2 *******************************************************************************
3 * Copyright (C) 1997-2004, International Business Machines Corporation and *
4 * others. All Rights Reserved. *
5 *******************************************************************************
9 * Modification History:
11 * Date Name Description
12 * 02/05/97 clhuang Creation.
13 * 03/28/97 aliu Made highly questionable fix to computeFields to
14 * handle DST correctly.
15 * 04/22/97 aliu Cleaned up code drastically. Added monthLength().
16 * Finished unimplemented parts of computeTime() for
17 * week-based date determination. Removed quetionable
18 * fix and wrote correct fix for computeFields() and
19 * daylight time handling. Rewrote inDaylightTime()
20 * and computeFields() to handle sensitive Daylight to
21 * Standard time transitions correctly.
22 * 05/08/97 aliu Added code review changes. Fixed isLeapYear() to
24 * 08/12/97 aliu Added equivalentTo. Misc other fixes. Updated
25 * add() from Java source.
26 * 07/28/98 stephen Sync up with JDK 1.2
27 * 09/14/98 stephen Changed type of kOneDay, kOneWeek to double.
29 * 10/15/99 aliu Fixed j31, incorrect WEEK_OF_YEAR computation.
30 * 10/15/99 aliu Fixed j32, cannot set date to Feb 29 2000 AD.
31 * {JDK bug 4210209 4209272}
32 * 11/15/99 weiv Added YEAR_WOY and DOW_LOCAL computation
33 * to timeToFields method, updated kMinValues, kMaxValues & kLeastMaxValues
34 * 12/09/99 aliu Fixed j81, calculation errors and roll bugs
36 * 01/24/2000 aliu Revised computeJulianDay for YEAR YEAR_WOY WOY.
37 ********************************************************************************
40 #include "unicode/utypes.h"
43 #if !UCONFIG_NO_FORMATTING
45 #include "unicode/gregocal.h"
50 // *****************************************************************************
51 // class GregorianCalendar
52 // *****************************************************************************
55 * Note that the Julian date used here is not a true Julian date, since
56 * it is measured from midnight, not noon. This value is the Julian
57 * day number of January 1, 1970 (Gregorian calendar) at noon UTC. [LIU]
60 static const int32_t kNumDays
[]
61 = {0,31,59,90,120,151,181,212,243,273,304,334}; // 0-based, for day-in-year
62 static const int32_t kLeapNumDays
[]
63 = {0,31,60,91,121,152,182,213,244,274,305,335}; // 0-based, for day-in-year
64 static const int32_t kMonthLength
[]
65 = {31,28,31,30,31,30,31,31,30,31,30,31}; // 0-based
66 static const int32_t kLeapMonthLength
[]
67 = {31,29,31,30,31,30,31,31,30,31,30,31}; // 0-based
69 // setTimeInMillis() limits the Julian day range to +/-7F000000.
70 // This would seem to limit the year range to:
71 // ms=+183882168921600000 jd=7f000000 December 20, 5828963 AD
72 // ms=-184303902528000000 jd=81000000 September 20, 5838270 BC
73 // HOWEVER, CalendarRegressionTest/Test4167060 shows that the actual
74 // range limit on the year field is smaller (~ +/-140000). [alan 3.0]
76 static const int32_t kGregorianCalendarLimits
[UCAL_FIELD_COUNT
][4] = {
77 // Minimum Greatest Least Maximum
79 { 0, 0, 1, 1 }, // ERA
80 { 1, 1, 140742, 144683 }, // YEAR
81 { 0, 0, 11, 11 }, // MONTH
82 { 1, 1, 52, 53 }, // WEEK_OF_YEAR
83 { 0, 0, 4, 6 }, // WEEK_OF_MONTH
84 { 1, 1, 28, 31 }, // DAY_OF_MONTH
85 { 1, 1, 365, 366 }, // DAY_OF_YEAR
86 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// DAY_OF_WEEK
87 { -1, -1, 4, 6 }, // DAY_OF_WEEK_IN_MONTH
88 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// AM_PM
89 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// HOUR
90 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// HOUR_OF_DAY
91 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// MINUTE
92 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// SECOND
93 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// MILLISECOND
94 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// ZONE_OFFSET
95 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// DST_OFFSET
96 { -140742, -140742, 140742, 144683 }, // YEAR_WOY
97 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// DOW_LOCAL
98 { -140742, -140742, 140742, 144683 }, // EXTENDED_YEAR
99 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// JULIAN_DAY
100 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1} // MILLISECONDS_IN_DAY
106 * Field name Minimum Minimum Maximum Maximum
107 * ---------- ------- ------- ------- -------
109 * YEAR 1 1 140742 144683
111 * WEEK_OF_YEAR 1 1 52 53
112 * WEEK_OF_MONTH 0 0 4 6
113 * DAY_OF_MONTH 1 1 28 31
114 * DAY_OF_YEAR 1 1 365 366
115 * DAY_OF_WEEK 1 1 7 7
116 * DAY_OF_WEEK_IN_MONTH -1 -1 4 6
119 * HOUR_OF_DAY 0 0 23 23
122 * MILLISECOND 0 0 999 999
123 * ZONE_OFFSET -12* -12* 12* 12*
124 * DST_OFFSET 0 0 1* 1*
125 * YEAR_WOY 1 1 140742 144683
128 * (*) In units of one-hour
131 #if defined( U_DEBUG_CALSVC ) || defined (U_DEBUG_CAL)
137 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(GregorianCalendar
)
139 // 00:00:00 UTC, October 15, 1582, expressed in ms from the epoch.
140 // Note that only Italy and other Catholic countries actually
141 // observed this cutover. Most other countries followed in
142 // the next few centuries, some as late as 1928. [LIU]
143 // in Java, -12219292800000L
144 //const UDate GregorianCalendar::kPapalCutover = -12219292800000L;
145 static const uint32_t kCutoverJulianDay
= 2299161;
146 static const UDate kPapalCutover
= (2299161.0 - kEpochStartAsJulianDay
) * U_MILLIS_PER_DAY
;
147 static const UDate kPapalCutoverJulian
= (2299161.0 - kEpochStartAsJulianDay
);
149 // -------------------------------------
151 GregorianCalendar::GregorianCalendar(UErrorCode
& status
)
152 : Calendar(TimeZone::createDefault(), Locale::getDefault(), status
),
153 fGregorianCutover(kPapalCutover
),
154 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
155 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
157 setTimeInMillis(getNow(), status
);
160 // -------------------------------------
162 GregorianCalendar::GregorianCalendar(TimeZone
* zone
, UErrorCode
& status
)
163 : Calendar(zone
, Locale::getDefault(), status
),
164 fGregorianCutover(kPapalCutover
),
165 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
166 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
168 setTimeInMillis(getNow(), status
);
171 // -------------------------------------
173 GregorianCalendar::GregorianCalendar(const TimeZone
& zone
, UErrorCode
& status
)
174 : Calendar(zone
, Locale::getDefault(), status
),
175 fGregorianCutover(kPapalCutover
),
176 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
177 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
179 setTimeInMillis(getNow(), status
);
182 // -------------------------------------
184 GregorianCalendar::GregorianCalendar(const Locale
& aLocale
, UErrorCode
& status
)
185 : Calendar(TimeZone::createDefault(), aLocale
, status
),
186 fGregorianCutover(kPapalCutover
),
187 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
188 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
190 setTimeInMillis(getNow(), status
);
193 // -------------------------------------
195 GregorianCalendar::GregorianCalendar(TimeZone
* zone
, const Locale
& aLocale
,
197 : Calendar(zone
, aLocale
, status
),
198 fGregorianCutover(kPapalCutover
),
199 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
200 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
202 setTimeInMillis(getNow(), status
);
205 // -------------------------------------
207 GregorianCalendar::GregorianCalendar(const TimeZone
& zone
, const Locale
& aLocale
,
209 : Calendar(zone
, aLocale
, status
),
210 fGregorianCutover(kPapalCutover
),
211 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
212 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
214 setTimeInMillis(getNow(), status
);
217 // -------------------------------------
219 GregorianCalendar::GregorianCalendar(int32_t year
, int32_t month
, int32_t date
,
221 : Calendar(TimeZone::createDefault(), Locale::getDefault(), status
),
222 fGregorianCutover(kPapalCutover
),
223 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
224 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
227 set(UCAL_YEAR
, year
);
228 set(UCAL_MONTH
, month
);
229 set(UCAL_DATE
, date
);
232 // -------------------------------------
234 GregorianCalendar::GregorianCalendar(int32_t year
, int32_t month
, int32_t date
,
235 int32_t hour
, int32_t minute
, UErrorCode
& status
)
236 : Calendar(TimeZone::createDefault(), Locale::getDefault(), status
),
237 fGregorianCutover(kPapalCutover
),
238 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
239 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
242 set(UCAL_YEAR
, year
);
243 set(UCAL_MONTH
, month
);
244 set(UCAL_DATE
, date
);
245 set(UCAL_HOUR_OF_DAY
, hour
);
246 set(UCAL_MINUTE
, minute
);
249 // -------------------------------------
251 GregorianCalendar::GregorianCalendar(int32_t year
, int32_t month
, int32_t date
,
252 int32_t hour
, int32_t minute
, int32_t second
,
254 : Calendar(TimeZone::createDefault(), Locale::getDefault(), status
),
255 fGregorianCutover(kPapalCutover
),
256 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
257 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
260 set(UCAL_YEAR
, year
);
261 set(UCAL_MONTH
, month
);
262 set(UCAL_DATE
, date
);
263 set(UCAL_HOUR_OF_DAY
, hour
);
264 set(UCAL_MINUTE
, minute
);
265 set(UCAL_SECOND
, second
);
268 // -------------------------------------
270 GregorianCalendar::~GregorianCalendar()
274 // -------------------------------------
276 GregorianCalendar::GregorianCalendar(const GregorianCalendar
&source
)
278 fGregorianCutover(source
.fGregorianCutover
),
279 fCutoverJulianDay(source
.fCutoverJulianDay
), fNormalizedGregorianCutover(source
.fNormalizedGregorianCutover
), fGregorianCutoverYear(source
.fGregorianCutoverYear
),
280 fIsGregorian(source
.fIsGregorian
), fInvertGregorian(source
.fInvertGregorian
)
284 // -------------------------------------
286 Calendar
* GregorianCalendar::clone() const
288 return new GregorianCalendar(*this);
291 // -------------------------------------
294 GregorianCalendar::operator=(const GregorianCalendar
&right
)
298 Calendar::operator=(right
);
299 fGregorianCutover
= right
.fGregorianCutover
;
300 fNormalizedGregorianCutover
= right
.fNormalizedGregorianCutover
;
301 fGregorianCutoverYear
= right
.fGregorianCutoverYear
;
302 fCutoverJulianDay
= right
.fCutoverJulianDay
;
307 // -------------------------------------
309 UBool
GregorianCalendar::isEquivalentTo(const Calendar
& other
) const
311 // Calendar override.
312 return Calendar::isEquivalentTo(other
) &&
313 fGregorianCutover
== ((GregorianCalendar
*)&other
)->fGregorianCutover
;
316 // -------------------------------------
319 GregorianCalendar::setGregorianChange(UDate date
, UErrorCode
& status
)
321 if (U_FAILURE(status
))
324 fGregorianCutover
= date
;
326 // Precompute two internal variables which we use to do the actual
327 // cutover computations. These are the normalized cutover, which is the
328 // midnight at or before the cutover, and the cutover year. The
329 // normalized cutover is in pure date milliseconds; it contains no time
330 // of day or timezone component, and it used to compare against other
332 int32_t cutoverDay
= (int32_t)Math::floorDivide(fGregorianCutover
, (double)kOneDay
);
333 fNormalizedGregorianCutover
= cutoverDay
* kOneDay
;
335 // Handle the rare case of numeric overflow. If the user specifies a
336 // change of UDate(Long.MIN_VALUE), in order to get a pure Gregorian
337 // calendar, then the epoch day is -106751991168, which when multiplied
338 // by ONE_DAY gives 9223372036794351616 -- the negative value is too
339 // large for 64 bits, and overflows into a positive value. We correct
340 // this by using the next day, which for all intents is semantically
342 if (cutoverDay
< 0 && fNormalizedGregorianCutover
> 0) {
343 fNormalizedGregorianCutover
= (cutoverDay
+ 1) * kOneDay
;
346 // Normalize the year so BC values are represented as 0 and negative
348 GregorianCalendar
*cal
= new GregorianCalendar(getTimeZone(), status
);
351 status
= U_MEMORY_ALLOCATION_ERROR
;
354 if(U_FAILURE(status
))
356 cal
->setTime(date
, status
);
357 fGregorianCutoverYear
= cal
->get(UCAL_YEAR
, status
);
358 if (cal
->get(UCAL_ERA
, status
) == BC
)
359 fGregorianCutoverYear
= 1 - fGregorianCutoverYear
;
360 fCutoverJulianDay
= cutoverDay
;
365 void GregorianCalendar::handleComputeFields(int32_t julianDay
, UErrorCode
& status
) {
366 int32_t eyear
, month
, dayOfMonth
, dayOfYear
;
369 if(U_FAILURE(status
)) {
373 #if defined (U_DEBUG_CAL)
374 fprintf(stderr
, "%s:%d: jd%d- (greg's %d)- [cut=%d]\n",
375 __FILE__
, __LINE__
, julianDay
, getGregorianDayOfYear(), fCutoverJulianDay
);
379 if (julianDay
>= fCutoverJulianDay
) {
380 month
= getGregorianMonth();
381 dayOfMonth
= getGregorianDayOfMonth();
382 dayOfYear
= getGregorianDayOfYear();
383 eyear
= getGregorianYear();
385 // The Julian epoch day (not the same as Julian Day)
386 // is zero on Saturday December 30, 0 (Gregorian).
387 int32_t julianEpochDay
= julianDay
- (kJan1_1JulianDay
- 2);
388 eyear
= (int32_t) Math::floorDivide(4*julianEpochDay
+ 1464, 1461);
390 // Compute the Julian calendar day number for January 1, eyear
391 int32_t january1
= 365*(eyear
-1) + Math::floorDivide(eyear
-1, (int32_t)4);
392 dayOfYear
= (julianEpochDay
- january1
); // 0-based
394 // Julian leap years occurred historically every 4 years starting
395 // with 8 AD. Before 8 AD the spacing is irregular; every 3 years
396 // from 45 BC to 9 BC, and then none until 8 AD. However, we don't
397 // implement this historical detail; instead, we implement the
398 // computatinally cleaner proleptic calendar, which assumes
399 // consistent 4-year cycles throughout time.
400 UBool isLeap
= ((eyear
&0x3) == 0); // equiv. to (eyear%4 == 0)
402 // Common Julian/Gregorian calculation
403 int32_t correction
= 0;
404 int32_t march1
= isLeap
? 60 : 59; // zero-based DOY for March 1
405 if (dayOfYear
>= march1
) {
406 correction
= isLeap
? 1 : 2;
408 month
= (12 * (dayOfYear
+ correction
) + 6) / 367; // zero-based month
409 dayOfMonth
= dayOfYear
- (isLeap
?kLeapNumDays
[month
]:kNumDays
[month
]) + 1; // one-based DOM
411 #if defined (U_DEBUG_CAL)
412 // fprintf(stderr, "%d - %d[%d] + 1\n", dayOfYear, isLeap?kLeapNumDays[month]:kNumDays[month], month );
413 // fprintf(stderr, "%s:%d: greg's HCF %d -> %d/%d/%d not %d/%d/%d\n",
414 // __FILE__, __LINE__,julianDay,
415 // eyear,month,dayOfMonth,
416 // getGregorianYear(), getGregorianMonth(), getGregorianDayOfMonth() );
417 fprintf(stderr
, "%s:%d: doy %d (greg's %d)- [cut=%d]\n",
418 __FILE__
, __LINE__
, dayOfYear
, getGregorianDayOfYear(), fCutoverJulianDay
);
423 // [j81] if we are after the cutover in its year, shift the day of the year
424 if((eyear
== fGregorianCutoverYear
) && (julianDay
>= fCutoverJulianDay
)) {
425 //from handleComputeMonthStart
426 int32_t gregShift
= Grego::gregorianShift(eyear
);
427 #if defined (U_DEBUG_CAL)
428 fprintf(stderr
, "%s:%d: gregorian shift %d ::: doy%d => %d [cut=%d]\n",
429 __FILE__
, __LINE__
,gregShift
, dayOfYear
, dayOfYear
+gregShift
, fCutoverJulianDay
);
431 dayOfYear
+= gregShift
;
434 internalSet(UCAL_MONTH
, month
);
435 internalSet(UCAL_DAY_OF_MONTH
, dayOfMonth
);
436 internalSet(UCAL_DAY_OF_YEAR
, dayOfYear
);
437 internalSet(UCAL_EXTENDED_YEAR
, eyear
);
443 internalSet(UCAL_ERA
, era
);
444 internalSet(UCAL_YEAR
, eyear
);
448 // -------------------------------------
451 GregorianCalendar::getGregorianChange() const
453 return fGregorianCutover
;
456 // -------------------------------------
459 GregorianCalendar::isLeapYear(int32_t year
) const
461 // MSVC complains bitterly if we try to use Grego::isLeapYear here
462 // NOTE: year&0x3 == year%4
463 return (year
>= fGregorianCutoverYear
?
464 (((year
&0x3) == 0) && ((year%100
!= 0) || (year%400
== 0))) : // Gregorian
465 ((year
&0x3) == 0)); // Julian
468 // -------------------------------------
470 int32_t GregorianCalendar::handleComputeJulianDay(UCalendarDateFields bestField
)
472 fInvertGregorian
= FALSE
;
474 int32_t jd
= Calendar::handleComputeJulianDay(bestField
);
476 if((bestField
== UCAL_WEEK_OF_YEAR
) && // if we are doing WOY calculations, we are counting relative to Jan 1 *julian*
477 (internalGet(UCAL_EXTENDED_YEAR
)==fGregorianCutoverYear
) &&
478 jd
>= fCutoverJulianDay
) {
479 fInvertGregorian
= TRUE
; // So that the Julian Jan 1 will be used in handleComputeMonthStart
480 return Calendar::handleComputeJulianDay(bestField
);
484 // The following check handles portions of the cutover year BEFORE the
485 // cutover itself happens.
486 //if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) { /* cutoverJulianDay)) { */
487 if ((fIsGregorian
==TRUE
) != (jd
>= fCutoverJulianDay
)) { /* cutoverJulianDay)) { */
488 #if defined (U_DEBUG_CAL)
489 fprintf(stderr
, "%s:%d: jd [invert] %d\n",
490 __FILE__
, __LINE__
, jd
);
492 fInvertGregorian
= TRUE
;
493 jd
= Calendar::handleComputeJulianDay(bestField
);
494 #if defined (U_DEBUG_CAL)
495 fprintf(stderr
, "%s:%d: fIsGregorian %s, fInvertGregorian %s - ",
496 __FILE__
, __LINE__
,fIsGregorian
?"T":"F", fInvertGregorian
?"T":"F");
497 fprintf(stderr
, " jd NOW %d\n",
501 #if defined (U_DEBUG_CAL)
502 fprintf(stderr
, "%s:%d: jd [==] %d - %sfIsGregorian %sfInvertGregorian, %d\n",
503 __FILE__
, __LINE__
, jd
, fIsGregorian
?"T":"F", fInvertGregorian
?"T":"F", bestField
);
507 if(fIsGregorian
&& (internalGet(UCAL_EXTENDED_YEAR
) == fGregorianCutoverYear
)) {
508 int32_t gregShift
= Grego::gregorianShift(internalGet(UCAL_EXTENDED_YEAR
));
509 if (bestField
== UCAL_DAY_OF_YEAR
) {
510 #if defined (U_DEBUG_CAL)
511 fprintf(stderr
, "%s:%d: [DOY%d] gregorian shift of JD %d += %d\n",
512 __FILE__
, __LINE__
, fFields
[bestField
],jd
, gregShift
);
515 } else if ( bestField
== UCAL_WEEK_OF_MONTH
) {
516 int32_t weekShift
= 14;
517 #if defined (U_DEBUG_CAL)
518 fprintf(stderr
, "%s:%d: [WOY/WOM] gregorian week shift of %d += %d\n",
519 __FILE__
, __LINE__
, jd
, weekShift
);
521 jd
+= weekShift
; // shift by weeks for week based fields.
528 int32_t GregorianCalendar::handleComputeMonthStart(int32_t eyear
, int32_t month
,
530 UBool
/* useMonth */) const
532 GregorianCalendar
*nonConstThis
= (GregorianCalendar
*)this; // cast away const
534 // If the month is out of range, adjust it into range, and
535 // modify the extended year value accordingly.
536 if (month
< 0 || month
> 11) {
537 eyear
+= Math::floorDivide(month
, 12, month
);
540 UBool isLeap
= eyear%4
== 0;
542 int32_t julianDay
= 365*y
+ Math::floorDivide(y
, 4) + (kJan1_1JulianDay
- 3);
544 nonConstThis
->fIsGregorian
= (eyear
>= fGregorianCutoverYear
);
545 #if defined (U_DEBUG_CAL)
546 fprintf(stderr
, "%s:%d: (hcms%d/%d) fIsGregorian %s, fInvertGregorian %s\n",
547 __FILE__
, __LINE__
, eyear
,month
, fIsGregorian
?"T":"F", fInvertGregorian
?"T":"F");
549 if (fInvertGregorian
) {
550 nonConstThis
->fIsGregorian
= !fIsGregorian
;
553 isLeap
= isLeap
&& ((eyear%100
!= 0) || (eyear%400
== 0));
554 // Add 2 because Gregorian calendar starts 2 days after
556 int32_t gregShift
= Grego::gregorianShift(eyear
);
557 #if defined (U_DEBUG_CAL)
558 fprintf(stderr
, "%s:%d: (hcms%d/%d) gregorian shift of %d += %d\n",
559 __FILE__
, __LINE__
, eyear
, month
, julianDay
, gregShift
);
561 julianDay
+= gregShift
;
564 // At this point julianDay indicates the day BEFORE the first
565 // day of January 1, <eyear> of either the Julian or Gregorian
569 julianDay
+= isLeap
?kLeapNumDays
[month
]:kNumDays
[month
];
575 int32_t GregorianCalendar::handleGetMonthLength(int32_t extendedYear
, int32_t month
) const
577 return isLeapYear(extendedYear
) ? kLeapMonthLength
[month
] : kMonthLength
[month
];
580 int32_t GregorianCalendar::handleGetYearLength(int32_t eyear
) const {
581 return isLeapYear(eyear
) ? 366 : 365;
586 GregorianCalendar::monthLength(int32_t month
) const
588 int32_t year
= internalGet(UCAL_EXTENDED_YEAR
);
589 return handleGetMonthLength(year
, month
);
592 // -------------------------------------
595 GregorianCalendar::monthLength(int32_t month
, int32_t year
) const
597 return isLeapYear(year
) ? kLeapMonthLength
[month
] : kMonthLength
[month
];
600 // -------------------------------------
603 GregorianCalendar::yearLength(int32_t year
) const
605 return isLeapYear(year
) ? 366 : 365;
608 // -------------------------------------
611 GregorianCalendar::yearLength() const
613 return isLeapYear(internalGet(UCAL_YEAR
)) ? 366 : 365;
616 // -------------------------------------
619 * After adjustments such as add(MONTH), add(YEAR), we don't want the
620 * month to jump around. E.g., we don't want Jan 31 + 1 month to go to Mar
621 * 3, we want it to go to Feb 28. Adjustments which might run into this
622 * problem call this method to retain the proper month.
625 GregorianCalendar::pinDayOfMonth()
627 int32_t monthLen
= monthLength(internalGet(UCAL_MONTH
));
628 int32_t dom
= internalGet(UCAL_DATE
);
630 set(UCAL_DATE
, monthLen
);
633 // -------------------------------------
637 GregorianCalendar::validateFields() const
639 for (int32_t field
= 0; field
< UCAL_FIELD_COUNT
; field
++) {
640 // Ignore DATE and DAY_OF_YEAR which are handled below
641 if (field
!= UCAL_DATE
&&
642 field
!= UCAL_DAY_OF_YEAR
&&
643 isSet((UCalendarDateFields
)field
) &&
644 ! boundsCheck(internalGet((UCalendarDateFields
)field
), (UCalendarDateFields
)field
))
648 // Values differ in Least-Maximum and Maximum should be handled
650 if (isSet(UCAL_DATE
)) {
651 int32_t date
= internalGet(UCAL_DATE
);
652 if (date
< getMinimum(UCAL_DATE
) ||
653 date
> monthLength(internalGet(UCAL_MONTH
))) {
658 if (isSet(UCAL_DAY_OF_YEAR
)) {
659 int32_t days
= internalGet(UCAL_DAY_OF_YEAR
);
660 if (days
< 1 || days
> yearLength()) {
665 // Handle DAY_OF_WEEK_IN_MONTH, which must not have the value zero.
666 // We've checked against minimum and maximum above already.
667 if (isSet(UCAL_DAY_OF_WEEK_IN_MONTH
) &&
668 0 == internalGet(UCAL_DAY_OF_WEEK_IN_MONTH
)) {
675 // -------------------------------------
678 GregorianCalendar::boundsCheck(int32_t value
, UCalendarDateFields field
) const
680 return value
>= getMinimum(field
) && value
<= getMaximum(field
);
683 // -------------------------------------
686 GregorianCalendar::getEpochDay(UErrorCode
& status
)
689 // Divide by 1000 (convert to seconds) in order to prevent overflow when
690 // dealing with UDate(Long.MIN_VALUE) and UDate(Long.MAX_VALUE).
691 double wallSec
= internalGetTime()/1000 + (internalGet(UCAL_ZONE_OFFSET
) + internalGet(UCAL_DST_OFFSET
))/1000;
693 return Math::floorDivide(wallSec
, kOneDay
/1000.0);
696 // -------------------------------------
699 // -------------------------------------
702 * Compute the julian day number of the day BEFORE the first day of
703 * January 1, year 1 of the given calendar. If julianDay == 0, it
704 * specifies (Jan. 1, 1) - 1, in whatever calendar we are using (Julian
707 double GregorianCalendar::computeJulianDayOfYear(UBool isGregorian
,
708 int32_t year
, UBool
& isLeap
) {
709 isLeap
= year%4
== 0;
710 int32_t y
= year
- 1;
711 double julianDay
= 365.0*y
+ Math::floorDivide(y
, 4) + (kJan1_1JulianDay
- 3);
714 isLeap
= isLeap
&& ((year%100
!= 0) || (year%400
== 0));
715 // Add 2 because Gregorian calendar starts 2 days after Julian calendar
716 julianDay
+= Grego::gregorianShift(year
);
723 // * Compute the day of week, relative to the first day of week, from
724 // * 0..6, of the current DOW_LOCAL or DAY_OF_WEEK fields. This is
725 // * equivalent to get(DOW_LOCAL) - 1.
727 // int32_t GregorianCalendar::computeRelativeDOW() const {
728 // int32_t relDow = 0;
729 // if (fStamp[UCAL_DOW_LOCAL] > fStamp[UCAL_DAY_OF_WEEK]) {
730 // relDow = internalGet(UCAL_DOW_LOCAL) - 1; // 1-based
731 // } else if (fStamp[UCAL_DAY_OF_WEEK] != kUnset) {
732 // relDow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek();
733 // if (relDow < 0) relDow += 7;
739 // * Compute the day of week, relative to the first day of week,
740 // * from 0..6 of the given julian day.
742 // int32_t GregorianCalendar::computeRelativeDOW(double julianDay) const {
743 // int32_t relDow = julianDayToDayOfWeek(julianDay) - getFirstDayOfWeek();
751 // * Compute the DOY using the WEEK_OF_YEAR field and the julian day
752 // * of the day BEFORE January 1 of a year (a return value from
753 // * computeJulianDayOfYear).
755 // int32_t GregorianCalendar::computeDOYfromWOY(double julianDayOfYear) const {
756 // // Compute DOY from day of week plus week of year
758 // // Find the day of the week for the first of this year. This
759 // // is zero-based, with 0 being the locale-specific first day of
760 // // the week. Add 1 to get first day of year.
761 // int32_t fdy = computeRelativeDOW(julianDayOfYear + 1);
764 // // Compute doy of first (relative) DOW of WOY 1
765 // (((7 - fdy) < getMinimalDaysInFirstWeek())
766 // ? (8 - fdy) : (1 - fdy))
768 // // Adjust for the week number.
769 // + (7 * (internalGet(UCAL_WEEK_OF_YEAR) - 1))
771 // // Adjust for the DOW
772 // + computeRelativeDOW();
775 // -------------------------------------
778 GregorianCalendar::millisToJulianDay(UDate millis
)
780 return (double)kEpochStartAsJulianDay
+ Math::floorDivide(millis
, (double)kOneDay
);
783 // -------------------------------------
786 GregorianCalendar::julianDayToMillis(double julian
)
788 return (UDate
) ((julian
- kEpochStartAsJulianDay
) * (double) kOneDay
);
791 // -------------------------------------
794 GregorianCalendar::aggregateStamp(int32_t stamp_a
, int32_t stamp_b
)
796 return (((stamp_a
!= kUnset
&& stamp_b
!= kUnset
)
797 ? uprv_max(stamp_a
, stamp_b
)
801 // -------------------------------------
804 * Roll a field by a signed amount.
805 * Note: This will be made public later. [LIU]
809 GregorianCalendar::roll(EDateFields field
, int32_t amount
, UErrorCode
& status
) {
810 roll((UCalendarDateFields
) field
, amount
, status
);
814 GregorianCalendar::roll(UCalendarDateFields field
, int32_t amount
, UErrorCode
& status
)
816 if((amount
== 0) || U_FAILURE(status
)) {
820 // J81 processing. (gregorian cutover)
821 UBool inCutoverMonth
= FALSE
;
822 int32_t cMonthLen
=0; // 'c' for cutover; in days
823 int32_t cDayOfMonth
=0; // no discontinuity: [0, cMonthLen)
824 double cMonthStart
=0.0; // in ms
826 // Common code - see if we're in the cutover month of the cutover year
827 if(get(UCAL_EXTENDED_YEAR
, status
) == fGregorianCutoverYear
) {
829 case UCAL_DAY_OF_MONTH
:
830 case UCAL_WEEK_OF_MONTH
:
832 int32_t max
= monthLength(internalGet(UCAL_MONTH
));
833 UDate t
= internalGetTime();
834 // We subtract 1 from the DAY_OF_MONTH to make it zero-based, and an
835 // additional 10 if we are after the cutover. Thus the monthStart
836 // value will be correct iff we actually are in the cutover month.
837 cDayOfMonth
= internalGet(UCAL_DAY_OF_MONTH
) - ((t
>= fGregorianCutover
) ? 10 : 0);
838 cMonthStart
= t
- ((cDayOfMonth
- 1) * kOneDay
);
839 // A month containing the cutover is 10 days shorter.
840 if ((cMonthStart
< fGregorianCutover
) &&
841 (cMonthStart
+ (cMonthLen
=(max
-10))*kOneDay
>= fGregorianCutover
)) {
842 inCutoverMonth
= TRUE
;
851 case UCAL_WEEK_OF_YEAR
: {
852 // Unlike WEEK_OF_MONTH, WEEK_OF_YEAR never shifts the day of the
853 // week. Also, rolling the week of the year can have seemingly
854 // strange effects simply because the year of the week of year
855 // may be different from the calendar year. For example, the
856 // date Dec 28, 1997 is the first day of week 1 of 1998 (if
857 // weeks start on Sunday and the minimal days in first week is
859 int32_t woy
= get(UCAL_WEEK_OF_YEAR
, status
);
860 // Get the ISO year, which matches the week of year. This
861 // may be one year before or after the calendar year.
862 int32_t isoYear
= get(UCAL_YEAR_WOY
, status
);
863 int32_t isoDoy
= internalGet(UCAL_DAY_OF_YEAR
);
864 if (internalGet(UCAL_MONTH
) == UCAL_JANUARY
) {
866 isoDoy
+= handleGetYearLength(isoYear
);
870 isoDoy
-= handleGetYearLength(isoYear
- 1);
874 // Do fast checks to avoid unnecessary computation:
875 if (woy
< 1 || woy
> 52) {
876 // Determine the last week of the ISO year.
877 // We do this using the standard formula we use
878 // everywhere in this file. If we can see that the
879 // days at the end of the year are going to fall into
880 // week 1 of the next year, we drop the last week by
881 // subtracting 7 from the last day of the year.
882 int32_t lastDoy
= handleGetYearLength(isoYear
);
883 int32_t lastRelDow
= (lastDoy
- isoDoy
+ internalGet(UCAL_DAY_OF_WEEK
) -
884 getFirstDayOfWeek()) % 7;
885 if (lastRelDow
< 0) lastRelDow
+= 7;
886 if ((6 - lastRelDow
) >= getMinimalDaysInFirstWeek()) lastDoy
-= 7;
887 int32_t lastWoy
= weekNumber(lastDoy
, lastRelDow
+ 1);
888 woy
= ((woy
+ lastWoy
- 1) % lastWoy
) + 1;
890 set(UCAL_WEEK_OF_YEAR
, woy
);
891 set(UCAL_YEAR_WOY
,isoYear
);
895 case UCAL_DAY_OF_MONTH
:
896 if( !inCutoverMonth
) {
897 Calendar::roll(field
, amount
, status
);
900 // [j81] 1582 special case for DOM
901 // The default computation works except when the current month
902 // contains the Gregorian cutover. We handle this special case
903 // here. [j81 - aliu]
904 double monthLen
= cMonthLen
* kOneDay
;
905 double msIntoMonth
= uprv_fmod(internalGetTime() - cMonthStart
+
906 amount
* kOneDay
, monthLen
);
907 if (msIntoMonth
< 0) {
908 msIntoMonth
+= monthLen
;
910 #if defined (U_DEBUG_CAL)
911 fprintf(stderr
, "%s:%d: roll DOM %d -> %.0lf ms \n",
912 __FILE__
, __LINE__
,amount
, cMonthLen
, cMonthStart
+msIntoMonth
);
914 setTimeInMillis(cMonthStart
+ msIntoMonth
, status
);
918 case UCAL_WEEK_OF_MONTH
:
919 if( !inCutoverMonth
) {
920 Calendar::roll(field
, amount
, status
);
923 #if defined (U_DEBUG_CAL)
924 fprintf(stderr
, "%s:%d: roll WOM %d ??????????????????? \n",
925 __FILE__
, __LINE__
,amount
);
927 // NOTE: following copied from the old
928 // GregorianCalendar::roll( WEEK_OF_MONTH ) code
930 // This is tricky, because during the roll we may have to shift
931 // to a different day of the week. For example:
937 // When rolling from the 6th or 7th back one week, we go to the
938 // 1st (assuming that the first partial week counts). The same
939 // thing happens at the end of the month.
941 // The other tricky thing is that we have to figure out whether
942 // the first partial week actually counts or not, based on the
943 // minimal first days in the week. And we have to use the
944 // correct first day of the week to delineate the week
947 // Here's our algorithm. First, we find the real boundaries of
948 // the month. Then we discard the first partial week if it
949 // doesn't count in this locale. Then we fill in the ends with
950 // phantom days, so that the first partial week and the last
951 // partial week are full weeks. We then have a nice square
952 // block of weeks. We do the usual rolling within this block,
953 // as is done elsewhere in this method. If we wind up on one of
954 // the phantom days that we added, we recognize this and pin to
955 // the first or the last day of the month. Easy, eh?
957 // Another wrinkle: To fix jitterbug 81, we have to make all this
958 // work in the oddball month containing the Gregorian cutover.
959 // This month is 10 days shorter than usual, and also contains
960 // a discontinuity in the days; e.g., the default cutover month
961 // is Oct 1582, and goes from day of month 4 to day of month 15.
963 // Normalize the DAY_OF_WEEK so that 0 is the first day of the week
964 // in this locale. We have dow in 0..6.
965 int32_t dow
= internalGet(UCAL_DAY_OF_WEEK
) - getFirstDayOfWeek();
969 // Find the day of month, compensating for cutover discontinuity.
970 int32_t dom
= cDayOfMonth
;
972 // Find the day of the week (normalized for locale) for the first
974 int32_t fdm
= (dow
- dom
+ 1) % 7;
978 // Get the first day of the first full week of the month,
979 // including phantom days, if any. Figure out if the first week
980 // counts or not; if it counts, then fill in phantom days. If
981 // not, advance to the first real full week (skip the partial week).
983 if ((7 - fdm
) < getMinimalDaysInFirstWeek())
984 start
= 8 - fdm
; // Skip the first partial week
986 start
= 1 - fdm
; // This may be zero or negative
988 // Get the day of the week (normalized for locale) for the last
990 int32_t monthLen
= cMonthLen
;
991 int32_t ldm
= (monthLen
- dom
+ dow
) % 7;
992 // We know monthLen >= DAY_OF_MONTH so we skip the += 7 step here.
994 // Get the limit day for the blocked-off rectangular month; that
995 // is, the day which is one past the last day of the month,
996 // after the month has already been filled in with phantom days
997 // to fill out the last week. This day has a normalized DOW of 0.
998 int32_t limit
= monthLen
+ 7 - ldm
;
1000 // Now roll between start and (limit - 1).
1001 int32_t gap
= limit
- start
;
1002 int32_t newDom
= (dom
+ amount
*7 - start
) % gap
;
1007 // Finally, pin to the real start and end of the month.
1010 if (newDom
> monthLen
)
1013 // Set the DAY_OF_MONTH. We rely on the fact that this field
1014 // takes precedence over everything else (since all other fields
1015 // are also set at this point). If this fact changes (if the
1016 // disambiguation algorithm changes) then we will have to unset
1017 // the appropriate fields here so that DAY_OF_MONTH is attended
1020 // If we are in the cutover month, manipulate ms directly. Don't do
1021 // this in general because it doesn't work across DST boundaries
1022 // (details, details). This takes care of the discontinuity.
1023 setTimeInMillis(cMonthStart
+ (newDom
-1)*kOneDay
, status
);
1028 Calendar::roll(field
, amount
, status
);
1033 // -------------------------------------
1037 * Return the minimum value that this field could have, given the current date.
1038 * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum().
1039 * @param field the time field.
1040 * @return the minimum value that this field could have, given the current date.
1041 * @deprecated ICU 2.6. Use getActualMinimum(UCalendarDateFields field) instead.
1043 int32_t GregorianCalendar::getActualMinimum(EDateFields field
) const
1045 return getMinimum((UCalendarDateFields
)field
);
1048 int32_t GregorianCalendar::getActualMinimum(EDateFields field
, UErrorCode
& /* status */) const
1050 return getMinimum((UCalendarDateFields
)field
);
1054 * Return the minimum value that this field could have, given the current date.
1055 * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum().
1056 * @param field the time field.
1057 * @return the minimum value that this field could have, given the current date.
1060 int32_t GregorianCalendar::getActualMinimum(UCalendarDateFields field
, UErrorCode
& /* status */) const
1062 return getMinimum(field
);
1066 // ------------------------------------
1069 * Old year limits were least max 292269054, max 292278994.
1075 int32_t GregorianCalendar::handleGetLimit(UCalendarDateFields field
, ELimitType limitType
) const {
1076 return kGregorianCalendarLimits
[field
][limitType
];
1080 * Return the maximum value that this field could have, given the current date.
1081 * For example, with the date "Feb 3, 1997" and the DAY_OF_MONTH field, the actual
1082 * maximum would be 28; for "Feb 3, 1996" it s 29. Similarly for a Hebrew calendar,
1083 * for some years the actual maximum for MONTH is 12, and for others 13.
1086 int32_t GregorianCalendar::getActualMaximum(UCalendarDateFields field
, UErrorCode
& status
) const
1088 /* It is a known limitation that the code here (and in getActualMinimum)
1089 * won't behave properly at the extreme limits of GregorianCalendar's
1090 * representable range (except for the code that handles the YEAR
1091 * field). That's because the ends of the representable range are at
1092 * odd spots in the year. For calendars with the default Gregorian
1093 * cutover, these limits are Sun Dec 02 16:47:04 GMT 292269055 BC to Sun
1094 * Aug 17 07:12:55 GMT 292278994 AD, somewhat different for non-GMT
1095 * zones. As a result, if the calendar is set to Aug 1 292278994 AD,
1096 * the actual maximum of DAY_OF_MONTH is 17, not 30. If the date is Mar
1097 * 31 in that year, the actual maximum month might be Jul, whereas is
1098 * the date is Mar 15, the actual maximum might be Aug -- depending on
1099 * the precise semantics that are desired. Similar considerations
1100 * affect all fields. Nonetheless, this effect is sufficiently arcane
1101 * that we permit it, rather than complicating the code to handle such
1102 * intricacies. - liu 8/20/98
1104 * UPDATE: No longer true, since we have pulled in the limit values on
1105 * the year. - Liu 11/6/00 */
1110 /* The year computation is no different, in principle, from the
1111 * others, however, the range of possible maxima is large. In
1112 * addition, the way we know we've exceeded the range is different.
1113 * For these reasons, we use the special case code below to handle
1116 * The actual maxima for YEAR depend on the type of calendar:
1118 * Gregorian = May 17, 292275056 BC - Aug 17, 292278994 AD
1119 * Julian = Dec 2, 292269055 BC - Jan 3, 292272993 AD
1120 * Hybrid = Dec 2, 292269055 BC - Aug 17, 292278994 AD
1122 * We know we've exceeded the maximum when either the month, date,
1123 * time, or era changes in response to setting the year. We don't
1124 * check for month, date, and time here because the year and era are
1125 * sufficient to detect an invalid year setting. NOTE: If code is
1126 * added to check the month and date in the future for some reason,
1127 * Feb 29 must be allowed to shift to Mar 1 when setting the year.
1130 if(U_FAILURE(status
)) return 0;
1131 Calendar
*cal
= clone();
1133 status
= U_MEMORY_ALLOCATION_ERROR
;
1137 cal
->setLenient(TRUE
);
1139 int32_t era
= cal
->get(UCAL_ERA
, status
);
1140 UDate d
= cal
->getTime(status
);
1142 /* Perform a binary search, with the invariant that lowGood is a
1143 * valid year, and highBad is an out of range year.
1145 int32_t lowGood
= kGregorianCalendarLimits
[UCAL_YEAR
][1];
1146 int32_t highBad
= kGregorianCalendarLimits
[UCAL_YEAR
][2]+1;
1147 while ((lowGood
+ 1) < highBad
) {
1148 int32_t y
= (lowGood
+ highBad
) / 2;
1149 cal
->set(UCAL_YEAR
, y
);
1150 if (cal
->get(UCAL_YEAR
, status
) == y
&& cal
->get(UCAL_ERA
, status
) == era
) {
1154 cal
->setTime(d
, status
); // Restore original fields
1163 return Calendar::getActualMaximum(field
,status
);
1168 int32_t GregorianCalendar::handleGetExtendedYear() {
1169 int32_t year
= kEpochYear
;
1170 switch(resolveFields(kYearPrecedence
)) {
1171 case UCAL_EXTENDED_YEAR
:
1172 year
= internalGet(UCAL_EXTENDED_YEAR
, kEpochYear
);
1177 // The year defaults to the epoch start, the era to AD
1178 int32_t era
= internalGet(UCAL_ERA
, AD
);
1180 year
= 1 - internalGet(UCAL_YEAR
, 1); // Convert to extended year
1182 year
= internalGet(UCAL_YEAR
, kEpochYear
);
1188 year
= handleGetExtendedYearFromWeekFields(internalGet(UCAL_YEAR_WOY
), internalGet(UCAL_WEEK_OF_YEAR
));
1189 #if defined (U_DEBUG_CAL)
1190 // if(internalGet(UCAL_YEAR_WOY) != year) {
1191 fprintf(stderr
, "%s:%d: hGEYFWF[%d,%d] -> %d\n",
1192 __FILE__
, __LINE__
,internalGet(UCAL_YEAR_WOY
),internalGet(UCAL_WEEK_OF_YEAR
),year
);
1203 int32_t GregorianCalendar::handleGetExtendedYearFromWeekFields(int32_t yearWoy
, int32_t woy
)
1205 // convert year to extended form
1206 int32_t era
= internalGet(UCAL_ERA
, AD
);
1208 yearWoy
= 1 - yearWoy
;
1210 return Calendar::handleGetExtendedYearFromWeekFields(yearWoy
, woy
);
1214 // -------------------------------------
1217 GregorianCalendar::inDaylightTime(UErrorCode
& status
) const
1219 if (U_FAILURE(status
) || !getTimeZone().useDaylightTime())
1222 // Force an update of the state of the Calendar.
1223 ((GregorianCalendar
*)this)->complete(status
); // cast away const
1225 return (UBool
)(U_SUCCESS(status
) ? (internalGet(UCAL_DST_OFFSET
) != 0) : FALSE
);
1228 // -------------------------------------
1231 * Return the ERA. We need a special method for this because the
1232 * default ERA is AD, but a zero (unset) ERA is BC.
1235 GregorianCalendar::internalGetEra() const {
1236 return isSet(UCAL_ERA
) ? internalGet(UCAL_ERA
) : (int32_t)AD
;
1240 GregorianCalendar::getType() const {
1241 //static const char kGregorianType = "gregorian";
1246 const UDate
GregorianCalendar::fgSystemDefaultCentury
= DBL_MIN
;
1247 const int32_t GregorianCalendar::fgSystemDefaultCenturyYear
= -1;
1249 UDate
GregorianCalendar::fgSystemDefaultCenturyStart
= DBL_MIN
;
1250 int32_t GregorianCalendar::fgSystemDefaultCenturyStartYear
= -1;
1253 UBool
GregorianCalendar::haveDefaultCentury() const
1258 UDate
GregorianCalendar::defaultCenturyStart() const
1260 return internalGetDefaultCenturyStart();
1263 int32_t GregorianCalendar::defaultCenturyStartYear() const
1265 return internalGetDefaultCenturyStartYear();
1269 GregorianCalendar::internalGetDefaultCenturyStart() const
1271 // lazy-evaluate systemDefaultCenturyStart
1275 needsUpdate
= (fgSystemDefaultCenturyStart
== fgSystemDefaultCentury
);
1279 initializeSystemDefaultCentury();
1282 // use defaultCenturyStart unless it's the flag value;
1283 // then use systemDefaultCenturyStart
1285 return fgSystemDefaultCenturyStart
;
1289 GregorianCalendar::internalGetDefaultCenturyStartYear() const
1291 // lazy-evaluate systemDefaultCenturyStartYear
1295 needsUpdate
= (fgSystemDefaultCenturyStart
== fgSystemDefaultCentury
);
1299 initializeSystemDefaultCentury();
1302 // use defaultCenturyStart unless it's the flag value;
1303 // then use systemDefaultCenturyStartYear
1305 return fgSystemDefaultCenturyStartYear
;
1309 GregorianCalendar::initializeSystemDefaultCentury()
1311 // initialize systemDefaultCentury and systemDefaultCenturyYear based
1312 // on the current time. They'll be set to 80 years before
1313 // the current time.
1314 // No point in locking as it should be idempotent.
1315 if (fgSystemDefaultCenturyStart
== fgSystemDefaultCentury
)
1317 UErrorCode status
= U_ZERO_ERROR
;
1318 Calendar
*calendar
= new GregorianCalendar(status
);
1319 if (calendar
!= NULL
&& U_SUCCESS(status
))
1321 calendar
->setTime(Calendar::getNow(), status
);
1322 calendar
->add(UCAL_YEAR
, -80, status
);
1324 UDate newStart
= calendar
->getTime(status
);
1325 int32_t newYear
= calendar
->get(UCAL_YEAR
, status
);
1328 fgSystemDefaultCenturyStart
= newStart
;
1329 fgSystemDefaultCenturyStartYear
= newYear
;
1333 // We have no recourse upon failure unless we want to propagate the failure
1341 #endif /* #if !UCONFIG_NO_FORMATTING */