677 /**
678 * Used by the owning rule set to determine whether to invoke the
679 * rollback rule (i.e., whether this rule or the one that precedes
680 * it in the rule set's list should be used to format the number)
681 * @param The number being formatted
682 * @return True if the rule set should use the rule that precedes
683 * this one in its list; false if it should use this rule
684 */
685 UBool
686 NFRule::shouldRollBack(double number) const
687 {
688 // we roll back if the rule contains a modulus substitution,
689 // the number being formatted is an even multiple of the rule's
690 // divisor, and the rule's base value is NOT an even multiple
691 // of its divisor
692 // In other words, if the original description had
693 // 100: << hundred[ >>];
694 // that expands into
695 // 100: << hundred;
696 // 101: << hundred >>;
697 // internally. But when we're formatting 200, if we use the rule
698 // at 101, which would normally apply, we get "two hundred zero".
699 // To prevent this, we roll back and use the rule at 100 instead.
700 // This is the logic that makes this happen: the rule at 101 has
701 // a modulus substitution, its base value isn't an even multiple
702 // of 100, and the value we're trying to format _is_ an even
703 // multiple of 100. This is called the "rollback rule."
704 if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) {
705 int64_t re = util64_pow(radix, exponent);
706 return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
707 }
708 return FALSE;
709 }
710
711 //-----------------------------------------------------------------------
712 // parsing
713 //-----------------------------------------------------------------------
714
715 /**
716 * Attempts to parse the string with this rule.
717 * @param text The string being parsed
718 * @param parsePosition On entry, the value is ignored and assumed to
719 * be 0. On exit, this has been updated with the position of the first
720 * character not consumed by matching the text against this rule
721 * (if this rule doesn't match the text at all, the parse position
722 * if left unchanged (presumably at 0) and the function returns
723 * new Long(0)).
724 * @param isFractionRule True if this rule is contained within a
725 * fraction rule set. This is only used if the rule has no
726 * substitutions.
727 * @return If this rule matched the text, this is the rule's base value
728 * combined appropriately with the results of parsing the substitutions.
729 * If nothing matched, this is new Long(0) and the parse position is
730 * left unchanged. The result will be an instance of Long if the
731 * result is an integer and Double otherwise. The result is never null.
732 */
733 #ifdef RBNF_DEBUG
734 #include <stdio.h>
735
736 static void dumpUS(FILE* f, const UnicodeString& us) {
737 int len = us.length();
738 char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
739 us.extract(0, len, buf);
740 buf[len] = 0;
741 fprintf(f, "%s", buf);
742 uprv_free(buf); //delete[] buf;
743 }
744 #endif
745
746 UBool
747 NFRule::doParse(const UnicodeString& text,
748 ParsePosition& parsePosition,
749 UBool isFractionRule,
750 double upperBound,
751 Formattable& resVal) const
752 {
753 // internally we operate on a copy of the string being parsed
754 // (because we're going to change it) and use our own ParsePosition
755 ParsePosition pp;
756 UnicodeString workText(text);
757
758 // check to see whether the text before the first substitution
759 // matches the text at the beginning of the string being
760 // parsed. If it does, strip that off the front of workText;
761 // otherwise, dump out with a mismatch
762 UnicodeString prefix;
763 prefix.setTo(ruleText, 0, sub1->getPos());
764
765 #ifdef RBNF_DEBUG
766 fprintf(stderr, "doParse %x ", this);
767 {
768 UnicodeString rt;
769 appendRuleText(rt);
770 dumpUS(stderr, rt);
771 }
772
773 fprintf(stderr, " text: '", this);
774 dumpUS(stderr, text);
775 fprintf(stderr, "' prefix: '");
776 dumpUS(stderr, prefix);
777 #endif
778 stripPrefix(workText, prefix, pp);
779 int32_t prefixLength = text.length() - workText.length();
780
781 #ifdef RBNF_DEBUG
782 fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos());
783 #endif
784
785 if (pp.getIndex() == 0 && sub1->getPos() != 0) {
786 // commented out because ParsePosition doesn't have error index in 1.1.x
787 // restored for ICU4C port
788 parsePosition.setErrorIndex(pp.getErrorIndex());
789 resVal.setLong(0);
790 return TRUE;
791 }
792
793 // this is the fun part. The basic guts of the rule-matching
794 // logic is matchToDelimiter(), which is called twice. The first
795 // time it searches the input string for the rule text BETWEEN
796 // the substitutions and tries to match the intervening text
797 // in the input string with the first substitution. If that
798 // succeeds, it then calls it again, this time to look for the
799 // rule text after the second substitution and to match the
800 // intervening input text against the second substitution.
801 //
802 // For example, say we have a rule that looks like this:
803 // first << middle >> last;
804 // and input text that looks like this:
805 // first one middle two last
806 // First we use stripPrefix() to match "first " in both places and
807 // strip it off the front, leaving
808 // one middle two last
809 // Then we use matchToDelimiter() to match " middle " and try to
810 // match "one" against a substitution. If it's successful, we now
811 // have
812 // two last
813 // We use matchToDelimiter() a second time to match " last" and
814 // try to match "two" against a substitution. If "two" matches
815 // the substitution, we have a successful parse.
816 //
817 // Since it's possible in many cases to find multiple instances
818 // of each of these pieces of rule text in the input string,
819 // we need to try all the possible combinations of these
820 // locations. This prevents us from prematurely declaring a mismatch,
821 // and makes sure we match as much input text as we can.
822 int highWaterMark = 0;
823 double result = 0;
824 int start = 0;
825 double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
826
827 UnicodeString temp;
828 do {
829 // our partial parse result starts out as this rule's base
830 // value. If it finds a successful match, matchToDelimiter()
831 // will compose this in some way with what it gets back from
832 // the substitution, giving us a new partial parse result
833 pp.setIndex(0);
834
835 temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos());
836 double partialResult = matchToDelimiter(workText, start, tempBaseValue,
837 temp, pp, sub1,
838 upperBound);
839
840 // if we got a successful match (or were trying to match a
841 // null substitution), pp is now pointing at the first unmatched
842 // character. Take note of that, and try matchToDelimiter()
843 // on the input text again
844 if (pp.getIndex() != 0 || sub1->isNullSubstitution()) {
845 start = pp.getIndex();
846
847 UnicodeString workText2;
848 workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
849 ParsePosition pp2;
850
851 // the second matchToDelimiter() will compose our previous
852 // partial result with whatever it gets back from its
853 // substitution if there's a successful match, giving us
854 // a real result
855 temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos());
856 partialResult = matchToDelimiter(workText2, 0, partialResult,
857 temp, pp2, sub2,
858 upperBound);
859
860 // if we got a successful match on this second
861 // matchToDelimiter() call, update the high-water mark
862 // and result (if necessary)
863 if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) {
864 if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
865 highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
866 result = partialResult;
867 }
868 }
869 // commented out because ParsePosition doesn't have error index in 1.1.x
870 // restored for ICU4C port
871 else {
872 int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex();
873 if (temp> parsePosition.getErrorIndex()) {
874 parsePosition.setErrorIndex(temp);
875 }
876 }
877 }
878 // commented out because ParsePosition doesn't have error index in 1.1.x
879 // restored for ICU4C port
880 else {
881 int32_t temp = sub1->getPos() + pp.getErrorIndex();
882 if (temp > parsePosition.getErrorIndex()) {
883 parsePosition.setErrorIndex(temp);
884 }
885 }
886 // keep trying to match things until the outer matchToDelimiter()
887 // call fails to make a match (each time, it picks up where it
888 // left off the previous time)
889 } while (sub1->getPos() != sub2->getPos()
890 && pp.getIndex() > 0
891 && pp.getIndex() < workText.length()
892 && pp.getIndex() != start);
893
894 // update the caller's ParsePosition with our high-water mark
895 // (i.e., it now points at the first character this function
896 // didn't match-- the ParsePosition is therefore unchanged if
897 // we didn't match anything)
898 parsePosition.setIndex(highWaterMark);
899 // commented out because ParsePosition doesn't have error index in 1.1.x
900 // restored for ICU4C port
901 if (highWaterMark > 0) {
902 parsePosition.setErrorIndex(0);
903 }
904
905 // this is a hack for one unusual condition: Normally, whether this
906 // rule belong to a fraction rule set or not is handled by its
907 // substitutions. But if that rule HAS NO substitutions, then
908 // we have to account for it here. By definition, if the matching
909 // rule in a fraction rule set has no substitutions, its numerator
910 // is 1, and so the result is the reciprocal of its base value.
911 if (isFractionRule &&
912 highWaterMark > 0 &&
913 sub1->isNullSubstitution()) {
914 result = 1 / result;
915 }
916
917 resVal.setDouble(result);
918 return TRUE; // ??? do we need to worry if it is a long or a double?
919 }
920
921 /**
922 * This function is used by parse() to match the text being parsed
923 * against a possible prefix string. This function
924 * matches characters from the beginning of the string being parsed
925 * to characters from the prospective prefix. If they match, pp is
926 * updated to the first character not matched, and the result is
927 * the unparsed part of the string. If they don't match, the whole
928 * string is returned, and pp is left unchanged.
929 * @param text The string being parsed
930 * @param prefix The text to match against
931 * @param pp On entry, ignored and assumed to be 0. On exit, points
932 * to the first unmatched character (assuming the whole prefix matched),
933 * or is unchanged (if the whole prefix didn't match).
934 * @return If things match, this is the unparsed part of "text";
935 * if they didn't match, this is "text".
936 */
937 void
938 NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
939 {
940 // if the prefix text is empty, dump out without doing anything
941 if (prefix.length() != 0) {
942 // use prefixLength() to match the beginning of
943 // "text" against "prefix". This function returns the
944 // number of characters from "text" that matched (or 0 if
945 // we didn't match the whole prefix)
946 int32_t pfl = prefixLength(text, prefix);
947 if (pfl != 0) {
948 // if we got a successful match, update the parse position
949 // and strip the prefix off of "text"
950 pp.setIndex(pp.getIndex() + pfl);
951 text.remove(0, pfl);
952 }
953 }
954 }
955
956 /**
957 * Used by parse() to match a substitution and any following text.
958 * "text" is searched for instances of "delimiter". For each instance
959 * of delimiter, the intervening text is tested to see whether it
960 * matches the substitution. The longest match wins.
961 * @param text The string being parsed
962 * @param startPos The position in "text" where we should start looking
963 * for "delimiter".
964 * @param baseValue A partial parse result (often the rule's base value),
965 * which is combined with the result from matching the substitution
966 * @param delimiter The string to search "text" for.
967 * @param pp Ignored and presumed to be 0 on entry. If there's a match,
968 * on exit this will point to the first unmatched character.
969 * @param sub If we find "delimiter" in "text", this substitution is used
970 * to match the text between the beginning of the string and the
971 * position of "delimiter." (If "delimiter" is the empty string, then
972 * this function just matches against this substitution and updates
973 * everything accordingly.)
974 * @param upperBound When matching the substitution, it will only
975 * consider rules with base values lower than this value.
976 * @return If there's a match, this is the result of composing
977 * baseValue with the result of matching the substitution. Otherwise,
978 * this is new Long(0). It's never null. If the result is an integer,
979 * this will be an instance of Long; otherwise, it's an instance of
980 * Double.
981 *
982 * !!! note {dlf} in point of fact, in the java code the caller always converts
983 * the result to a double, so we might as well return one.
984 */
985 double
986 NFRule::matchToDelimiter(const UnicodeString& text,
987 int32_t startPos,
988 double _baseValue,
989 const UnicodeString& delimiter,
990 ParsePosition& pp,
991 const NFSubstitution* sub,
992 double upperBound) const
993 {
994 // if "delimiter" contains real (i.e., non-ignorable) text, search
995 // it for "delimiter" beginning at "start". If that succeeds, then
996 // use "sub"'s doParse() method to match the text before the
997 // instance of "delimiter" we just found.
998 if (!allIgnorable(delimiter)) {
999 ParsePosition tempPP;
1000 Formattable result;
1001
1002 // use findText() to search for "delimiter". It returns a two-
1003 // element array: element 0 is the position of the match, and
1004 // element 1 is the number of characters that matched
1005 // "delimiter".
1006 int32_t dLen;
1007 int32_t dPos = findText(text, delimiter, startPos, &dLen);
1008
1009 // if findText() succeeded, isolate the text preceding the
1010 // match, and use "sub" to match that text
1011 while (dPos >= 0) {
1012 UnicodeString subText;
1013 subText.setTo(text, 0, dPos);
1014 if (subText.length() > 0) {
1015 UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
1016 #if UCONFIG_NO_COLLATION
1017 FALSE,
1018 #else
1019 formatter->isLenient(),
1020 #endif
1021 result);
1022
1023 // if the substitution could match all the text up to
1024 // where we found "delimiter", then this function has
1025 // a successful match. Bump the caller's parse position
1026 // to point to the first character after the text
1027 // that matches "delimiter", and return the result
1028 // we got from parsing the substitution.
1029 if (success && tempPP.getIndex() == dPos) {
1030 pp.setIndex(dPos + dLen);
1031 return result.getDouble();
1032 }
1033 // commented out because ParsePosition doesn't have error index in 1.1.x
1034 // restored for ICU4C port
1035 else {
1036 if (tempPP.getErrorIndex() > 0) {
1037 pp.setErrorIndex(tempPP.getErrorIndex());
1038 } else {
1039 pp.setErrorIndex(tempPP.getIndex());
1040 }
1041 }
1042 }
1043
1044 // if we didn't match the substitution, search for another
1045 // copy of "delimiter" in "text" and repeat the loop if
1046 // we find it
1047 tempPP.setIndex(0);
1048 dPos = findText(text, delimiter, dPos + dLen, &dLen);
1049 }
1050 // if we make it here, this was an unsuccessful match, and we
1051 // leave pp unchanged and return 0
1052 pp.setIndex(0);
1053 return 0;
1054
1055 // if "delimiter" is empty, or consists only of ignorable characters
1056 // (i.e., is semantically empty), thwe we obviously can't search
1057 // for "delimiter". Instead, just use "sub" to parse as much of
1058 // "text" as possible.
1059 } else {
1060 ParsePosition tempPP;
1061 Formattable result;
1062
1063 // try to match the whole string against the substitution
1064 UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
1065 #if UCONFIG_NO_COLLATION
1066 FALSE,
1067 #else
1068 formatter->isLenient(),
1069 #endif
1070 result);
1071 if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) {
1072 // if there's a successful match (or it's a null
1073 // substitution), update pp to point to the first
1074 // character we didn't match, and pass the result from
1075 // sub.doParse() on through to the caller
1076 pp.setIndex(tempPP.getIndex());
1077 return result.getDouble();
1078 }
1079 // commented out because ParsePosition doesn't have error index in 1.1.x
1080 // restored for ICU4C port
1081 else {
1082 pp.setErrorIndex(tempPP.getErrorIndex());
1083 }
1084
1085 // and if we get to here, then nothing matched, so we return
1086 // 0 and leave pp alone
1087 return 0;
1088 }
1089 }
1090
1091 /**
1092 * Used by stripPrefix() to match characters. If lenient parse mode
1093 * is off, this just calls startsWith(). If lenient parse mode is on,
1094 * this function uses CollationElementIterators to match characters in
1095 * the strings (only primary-order differences are significant in
1096 * determining whether there's a match).
1097 * @param str The string being tested
1098 * @param prefix The text we're hoping to see at the beginning
1099 * of "str"
1100 * @return If "prefix" is found at the beginning of "str", this
1101 * is the number of characters in "str" that were matched (this
1102 * isn't necessarily the same as the length of "prefix" when matching
1103 * text with a collator). If there's no match, this is 0.
1104 */
1105 int32_t
1106 NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix) const
1107 {
1108 // if we're looking for an empty prefix, it obviously matches
1109 // zero characters. Just go ahead and return 0.
1110 if (prefix.length() == 0) {
1111 return 0;
1112 }
1113
1114 #if !UCONFIG_NO_COLLATION
1115 // go through all this grief if we're in lenient-parse mode
1116 if (formatter->isLenient()) {
1117 // get the formatter's collator and use it to create two
1118 // collation element iterators, one over the target string
1119 // and another over the prefix (right now, we'll throw an
1120 // exception if the collator we get back from the formatter
1121 // isn't a RuleBasedCollator, because RuleBasedCollator defines
1122 // the CollationElementIterator protocol. Hopefully, this
1123 // will change someday.)
1124 RuleBasedCollator* collator = (RuleBasedCollator*)formatter->getCollator();
1125 CollationElementIterator* strIter = collator->createCollationElementIterator(str);
1126 CollationElementIterator* prefixIter = collator->createCollationElementIterator(prefix);
1127
1128 UErrorCode err = U_ZERO_ERROR;
1129
1130 // The original code was problematic. Consider this match:
1131 // prefix = "fifty-"
1132 // string = " fifty-7"
1133 // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1134 // in the string. Unfortunately, we were getting a match, and then computing where
1135 // the match terminated by rematching the string. The rematch code was using as an
1136 // initial guess the substring of string between 0 and prefix.length. Because of
1137 // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1138 // the position before the hyphen in the string. Recursing down, we then parsed the
1139 // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7).
1140 // This was not pretty, especially since the string "fifty-7" parsed just fine.
1141 //
1142 // We have newer APIs now, so we can use calls on the iterator to determine what we
1143 // matched up to. If we terminate because we hit the last element in the string,
1144 // our match terminates at this length. If we terminate because we hit the last element
1145 // in the target, our match terminates at one before the element iterator position.
1146
1147 // match collation elements between the strings
1148 int32_t oStr = strIter->next(err);
1149 int32_t oPrefix = prefixIter->next(err);
1150
1151 while (oPrefix != CollationElementIterator::NULLORDER) {
1152 // skip over ignorable characters in the target string
1153 while (CollationElementIterator::primaryOrder(oStr) == 0
1154 && oStr != CollationElementIterator::NULLORDER) {
1155 oStr = strIter->next(err);
1156 }
1157
1158 // skip over ignorable characters in the prefix
1159 while (CollationElementIterator::primaryOrder(oPrefix) == 0
1160 && oPrefix != CollationElementIterator::NULLORDER) {
1161 oPrefix = prefixIter->next(err);
1162 }
1163
1164 // dlf: move this above following test, if we consume the
1165 // entire target, aren't we ok even if the source was also
1166 // entirely consumed?
1167
1168 // if skipping over ignorables brought to the end of
1169 // the prefix, we DID match: drop out of the loop
1170 if (oPrefix == CollationElementIterator::NULLORDER) {
1171 break;
1172 }
1173
1174 // if skipping over ignorables brought us to the end
1175 // of the target string, we didn't match and return 0
1176 if (oStr == CollationElementIterator::NULLORDER) {
1177 delete prefixIter;
1178 delete strIter;
1179 return 0;
1180 }
1181
1182 // match collation elements from the two strings
1183 // (considering only primary differences). If we
1184 // get a mismatch, dump out and return 0
1185 if (CollationElementIterator::primaryOrder(oStr)
1186 != CollationElementIterator::primaryOrder(oPrefix)) {
1187 delete prefixIter;
1188 delete strIter;
1189 return 0;
1190
1191 // otherwise, advance to the next character in each string
1192 // and loop (we drop out of the loop when we exhaust
1193 // collation elements in the prefix)
1194 } else {
1195 oStr = strIter->next(err);
1196 oPrefix = prefixIter->next(err);
1197 }
1198 }
1199
1200 int32_t result = strIter->getOffset();
1201 if (oStr != CollationElementIterator::NULLORDER) {
1202 --result; // back over character that we don't want to consume;
1203 }
1204
1205 #ifdef RBNF_DEBUG
1206 fprintf(stderr, "prefix length: %d\n", result);
1207 #endif
1208 delete prefixIter;
1209 delete strIter;
1210
1211 return result;
1212 #if 0
1213 //----------------------------------------------------------------
1214 // JDK 1.2-specific API call
1215 // return strIter.getOffset();
1216 //----------------------------------------------------------------
1217 // JDK 1.1 HACK (take out for 1.2-specific code)
1218
1219 // if we make it to here, we have a successful match. Now we
1220 // have to find out HOW MANY characters from the target string
1221 // matched the prefix (there isn't necessarily a one-to-one
1222 // mapping between collation elements and characters).
1223 // In JDK 1.2, there's a simple getOffset() call we can use.
1224 // In JDK 1.1, on the other hand, we have to go through some
1225 // ugly contortions. First, use the collator to compare the
1226 // same number of characters from the prefix and target string.
1227 // If they're equal, we're done.
1228 collator->setStrength(Collator::PRIMARY);
1229 if (str.length() >= prefix.length()) {
1230 UnicodeString temp;
1231 temp.setTo(str, 0, prefix.length());
1232 if (collator->equals(temp, prefix)) {
1233 #ifdef RBNF_DEBUG
1234 fprintf(stderr, "returning: %d\n", prefix.length());
1235 #endif
1236 return prefix.length();
1237 }
1238 }
1239
1240 // if they're not equal, then we have to compare successively
1241 // larger and larger substrings of the target string until we
1242 // get to one that matches the prefix. At that point, we know
1243 // how many characters matched the prefix, and we can return.
1244 int32_t p = 1;
1245 while (p <= str.length()) {
1246 UnicodeString temp;
1247 temp.setTo(str, 0, p);
1248 if (collator->equals(temp, prefix)) {
1249 return p;
1250 } else {
1251 ++p;
1252 }
1253 }
1254
1255 // SHOULD NEVER GET HERE!!!
1256 return 0;
1257 //----------------------------------------------------------------
1258 #endif
1259
1260 // If lenient parsing is turned off, forget all that crap above.
1261 // Just use String.startsWith() and be done with it.
1262 } else
1263 #endif
1264 {
1265 if (str.startsWith(prefix)) {
1266 return prefix.length();
1267 } else {
1268 return 0;
1269 }
1270 }
1271 }
1272
1273 /**
1274 * Searches a string for another string. If lenient parsing is off,
1275 * this just calls indexOf(). If lenient parsing is on, this function
1276 * uses CollationElementIterator to match characters, and only
1277 * primary-order differences are significant in determining whether
1278 * there's a match.
1279 * @param str The string to search
1280 * @param key The string to search "str" for
1281 * @param startingAt The index into "str" where the search is to
1282 * begin
1283 * @return A two-element array of ints. Element 0 is the position
1284 * of the match, or -1 if there was no match. Element 1 is the
1285 * number of characters in "str" that matched (which isn't necessarily
1286 * the same as the length of "key")
1287 */
1288 int32_t
1289 NFRule::findText(const UnicodeString& str,
1290 const UnicodeString& key,
1291 int32_t startingAt,
1292 int32_t* length) const
1293 {
1294 #if !UCONFIG_NO_COLLATION
1295 // if lenient parsing is turned off, this is easy: just call
1296 // String.indexOf() and we're done
1297 if (!formatter->isLenient()) {
1298 *length = key.length();
1299 return str.indexOf(key, startingAt);
1300
1301 // but if lenient parsing is turned ON, we've got some work
1302 // ahead of us
1303 } else
1304 #endif
1305 {
1306 //----------------------------------------------------------------
1307 // JDK 1.1 HACK (take out of 1.2-specific code)
1308
1309 // in JDK 1.2, CollationElementIterator provides us with an
1310 // API to map between character offsets and collation elements
1311 // and we can do this by marching through the string comparing
1312 // collation elements. We can't do that in JDK 1.1. Insted,
1313 // we have to go through this horrible slow mess:
1314 int32_t p = startingAt;
1315 int32_t keyLen = 0;
1316
1317 // basically just isolate smaller and smaller substrings of
1318 // the target string (each running to the end of the string,
1319 // and with the first one running from startingAt to the end)
1320 // and then use prefixLength() to see if the search key is at
1321 // the beginning of each substring. This is excruciatingly
1322 // slow, but it will locate the key and tell use how long the
1323 // matching text was.
1324 UnicodeString temp;
1325 while (p < str.length() && keyLen == 0) {
1326 temp.setTo(str, p, str.length() - p);
1327 keyLen = prefixLength(temp, key);
1328 if (keyLen != 0) {
1329 *length = keyLen;
1330 return p;
1331 }
1332 ++p;
1333 }
1334 // if we make it to here, we didn't find it. Return -1 for the
1335 // location. The length should be ignored, but set it to 0,
1336 // which should be "safe"
1337 *length = 0;
1338 return -1;
1339
1340 //----------------------------------------------------------------
1341 // JDK 1.2 version of this routine
1342 //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator();
1343 //
1344 //CollationElementIterator strIter = collator.getCollationElementIterator(str);
1345 //CollationElementIterator keyIter = collator.getCollationElementIterator(key);
1346 //
1347 //int keyStart = -1;
1348 //
1349 //str.setOffset(startingAt);
1350 //
1351 //int oStr = strIter.next();
1352 //int oKey = keyIter.next();
1353 //while (oKey != CollationElementIterator.NULLORDER) {
1354 // while (oStr != CollationElementIterator.NULLORDER &&
1355 // CollationElementIterator.primaryOrder(oStr) == 0)
1356 // oStr = strIter.next();
1357 //
1358 // while (oKey != CollationElementIterator.NULLORDER &&
1359 // CollationElementIterator.primaryOrder(oKey) == 0)
1360 // oKey = keyIter.next();
1361 //
1362 // if (oStr == CollationElementIterator.NULLORDER) {
1363 // return new int[] { -1, 0 };
1364 // }
1365 //
1366 // if (oKey == CollationElementIterator.NULLORDER) {
1367 // break;
1368 // }
1369 //
1370 // if (CollationElementIterator.primaryOrder(oStr) ==
1371 // CollationElementIterator.primaryOrder(oKey)) {
1372 // keyStart = strIter.getOffset();
1373 // oStr = strIter.next();
1374 // oKey = keyIter.next();
1375 // } else {
1376 // if (keyStart != -1) {
1377 // keyStart = -1;
1378 // keyIter.reset();
1379 // } else {
1380 // oStr = strIter.next();
1381 // }
1382 // }
1383 //}
1384 //
1385 //if (oKey == CollationElementIterator.NULLORDER) {
1386 // return new int[] { keyStart, strIter.getOffset() - keyStart };
1387 //} else {
1388 // return new int[] { -1, 0 };
1389 //}
1390 }
1391 }
1392
1393 /**
1394 * Checks to see whether a string consists entirely of ignorable
1395 * characters.
1396 * @param str The string to test.
1397 * @return true if the string is empty of consists entirely of
1398 * characters that the number formatter's collator says are
1399 * ignorable at the primary-order level. false otherwise.
1400 */
1401 UBool
1402 NFRule::allIgnorable(const UnicodeString& str) const
1403 {
1404 // if the string is empty, we can just return true
1405 if (str.length() == 0) {
1406 return TRUE;
1407 }
1408
1409 #if !UCONFIG_NO_COLLATION
1410 // if lenient parsing is turned on, walk through the string with
1411 // a collation element iterator and make sure each collation
1412 // element is 0 (ignorable) at the primary level
1413 if (formatter->isLenient()) {
1414 RuleBasedCollator* collator = (RuleBasedCollator*)(formatter->getCollator());
1415 CollationElementIterator* iter = collator->createCollationElementIterator(str);
1416
1417 UErrorCode err = U_ZERO_ERROR;
1418 int32_t o = iter->next(err);
1419 while (o != CollationElementIterator::NULLORDER
1420 && CollationElementIterator::primaryOrder(o) == 0) {
1421 o = iter->next(err);
1422 }
1423
1424 delete iter;
1425 return o == CollationElementIterator::NULLORDER;
1426 }
1427 #endif
1428
1429 // if lenient parsing is turned off, there is no such thing as
1430 // an ignorable character: return true only if the string is empty
1431 return FALSE;
1432 }
1433
1434 U_NAMESPACE_END
1435
1436 /* U_HAVE_RBNF */
1437 #endif
1438
1439